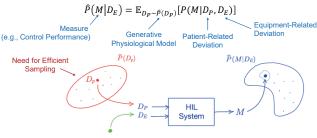

Generative Modeling for Hardware-in-the-Loop Testing of Fluid Resuscitation Control Algorithms

Ali Tivay^{1,2}, Ramin Bighamian², Jin-Oh Hahn¹, Christopher G. Scully²

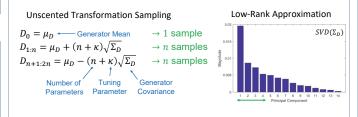
¹Department of Mechanical Engineering, University of Maryland ²Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration

Background and Objective

- Model-based testing of a physiologic closed-loop control algorithm can be performed completely computationally (in-silico) or with hardware-in-the-loop (HIL) methods (e.g., with the physical devices).
- While HIL methods provide additional realism, they are more time-consuming than computational approaches
- We investigated a generative modeling approach to efficient sample virtual populations for inclusion in HIL testing and compare against in-silico results

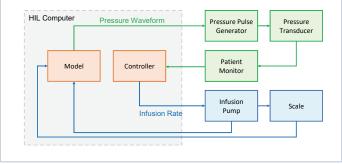


Generative Physiological Modeling

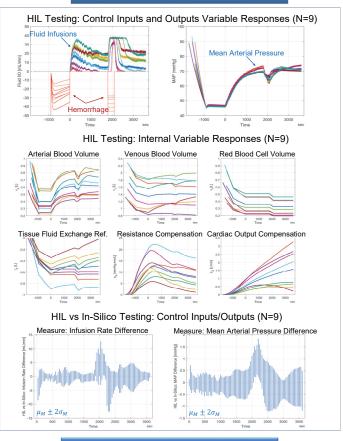

Generative model: a probabilistic model that aims to reproduce the patterns and variabilities present in data: Subject Generator Subject Generator Physiological Experiment $\theta_i \leftarrow$ \mathbf{u}_i Physiological Physiological Process State Evolutions Signal Quality Measuremen **Parameters** ← Virtual Data Application to hemodynamic modeling in fluid resuscitation: - N = 23 animal (sheep) subjects - Hemorrhage Cardiac Output (Q) - Crystalloid infusions Mean Arterial Pressure (Pa) (J_H)

Generative Algorithm Testing

Generative modeling was used to generate "virtual patients", test the algorithm
against these virtual patients, and calculate algorithm performance measures



 Generative modeling provides an efficient sampling approach to identify a small number of virtual patients that are representative of the population:



Hardware-in-the-loop Testing Setup

Virtual patients with the same fluid loss disturbance profiles were evaluated in a purely computational (in-silico) setup and hardware-in-the-loop setup.

Results and Discussion

Conclusion

Generative modeling showed promise in facilitating the in-silico and HIL testing of a 2DOF-PID-based fluid resuscitation control algorithm.

Comparing in-silico and HIL testing results may provide useful information to identify limitations of in-silico approaches

Funding: NSF INTERN Grant #1760817 and NSF CAREER Grant #1748762.

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services.

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science