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ABSTRACT. We present a detailed analysis of the unconstrained `1-weighted LASSO method for
recovery of sparse data from its observation by randomly generated matrices, satisfying the Re-
stricted Isometry Property (RIP) with constant δ < 1, and subject to negligible measurement and
compressibility errors. We prove that if the data is k-sparse, then the size of support of the LASSO
minimizer, s, maintains a comparable sparsity, s 6 Cδk. For example, if δ = 0.7 then s < 11k and
a slightly smaller δ = 0.4 yields s < 4k. We also derive new `2/`1 error bounds which highlight
precise dependence on k and on the LASSO parameter λ, before the error is driven below the scale
of negligible measurement/ and compressiblity errors.
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1. INTRODUCTION

In 2006, the pioneering works of Candès, Romberg and Tao [13, 14] and of Donoho [21] sug-
gested the framework of a constrained `1-method to recover a sparse unknown x∗ ∈ RN from its
observation y∗ = Ax∗ ∈ Rm1. The key point is that one can design observing matricesA ∈ Rm×N
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with a relatively small number of observations, m� N , such that a constrained `1-method — also
known as Basis Pursuit (BP) in [18, 16, 17] — finds a sparse solution as a minimizer of2

xBP := argmin
x∈RN

{
|x|1

∣∣ Ax = y∗}, A ∈ Rm×N , m� N.

This is closely related to the well-known LASSO algorithm introduced in 1996 in the statistics
literature [39], argmin

|x|16δ

{
|yε∗ − Ax|22

}
, which can be viewed as an `1-penalty relaxation of a least

squares subject to (possibly noisy) observation yε∗.
The BP minimizer, xBP , recovers the sparse x∗ when the observing matrix A satisfies an appro-

priate recoverability condition; we mention here the Restricted Isometry Property (RIP) introduced
in [13], the `1-Coherence discussed in [40, 27, 22, 23], the restricted eigenvalue condition [6, §3],
or the Null Space Property (NSP) of DeVore and his co-authors [19, 20], and related Robust Null
Sparse Property (RNSP) of [26]. Important classes of such observing matrices with desired sparse
recoverability conditions are randomly generated, e.g., [26, §9].

1.1. Statement of main results. Throughout the paper we will be using the two notions of spar-
sity and compressibility. A vector x ∈ RN is sparse if

sx := |x|0 � N.

In applications, sparsity is often difficult to acquire, and clean observations are not always avail-
able, since the observation process is inevitably and easily corrupted by errors — human and/or
machine measurement errors. We turn our attention to the recovery of compressible unknown from
its noisy observations. A vector x ∈ RN is compressible of order k, or simply k-compressible, if
its content is faithfully captured by a k-sparse vector — specifically, if its `1-distance to the set of
all k-sparse vectors,

(1.1) σk(x) := inf
z∈RN

{|x− z|1 : |z|0 6 k} ,

is small relative to |x|1. We note that σk(x) is realized by a (not necessarily unique) vector, denoted
x(k), whose non-zero entries are the k largest of x in absolute value.
Let x∗ be a compressible unknown of order k so that σk(x∗) � |x∗|1, and assume we only have
access to its measured observation yε∗ = Ax∗ + ε. The term ε is the measurement error caused
by a number of factors which are assumed statistically independent of the unknown x∗ and the
observing operator A. The details of ε remain untraceable except for its size which is assumed
to be negligibly small. In this case, one should not expect an exact recovery of a sparse x∗, but
instead, accept an approximate solution, yε∗ = Ax∗(k) + ε′, where ε′ = A(x∗ − x∗(k)) + ε is
adapted to the small scale built into the problem, which consists of two contributions — the small
measurement error, ε := |ε|2, and the small compressibility error,3 |A(x∗ − x∗(k))|2 6 σk(x∗),

yε∗ = Ax∗(k) + ε′, |ε′|2 6 µ,

such that µ = σk(x∗) + ε is much smaller relative to the unknown data, µ � |x∗|1. Although
the observing operator A is linear, the recovery of x∗ by a direct “solution” of the linear problem
Ax = yε∗ is ill-posed, unless additional conditions on A and x∗ are enforced so that the unknown

2Given x ∈ RN we let |x|p denote its `p-norm, with the usual conventional limiting cases of p = ∞ and p = 0,
where |x|∞ := max

16i6N
|xi|, and respectively |x|0 := |supp(x)| where | · | is the cardinality of a finite set.

3The columns of A are assumed `2-normalized so that |A|1→2 = 1.
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object x∗, or at least a faithful approximation of it, is recovered by solving an augmented well-
posed regularized minimization problem. On the way, the original linear problem is replaced by a
nonlinear procedure. To capture the compressible information of x∗ from its noisy observation yε∗,
we seek a minimizer of the unconstrained `1-regularized Least Squares problem,

(1.2) xλ := argmin
x∈RN

{
λ|x|1 +

1

2
|yε∗ − Ax|22

}
, A ∈ Rm×N , m� N.

The unconstrained variational statement (1.2) falls under the general class of Tikhonov regulariza-
tion. The distinctive feature is the `1-regularization, leading to an approximate decomposition of
the basis pursuit of Chen & Donoho [18], yε∗ = Axλ + rλ with (hopefully) small residual, rλ =
yε∗ − Axλ, depending on a parameter λ. This version of `1-regularization, called “Basis Pursuit
De-Noising” in [16], which became known as the unconstrained `1-weighted LASSO, is the main
focus of our work. As noted in the 1996 thesis [16], the work on this version of BP was motivated
by a series of ideas using `0/`1-based regularization that appeared in early 1990s, primarily the
empirical atomic decomposition of Donoho and Johnstone [24], argmin

x∈RN

{
λ|x|0 + 1

2
|yε∗−Ax|22

}
,

the multi-scale edge representation with wavelets of Hwang and Mallat [29] and the TV-based de-
noising method of ROF [31], argmin

x∈RN

{
λ|x|TV + 1

2
|yε∗ − Ax|22

}
. These works were later further

explored as the Lagrangian formulation of the quadratically constrained Basis Pursuit de-noising
[17, 14] and the noise-aware `1-minimization [26].

Since λ > 0 controls the distance between Axλ and y∗, the parameter λ can be interpreted as
a regularization scale. In a subsequent work, [37], we pursue a multi-scale generalization based
on a ladder of hierarchical scales constructed by the Hierarchical Decomposition (HD) method
[34, 35, 36, 33]. The goal of this work is to analyze the sparsity behavior of the mono-scale
LASSO (1.2), observed by a sub-class of RIP matrices satisfying the Robust Null Space Property
(RNSP) which is discussed in section 2. Our main results, outlined and proved in section 3, are
summarized in the following. Our results involve three main parameters: the Restricted Isometry

Constant (RIC) in (2.2) below, δ = δk < 1, the related RNSP constant, βδ =

√
1 + δ√

1− δ2 − δ/4
,

depending on the RIC δ, and the small scale of compressibility+measurement, µ = σk(x∗) + ε.

Theorem 1.1 (Main result). Let x∗ be k-compressible, and let yε∗ = Ax∗ + ε be its observation
with observing matrix A satisfying the RIP (2.2) with constant δ large enough, δ > δt, such that
(3.7) below holds. Let xλ be the LASSO minimizer (1.2).

(i) (Sparsity). The sparsity of the LASSO minimizer, sλ = sxλ , does not exceed

sλ < (1 + δ)
(
βδ
√
k +

2µ

λ

)2
.

(ii) (`2-error bound). The following `2-error bound holds

1√
1 + δ

( √sλλ√
1 + δ

− µ
)
6 |xλ − x∗(k)|2 6

1√
1− δ

(
βδ
√
kλ+ 3µ

)
.

(iii) (`1-error bound). The following `1-error bound holds

|xλ − x∗(k)|1 <
√
1 + δ√
1− δ

1

λ

(
(βδ + 1/2)

√
kλ+ 2µ

)2
.
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We interpret these bounds as follows. Set θ = 2µ/
√
kλ, then (i) reads

sλ 6 χ2k, χ =
√
1 + δ(βδ + θ).

Thus, if θ 6 1 — namely, as long as λ does not get exceedingly small so that λ > 2µ/
√
k, then the

sparsity of xλ is comparable to the sparsity of x∗. Furthermore, in (ii) we have the `2-error bound
of order .

√
kλ+ µ and in (iii), an `1-error bound of order . kλ+

√
kµ.

We conclude with a few comments on theorem 1.1. The sparsity bound in (i) with RIC δ = 0.7
yields sλ < 11k, while a slightly smaller RIC δ = 0.4 yields sλ < 4k. This should be compared
with the sparsity bounds in [5, Theorem 3] and [32]. The `2-upper bound on the right of (ii)
is not new; here we recover the `2-bound, derived under appropriate assumptions, in [11], [6,
Theorem 7.1] and [30, 38, 28]. This should be contrasted with the `2-error lower-bound on the
left, derived in section 4.1 (see figure 4.1). Indeed, this `2 lower-bound is the essential ingredient
in our proof of the sparsity bound in (i). Finally, the `1-bound in (iii) with RIC δ = 0.7 yields
|xλ −x∗(k)|1 < 16.97kλ+ 24.04

√
kµ. Here, the linear decay with λ is not new and can be found

for example, under various assumptions, in [6, Theorem 7.1] and [9, Theorem 6.1].

2. THE ROBUST NULL SPACE PROPERTY

Optimality of the minimizer. The variational problem (1.2) admits a minimizer, xλ, and at least
for certain relevant classes of full row rank A’s, the minimizer is unique, [41]. The minimizer
is completely characterized by its residual, rλ := yε∗ − Axλ (to simplify notations we suppress
the dependence of rλ on ε). We summarize the results from [35, §2.1],[33, Appendix] where we
distinguish between two cases.

(i) If λ > λ∞ := |A>yε∗|∞ then (1.2) admits only the trivial minimizer xλ ≡ 0. In this case,
λ is too large to extract the compressibility information in yε∗.

(ii) If λ < λ∞ = |A>yε∗|∞ then (1.2) admits a non-trivial minimizer, xλ, with the correspond-
ing residual, rλ = yε∗ − Axλ, such that (xλ, rλ) forms an extremal pair in the sense that

(2.1) 〈Axλ, rλ〉 = λ|xλ|1 and |A>rλ|∞ = λ.

To proceed we will need the following notations. The restriction of a vector w ∈ RN on an
index set K ⊂ {1, 2, . . . , N} of size k = |K| is denoted wK := {wi, i ∈ K} ∈ Rk. Similarly,
given a matrix W ∈ Rm×N with columns w1,w2, . . ., its restriction on an index set K of size
k = |K| consists of the k columns WK := col{wi, i ∈ K}. The size of W can be measured by
its induced matrix norm, ‖W‖p = sup

|w|p=1

|Ww|p. The signum vector is defined component-wise,

sgn(w)i = sgn(wi), in terms of the usual signum function sgn(w) =
{
−1, w < 0
1, w > 0

}
for w 6= 0.

Restricted Isometry Poperty (RIP). A matrix A satisfies the Restricted Isometry Property (RIP)
of order k with Restricted Isometry Constant (RIC) δk < 1 if the following holds, [15, 21, 13, 7],

(2.2) (1− δk)|x|22 6 |Ax|22 6 (1 + δk)|x|22, ∀|x|0 6 k.

Throughout the paper we adopt the usual assumption that δk is measured forA’s with `2-normalized
columns4. There are two classes of matricesA ∈ Rm×N satisfying the RIP of order k: deterministic

4The RIP of A asserts that for any subset of its k columns, {ai}i∈K, the entries |〈ai,aj〉|i6=j . δk while |ai|22 =

1+εi such that |εi| . δk. Therefore, one can always re-normalize the columns ofA by a factor. (1−δk)−1/2 yielding
a new RIP matrix with `2-normalized columns and with possibly slightly larger RIP constant δ′k . δk/(1− δk).
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A’s with number of observations m & k2 (the quadratic bottleneck is lessened in [8]); and a large
class of randomly generated A’s for which the restriction on the number of observations can be
further lessened to having only m observations, [26, §9.4]

(2.3) m ∼ Const · δ−2k ln
(
eN/k

)
.

Candès proved the exactness of the constrained BP for RIP matrices with δ <
√
2−1, [12]. Further

refinements were reported in [25] before the definitve result of [10].
Robust Null Space Property (RNSP). A crucial step in quantifying the recovery error of x∗ using
(1.2) is to enforce a recoverability condition on the observing matrix A. This brings us to the
Robust Null Sparse Property (RNSP) introduced in [26, §4.3]. A matrix A ∈ Rm×N satisfies the
RNSP of order k with constants 0 < ρ < 1 and τ > 0, if for allK ⊂ {1, 2, . . . , N} of size |K| 6 k,
there holds

(2.4) |xK|1 6 ρ|xKc |1 + τ |Ax|2, ∀x ∈ RN .

We refer to the “RNSPρ,τ of order k”, and unless needed, we suppress the dependence of (ρ, τ) on
k. In particular, given a k-sparse v and any u, we apply (2.4) to x = u − v with K = supp(v),
where |xK|1 − |xKc |1 > |v|1 − |u|1 yields the following useful consequence of RNSP.

Lemma 2.1. If A ∈ Rm×N satisfies the RNSPρ,τ of order k, then for all k-sparse v’s and any u,

(2.5) |v|1 − |u|1 6 τ |A(u− v)|2, |supp(v)| 6 k.

As an example for the class of observation matrices satisfying the RNSPρ,τ of order k, we
mention the class of randomly generated RIP matrices with RICs δ = δ2k, [26, Theorem 6.13],

(2.6) ρ =
δ√

1− δ2 − δ/4
and τ = β

√
k, β :=

√
1 + δ√

1− δ2 − δ/4
, δ = δ2k.

These RNSP parameters, (ρ, β), are dictated as increasing functions of the RIC δ < 1. A smaller
δ requires an increased number of observations. All proofs invoke different classes of observing
matrices which are randomly generated so that they satisfy a desirable observing properties—
RIP, RNSP, or Constrained Minimal Singular Values (CMSV) property. Accordingly, the error
statements are probabilistic in nature, referring to the ensemble of these observations.

3. ON THE SPARSITY OF THE UNCONSTRAINED LASSO MINIMIZER

We analyze the sparsity and `1/`2-error bounds of the minimizer (1.2) in recovering x∗(k) from
the observation yε∗ = Ax∗ + ε, with small measurement error, ε = |ε|2, and — assuming that x∗
is k-compressible — with small compressibility error, σk(x∗) = |x∗ − x∗(k)|1. Set

µ := σk(x∗) + ε.

Clearly, since the exact solution is observed up to `2 residual error of order |yε∗ − Ax∗|2 6 µ, we
do not have much to say when the computed residual error |rλ|2 is of order µ and we will therefore
limit ourselves to the parametric regime where |rλ|2 � µ. Below we show that |rλ|2 ∼ λ

√
k and

therefore throughout the paper we make the assumption

(3.1) θ :=
2µ

λ
√
k
6 1, µ = σk(x∗) + ε.

Thus, we assume the LASSO weight, λ, does not get exceedingly small, λ > 2µ/
√
k. In concrete ex-

amples demonstrating the sparsity and error bounds reported below we use θ = 0.1, corresponding
to λ > 20µ/

√
k.
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Lemma 3.1 (The re-scaled residual — an upper-bound). Fix λ < λ∞ := |A>yε∗|∞. Let yε∗ =
Ax∗ + ε be the observation of a k-compressible unknown x∗ ∈ RN , observed by A ∈ Rm×N

satisfying the RNSPρ,τ of order k, (2.6). Let µ denote the small scale of k-compressiblity and
measurement errors, see (3.1). Then the residual of the LASSO (1.2), rλ = yε∗ − Axλ, satisfies

(3.2)
|rλ|2
λ
6 (βδ + θ)

√
k, βδ =

√
1 + δ√

1− δ2 − δ/4
.

Proof. Clearly, |A(xλ − x∗(k))|2 6 |rλ|2 + µ. Using (2.5) with the k-sparse v = x∗(k) and
u = xλ yields

(3.3) |x∗(k)|1 − |xλ|1 6 τ |A(xλ − x∗(k))|2 6 τ |rλ|2 + τµ.

Next, a lower-bound for the quantity on the left follows. Recall that xλ, being the LASSO min-
imizer (1.2), is characterized by the extremal property that its scaled residual z =

rλ
λ

satisfies
(2.1),

|xλ|1 = 〈Axλ, z〉 and |A>z|∞ = 1, z :=
rλ
λ
.

Hence
|x∗(k)|1 − |xλ|1 > 〈x∗(k), A>z〉 − 〈Axλ, z〉 = 〈Ax∗(k)− Axλ, z〉

= 〈rλ, z〉+ 〈Ax∗(k)− yε∗, z〉

>
|rλ|22
λ
− |Ax∗(k)− yε∗|2

|rλ|2
λ

.

Now, assumption (3.1) and the fact that |A|1→2 6 1 imply,

|Ax∗(k)− yε∗|2 6 |Ax∗ − yε∗|2 + |A(x∗(k)− x∗)|2 6 ε+ σk(x∗) = µ,

and we end with the desired lower-bound

(3.4) |x∗(k)|1 − |xλ|1 >
|rλ|22
λ
− µ |rλ|2

λ
.

Combining (3.3) and (3.4) we conclude that |z|2 =
|rλ|2
λ

satisfies the quadratic inequality, |z|22 6(
τ +

µ

λ

)
|z|2 + τ

µ

λ
, and therefore

(3.5)
|rλ|2
λ

= |z|2 < τ +
2µ

λ
= (βδ + θ)

√
k,

proving (3.2). �

3.1. Bounds of the sparsity. We now come to the main point of the lower-bound on the scaled

residual in terms of the size of the support of xλ,
|rλ|2
λ
&
√
sλ. Fix λ < λ∞ := |A>yε∗|∞. Recall

that if xλ is the LASSO minimizer (1.2) then by the extremal property (2.1), the scaled residual
z =

rλ
λ

satisfies the two properties 〈Axλ, z〉 = |xλ|1 and |A>z|∞ = 1. Thus, the extremal xλ
with support S = supp(xλ) of size sλ = |xλ|0, is identified by a re-scaled residual satisfying

(3.6) (A>z)S = sgn(xλ,S), z =
rλ
λ
, S = supp(xλ).

Fix the integer t,

(3.7) t := [(1 + δ)(βδ + θ)2k] + 1 with constant δ > δt.
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Since the RIC δt is increasing with the order t, there is no need to trace a precise fixed point
associated with (3.7), t = [(1 + δt)(βδt + θ)2k] + 1. Instead, we can use a priori bounds of δt; for
example, if we restrict ourselves to the range δ < 0.7, we can set the integer upper bound t = 11k.
Below, we demonstrate refined versions of this bound.
We claim that

(3.8) sλ < t = [(1 + δ)(βδ + θ)2k] + 1.

To this end we proceed by contradiction. Assume sλ > t. Then the support of xλ has a subset T
of size t for which the extremal property (3.6) reads (A>z)T = sgn(xλ,T ), and the RIP (2.2) for
such set T implies

|A(A>z)T |22 6 (1 + δt)|(A>z)T |22 = (1 + δt)| sgn(xλ,T )|22 = (1 + δt)t.(3.9)

On the other hand, we have

|A(A>z)T |22 >
1

|z|22

〈
A(A>z)T , z

〉2
=

1

|z|22

〈
(A>z)T , A

>z
〉2

=
1

|z|22
|(A>z)T |42 =

t2

|z|22
.

The last two inequalities followed by Lemma 3.1 imply t 6 (1 + δt)|z|22 < (1 + δ)(βδ + θ)2k,
which contradicts the definition of t,

t = [(1 + δ)(βδ + θ)2k] + 1 > (1 + δt)(βδ + θ)2k.

Thus, (3.8) holds.
In fact, a refined statement follows. Now that we know |S| 6 [(1 + δ)(βδ + θ)2k] we can argue
along the same line as above with T = S , obtaining sλ 6 (1 + δ)|z|22.

Lemma 3.2 (The re-scaled residual — a lower-bound). Fix λ < λ∞ := |A>yε∗|∞ and let xλ be
the sλ-sparse minimizer of the corresponding LASSO (1.2), observed with RIC δ such that (3.7)
holds. Then the residual, rλ = yε∗ − Axλ, satisfies

(3.10)
|rλ|22
λ2
>

sλ
1 + δ

.

Combining the lower- and upper-bounds of
|rλ|2
λ

we conclude the following.

Theorem 3.3 (Sparsity bound). Fix λ < λ∞ := |A>yε∗|∞ and let xλ be the sλ-sparse minimizer
of the corresponding LASSO (1.2), observed with RIC δ such that (3.7) holds. Then

(3.11)
sλ

1 + δ
6
|rλ|22
λ2
6 (βδ + θ)2k, δ > δt, t = [(1 + δt)(βδt + θ)2k] + 1.

In particular, we recover (3.8), sλ 6 [(1 + δ)(βδ + θ)2k].

We demonstrate the application of corollary 3.3 for different choices of RICs. In all cases, we set
θ = 0.1. We begin with the RIC δ = 0.7, obtaining (βδ + θ) = 2.52 ; sλ 6 (1 + δ)(βδ + θ)2k <
11k. Thus, with t = 11k we require δ11k < 0.7 which in turn, by (2.3), set the number of required
observations

sλ < 11k : m ≈ Const.
11k

0.72
ln(eN/k) ≈ Const.22.4 k ln(eN/k).

For a second example we choose a smaller RIC δ = 0.4 and θ = 0.1. Recall, that a smaller δ
requires more observations yet in the number of observations in the present context depends on δt.
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In this case (βδ + θ) = 1.55 ; sλ 6 (1 + δ)(βδ + θ)2k = 3.36k < 4k. This requires a slightly
larger number of observations (or at least a smaller bound (2.3))

sλ < 4k : m ≈ Const.
4k

0.42
ln(eN/k) ≈ Const.25 k ln(eN/k).

Finally, as a third example we choose an even smaller the RIC δ = 0.26 and the same θ = 0.1. In
this case (βδ + θ) = 1.35 ; sλ 6 (1 + δ)(βδ + θ)2k = 2.28k < 3k, and this yields the number of
required observations

sλ < 3k : m ≈ Const.
3k

0.262
ln(eN/k) ≈ Const.44.4 k ln(eN/k).

Remark 3.4 (On the threshold parameter χ). Observe that the sparsity bound sλ is uniform
in the small scale µ throughout the parametric regime assumed in (3.1). Thus, in the range of
λ � 2µ/

√
k, the support of the computed solution |xλ|0 can grow at most by a fixed factor relative

to the k-support of underlying unknown x∗, [38, Appendix A]. We write

(3.12) sλ < ([χ2] + 1)k, χ :=
√
1 + δ(βδ + θ) =

1 + δ√
1− δ2 − δ/4

+
√
1 + δθ.

We have the theoretical bounds [χ2] + 1 = 11 corresponding to δ = 0.7 and [χ2] + 1 = 4
corresponding to δ ≈ 0.4.

3.2. Numerical simulations. We report here on our simulations of the unconstrained LASSO
(1.2), applied to the recovery of k-sparse data, σk = 0, that is µ = ε, with (k,m,N) = (160, 1024, 4096).
We consider different levels of noise ε = 10−3, 10−2, 10−1, in the corresponding parametric regime
(3.1), λ > 2µ/

√
k = 0.16ε. The results are obtained by averaging 100 observations using randomly

generated RNSPρ,τ matrices based on Gaussian distributions. A simple proof of the RIP for such
matrices can be found in [4]. The results are compared with the sparsity bound of theorem 3.3.
We note that our sparsity bound depends in an essential manner on the the RICs, 1 ± δ, in (2.2).
The parametric regime in (2.3) provides only a rough estimate on the range of allowable RICs, and
in particular, does not cover the parameters used in the simulations below, [26, §9.4]. A detailed
study which traces the sharp RICs can be found in [2, 3], but is beyond the scope of our work.
We compare the simulations with our sparsity bound based on the RIC δ = 0.7. This is partly
motivated by the result of [10] in which the authors prove an exact BP recovery of k-sparse data
from the RIP with δtk <

√
(t−1)/t. In our case, the computation reported in figure 3.1 indicates the

actual sparsity sλ < tk with t = 2 which is consistent with δ <
√

1/2 ≈ 0.7. Although the RIC
δ = 0.7 does not provide a tight bound, sλ < 11k, it suffices to detect the correct behavior of the
LASSO minimizer, reported in figures 3.1–3.3 and 4.1–4.2.
We record here the corresponding parameters involved in our bounds:

βδ |δ=0.7
=

√
1 + δ√

1− δ2 − δ/4
= 2.42, χ

|δ=0.7
=
√
1 + δ(βδ + θ) = 3.16, η|δ=0.7

=
1

1 + δ
= 0.59

Our main result on the sparsity of the LASSO minimizer in theorem 3.3 provides a reasonably
accurate information about the behavior of the unconstrained LASSO minimization (1.2). Figure
3.1 shows the behavior of the support, sλ = |xλ|0, starting with sλ = 0 for λ > λ∞ and monotoni-
cally increasing as λ decreases all the way to a critical value, λc ∼ 0.11, at which point sλc reaches
its maximal value of 215. This should be compared with our bound sλ 6 (1 + δ)(βδ + θ)2k. For
δ = 0.7 we have sλ 6 11k, which is a rough sparsity bound, relative to the actual sλ ∼ 215. A
smaller RIC δ ∼ 0.2 yields a tighter sparsity bound 1.66k ∼ 313.
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FIGURE 3.1. The support for computed minimizer sλ = |xλ|0 of k-sparse data, k = 160,
peaks at the threshold value of kmax ∼ 215 when λ reaches λc ∼ 0.11. This should be
compared with the rough upper bound (1 + δ)(βδ + θ)2k 6 11k corresponding to the RIC
δ = 0.7, and the more realistic bound 4k corresponding to δ = 0.4. Observe (lower figures)
that for exceedingly small λ� ε, there is an additional growth of order

ε

λ
.

Observe that according to (3.4), the `1-size of the LASSO minimizer xλ remains smaller than the
target |x∗(k)|1, Indeed, as long as the residual |rλ|2 > µ, then

(3.13) |x∗(k)|1 − |xλ|1 > (|rλ|2 − µ)
|rλ|2
λ

.

This is depicted in figure 3.2: as λ decreases, the ratio
|rλ|2
λ
&
√
sλ is increasing until |xλ|1 reaches

its upper bound of |x∗(k)|1.
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FIGURE 3.2. `1 norm of xλ approaches its upper-bound |x∗(k)|1 as λ decreases.

Figure 3.3 shows the aptitude of the lower- and upper-bounds of the re-scaled residual (3.11), in

capturing the re-scaled residual
|rλ|2
λ

. Again, the three quantities increase with deceasing λ, until

λ reaches the threshold λc at which point the re-scaled residual,
|rλ|2
λ

, peaks at its maximal value

∼ 27, in agreement with the upper-bound (3.2),
|rλ|2
λ

< βδ
√
k +

2ε

λ
< 30.61 +

2ε

λ
.

4. ERROR BOUNDS

4.1. `2-error bounds. The sparsity bound (3.11) was derived based on a two-sided `2-bound of
the scaled residual. The latter can be converted into a two-sided `2 error bound of |xλ − x∗(k)|2.
Note that since

∣∣|rλ|2 − |A(x∗(k) − xλ)|2
∣∣ 6 µ, then the upper-bound on |rλ|2, see (3.5), also

bounds the ‘observed error’ A(xλ − x∗(k)),

(4.1) |A(xλ − x∗(k))|2 6 (βδ + θ)
√
kλ+ µ 6 βδ

√
kλ+ 3µ.
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FIGURE 3.3. Re-scaled residual |rλ|2λ captured between its lower- and upper-bounds

(3.10) and (3.2),
√
ηsλ 6

|rλ|2
λ
6 βδ

√
k +

2ε

λ
≈ 30.61 with (η, β, θ) = (0.59, 2.42, 0.1)

corresponding to δ = 0.7. It peaks at a threshold value of 27, independent of the level of

noise. When λ� ε, there is an additional large term of order
2ε

λ
.

The sparsity of xλ does not exceed sλ 6 ([χ2] + 1)k hence xλ − x∗(k) has sparsity ([χ2] + 2)k,
and the RIP (2.2) implies the `2-error upper-bound

(4.2) |xλ − x∗(k)|2 6
1√
1− δ

(βδ
√
kλ+ 3µ), δ = δ([χ2]+2)k.

In particular, (4.2) with 1√
1−δ 6 1.83 and βδ 6 2.42 corresponding to δ = 0.7 yields

(4.3) |xλ − x∗(k)|2 . 4.43
√
kλ+ 5.48µ.

This recovers a quantitative version of the `2 upper bound proved under additional condition of an
incoherence design assumption in [30, Theorem 1], an `1-CMSV assumption5 [38], or restricted
eigenvalue bound in [28, Theorem 11.1].

5In fact, we slightly improve the quadratic dependence of the bound in [38, (23)] on the `1-CMSV constant ∼ ρ−24k ,
mentioned in (4.6) below.
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The upper-bound (4.2) is sharp in the sense of having a tight `2-lower bound: since the error
xλ − x∗(k) is at most ([χ2] + 2)k-sparse, we can use the RIP to translate the lower bound (3.10)
into an `2 lower-bound,

|xλ − x∗(k)|2 >
1√
1 + δ

|A(xλ − x∗(k))|2 >
1√
1 + δ

(|rλ|2 − µ) >
√
sλλ

1 + δ
− µ√

1 + δ
.

We summarize these bounds in the following form.

Theorem 4.1 (`2-bound). Fix λ < λ∞ := |A>yε∗|∞ and let xλ be the sλ-sparse minimizer of the
corresponding LASSO (1.2), observed with RIP matrix A. Then

(4.4)
1√
1 + δ

( √sλλ√
1 + δ

− µ
)
6 |xλ − x∗(k)|2 6

1√
1− δ

(βδ
√
kλ+ 3µ), δ = δ([χ2]+2)k.

Remark 4.2 (Compared with the `1-entropy bound). The extremal relation 〈ASxλ,S , rλ〉 =

λ|xλ,S |1 and the RIP (2.2) yield λ|xλ,S|1 6
√
1 + δ|xλ,S|2|rλ|2, and hence we end up with a

lower-bound involving the `1-entropy of {xλ,S},

(4.5)
|rλ|22
λ2
>

1

1 + δ
Ent(xλ,S) Ent(x) :=

|x|21
|x|22

.

This bound is tied to a Null Entropy Property of A [1, §3.2] or the `1-CMSV constant ρs(A)
introduced in [38]6

(4.6)
|rλ|22
λ2
>

Ent(xλ,S)
ρs(A)

, ρs(A) := min
|x|2=1

{
|Ax|2 : Ent(x) 6 s

}
.

6Which is not to be confused with the RNSP parameter in (2.6)
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FIGURE 4.1. Lower bounds of the re-scaled residual: (3.10) with η := 1
1+δ = 0.592 vs.

the `1-entropy based (4.5).

Clearly, if xλ has the sparsity sλ then Ent(xλ,S) 6 sλ. Here we note about the reverse implication,
namely — if the reverse inequality holds, Ent(xλ,S) & sλ, then it would yield our sparsity result

of lemma 3.2, based on the lower bound
|rλ|2
λ
&
√
sλ
ρsλ

. Theorem 3.3 suggests the lower-entropy

bound for the minimizers xλ. Indeed, figure 4.1 shows a remarkable agreement between the lower
bound (3.10) with δ = 0.7 and the `1-entropy bound (4.5), Ent(xλ), at least before the support of
xλ reaches its peak at kmax.

4.2. `1-error bound. We recall the `2-bound (4.2) which we express in the form |xλ−x∗(k)|2 6
1√
1− δ

(βδ+3/2θ)
√
kλ. Since xλ−x∗(k) has sparsity of order6 k+χ2k, we derive the following

`1-bound.

Theorem 4.3 (`1-error bound). Fix λ < λ∞ := |A>yε∗|∞ and let xλ be the LASSO minimizer of
(1.2), observed with RIP matrix A with RIC δ such that (3.7) holds. Then the following `1-error
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bound holds,

|xλ − x∗(k)|1 6
√(

1 + (1 + δ)(βδ + θ)2
)
k|xλ − x∗(k)|2

<
√
1 + δ(βδ + 1/2 + θ)

√
k

1√
1− δ

(
βδ + 3/2θ

)√
kλ

<

√
1 + δ√
1− δ

1

λ

((
βδ + 1/2

)√
kλ+ 2µ

)2
.

(4.7)

The amplitude of kλ in the `1-error bound (4.7) is not sharp. For example, with RIC δ = δ11k <
0.7 we have βδ > 2 in which case, omitting the negligibly small µ2/λ terms, one ends up with the
improved bound

(4.8) |xλ − x∗(k)|1 <
√
1 + δ√
1− δ

((
βδ + 1/4

)2
kλ+ (4βδ + 1)

√
kµ
)
< 16.97kλ+ 24.04

√
kµ.

We conclude with an alternative derivation of an `1-error bound. To this end, we recall the RNSP
bound [26, Theorem 4.20], which states that for all K ⊂ {1, 2 . . . , N} of size6 k and for any u,
v ∈ RN , the following holds,

|u− v|1 6
1 + ρ

1− ρ
(
|u|1 − |v|1 + 2|vKc |1

)
+

2τ

1− ρ
|A(u− v)|2, |K| 6 k.

Using it with (u,v) = (xλ,x∗(k)) and K = supp(x∗(k)) yields

(4.9) |xλ − x∗(k)|1 6
1 + ρ

1− ρ

(
|xλ|1 − |x∗(k)|1

)
+

2τ

1− ρ
|A(xλ − x∗(k))|2.

Now, using (3.4) to bound the term inside the first parenthesis on the right, and as before, noting
that the second term does not exceed |A(xλ − x∗(k))|2 6 |rλ|2 + µ, we find

|xλ − x∗(k)|1 6
1 + ρ

1− ρ

{
|rλ|2

( 2τ

1 + ρ
+
µ

λ
− |rλ|2

λ

)
+

2τ

1 + ρ
µ
}
.

Given the RNSP parameters (2.6), 2τ = 2β
√
k and

µ

λ
<

θ

1 + ρ

√
k, the last bound yields

(4.10) |xλ − x∗(k)|1 6
1

1− ρ

{
|rλ|2

(
2(βδ + θ)

√
k − (1 + ρ)

|rλ|2
λ

)
+ βδθkλ

}
.

Viewed as quadratic in
|rλ|2
λ

, the first expression on the right admits a maximal value
(βδ + θ)2

1 + ρ
kλ,

and we finally end up with

|xλ − x∗(k)|1 6
1

1− ρ2
(
(βδ + θ)2kλ+ (1 + ρ)βδθkλ

)
6

(βδ + 2θ)2

1− ρ2
kλ.(4.11)

This recovers the `1-bound of orderO(kλ) as in (4.7). However, since the `1 bound (4.11) involves
the value of 1/(1−ρ)2, it is therefore limited to the RIC δ < 4/

√
41 where ρ approaches 1.
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FIGURE 4.2. `1-error for recovery of sparse data compared with the upper-bound (4.12).

4.3. Numerical simulations. We report on the error behavior in our simulations of the uncon-
strained LASSO (1.2), applied to the recovery of k-sparse data, σk = 0, that is µ = ε, with
(k,m,N) = (160, 1024, 4096). The results are obtained by averaging 100 observations using ran-
domly generated RNSPρ,τ matrices based on Gaussian distributions. We compare the `1-error with
the error bound (4.8)

(4.12) |xλ − x∗(k)|1 6 16.97 ∗ 160λ+ 24.04
√
160 ε.
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FIGURE 4.3. The `1-error compared with the upper-bound (4.12) zoomed near λ = 0.
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