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ON THE ENTROPY NUMBERS AND THE KOLMOGOROV
WIDTHS

GUERGANA PETROVA AND PRZEMYSLAW WOJTASZCZYK

ABSTRACT. Direct estimates between linear or nonlinear Kolmogorov
widths and entropy numbers are presented. These estimates are derived
using the recently introduced Lipschitz widths.  Applications for m-
term approximation are obtained.

1. INTRODUCTION

We consider a Banach space (X, | - ||x) (or a Hilbert space H) equipped
with a norm || - | x and a compact subset K C X of X. Typically, K is a
finite ball in smoothness spaces like the Lipschitz, Sobolev, or Besov spaces.

A well known classical result, called the Carl’s inequality, see [2] or
[7], compares a certain characteristic of the set K, called entropy numbers
erx(K)x, with its approximability by linear spaces, measured by its Kol-
mogorov width di(K)x. The Carl’s inequality states that for each r > 0,
there is a constant C(r) such that for all n € N,

(1.1) 1211?§nk er(K)x <C(r) ax m dm—1(K) x.

Inequality (1.1) has been generalized in [10], where the nonlinear Kolmogorov
widths d,,(KC, N)x have been used instead of the linear Kolmogorov widths
d(K)x. More precisely, it has been shown there that for each r > 0, there
is a constant C(r, \) such that for all n € N,

(1.2) max Eer(K)x < C(r,A) max m"dp—1(K,\")x,

1<m<n

with A > 1 a fixed constant. In addition, it was also proven that for each
r > 0, there is a constant C(r,a) such that for all n € N,

. T < r _ am
(1 3) 1211?%(71]{: e(a—i—r)klogk(’C)X = C(T, a) 1£nn?§nm dm 1(IC7 m )Xv
where a > 0 is a fixed constant and klog k cannot be replaced by a slower
growing function of k.

All these inequalities are primarily useful when the linear or nonlinear
Kolmogorov widths decay as a power of m. In this paper, we give finer ex-
tensions of the (generalized) Carl’s inequalities (1.1), (1.2) and (1.3), using
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the recently introduced in [8] Lipschitz widths. We start with some defini-
tions, presented in §2, and continue, see §3, with a comparison between the
nonlinear Kolmogorov widths and the Lipschitz widths. Our main results
are presented in §4, where we give a direct comparison between the entropy
numbers of K and its linear and nonlinear Kolmogorov widths. Finally, in
§5, we derive what these estimates mean for the m-term approximation in
Hilbert spaces.

2. PRELIMINARIES

We start this section with the definition of Kolmogorov widths. If we fix
the value of n > 0, the Kolmogorov n-width d,,(K)x of K is defined as

do(K)x ==sup||fllx, du(K)x:= inf supdist(f,X,)x, n=>1,
fek dim(Xn)=n fek

where the infimum is taken over all linear spaces X,, C X of dimension n.
These are the classical Kolmogorov widths introduced in [6], or consult [7]
for their modern exposition. To distinguish them from the introduced later
nonlinear Kolmogorov widths, we call them linear Kolmogorov n-widths.
They describe the optimal performance possible for the approximation of
the model class IC using linear spaces of dimension n. However, they do
not tell us how to select a (near) optimal space Y of dimension n for this
purpose. Let us also note that in the definition of Kolmogorov width, we are
not requiring that the mapping which sends f € K into an approximation
to f is a linear map.

A generalization of this concept was introduced in [10], where the so called
nonlinear Kolmogorov (n, N)-width d,,(K, N)x was defined for N > 1 as

do(K, N)x := sup || f| x,
fex

dn(K,N)x = 15115 Jsclelg Xileliz\r dist(f, Xn)x, n>1,

where the last infimum is over the sets Ly of at most IV linear spaces
X, C X of dimension n. Note that here the choice of the linear subspace
X, € Ly from which we choose the best approximation to f depends on f.
Clearly, d,,(K,1)x = d,,(K)x, and the bigger the N is, the more flexibility
we have to approximate f. These nonlinear Kolmogorov widths are used in
estimating from below the best m-term approximation, see e.g. [3, 10]. The
cases considered in [10] are the cases when N = A", and N = n%", where
A > 1 and a > 0 are fixed constants, respectively. A useful observation that
we are going to utilize is that both Kolmogorov widths are homogenous.
Namely, if £ C X and ¢t € R, we have

(2.1) dp(tlC, N)x = |t|dp(K,N)x and d,(tK)x = |t|d,.(K)x,
where tKC:= {tf: f € K}.
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In going further, we introduce first the minimal e-covering number N¢(K)
of a compact set K C X. A collection {g1,...,9m} C X of elements of X is
called an e-covering of K if

m
Kc U B(gjve)v where B(gjve) = {f €eX: Hf - ngX < 6}’

j=1
An e-covering of K whose cardinality is minimal is called minimal e-covering
of K. We denote by N(K) the cardinality of the minimal e-covering of K.
Minimal inner e-covering number N.(K) of a compact set K C X is defined
exactly as N.(K) but we additionally require that the centers {gi,...,gm}
of the covering are elements from K.

Entropy numbers e, (K)x, n > 0, of the compact set K C X are defined as
the infimum of all € > 0 for which 2" balls with centers from X and radius
€ cover K. If we put the additional restriction that the centers of these balls
are from /C, then we define the so called inner entropy numbers é,(K)x.
Formally, we write

27l
en(K)x =inf{e>0 : KC U B(gj,€), gj € X, j=1,...,2"},
j=1
271/
én(K)x =inf{e >0 : KC |JB(hye), hjek, j=1,...,2"}.
j=1
A collection {f1,..., f¢} C K of elements from K is called an e-packing of K
if
min || f; — fjlx > e.
i#j
An e-packing of K whose size is maximal is called mazimal e-packing of K.

We denote by PE(IC) the cardinality of the maximal e-packing of K. We have
the following inequalities for every € > 0 and every compact set IC

(2'2) pE(K:) 2 NE(K) 2 ﬁ)2e(lc)y
and
(2.3) en(IC)X S én(]C)X § 26n(IC)X.

Finally, we introduce the Lipschitz widths d,(K)x, v > 0, n > 1, of
the compact set £ C X, see [8]. We denote by (R™,|.|ly;), n > 1, the
n-dimensional Banach space with a fixed norm || - ||y, . For v > 0, we first
define the fized Lipschitz width d7(KC, Y, ) x,

d'(K,Y,)x :=infsup inf |f— ®,(v)|x,
®n fek YEBy,

where the infimum is taken over all Lipschitz mappings

®,: (By,, | - llv,) = X, By, ={yeR": |yly, <1},
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that satisfy the Lipschitz condition
) — @, (v
wp 1220 = alt)lx
Y,y €By,, ly —¥'llv.
with constant v. We then define the Lipschitz width
d;/L(IC)X := inf inf dfy(]C,Yk)X,

— Y

k<nl-llv
where the infimum is taken over all norms || - ||y, in R* and all k¥ < n. We
observe the following analog to (2.1)
(2.4) 1t () x = d)(K)x, where tK := {tf: f € K}.

3. COMPARISON BETWEEN NONLINEAR KOLMOGOROV WIDTHS AND
LIPSCHITZ WIDTHS

In this section, we derive direct inequalities between the nonlinear Kol-
mogorov widths and the Lipschitz widths. We then use known relations
between entropy numbers and Lipschitz widths to derive improvements of
the (generalized) Carl’s inequalities.

We first note the following comparison between the linear Kolmogorov
widths and the Lipschitz widths, proven in [8], see Corollary 5.2.

Theorem 3.1. For every n > 1 and every compact set K C X we have

4} (K)x <dn(K)x, for every v >2sup || f|x.
fekx

We next proceed with estimates between the nonlinear Kolmogorov width
and the Lipschitz widths. Clearly, it follows from the definition that

dn(lcaN)X > an(’C)X > d;YLN(IC)Xa Y= 2JS‘ulIC) HfHa
(S

where we have used in the last inequality the above theorem. Better es-
timates in the case of K being a subset of a Hilbert space H or a general
Banach space X are described in the following lemmas.

Lemma 3.2. For everyn > 1, N > 1, and every compact K, subset of a
Hilbert space H such that supsei || fl|lm =1, we have

31) AT (K)n <da(K. N, and 0, 3 (K)i < du(K N) .

Proof: Let us fix n, N > 1, and consider the n-dimensional linear spaces
Xi,....,Xn, X; CH,i=1,...,N. We define a norm || - ||y, , on R"*1,
H(m7mn+1)HYn+1 ‘= max {H‘T”ZQ(R"% ’xn-i-l’} y L= (x17 s 7xn)7
whose unit ball is
By, ={(@,znt1) ¢ [[#lle@n) <1 and |zp| < 1}
Clearly

BynJr1 = Bg2(Rn) X [—1, 1], where Bg2(Rn) = {l‘ eR"™ : ||l‘H52(Rn) < 1}.
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We want to construct a Lipschitz mapping from (By,,,,| - |lv,,,) to H
whose image approximates well . We divide the interval [—1,1] into N
subintervals I, j =0,...,N — 1,
I] = [ajaaj-i-l]? aj = 2,7/N -1
with centers ¢; and consider the univariate continuous piecewise linear func-
tions 95, ¥; : ([-1,1],]-]) = [0,1], j =0,..., N — 1, whose break points are
{ao,...,a;,¢cj,a;41,...,an—1}, and
¢j(6j):1, T/)j(ak):(), k‘:O,...,N—l.

Let (Bx;, ||-][#) be the unit ball of the space X; C H. We fix an orthonormal

basis {4,0{, e cpil} in X; and consider the isometry map 1/;j from By, gn onto
BXj7
b+ (Boy@ny, |- e @) = (Bxo [l - ),
defined as
(3.2) Gi(x) = Pj(ar,. .. w0) = Y iep].
i=1
We use these mappings to construct ®,11 : (By,.,, || - [v,.,) = H as

N—1
Qpp1 (2, Trg1) Z Vj(Tnt1) - ().
Jj=0

Let us fix (z,2p41), (2/,2],,,) € By,_, and denote by

n+1
A= |Ppy1(z, Tpg1) — ‘I’n+1($,=ﬂf/n+1)HH-

We want to derive an upper bound for A. Note that ¢;(z,+1) # 0 if and
only if 11 € I;.We consider the following two cases:

o if 1,2, € I for some j = 0,...,N — 1, then 9j(z,41) # 0,
Yi(x), 1) #0, ¢k(xn+1) Y(27,,1) = 0 for all k # j, and therefore
A = (@) (@) — (@101 (@) |
|95 (@ng) [l (2) — 5 (2") |
+ (@) — ¥ (@) 195 (") ||
< e = 2llgy@ny + Nl|wns1 — 254
< (N + D@ 2n41) = (@ 2540 [V

o if 1 € 1,2, € I} for some j,k =0,...,N —1, k # j, we obtain
that

IN

A =9 (@n1)05 () — i (@) n (@) |-
We can assume without loss of generality that

/
Tntl S Qi1 S afp S Ty
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Since 9j(aj+1) = Yi(ar) = 0, we have

)=
A < (@t )1;( ) — wj(a]-i—l)w]( M a
[k (an)or () — (1) 0 (2") | 1
9 (@n+1) — j(az )l (@)l m
[k (an)or () — (1) 0k (") | 1

Nlaji1 = zppa| + |2 = a'lloy@n) + Nlag g — ax

+

Nlzh i1 = Tngr] + |l — 2|l gy (mn)
(N + 1)“(1'7‘%'714-1) - (‘T/7mgz+1)|’Yn+17

where we have used arguments similar to the first case.

VAN VAN VAN R VAN

In both cases we have that

“(I)n-i-l(m?xn-i-l) - (I)n-i-l(m,vx/n-i-l)HH < (N + 1)|’(‘T7‘TTL+1) - ($,,$;L+1)“Yn+1,
and therefore ®,,11 is an (N + 1)-Lipschitz mapping.

Since sup e || fllz = 1, the approximant f; to f from X; will belong to
Bx; since f; is the orthogonal projection of f onto X;. Thus, it follows from
the definition of 1), that there is 27 € By, (rny, such that Yj(z?) = f;, and
therefore

G112, ¢5) = f5, and ||f = filla = dist(f, X;)
which gives
At (K)n < du(K. N
To show the second part of (3.1), we determine ¢ € N such that
21 « N < 2,

and define a norm | - ||y, ,, on R"** by

1 )y, = e {lall ey, Dol ity }
where
x:i=(z1,...,2n)y, Y= (Y1,---,Y0)
The unit ball with respect to this norm is
By,., = {(z,y) € R"™ : ||zlp@mn) < L and |[yllo ey < 1}
Like before, we have By, , = Bg,®n) X [-1,1]°. Next, we consider the
disjoint cubes @, j = 1,... ,2¢ of side length 1 such that

[~1,1) = U2,Q;.
We denote by c; := (c{,..., Z) € Rf the center of Qj, j = 1,...,2% and
define the functions ¢; : ([—1,1]%, || - oo mey) — [0,1] as

1 :
9;(y) =2 (5 —[lej = ?JHZOO(RZ)> , =12

+
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and \Ijn—l—f : (BYn+gv || : ||Yn+£) — H as

Vnpe(z,y) i= Z 0;(y) - (),

where ¢); are the mappings defined in (3.2).
Using the fact that for any two numbers a, b, we have |a; — by | < |a — b|,
we obtain that

6;(y) — &5 ()] < 2llle; = ylle wey = llej — ¥lle @) < 20y = ¥llee me)-

Moreover, the supports of the ¢;’s are disjoint, with (); being the support of
¢j, and |¢;(y)| < 1 for all j. Now, following similar arguments as the ones
for ®,,41, and denoting

B = [Wype(z,y) — Yoo’ y) |,
we derive that:
o if y,y € Q; for some j =1,...,2¢
B = 1¢;()¢;(x) — ¢ )"l < 3ll(z,y) — (2,9 Iy
o if y € Q; and iy € Qx, k # j, we consider the line segment
y+tly —y), 0<t<1,
and fix
dj ==y +to(y —y) € 9Q;,
and
bp =y +t1(y’ —y) € 9Q.
Clearly to < t1, ¢;(d;) = ¢x(br) =0,
1y —djllee ey T 1Y = brllee ey = o+ 1=t) [y =¥l ey < Ny = [l ey
and similarly to the estimate for A, one obtains
B = |é;(y)¥;(x) = ¢r(y )izl o
|65 (y) — &5 (dp)| |05 ()| + [ Dn(br)r () — dr (Y )b (2) | 1
2[|d; = Ylloo ey + 17 = 2" lleymny + 211y — Okllen, mey
21y = ' llee ey + 2 — 2|l oy mm)
(2, y) — (@Y )y

Therefore, Wy, ¢ is a 3-Lipschitz mapping. As before, since sup ¢ lfllz =1,
we obtain

IANIA A

IN

A3 4 r1og, v ()i < dn(K, N,

where we have used the fact that £ = [log, N and ¢;(c;) =1, =0,...,N.
The proof is completed. U
The case of arbitrary Banach space X is based on the following lemma.
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Lemma 3.3. Let Y be an n-dimensional subspace of a Banach space X
and (By, || - |ly) be its unit ball. Let (Bgz,|| - ||m) be the unit ball in an n-
dimensional subspace Z of a Hilbert space H. Then, there exists a linear
map

1[} : (BZv ” ) HH) —Y,
with Lipschitz constant (i.e. norm ) at most \/n such that By C 1)(Byz). In
addition, if X = Ly, then the Lipschitz constant of 1 is at most nlt/2=1/pl,

Proof: It follows from the Fritz John theorem, see Chapter 3 in [9] or [1],

that there exists an invertible linear operator ¢ : (R™, || - [[z,rn)) — Y onto
Y such that

(3.3) ¢(Beyrn)) C By C vVng(Beymn))-

Let us fix an orthonormal basis ¢1, ..., ¢, for Z and consider the coordinate

mapping Kz : Z — R" defined as

n
kz(g) = (x1,...,2y) =2, where g¢g= ijcpj.
j=1

This mapping is isometry when R" is equipped with the norm

n

2 _
> a2 =|gllz.
j=1

]|y (mny =

We now define the linear mapping

vi=¢oky: (Z| - |g)—=Y,
and notice that
¥(Bz) C By C Vni(Bg).
The first inclusion gives that v has a norm (Lipschitz constant) < 1, and
thus ¢ := \/ny has a Lipschitz constant \/n. The second inclusion shows
that By C ¢(Byz), and therefore 1 is the desired mapping. It follows from

[5, Cor. 5] that in the case of X = L,, we can replace \/n in (3.3) by
nl1/2=1/p| O

Remark 3.4. Note that since ¢ is linear, we have that ¢(0) = 0, and for
every z € By,

(3-4) l)lly = 14(2) = D)y < vallzla < Vn,
where we can replace v/ by nl'/2-1/?l in the case when X = L,.

Lemma 3.5. For everyn > 1, N > 1, and every compact set IC subset of a
Banach space X with supse || fllx = 1, we have
(3.5)

2(N+1)y/n n
ATV x < dalK N x, and dOYT () x < dn (K, N) x
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When X = L,, we have

2(N+1)nl1/2-1/pl nl1/2=1/p|
dn(-|—1+ ) (IC)LP < d"(]C’N)Lp’ and dSL—Hlogz ]\1;1 (]C)Lp < d"(IC’N)Lp

Proof: We fix n, N > 1, and consider the n dimensional linear spaces
X100, XN, Xj C X, j=1,...,N, with (Bx;, || - | x) being the unit ball of
Xj. For a fixed j = 1,..., N, we apply Lemma 3.3 with Y = X; and Z =
5(R™) to find an M-Lipschitz mapping ¥, where M = /n or nll/P=1/2
depending on whether X is a general Banach space or L,, such that
(3.6) Uj: (Boy@ny: |- leawey) = X5, and - Bx, C ¥j(Bp,gn))-

We show (3.5) by proceeding as in the proof of Lemma 3.2 and defining
a mapping ®n+1 : (BYn+17 H : ||Yn+1) — X as

@n—I—l x xn—}—l =2 Z 7/}] xn-i—l ( )

where v; and (By,.,,|| - |lv,,,) are as in Lemma 3.2. We fix (z,2,41),
(#',2;,,1), denote by
C = [Ont1(2, Tnt1) — Ontr (2, 2741l x,
and show in a similar way that
o if 21,2, €I for some j =0,...,N — 1,
C

5 = @) V5@) — v (2h,0) ()| x
< Wy(@nr)|1¥5(2) — Uy(2)llx

+ (@) — ¥ (@ )19 (27l

< Mz —2|lgy@n) + NM|2ni1 — 2544

< M(N + 1)|’(‘Taxn+l) - (‘Tlv‘r/n—i-l)”ymtl?

where we have used (3.4).
o if x4y € I, 2], €I for some j,k=0,...,N —1, k # j,

5@ T (2) — ilag) (@) x

2
[9r(ar) Ok (@) — (), 41) Pr(z)]| x
W (@n41) — j(az+0)|[19; () x
([9n(ar) Ok () — (), 41) i) x
NMlaji1 — zpp1|+M|z — 2’|l gy@mny + NM|a), 1 — a
NM|zy, g — Enp1]|+Mllz — 2|y mn)
M(N + D)|(z, zn41) — (@ 2540 v -

IN AN IN + IN +

In conclusion,

1©n+1(2, 2nt1)=Onta (2 2y 1)l < 2M(N + 1) [[(2, 2ng1) (@, 20 00) v »
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and therefore 0,11 is a 2M (NN + 1)-Lipschitz mapping.
Note that if f; is the approximant to f from Xj, then

G f=fillx <lfllx = filx <If = fllx +1fllx < 2)fllx <2
where we have used that supscx || f|lx = 1. Thus f; € 2Bx;. It follows from
I:emma 3.3 that since By, C \Pj(BgQ(Rn)), there is 2/ € By, (rny, such that
U;(2?) = 3 f;. Therefore
@n-i-l(xjacj) :fj7 and ”f_f]”X :dISt(faX])Xv
which gives
AN (1) < dy (K, N) x.

To show the second part of (3.5), we define Z,, 44 : (By, ., || - lv,.,) = X

as

2(
Enre(z,y) = 22 o;(y) - V()

j=1
where ¢; and (By,_,,| - [lv,,,) are the same as in Lemma 3.2 and U is
defined in (3.6). For fixed (z,y), (¢',y’) € By, ,, we denote by
D := ||En+é($7y) - En-i—é(x,)y,)HX
and consider the following cases
e if y,y/ € Q; for some j = 1,...,2¢ we have
D

7 3@y = @ 1)y,

e if y € Q; and v € Qi, k # j, similarly to the estimate for C, we
obtain

= i) ¥;(x) — dr(y) (')l x

|05 () — &5 (dj) |19 (@) || x + [l dr (br)r () — dr(y') Wi (2)]| x
2M||d; — yHeoo(Re) + M|z — x/sz(Rn) +2M|ly" — bk”zoo(Rf)

D
2

2M|ly — y'llo.. wey + Mz — 2" gy (mr)
3M‘|(3§‘,y) - (x,7y,)‘|Yn+g-

The latter estimate implies that =, is a 6M-Lipschitz mapping, and since
supsei || fllx = 1, we obtain

dSLA—f[logz N (’C)X <d, (’C7 N)X
The proof is completed. U

VAN VAN VAN VAN

Remark 3.6. Note that Lemma 3.5 with X = L9 can be used instead of
Lemma 3.2. However, we have decided to present both lemmas since better

Lipschitz constants are obtained when working directly with a Hilbert space
H.
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Remark 3.7. It follows from (2.1) and (2.4) that lemmas similar to Lemma
3.2 and Lemma 3.5 can be stated in the case when supsex ||f|lg # 1, or

SuPfex Il fllx # 1, respectively.

4. MAIN RESULTS

In this section, we provide estimates from above and below that connect
the behavior of the linear and nonlinear Kolmogorov widths of I with its
entropy numbers. In what follows we assume that supsci [|f||z = 1 in the
case of Hilbert space, or supse || fllx = 1 in the case of a general Banach
space. Similar results hold if this supremum is not 1.

Our approach of deriving estimates from below utilizes some known results
for Lipschitz widths stated below, see Theorem 4.7 in [8].

Theorem 4.1. Let K C X be a compact subset of a Banach space X,
n € N, and d;,(K)x be the Lipschitz width for K with Lipschitz constant
v > 2rad(K). Then the following holds:

(1) If for a« >0, B € R and a constant C' > 0, we have

] B 1 B
() >clom o ooy > ool
ne n®[logy n]®
forn=1,2,..., where C' > 0 is a fized constant.
(2) If for a« > 0 and C > 0, we have
1 c’
en(K)x >C—m—, n=12,..., then d)(K)x > ———,
0% 2 Cliogy e %2 Togy e
forn=1,2,..., where C' >0 is a fized constant.
(3) If for0 < a <1 and C,c > 0, we have
en(K)x >C27"" n=1,2,..., then dl(K)x >C'27<m"™
forn=1,2,..., where C',¢ >0, are fized constants.

4.1. Estimates from below for the linear Kolmogorov width. The
above theorem, combined with Theorem 3.1, gives the following relations
between linear Kolmogorov widths and entropy numbers.

Theorem 4.2. Let K C X be a compact subset of a Banach space X, n € N,
and d,(IC)x be the n-th linear Kolmogorov width for KC. Then the following
holds:

(1) If fora >0, B e R, C >0, we have

1 A ] B
(x> 082 o hen du()x > o 082
e n®[logy n]*

forn=1,2,..., where C' >0 is a fized constant.
(2) If for a >0, C > 0, we have
¢ 1
n(K)x> ——, =1,2,..., th dn(K)x > C'———,
X ogyu " en d()x 2 C' g
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forn=1,2,..., where C' >0 is a fized constant.
(3) If for0 < a< 1, C,c > 0 we have

en(IC)X 2 02—cna’ n=12..., then dn(’C)X > 0,2_6/71&/(17&),
forn=1,2,..., where C',¢ > 0 are fized constants.

Proof: The statement follows from Theorem 3.1, Theorem 4.1 and the
inequality sup ek || f|lx > rad(K). O

4.2. Estimates from below for the nonlinear Kolmogorov width,
the Hilbert space case. Using Lemma 3.2 and Theorem 4.1, we obtain
similar estimates for d,,—1(IC, N) .

Theorem 4.3. Let K C H be a compact subset of a Hilbert space H and
dn(KyN)g, n € N, N > 1, be the nonlinear Kolmogorov width for IC. Then
the following holds:
o If for « > 0, B € R, and C > 0 the entropy numbers satisfy
en(K)y > CM, n =1,2,..., then there is a constant C" > 0

na

such that for every N > lwe have

[logy(n + [logy NT)IP—
[n+ [logy NT]* 7

o If for a > 0 and C > 0, the entropy numbers satisfy the inequality

(4.1) dp_1(K,N)g > C" n=1,2....

en(K)g > [log%}a, n = 1,2,..., then there is a constant C" > 0
such that for every N > 1 we have

1
[logy(n + [logy NT)]*’
o If for 0 < a < 1 and C,c > 0, the entropy numbers satisfy the

inequality e, (K)g > C27"" n = 1,2,..., then there are constants
C" " > 0 such that for every N > 1

(4.3)  dp_1(KC,N)y > 2" (ntllogz N0 g 9

(4.2) dn_1(K,N)yg >C" =1,2,....

Proof: To show (4.1), we apply Lemma 3.2, Theorem 4.1 with a value
v = max{2rad(K), 3}, and use the monotonicity of the Lipschitz width as a
function of + to derive that

A1 (K, N > dy g, vy (K)mr
[logy(n + [logy NT)P
[n + [logy N]
We omit the proof of the rest of the theorem since it is similar to the case
already discussed. O

Note that the above theorem holds for any value of N. In the cases when
N =)\ with A > 1, or N = n%", with a > 0, we obtain two corollaries.

= dZ—l—DogQ N (IC)H >C

Corollary 4.4. Let K C H be a compact subset of a Hilbert space H. Then
the following holds:



ON THE ENTROPY NUMBERS AND THE KOLMOGOROV WIDTHS 13

o Ife,(K)g > O[logn+n]5, n=12,..., then

] f-a
dn—1 (K, N ) g > C”%, n=2.3,....
n
o Ife,(K)g > Cm, n=12,..., then
1
dp1 (K, XMy > O —— =2,3,....
1( 9 )H - [10g2 n]a7 n )
o Ife,(K)g >C27"", n=1,2,..., then
dp1 (KK, Ay > O~ n™ 07y 03

Corollary 4.5. Let KL C H be a compact subset of a Hilbert space H. Then
the following holds:

o Ife,(K)m ECH()%L%]B, n=12,... then

1 B—2c
dpp1(IC, 0™ gy > C’”%, n=123,....
o Ife,(K)g > C’m, n=1,2,..., then
1
dp_1(K,n")yg > C"—r— =2,3,....
1( 7n )H - [10g2n]a7 n ) )

o Ife,(K)g >C27"", n=1,2,..., then

o/ (1=a)
)

dp 1 (K, n™) g > O loga n=23,....

Proof: We outline the proof of only the first statement. It follows from
(4.1) with N = n" that
[logs(n + anlogy )P~

(o llogs(n + anlogy )}~
[rlogy n]

[n 4 anlogy n]®

dp1(K,n"™)y > > C

[logy n]?
= lnlogyn”
where we have used that for n big enough
logy n < logy(n + anlogyn) < 2logsy n.

O

4.2.1. Ezamples. Here, we provide an example which shows that some of
the estimates in Corollary 4.4 are sharp. We consider the Hilbert space
by = {z = (z1,22,...) © D275, |zj|* < oo} with a standard basis {ej)5e,
and the strictly decreasing sequence o = {aj}]o-‘;l of positive numbers o;
which converge to 0 with o1 = 1. We then define the compact set

Ky :i= {O’jej};il @] {0} a2

and prove the following lemma.
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Lemma 4.6. Fvery set K, C {5 has inner entropy numbers

én(lcd)fgz \/U%n +U%n+1, n:1,2,...,

and nonlinear Kolmogorov width
dn(ICJ,N)gQ §O’nN+1, N > 1, n:1,2,....

Proof: Since

loje; — ajrejlle, = \JoF + 0% <y Joi + o2y, forall j'>j+1,
and
loje; = Olle, = 05 < \[0F + 07y,

we have that the ball with center oje; and radius r; := 4/ 0’]2- + 0’]2- 1 contains

0 and all points oje;r with 5 > j, but none of the points oje;s with j' < j.
Thus, if we look for 2™ balls with centers in KC,, covering K., and with
smallest radius, these are the balls B(cjej,72n), j = 1,2, ..., 2", with centers
oje; and radius ron. The j-th ball does not contain the first (j — 1) points
ojejyr, 1 < j < j—1, from Ky, but contains the rest of the points {aiei}fij U
{0}. Therefore, we have that

én(lcg)g2 = T9n.
To prove the second statement, we define the n-dimensional spaces

Xs = Span{ej}??—l)n—l—l’ s = 1’ 2’ te ’N’

Clearly 0,05e; € Ui,vzl X, for 7 =1,...,nN, and for 7 > nN we have

N
dist(ajej, U Xs)gQ = 0j.
s=1
Thus, d,(Ks, N)¢, < onn+1, and the proof is completed. O
For our particular example we fix a > 0, select the sequence {O‘j}]o-il to
be
1
o= - )
7 [logy logy(j + 3)]*
and show in the following lemma that the estimate in Corollary 4.4 cannot
be improved.

(4.4)

i=12...,

Lemma 4.7. The set K := K, defined by the sequence (4.4) has the following
properties:

en(K)e, < (loggn)™, and dp—1(IC,A\")g, < (loggn)™®, n=2,3,....
Proof: It follows from (2.3) and Lemma 4.6 that

en(K)e, < oan < (loggn) ™4,
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and that
1
dn_ ]C, )\TL S n— n =
WX e = O = o Tog (- D3 + D
C B C
(logy logs A™)® — (logy m + logy logy A)®
C/

(logyn)>”

The estimate from below follows from Corollary 4.4. O

4.3. Estimates from below for the nonlinear Kolmogorov width,
the Banach space case. To prove an estimate from below in the Banach
space case, we use the following statement from [8], see Theorem 7.3 in [8].

Theorem 4.8. Let K C X be a compact subset of a Banach space X.
Consider the Lipschitz width dy* (IC)x with v, = en®A", § € R, A > 1, and
¢ > 0. If for some constants ¢c; > 0, > 0 we have e, (K)x > c1(logyn)™,
n=1,2 ..., then there exists a constant C > 0 such that

di"(K)x > C(logan)™®, n=12,....

We now use Lemma 3.5 and the above statement to prove the following
theorem.

Theorem 4.9. Let K C X be a compact subset of a Banach space X and
dpo(K,N)x, n € N, N > 1, be the nonlinear Kolmogorov width for K. If
there is a« > 0 and C' > 0 such that the entropy numbers e, (K)x > C'[ L

logy n]®”
n=1,2,..., then there is an absolute constant C" > 0 such that
1
dp (KN x > C"'——— m=2....
e e

Proof: We apply Lemma 3.5, Theorem 4.8 with v = 2(A" + 1)y/n and use
the monotonicity of the Lipschitz width as a function of « to derive that

1

dp—1 (K, N x > d2) (K)x > d, K)x >C 7[10g2 o

O

4.4. Estimates from above for the entropy numbers. The next propo-
sition provides us with a tool to derive estimates for the entropy numbers of

K if we have a knowledge about the behavior of the nonlinear Kolmogorov
widths d, (I, N) x.

Proposition 4.10. Let K C X with rad(K) < 1 be a compact subset of
a Banach space X and d,(K,N)x, N > 1, n € N, be the nonlinear Kol-
mogorov width for IC. If for some 1 > € > 0 we have d, (K, N)x < €, then
there exists an absolute constant ¢ > 0 such that Ps.(K) < N(c/e)" and

€Tlogs 1] (K)x < 36N1/n,u_1/n7 with  p = P3E(]C)
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Proof: Since d,,(K, N)x < ¢, it follows from the definition of the nonlinear
Kolmogorov width that there exist n-dimensional subspaces X; C X, j =
1,..., N, for which

sup inf  dist(f, X;)x <e.
fexk Xj7,7:17"'7

Let {k;j};‘:l C K be a maximal 3e-packing in K, i.e. u = P3(K). Then,
for each k; there exists r; € Xj(;) C Ujvzl X; such that ||k; — z4l|x < e,
i=1,...,u, and we can estimate the difference ||z; — x|/ x, i # 7,

(4.5) i = wirllx = ki = kollx = llze = kllx = [les = kil x > e
The condition rad(K) < 1 implies that there exists y € X such that
Kc B(?Ja 1)X7

and therefore
lzi —yllx < llzi —killx + ki —yllx <1+e

Let y; be the closest to y element from X;; C U;VZI X;. Then for any
x; € {x1,...,zn} (z1,...,2N may not be necessary all different) we have

ly; — zillx < lly; —yllx +lly — zillx <2|ly — =l x <2(1 +e),
which leads to

N N
{@;}, C U Bx, . (y5,2(1 + €)) C U Bx, (yj,4), where y; € X
j=1 j=1
It follows from (4.5) that the set {z;}!"; is an e-packing for Ujvzl By, (Y. 4).
We next use (2.2) to derive

N
1% S '/\/:5/2 U BXj(i) (y]74) S N(C/E)nu
j=1
where ¢ > 0 is an absolute constant. Note that we have applied the inequal-
ity

'/\/'E/Q(BXJ(l)(yjall)) S (C/E)n7 j = 17"'7N7
from [7, Chp. 15 Prop.1.3]. In terms of entropy numbers we can write
€flog, u] (K)x < 3e < 3eNYm =t

O

We use Proposition 4.10 to obtain estimates from above for the entropy

numbers e, (K)x of K. A similar estimate but for a different range of m
and some specific values of N has been recently presented in [11].
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Lemma 4.11. Let K C X be a compact subset of a Banach space X with
rad(K) < 1. If fora >0, B € R, A > 1, and ¢y > 0 we have that

1 B
dn(IC7 )‘n)X S 60%7
for some n > ny(co, @, B, \), then
1 at+f
em(K)x < C’%, with  m = 2anlogy n,

where C is a fixed constant depending only on A, a, 3, cp.

Proof: It follows from Proposition 4.10 with € = 00[10%127&11]5 that
log, 11 < nllogy(Ac) + alogy n — logy co — B logy(logy )] < 2amn logs n,
for n > ng where ng depends only ¢y, A, @ and 3. For such n’s we have

3co[logy n)P
e2anlog2 n(]C)X S %'

Setting m = 2anlogy n gives
em(K)x < Cm™[logy n)?+e.

Since for n sufficiently large, 27 'logyn < logym < 3log,n, the proof is

completed. O
Remark 4.12. Similar statement as Lemma 4.11 holds if
log, n|?
dn(IC,n"") x < 60%7

where a > 0 is a positive constant.

The results in Lemma 4.11 and Remark 4.12 hold also for sequences.
Namely, using the monotonicity of the quantities involved, the following is
true.

Remark 4.13. Let  C X be a compact subset of a Banach space X with
rad(KC) < 1. If there are constants a > 0, € R, A > 1, and ¢y > 0 such
that we have

dn (K0, \") x SCO[IO%I#, n=12...,
or for a > 0
dn(KC,n)x < co[log’;%]ﬁ, n=12,...,
then
en(lC)X<C[lOg2n%+B, n=12,...,

where C' is a fixed constant depending only on «, 3, ¢y and A or a.
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5. APPLICATIONS

In this section, we describe how some of the above results can translate to
estimates about m-term approximation. We follow the framework outlined
in Theorem 4.1 from [10].

We assume that we have a system D = {g;}52; C X and de la Vallee-
Poussin linear operators Vj, associated with the sequences ny, {(Vi, nr) 152,
satisfying the conditions:

(1) There is a constant Ay > 1 such that

95, J=1. g,
Vi(g;) = {0, J > Aong,
ak,jgj,  otherwise, where ay ;€ R.

(2) The norms of V}, as operators from X to X are uniformly bounded,
i.e. there is a constant A3 > 0 such that ||[Vi|lx—x < Az, k =
1,2,....

We denote by Sy, (f) the best approximation to f € K by elements from
Span{glv e 7gnk}7

En,(f,D)x = inf |If - > cigillx = I1f = Su (N)lx,

C1,..,C ]:1

and by
om(f.D)x = inf  |f= Y ¢gilx

= m
feh Ailal=m " L

the best m-term approximation of f by a linear combination of m elements
from D', where D’ could be a subset of D or D itself. We also define

Enk (IC, D)X ‘= sup Enk (f7 D)Xa O'm(IC, D/)X := sup Um(fa D/)X-
fex fex

Then the following lemma holds.

Lemma 5.1. If the Banach space X admits de la Vallee-Poussin linear
operators Vi, that satisfy (1)-(2), with constants As > 1, A3 > 0, then we
have for 1 < m < Asny,

(5.1) dp, <IC, (%)m)x < (1+2A43)max{E,, (K,D)x,om(K,D)x},

where b > 1 is an absolute constant.

Proof: Clearly, we have the inequality

1F = Ve(Dllx < M1f = Sn (Dl + 150, () = Vi(F)llx
(5.2) = En(f;D)x + [IVe(Sn, (f) = lix < (1 + A3)Ep, (f, D)x-
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If we denote by Dayn, = {01, ..,94,n, }, then it follows from the properties
of Vj that for any index set A with [A] = m and any coefficients {c;}7,,

Om(Vi(f), Dagng)x < IVi(f) = Vi ejgi)lx < Asllf = ejgjllx,
JEA JEA
and therefore
(5-3) UM(Vk(f)a DA2”I<:)X < ASUm(fa D)X—

Since
Um(fa DAan)X S Hf - Vk(f)”X + Um(vk(f)7DA2nk)X7
it follows from (5.2) and (5.3) that
O-m(f’ DA2”k)X < (1 + A3)E”k (f’ D)X + A3O_m(f’ D)X
< (14 2A43)max{E,, (K,D)x,om(K,D)x}.
Taking a supremum over f € I in the latter inequality gives
(5.4) om (K, Dagn,, ) x < (14 2A43) max{E,, (K,D)x,om(K,D)x}.

Note that the total number of m-dimensional subspaces, 1 < m < Asng, of
the linear space span{gi,...,ga.n, } is (Ai:”“). Using the Stirling formula,
one can show that there is an absolute constant b > 1 such that

m m

Then the definition of nonlinear Kolmogorov width and its monotonicity
with respect to N gives

drn </c, (AQb"’f> > <d, (zc, <A2"’“>> < (s Dy ) x.
m X m X

The latter inequality combined with (5.4) leads to

dn (IC, <A25"’“>m>x < (14 243) max{ Bn, (K, D) x, o (K, D) x },

m

where 1 < m < Asng, and the proof is completed. .

We next state a theorem that follows from Lemma 5.1 and our inequalities
for nonlinear Kolmogorov widths in Hilbert spaces. Note that our theorem
does not require the additional assumptions on the error E, (K, D)y that
are needed in Theorem 4.1 from [10] and describes the behavior of the errors
in cases not covered by this theorem.

Theorem 5.2. If the Hilbert space H admits de la Vallee-Poussin linear
operators Vi, that satisfy (1)-(2), then the following holds:
o If en, (K)u > C%, k = 1,2,..., then there is an absolute
constant C" > 0 such that
[logy m(1 + logy(Aany,/m))}P~*

> 1
max{E,, (I,D)g,om(K,D)u} > C oL T Togy (Agbrg/m)]

)

forl<m<ng, k=1,23,....
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o Ifen, (K)u > Cr—L—., k =1,2,..., then there is an absolute

[logy ng]?
constant C" > 0 such that

max{ En, (K, D), 0m (K, D)} = C" !

[logo m(1 + logy(Agbng/m))]e’

forl<m<ng, k=1,23,....
o Ifen, (K)g > C2=™, k = 1,2,..., then there are absolute con-
stants C" > 0 and ¢’ > 0 such that

maX{Enk (]C, D)Ha O'm(lcg D)H} > C”2_CN [m(1-+1og3(A2bny /m))} /(=) ’
forl<m<ng, k=1,23,....

m
Proof: We use Theorem 4.3 in the case N = (%) , Lemma 5.1 and
the fact that

d, (/c, <A2b"’“> > > dp, 1 (/c, <A26"’f> > . 1< m<mng
m X m X

Note that we have utilized the fact that the constants in Theorem 4.3 do
not depend on N. O

We can derive several corollaries from the above theorem, one of which we
state below. If we take m = ny/2 in Theorem 5.2, we obtain the following
statement.

Corollary 5.3. If the Hilbert space H admits de la Vallee-Poussin linear
operators Vi, that satisfy (1)-(2), then the following holds:

o Ifen, (K)uw > C[l()gi#, k = 1,2,..., then there is an absolute
k
constant C"” > 0 such that

] f-a
max{Ep, (K, D) s, 00, 2K, D)ir} > 0"%, k=1,2,....
k
o If ey, (K)u > Cm, k = 1,2,..., then there is an absolute
constant C"” > 0 such that
C//
E, (K,D)y,o, ,D > —— k=1,2,....
max{ k(IC )H o k/2(IC )H} [10g2 nk]a

o Ife, (K)yg > C27"%, k = 1,2,..., then there are absolute con-
stants C" >0, ¢’ > 0 such that
1o/ (1—a)
mas{ B, (K, D) i1, 0, ;o (K, D)} > €727 = 1,2,

Note that since As > 1, we can take m = n; in Lemma 5.1, use the fact
that
E,. (K,D)g > oy, (K,D)H,
and obtain from this lemma that if the Banach space X admits de la Vallee-
Poussin linear operators satisfying (1)-(2), then

dnk (’C, (Agb)nk)H < (1 + 2A3)Enk (/C, D)H
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We can now use Corollary 4.4 and the monotonicity of the nonlinear Kol-
mogorov width with respect to N to conclude that

dnk (IC, (A2b)nk+1)H < dnk (’C7 (A2b)nk)Ha
and derive the following statement.

Corollary 5.4. If the Hilbert space H admits de la Vallee-Poussin linear
operators Vi, that satisfy (1)-(2), then the following holds:

o Ifen, 1(K)g > C%, k=1,2,..., then there is an absolute
constant C"” > 0 such that
1 f—a
B, (K, D)y > C”%, k=1,2,....
T,
o Ifen, 1(K)g > Cm, k=1,2,..., then there is an absolute
constant C"” > 0 such that
C//
E, KDyg>——— k=12 ....
nk( ) )H el [10g2 nk]ON ) Ay

o Ifen 11(K)g > C2="i, k=1,2,..., then there are absolute con-
stants C" >0, ¢’ > 0, such that

1,0/ (1—a)
k

En, (K, D)y >C"27" ., k=1,2,....
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