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Abstract—Embedded devices are ubiquitous. However, pre-
liminary evidence shows that attack mitigations protecting our
desktops/servers/phones are missing in embedded devices, posing
a significant threat to embedded security. To this end, this
paper presents an in-depth study on the adoption of common
attack mitigations on embedded devices. Precisely, it measures
the presence of standard mitigations against memory corruptions
in over 10k Linux-based firmware of deployed embedded devices.

The study reveals that embedded devices largely omit both
user-space and kernel-level attack mitigations. The adoption
rates on embedded devices are multiple times lower than their
desktop counterparts. An equally important observation is that
the situation is not improving over time. Without changing the
current practices, the attack mitigations will remain missing,
which may become a bigger threat in the upcoming IoT era.

Throughout follow-up analyses, we further inferred a set of
factors possibly contributing to the absence of attack mitigations.
The exemplary ones include massive reuse of non-protected
software, lateness in upgrading outdated Kernels, and restrictions
imposed by automated building tools. We envision these will turn
into insights towards improving the adoption of attack mitigations
on embedded devices in the future.

I. INTRODUCTION

Embedded devices are running everywhere to connect the
physical world with the digital world. By estimation, there may
be up to 35 billion embedded devices installed in the wild [24].
This large-scale deployment makes the security of embedded
devices critical to our society. Towards escalating embedded
security, it is beneficial to gain a systematic understanding of
the deficiencies. Past research has initiated many efforts in this
direction [22], [32], [20], [17], [14], [23], [33], [211, [19], [16].
However, most of them focus on disclosing vulnerabilities in
embedded devices and understanding the threats imposed by
the vulnerabilities, largely ignoring the other major category
of deficiencies related to the adoption of attack mitigations.
This creates a gap in our understanding.

The gap was gradually realized in recent years, and at-
tempts have been made to fill the gap. Earlier research in
this line [35] brings preliminary evidence showing a lack of
adoption of popular mitigations on embedded devices. More
recent studies [34], [7] unveil that this lack of mitigations is
tied to limited hardware or Operating System (OS) support.
For instance, Abbasi et al. [7] observe that deeply embedded
devices often lack hardware features such as Memory Manage-
ment Unit to enable mainstream mitigations against memory
corruption exploits. These works unquestionably help complete
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our understanding, but they (somewhat and unintentionally)
leave behind an impression that the support-wise barriers are
the primary blame for the absence of attack mitigations and
techniques enabling mitigations without those supports (e.g.,
[7], [15]) can essentially solve the problem. But does this
reflect the reality in general?

Aiming to investigate the above doubt, we present a large-
scale study in this paper. Our angle is to look at the adoption of
attack mitigations by embedded devices with all the needed
supports, centering around three dimensions:

o With all the needed supports available, do embedded
devices adopt the attack mitigations?

o Is the adoption of the attack mitigations improving over
time? Is the upcoming future becoming better?

e [f the attack mitigations are observed absent, what are the
possible causes?

Design of Study: The approach of our study is to inspect
firmware running on real Linux-based embedded devices,
seeking to understand their adoption of the mitigations listed
in Table I and Table II. Firmware is targeted to match the
setup of existing studies of embedded security [35], [22], [32],
[20], [17]. Linux-based devices are considered because (i) they
are typically equipped with high-end hardware, which offers
modern features needed by the mitigations of interest; (ii) they
represent the dominant type of embedded devices, according to
our data presented in §III-B. The selection of target mitigations
is a choice of multiple factors. First, these mitigations, against
the influential memory corruption exploits [29], [1], are stan-
dard security features in common types of computer system
(e.g., desktops, servers, and mobile phones). Second, the miti-
gations have been integrated into standard compiling/building
toolchains of Linux systems, which can be easily deployed.
Third, the mitigations are released over three years ago. This
ensures that the vendors have sufficient time to adopt them.

Specifically, we collect over 18k firmware images from 38
popular embedded device vendors. Unpacking the firmware
images, we extract nearly 3,000k user-space binaries and
8k Linux kernels, as described in Table IV. The binaries
and Linux kernels are then statically analyzed to measure
the presence of attack mitigations. By breaking down the
measurement results into different periods, we further gain
an understanding of the evolution in the adoption of attack
mitigations. Finally, we zoom into the binaries and kernels to
find commonalities that can help explain the observed absence
of attack mitigations.

Results and Findings: When embedded binaries are built,
attack mitigations are not frequently adopted. Considering
desktop binaries as the baseline, the overall adoption rates of
embedded binaries are many times lower. For instance, 85.3%



TABLE I: Target attack mitigations in embedded binary programs

Attack Vector Mitigation First Release Default!
Stack Overflow Stack Canaries 2005 (GCC) v
GOT Hijacking Relocation Read-Only 2004 (GCC) v
Code Injection Non-executable Stack 2003 (GCC) v
Buffer Overflow Fortify Source 2004 (GLIBC) v
Control-flow Hijacking Position-Independent (or ASLR-Capable) Code 2003 (GCC) v

T Tested on Debian 10 “buster,” released in July 2019, GCC v8.3.0

TABLE II: Target attack mitigations in Linux kernel

Attack Vector Mitigation Building Configuration

Release Version First Release

Stack Overflow Stack Protector CONFIG_HAVE_CC_STACKPROTECTOR ARM:v2.6 MIPS:v3.11 PowerPC:4.20 2009
Privilege Escalation PXNZ T ARM:v3.19 AArch64:v3.7 2012
Control Flow Hijacking KASLR CONFIG_RANDOMIZE_BASE ARM:v4.6 MIPS:v4.7 PowerPC:v5.2 2014
Heap Corruption Freelist Randomization =~ CONFIG_SLAB_FREELIST_RANDOM v4.7 2016
Information Leakage USERCOPY CONFIG_HARDENED_USERCOPY v4.8 2016
Buffer Overflow Fortify Source CONFIG_Fortify_Source AArch64&PowerPC:v4.13, ARM-32:v4.17, MIPS:v5.5 2017
Code Injection Non-executable Memory CONFIG_STRICT_KERNEL_RWX ARM:v4.11 PowerPc:v4.13 (MIPS does not support) 2017

T« indicates the mitigation is not affected by the building configuration.

2 x86/x64 have similar mitigations called SMEP and SMAP. They are not considered because no x64/x86 kernels are identified in our dataset.

of desktop binaries adopt Stack Canaries, but only 29.7% of
embedded binaries do. The lack of mitigations in embedded
binaries is mainly a “decision” of the device vendors, except
for a few cases where the architecture and runtime offer
insufficient supports. The analysis of kernels presents much
worse results. The kernels rarely adopt attack mitigations. Even
the most frequently applied mitigation, Stack Protector, only
has an adoption rate of 5.6%. The absence of kernel-level
mitigations is largely attributed to one reason. That is, the
vendors broadly use older kernels where the mitigations are
not available, despite newer versions supporting the mitigations
already exist for a long time.

Further, our evolution analysis identifies no clear growth in
the adoption of attack mitigations by embedded binaries. We
hence envision their low rates of adopting attack mitigations
will less likely improve in the near future. In contrast, we do
observe positive changes happening to kernels. Older kernels
are disappearing and newer kernels are emerging. As a result,
mitigations such as Stack Protector have been applied more
frequently in recent years.

Our last main finding is the following observations to
help explain why vendors do not apply attack mitiations in
embedded binaries.

1) Vendors of embedded devices often use automated tools to
build the systems. The automated tools tend to have a huge
delay in importing support of the attack mitigations. When
an older version of the automated tools is used, which
happens in practice, the attack mitigations are often not
available and thus, cannot be adopted.

A large number of binaries are reused across products or
even vendors. The lack of mitigations in those binaries
spreads with their propagation. The vendors cannot change
that unless they can rebuild the initial binaries.

2)

Contributions: We make the following contributions.

e We present an in-depth study to measure the adoption of
attack mitigations by embedded devices. The study presents
a comprehensive view of the lack of attack mitigations even
on platforms that support them. We believe it will help raise
broader awareness of the threat behind.

e We unveil a set of key factors leading to the lack of attack
mitigations. These will bring insights towards improvement
and eventually benefit the security of embedded devices.

e We build an update-to-date dataset of Linux-based embed-
ded firmware. We create a set of mitigation identification
tools tailored to embedded binaries and kernels. Both the
dataset and tools will be made publicly available upon pub-
lication of the paper. The dataset and intermediate results
are released at https://github.com/junxzm1990/iot-security.

II. CHALLENGES

Running our desired study has many challenges. We de-
scribe the major ones in the section.

Building a High-quality Dataset: Obtaining a high-quality
dataset of firmware images is essential but complex. It requires
scale, diversity, and representativeness in the firmware images.
Past research [13], [17], [32] has built such datasets. However,
we cannot reuse them. First, the datasets were collected years
ago, which may not represent what happens at present. Second,
the public datasets were released in the format of URL links to
the images'. Most of the links are outdated and invalid today.

Unpacking Firmware Images. Unpacking the firmware images
and extracting the required components is also challenging.
Different vendors organize their firmware images in diverse
formats, and the vendors typically do not provide informa-
tion about the composition. Past efforts have made plenty
of progress in addressing the challenge. Tools, such as Bin-
walk [28] and FIRMADYNE [13], can already unpack a
broad spectrum of firmware and extract individual files like
binary programs. However, they are limited in identifying
and processing kernels. First, kernels in embedded firmware
often have customized signatures, which existing tools cannot
capture. Second, when extracted by existing tools, the kernels
are usually in the form of raw data, which cannot be further
parsed and analyzed.

Identifying Attack Mitigations: Binaries in embedded firmware
are heterogeneous. They run different architectures (x86,

IExample: http:/firmware.re/usenixsec14/usenixsec14-candidates.yaml.gz
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Fig. 1: Workflow of our study

ARM, MIPS, etc.) and follow various formats (stripped or not,
statically or dynamically linked, using glibc or uClibc, etc.).
The heterogeneities affect the identification of mitigations. For
instance, the identification of Stack Canaries can be done
by querying the relocation information in dynamically linked
binaries, but not so for statically linked, stripped binaries. Ex-
isting tools, including Hardening-Check [36], Checksec [12],
Pwntools [31], are mainly designed to work in desktop en-
vironments. They are not aware of these heterogeneities and
can present reduced utilities when handling embedded binaries.
Further, most existing tools do not provide presence testing of
kernel-level mitigations. Checksec [12] offers such testing but
requires the kernel is booted and running, which cannot scale
to support a large-scale study like ours. New tools to statically
identify mitigations from kernels are needed.

In the following two sections, we detail how we overcome
the above challenges, following the workflow in Fig. 1.

III. DATA COLLECTION AND PROCESSING
A. Collecting Firmware Images

Our study starts with preparing web crawlers to scan the
websites of mainstream embedded vendors and collect their
firmware images. Such crawlers have been developed by past
efforts [13]. However, due to the dynamic nature of vendors’
websites, they yield poor results foday. We update and extend
the crawler released at [2] to gather firmware images from the
vendors listed in Table I1I. We create a separate parser for each
vendor website using XPath to parse a given root webpage. If
the webpage contains an element matching a link to a firmware
image, the parser will download the image. Concurrently, the
parser will record elements about the product name, firmware
version, release time, and device type, when available. Other
webpages referred by this webpage will then be recursively
processed in a similar way.

While downloading firmware images, we only target files
with an extension of img, bin, rar, pkg, chk, tar, zip, stk,
and rmt. Setting rules on filename extension allows us to drop
obviously non-firmware content like text scripts, PDF files, and
Microsoft Office documents. It also helps reduce the storage
space needed to keep the downloaded data and their unpacked
versions. To operate within legal and ethical boundaries, we
follow the procedure presented in [17]. We only download
firmware images released to the general public, and we obey
the robots.txt directives when presented. We will release
all the crawlers upon publication of this paper.

Results: In total, we collected over 18,000 firmware images
from 38 vendors, as summarized in Table III. The release time
of the firmware images spans two decades. The earliest image
was released back in 1998 (DES-3216 by D-Link), and the
most recent image just came out in 2021. Fig. 2 shows the
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Fig. 2: Distribution of firmware images across release time.
All images released before 2010 are aggregated into ~2010.

distribution of the firmware images over their release time.
Clearly, more images were released in recent periods. The
firmware images run on 4,000+ different products, covering
many common types of device used in our daily life, as listed
in Table XV in the Appendix. Among the products, over 2,000
have multiple versions of firmware available. This is important
since it helps us with building an understanding of evolution
over time. Overall, we envision this dataset has reasonable
scale, diversity, and representativeness to support our study.

B. Unpacking Firmware Images

The next step focuses on unpacking each firmware and
extracting the binary programs and Linux kernel inside. Linux-
based firmware is a concatenated archive of different parts
of a Linux system. As depicted in Fig. 9 in the Appendix,
the archive usually includes one or more filesystem partitions,
a Linux kernel, a bootloader, and various configurations and
other data files. Given a firmware image, which is often com-
pressed, we first decompress it according to the compression
algorithms (zip, bzip2, gzip, tar, rar, etc.). Customized
compression algorithms are not handled due to a lack of
specifications. We then unarchive the decompressed image to
extract filesystems and the Linux kernel.

Extracting Filesystems: We reuse FIRMADYNE [13], a tool
built upon Binwalk [28], to extract filesystems from firmware
images. Besides using manually-created signatures to locate
complete filesystems, FIRMADYNE also searches for standard
directories under the root directory (e.g., bin, sbin, 1ib, etc.).
The filesystems and directories are then recursively traversed
to identify binary programs/libraries in ELF format.

Extracting Linux Kernels: When unpacking a firmware image,
FIRMADYNE can identify Linux kernels based on signa-
tures inherited from Binwalk. However, the signatures are too
specific, filtering out many kernels customized for embedded
devices. We extended the signatures based on patterns observed
in our dataset. Doing so enables us to identify 58.3% more
Linux kernels.



TABLE III: Statistical results of firmware images collected
from popular embedded device vendors. PMV means product
with multiple versions of firmware available. Time Range
indicates the period where the images were released (xx means
the year of 20xx unless otherwise noted).

Vendor # of Images # of Products # of PMVs Time Range
Cerowrt 2 2 0 14 — 14
Haxorware 2 1 1 -
AT&T 4 3 1 -
360 5 1 1 17 — 17
Actiontec 6 5 1 -
Buffalo 6 3 2 16 — 18
camius 6 6 0 -
GOCloud 8 5 2 19 — 21
Phicomm 13 7 4 16 — 18
ZyXEL 15 7 4 17 — 21
CenturyLink 18 18 0 -
Polycom 21 4 3 18 — 19
u-blox 31 25 6 16 — 21
TENVIS 41 16 2 12 — 14
MikroTik 49 16 13 -
Foscam 83 36 22 13 — 18
AVM 107 54 44 -
RouterTech 144 15 10 06 — 11
Belkin 165 109 33 -
Linksys 166 132 38 01 — 21
Mercury 169 142 35 09 — 20
Supermicro 187 186 1 -
Digi 214 100 56 -
NETCore 255 229 21 20 — 21
Moxa 400 315 53 04 — 18
TRENDnet 409 365 46 12 — 21
Tenda 467 179 110 09 — 18
Ubiquiti 512 206 165 07 — 18
QNAP 576 27 22 16 — 18
Hikvision 607 112 77 14 — 21
Synology 672 117 99 -
TomatoShibby 692 7 7 14 — 16
Tp-Link-zh 992 566 187 08 — 23
ASUS 1099 179 146 06 — 18
D-Link 1172 260 218 98T — 20
Tp-Link-en 1186 274 225 -
NETGEAR 3682 663 449 -
OpenWrt 3837 73 70 20 — 21
Total 18,020 4,470 2,174 -

198" here means 1998.

The kernels extracted by FIRMADYNE are in raw data
format, which cannot be further parsed and analyzed. To
address this issue, we convert the kernels to fully analyzable
ELF files with the help of Vmlinux-to-ELF [30]. At the high
level, Vmlinux-to-ELF identifies symbol tables (kallsyms) in
a given kernel to identify functions and then reorganizes them
into an ELF file. More technical details about Vmlinux-to-ELF
can be found in its manual [30].

To identify mitigations in a Linux kernel, we often need the
configuration file used to build the kernel (commonly known
as .config). To find the .config file, we run Binwalk to
recursively extract files from the raw kernel and check whether
they are .config using the file utility.

Results: We consider a firmware image unpacked if we extract
any ELF files or a Linux kernel from the image. Based
on this criterion, 10,685 out of 18,020 firmware images are
unpacked, as reported in Table IV. The success rate is 59.3%,
which is comparable to previous research (26,275 out of

32,256 images [17] and 8,893 out of 23,035 images [I3]).
The unpacked images are from 37 vendors and span all the
major architectures (ARM, AArch64, MIPS, x86, x64, and
PowerPC). For the 7,335 images that we cannot unpack,
4,277 are either non-Linux based or encrypted, which are out
of our consideration. The other 3,058 contain nothing that
FIRMADYNE can recognize.

From the 10,685 unpacked images, we collected 9,037
filesystems (spanning 34 vendors). The filesystems contain
around 3,000k ELF binaries. More details about the binaries
are presented in §V. From the unpacked images, we also
extracted 7,977 Linux kernels in the format of raw data. The
kernels include 99 distinct versions, ranging from v2.0.40
to v4.14.221. Vmlinux-to-ELF converted 3,287 of them to
ELF files with symbols. It failed to convert the remaining
kernels because kallsyms is not available (4,672 kernels) or
the architectures are unknown (18 kernels). The identification
of .config files is less rewarding. We only extracted .config
files from 581 kernels. This is understandable since .config
is typically not needed for deployment.

1V. IDENTIFICATION OF MITIGATIONS
A. Identifying Mitigations in User-space Binaries

Since the 2000s, the security of binary software has made
leaps forward through the adoption of a variety of mitigations
at the compiler and OS levels. Table I highlights the mitiga-
tions we aim to identify. We included all the mitigations that
are both integrated into standard compiling/building toolchains
of Linux systems and found active on modern Linux distribu-
tion. The mitigations also represent the ones concerned by the
hacking communities. For instance, Pwntools [31], a popular
exploit framework, considers the same set of mitigations. In
the following, we introduce each of them and explain how we
detect their presence.

1) Stack Canaries: Stack Canaries, also known as stack
guards [18], are used to provide defense against stack over-
flows. This mitigation is implemented by compilers (e.g.,
GCQ) via inserting special code at the entry and exit points of
functions. At function entry, a secret, random canary value is
saved at the top of the stack separating the return address from
the stack frame. At function exit, the canary value is checked.
If the canary value is not changed, the function returns to the
caller. Otherwise, the function calls __ stack chk fail, a
routine provided by the C library, to terminate the execution
and report an error.

Existing tools, including Pwntools [31] and Checksec [12],
provide modules to detect Stack Canaries. They report the
deployment of Stack Canaries when the symbols or relocation
entries (i.e., Global Offset Table, or GOT, entries) contain
__stack chk fail. This approach works well on binaries
that are dynamically linked or non-stripped. However, many
binaries running on embedded devices are statically linked and
stripped. Accordingly to our analysis, existing tools completely
failed to detect Stack Canaries deployed in hundreds of those
binaries in our dataset.

To detect Stack Canaries in statically-linked, stripped bi-
naries, we use a generic heuristic. We observe that, when a
stack violation is detected, _ stack chk fail prints a er-
ror message starting with “s** stack smashing detected



TABLE IV: Unpacking results. The column of .config shows the number of kernels with .config file identified. The column
of converted shows the number of kernels that can be converted to ELF. Vendors with no image unpacked are highlighted.

Vendor # of Tmages Unpacked Images Filesystems Linux Kernels
Total ARM AArch64 MIPS x86 x64 PowerPC Other | Total ELF (k) | Total .config converted
Cerowrt 2 2 0 0 2 0 0 0 0 2 0.4 0 0 0
Haxorware 2 1 1 0 0 0 0 0 0 1 0.2 0 0 0
AT&T 4 4 0 0 4 0 0 0 0 4 0.6 0 0 0
360 5 4 0 0 4 0 0 0 0 4 0.5 4 0 2
Actiontec 6 5 2 0 3 0 0 0 0 5 04 0 0 0
Buffalo 6 4 0 0 4 0 0 0 0 4 0.5 4 0 2
Camius 6 6 0 0 6 0 0 0 0 6 0.5 6 0 6
GOCloud 8 7 0 0 0 7 0 0 0 7 0.9 0 0 0
Phicomm 13 8 2 0 6 0 0 0 0 8 1.9 3 1 3
ZyXEL 15 8 8 0 0 0 0 0 0 7 0.8 7 0 3
CenturyLink 18 7 0 0 7 0 0 0 0 7 0.8 2 0 1
Polycom 21 16 0 0 0 0 0 0 16 0 0 16 16 0
u-blox 31 0 0 0 0 0 0 0 0 0 0 0 0 0
TENVIS 41 31 27 0 4 0 0 0 0 25 0.9 31 0 0
MikroTik 49 32 8 0 12 4 0 4 4 32 4.3 0 0 0
Foscam 83 10 10 0 0 0 0 0 0 0 0 10 0 0
AVM 107 22 15 0 7 0 0 0 0 22 5.0 0 0 0
RouterTech 144 143 0 0 143 0 0 0 0 143 25.8 142 0 0
Belkin 165 67 6 1 60 0 0 0 0 60 7.9 60 0 33
Linksys 166 115 58 0 57 0 0 0 0 74 17.1 101 24 75
Mercury 169 27 0 0 27 0 0 0 0 27 1.5 27 0 27
Supermicro 187 187 185 0 0 0 0 0 2 5 1.3 187 7 9
Digi 214 3 0 0 3 0 0 0 0 3 1.5 5 1 2
NETCore 255 153 1 0 152 0 0 0 0 152 10.2 138 1 85
Moxa 400 107 83 0 20 0 0 0 4 107 32.0 0 0 0
TRENDnet 409 169 38 0 130 0 0 0 1 142 15.3 158 3 70
Tenda 467 252 64 0 188 0 0 0 0 252 33.6 142 0 118
Ubiquiti 512 479 137 0 342 0 0 0 0 479 204.7 449 59 436
QNAP 576 297 0 0 0 297 0 0 0 297 296 0 0 0
Hikvision 607 190 189 1 0 0 0 0 0 0 0 190 41 186
Synology 672 671 346 24 0 15 250 36 0 671 1375.4 0 0 0
TomatoShibby 692 692 118 0 574 0 0 0 0 692 127.8 314 0 23
Tp-Link-zh 992 494 175 0 319 0 0 0 0 464 65.7 385 53 325
ASUS 1,099 1,069 388 0 678 0 0 0 3 1,069 273.2 438 54 288
D-Link 1,172 134 52 0 68 0 0 14 0 86 15.9 116 11 92
Tp-Link-en 1,186 660 107 3 548 0 0 2 0 654 76.3 565 43 544
NETGEAR 3,682 1,474 443 12 932 5 31 51 0 980 173.9 1,293 269 957
OpenWrt 3,837 3,335 276 18 3021 O 0 20 0 2,546 191.2 3,184 0 0
Total \ 18,020 ‘ 10,685 2,540 58 7,321 328 281 127 27 ‘ 9,037 2,964 ‘ 7,977 581 3,287

*x*x*”. The message is not influenced by optimization level,
CPU architecture, or the type of binary. We, thus, search for
that string in a given binary. Once found, we disassemble the
binary to locate the function (i.e., _ stack chk fail) that
uses the string. If the function is identified and called by other
functions, we consider Stack Canaries are deployed. Listing |
in the Appendix shows an example of  stack chk fail
in a statically-linked ARM32 binary, which shows a pointer to
the above string is used.

2) Relocation  Read-Only:  Relocation  Read-Only
(RELRO) is a defense measurement against GOT
hijacking [10], applied when linking binaries. GOT holds the
addresses of variables and functions that are unknown during
linking but relocated at run-time (e.g., variables and functions
imported from libraries). In contemporary systems, the GOT
often splits into two sections: .got and .got.plt, with the
latter being used by the Procedure Linkage Table (PLT).
Briefly, the PLT includes code that enables lazy binding of
external functions. Specifically, when an external function is
called for the first time, code in the PLT executes and calls
the linker for resolving the symbol and writing the function’s

address to the GOT entry (hence, lazy). Next time the external
function is called, the PLT code directly jumps to the address
in the GOT entry. Because symbols are resolved at run time,
the GOT needs to be writable, making it vulnerable to attacks
that corrupt the GOT entries to hijack program execution.

RELRO [3] aims to turn parts or all of the GOT read only
(RO) to protect the function pointers from overwrites. This
is done by resolving symbols within the GOT at load time
and remapping it to RO before the program executes. There
are two versions of RELRO: partial and full RELRO. Partial
RELRO only protects the . got section, which stores offsets to
symbols of variables, leaving .got.plt writable to perform
lazy binding. Full RELRO keeps a single .got section and
protects all of it, requiring that all symbols are resolved in
the beginning. Fig. 10 in the Appendix shows the difference
between no RELRO, partial RELRO, and full RELRO.

RELRO is implemented by the linker based on the meta-
data found in ELF binaries, which specifies the GOT to
be mapped with the designated protections (e.g., RO). We
observe that for RELRO to be present, .got needs to be
mapped to a RO segment (GNU RELRO), while the concurrent



presence of a .got.plt in a writable segment indicates that
we only have partial RELRO. Additionally, binaries with
full RELRO require external symbols to be resolved at load
time, which is enabled by one of the following linking
flags being present in the .dynamic section: BIND NOW,
DT BIND NOW, DF 1 NOW. Our study relies on the appear-
ance of .got and .got.plt, the protections of their segments,
and the linking flags, as specified above, to identify RELRO.

3) Non-executable Stack: Most modern processors [7],
including microprocessors of the ARM-Cortex-R and ARM-
Cortex-M families, several MIPS32, and most PowerPC pro-
cessors, support data-execution prevention (DEP) [9]. DEP
is a feature that prevents the execution of instructions from
protected memory segments, in particular, segments that are
also writable.

The use of DEP for the program stack is most crucial
to defang stack overflow vulnerabilities, commonly known as
Non-executable (NX) Stack [4]. To enable NX Stack, binaries
need to specify that the stack is NX explicitly. To safely detect
the adoption of NX stack, we need to confirm DEP support
from the hardware and the presence of PT _GNU STACK in
the program header for the stack segment (which mandates
the stack is NX). However, due to the lack of hardware
specifications, our study only checks the program header. This
should not cause many problems since DEP is a pretty standard
feature on processors that can run Linux-based systems.

4) Fortify Source: The standard C library (libc) includes
many unsafe functions that can lead to overflows when mis-
used. Fortify Source [5] is a defense measurement activated
by compilers like GCC to check on known unsafe functions
in libc. These mainly include functions that copy or write data
to a destination buffer without limiting the number of bytes
(e.g., strcpy, strcat, memcpy, etc.). Fortify Source replaces
those functions with safer versions that perform size checks.
Fig. 11 in the Appendix depicts one such example, where two
functions are replaced with their safer counterparts.

Existing tools detect Fortify Source based on symbols or
relocation entries of replacement functions in the form of
__*_chk. Similar to the identification of Stack Canaries, this
approach is effective with dynamically linked or non-stripped
binaries because  * chk are defined in libc and their
symbols are imported. However, it cannot handle statically-
linked, stripped binaries. To this end, we again apply the
heuristic we used to detect Stack Canaries. The replacement
functions output a constant message “*** buffer overflow
detected **x”, when detecting violations. We follow this
message as an indicator to locate  * chk functions and, in

turn, identify the adoption of Fortify Source.

5) Position-Independent (or ASLR-Capable) Code: Ad-
dress Space Layout Randomization (ASLR) [26] is a seminal
defense for mitigating exploitation. ASLR mandates that each
time a program executes, the code segment, the stack, the
heap, and the libraries are located at a randomly selected
offset in memory. Besides OS support, ASLR requires binaries
(programs or libraries) to be compiled as Position Independent
Executable (PIE) and Position Independent Code (PIC), or
otherwise, relocatable code. Whether a binary is position-
independent or relocatable is indicated by its program header.
Specifically, position-independent or relocatable binaries have

TABLE V: Adoption rates of user-space mitigations (%). The
best result for each mitigation is highlighted. Ave (Vendor)
shows results averaged on vendors while Ave (Binary) indi-
cates results calculated on all binaries.

Vendors | ELF (k) | Canary | RELRO | NX | Fortify | PIE
Haxorware 0.2 0 0 0 0 14.9
Actiontec 04 0.5 0 472 0.5 13.4
Cerowrt 0.4 0 0 0 0 9.8
360 0.5 60.0 0 0 0 8.9
Buffalo 0.5 0 0 45.8 0 6.0
Camius 0.5 11.9 0 92.1 1.3 11.9
AT&T 0.6 0 0 0 0 6.3
CenturyLink 0.8 0 0 0 0 0.6
Zyxel 0.8 1.0 0 97.3 0.9 11.6
GOCloud 0.9 0 0 98.2 0 14.9
TENVIS 0.9 0 0 0 0 34
Supermirco 1.3 19.4 32 97.8 16.1 18.5
Digi 1.5 0 0 3.5 0 18.5
Mercury 1.5 0 0 0 0 31.5
Phicomm 1.9 0.1 0.8 21.2 0 47.2
MikroTik 4.3 0.2 7.9 81.0 0.07 5.8
AVM 5.0 81.5 89.4 95.6 0.04 90.8
Belkin 7.9 0.2 3.8 74 1.6 11.0
NETCore 10.2 11.3 0.02 0.06 0.2 16.4
TRENDnet 15.3 04 0.3 10.1 0.05 13.6
Dlink 15.9 0.4 04 304 0.04 9.1
Linksys 17.1 0.5 3 60.4 0.8 9.0
RouterTech 25.8 0 0 0 0 15.0
Moxa 32.0 39.3 15.0 75.7 35.5 31.8
Tenda 33.6 0.6 2.3 30.5 0.01 11.7
Tp-Link-zh 65.7 2.9 0.4 38.7 0.1 18.3
Tp-Link-en 76.3 0.5 0.9 36.6 0.6 21.5
TomatoShibby 127.8 0.1 1.0 23.2 0 8.4
NETGEAR 173.9 2.2 4.4 55.9 0.5 11.4
OpenWrt 191.2 0 0 99.9 0 0

Ubiquiti 204.7 6.7 1.0 15.6 25.0 9.5
ASUS 273.2 1.3 14 46.8 0.05 8.3
QNAP 296.0 80.1 3.1 99.2 1.4 7.7
Synology 1375.4 43.6 36.7 99.5 43.5 13.5
Ave (Vendor) 87.2 10.7 52 41.5 3.5 16.5
Ave (Binary) - 29.7 18.3 76.2 22.5 11.6
Debian \ 34.0 \ 85.3 \ 98.1 \ 99.7 \ 55.6 \ 94.0

type ET _DYN. Otherwise, they will have type EX EXEC. This
enables us to identify ASLR-capable binaries by checking their
program headers.

B. Identifying Mitigations in the Kernel

Linux kernel has been gradually incorporating various
attack mitigations since version 2.6. We examined all popular
kernel mitigations [6] and targeted those (i) applicable to
deployed systems (ii) active in modern Linux distributions
and (iii) released over three years ago (such that the vendors
have sufficient time to deploy them). Table II summarizes
the ones we finally picked. Identification of these kernel-
level mitigations can be done more systematically. As per
Table II, the presence of the mitigations can be identified
based on the architecture, the kernel version, and the building
configurations. Since Vmlinux-to-ELF already provides the
architecture information, we do not have to worry about it.
In the following, we describe the recovery of kernel version
and the identification of mitigations with and without the
configuration files.



TABLE VI: Adoption rates of user-space mitigations by dif-
ferent types of binary (%). Exe and Lib stand for executable
and library, respectively; “-” indicates the mitigation is not
applicable or not meaningful.

|  Type

| ELF (k) | Canary | RELRO | NX | Fortify | PIE
1,340.3 30.9 154 75.5 | 26.1 11.7

Dynamic Exe

g [Dynamic Lib | 1,615.0 | 28.8 20.7 - 96 | -
™ [~ Static Exe 79 33 39 |424| 84 0
5| Dynamic Exe | 20.0 89.9 987 ]99.9| 752 |94.0
‘2 | Dynamic Lib 14.0 79.8 938.1 - 30.2 -
& [~ Static Bxe 02 241 388 [|87.0| 246 | 0

1) Recovery of Kernel Version: When .config is recov-
ered, the kernel version is explicitly documented within. How-
ever, as we pointed out before, the . config file is not always
available. When the . config is missing, we instead search for
string constants within the kernel image to infer its version. For
instance, kernels frequently include string resembling Linux
version 2.6.36 (root@automake) (gcc version 4.6.3 (Buildroot
2012.11.1) ) #2 Fri Jan 20 15:50:29 CST 2017, which gives
explicit information about the kernel version.

2) Analysis  with  Building  Configuration: An
option in the .config file being selected (e.g.,
CONFIG HAVE CC_STACK PROTECTOR=y) means the
corresponding feature is enabled. In contrast, an un-selected
option, indicated by its appearance in a line starting with “#”
or its absence in the file, means the feature is not enabled.
With the support of the . config file, we can easily determine
whether a target mitigation is activated in the kernel by
checking the associate options specified in Table II.

3) Analysis without Building Configuration: When the
.config file is missing, we may still measure the presence
of many mitigations based on the ELF file converted from the
kernel. Consider Stack Protector as an example. We can detect
its presence by the existence and usage of indicator function
__stack chk fail. Similarly, Fortify Source, Vmap Ker-
nel Stack, USERCOPY, Heap Freelist Obfuscation, Executable
Memory Protection, and KASLR can be respectively detected
using ** chk, free vm stack cache, usercopy warn,
freelist state initialize, mark rodata ro, and
rotate xor as indicator functions. Finding indicator func-
tions in the converted ELF is straightforward since Vmlinux-
to-ELF already recovered the symbols.

V. MEASURING ADOPTION OF USER-SPACE
MITIGATIONS

We run the identification of user-space mitigations on the
3,000k binaries described in §III. Binaries released before a
mitigation are excluded from the analysis of that mitigation.
For NX Stack and PIE, only executables are considered
because the two mitigations are less meaningful for libraries.
For other mitigations, all binaries, including both executables
and libraries, are considered. In addition, full RELRO and
partial RELRO are aggregated together. To build a baseline
for references, we further run the identification on 34k ELF
binaries extracted from 7,483 Debian packages located in the
stable distribution for desktop. The Debian binaries mostly
run on x86/x64 architectures. The measurement results are
summarized in Table V.

A. Analysis of Results

Overall, the adoption rates of attack mitigations by em-
bedded binaries are not high, significantly falling behind the
desktop binaries (represented by Debian). Stack Canaries, one
of the most common mitigations in desktop binaries, are
only applied to 29.7% of the embedded binaries. Zooming
into the results, even this 29.7% adoption rate is likely an
overestimation of the general reality as it is exaggerated by the
large number of binaries with Stack Canaries from QNAP and
Synology. Without counting the two vendors, the adoption rate
drops to 3.28%. The situation of RELRO and PIE is similar.
The adoption rates are 98.1% and 94.0% on desktop binaries,
dramatically dropping to 18.3% and 11.6% on embedded
binaries.

Regarding the adoption of Fortify Source, embedded bina-
ries also fall behind desktop binaries but to a less significant
extent (22.5% v.s. 55.6%). A factor contributing to the gap is
the broad use of uClibc by embedded binaries (about 22%).
Unlike Glibc, uClibc does not support Fortify Source. Without
considering binaries that use uClibc, the adoption rate of
Fortify Source raises to 36.5%. The results of NX Stack are
somewhat surprising. NX Stack, a straightforward, no-cost
mitigation, is missing on about 24% of the embedded binaries.
According to the breakdown results shown in Fig. 3, the lack of
NX stack mostly happens to MIPS binaries. This is attributed
to a MIPS-specific hardware restriction. The MIPS standards
do not mandate the behaviors of Floating Point Unit (FPU)
instructions. To normalize the behaviors of FPU operations,
the Linux system emulates certain FPU instructions and places
the emulated code on the stack to execute [34]. Thus, the stack
is marked executable, and the situation only changes after a
patch in Linux kernel became available in 2016.

The above analysis shows a picture from the high level. To
gain a deeper understanding, we break down the results from
the dimensions of binary type, architecture, and vendor.

1) Breakdown by Binary Type: Table VI shows the results
separately measured on different types of binary. The majority
of embedded binaries are dynamic libraries and dynamically
linked executables (for simplicity, we call them dynamic
executables), which adopt attack mitigations more often than
their static counterparts. In particular, their adoption rates of
Stack Canaries and RELRO are significantly higher. However,
regardless of which type we consider, embedded binaries
consistently have a lower adoption rate than desktop binaries
on every mitigation.

2) Breakdown by Architecture: Embedded devices use
very diverse architectures, which affects the adoption of miti-
gations in different ways. For instance, as pointed out above,
MIPS restricts the deployment of NX Stack. Inspired by this,
we break down the measurement results based on architectures.

As shown in Fig. 3, embedded binaries running on every
architecture have a relatively low rate of adopting attack
mitigations (except NX Stack). However, the adoption rates do
vary across architectures. ARM binaries constitute the largest
group. They have a moderate level of adoption rate regardless
of which mitigation we consider. MIPS binaries are the second
largest group. They, however, have the lowest adoption rate in
nearly every mitigation. This is not surprising regarding NX
Stack since MIPS imposes some hardware restrictions. The low
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Fig. 3: Adoption rates of user-space mitigations by binaries
running on different architectures. The numbers in the legend
represent the number of binaries with each architecture.

adoption rates of other mitigations, in contrast, should reflect
the choice of the vendors.

Compared to MIPS binaries, x86 binaries have broader
adoption of the mitigations. In particular, x86 binaries have
the highest adoption rate of Stack Canaries among all the
architectures. However, the observation may not reflect the
general case. Most of the x86 binaries come from QNAP
(see Table IV), which offers an 80.1% adoption rate of Stack
Canaries (see Table V). It is unclear whether the adoption rate
will remain high when more x86 binaries from other vendors
are considered”.

AArch64 binaries and x64 binaries have relatively higher
adoption rates in all the mitigations. In fact, they present the
highest adoption rates on RELRO, NX Stack, Fortify Source,
and PIE. This is reasonable since the two architectures were
released more recently. Binaries running on them tend to have
newer building environments (e.g., compiler and linker) and
newer execution environments (e.g., libraries and OS), where
the mitigations are better ready.

3) Breakdown by Vendors: Another interesting angle is to
look at the differences across vendors, which helps answer
questions such as which vendor offers the best mitigations.
Related results have been presented in Table V.

The adoption rates of mitigations dramatically vary across
vendors. Vendors like AVM and Synology apply many attack
mitigations to most of their binaries. Others vendors like
RouterTech and TomatoShibby rarely adopt most mitigations.
Zooming into individual mitigations, the difference is similarly
intense. Consider Stack Canaries and Fortify Source as exam-
ples. AVM provides Stack Canaries to 81.5% of its binaries,
while 11 other vendors entirely omit Stack Canaries; Synology
enables Fortify Source for 43.5% of its binaries, but in contrast,
27 other vendors only apply Fortify Source to less than 1% of
their binaries. These differences reflect that the low adoptions
rates of many vendors are a result of their (intentional or
unintentional) “choices” instead of objective constraints.

Different vendors also have diverse “preferences”. For
instance, AVM prevalently applies Stack Canaries and RELRO
while largely neglecting Fortify Source. On the contrary, Moxa
and Synology prioritize Fortify Source but emphasize less on

2We attempted to expand the dataset of x86 binaries, but could not identify
many other vendors using x86 architectures.

TABLE VII: Adoption of mitigations by different device types.

Device Type Canary RELRO NX Fortify PIE
Routers 4.1 8.0 58.5 0.1 11.0
WIFI Systems 04 14 35.7 0.2 11.4
Net-Switches 8.0 10.0 77.6 2.6 25.8
Modems 0 0 83.2 0 3.4
Net-Controllers 3.5 2.0 11.4 2.0 30.3
Less-Networked 10.4 9.9 48.8 0.1 20.6

the AVM'’s preferred mitigations. Another generic observation
is that more vendors have preferences for NX Stack and PIE.
Presumably, this is because NX Stack and PIE have a lower
cost, which is more amendable to embedded devices.

4) Breakdown by Device Types: The adoption of attack
mitigations may also be tied to the use scenarios of the devices.
For instance, less-networked devices such as radio players have
a lower risk of exploitation and thus, may skip the mitigations.
To this end, we separately measured the attack mitigations
on different types of devices. As summarized in Table VII,
the adoption rates of attack mitigations are not evidently
disparate across device types. All types of devices present
an insufficient adoption of Stack Canary (0-10.4%), RELRO
(0-10%), and Fortify Source (0-2.4%). Network switches and
modems demonstrate a relatively higher adoption of NX Stack.
This is not because of their types but, instead, that network
switches and modems are more ARM-based than MIPS-based.
Moreover and very interestingly, the adoption rates by internet-
exposed devices are not higher than their less-networked coun-
terparts. In summary, the results show no strong correlation
between mitigation adoption and device type.

5) Mitigation Adoption and Vulnerability Presence: The
presence of vulnerabilities is the key motivation of mitigations.
This brings up two questions. First, are the low adoption
rates of mitigations attributed to the lack the vulnerabilities?
Second, are the adoption rates higher on devices containing
more vulnerabilities? Accordingly, we perform a case study
on embedded vulnerabilities. It shows that memory corruption
vulnerabilities are common on embedded devices. For instance,
two recently reported cases [29], [1] both appear in millions
of embedded devices. This brings a negative answer to the
first question. In a follow-up step, we identified 1,360 binaries
packaged as part of the Realtek SDK from 369 devices, which
are affected by one of the above vulnerabilities [29]. Compared
to other binaries, these binaries present no broader adoption of
the attack mitigations (Stack Canaries: 3.50%; RELRO: 1.60%;
NX Stack: 24.40%; Fortified Source: 0.10%; PIE: 2.50%). This
indicates a negative answer to the second question.

Summary: Embedded devices have a low rate of adopting
user-space mitigations, despite these devices broadly have the
needed supports. The low adoption rate is partially attributed
to the restrictions of architectures and runtime environments,
but it in general reflects the “decisions” of vendors.

B. Changes over Time

While the overall rates of adopting user-space mitigations
are not exciting, the situation might be improving. To verify
this, we run a separate study to inspect the evolution over time.



Fig. 4: Adoption rates of user-space mitigations across time.
All binaries released before 2010 are aggregated into ~2010.
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Fig. 5: Evolution score of individual firmware in the adoption
of Stack Canaries. Each point represents a firmware with mul-
tiple versions. The firmware is sorted based on the evolution
score. The two points marked Over Range at the upper left
corner have evolution scores of 0.4 and 0.6.

1) The Overall Trend: In this analysis, all binaries are
grouped based on the releasing time of their firmware®. Specifi-
cally, binaries released in each period of two years are grouped
together. Each group is then separately measured to understand
their adoption of different mitigations.

Fig. 4 shows the changes over time. The adoption of
NX Stack presents a consistent, positive trend. The adoption
rate increased from nearly 0% before 2010 to almost 100%
recently. We believe a major reason is the increasing use of
newer Linux kernels (see Fig. 7). The new kernels bring better
supports for NX Stack, particularly a patch to enable NX Stack
in MIPS binaries [11].

The adoption rates of Stack Canaries and Fortify Source
have a jump between 2015 and 2018. However, the jump
may not represent what happens in general. From 2016 to
2018, QNAP released a large number of binaries with broad
adoption of Stack Canaries (see Table IV and Table V), pulling
up the average adoption rate. In a similar way, Ubiquiti and
Moxa raised the adoption rate of Fortify Source between 2016
and 2018. During 2018-2021 where these vendors released
fewer binaries, the adoption rates of both mitigations dropped.
RELRO has a stable, low adoption rate in the past decade. In
contrast, PIE is more often adopted, but it presents a decreasing
trend. Again, this decreasing trend may overfit the decisions of

TABLE VIII: Evolution of individual binaries in adopt-
ing attack mitigations. No Change, Positive Change, and
Negative Change show the number of binaries without
changes, with mitigation added, and with mitigation dropped.

Category Canary RELRO NX Fortify PIE

No Change 278,877 278,992 278,375 279,434 278,674
Positive Change 438 323 1,006 61 810
Negative Change 284 284 218 104 115

certain vendors. For instance, OpenWrt released 190k binaries
without PIE between 2020 and 2021, resulting in the lowest
adoption rate in the past decade.

As described above, the overall trend can be significantly
affected by the decisions of specific vendors at certain points
and thus, may not show the actual evolution. To this end, we
perform two more fine-grained analyses.

2) Evolution of Individual Firmware: In our dataset, 699
firmware has multiple versions. The changes in mitigation
adoption across different versions are good indicators of evo-
lution. For each of the 699 firmware, we measure the evolution
score, namely the increase/decrease of adoption rate from its
earliest version to its latest version. Fig. 5 shows the results of
evolution score for Stack Canaries, and Fig. 12 in the Appendix
presents the results for other mitigations.

Most of the firmware presents no changes in adopting user-
space mitigations. Among the few that indeed show changes,
we observe both positive and negative trends. Consider Stack
Canaries as an example. 83 of the firmware has an increased
adoption rate, while 121 has a reduced adoption rate. Breaking
down the results to individual vendors (see Table XIV in the
Appendix), we observe that only Moxa offers a consistent,
meaningful increase of adoption rate for all mitigations. Most
vendors either do not change or change positively for some
mitigations but negatively for the others. Vendors like QNAP
even consistently reduce the adoption rates of mitigations when
upgrading their firmware.

3) Evolution of Individual Binaries: The same binary may
propagate across different versions of the firmware, which we
call versioned binaries. The change in mitigation adoption
by versioned binaries is another indicator of evolution. From
our dataset, 279k versioned binaries are identified* from 24
vendors. Each binary is then measured to see the change
of mitigation adoption between its first and last versions.
Table VIII shows the aggregated results. Over 99.9% of the
versioned binaries present no changes in adopting the attack
mitigations. Among the remaining, a significant portion shows
negative changes. More details for each vendor are presented
in Table XVIII in the Appendix. Overall, no single vendor
brings significantly broader adoption of mitigations to those
binaries during upgrading.

Summary: There is no obvious evidence showing that the
adoption of user-space mitigations is improving.

3Firmware with unknown releasing time is excluded.

4Binaries with the same name are considered as the same binary.



TABLE IX: Adoption of kernel-level mitigations. Analyzed indicates how many kernels can be analyzed to test the presence of
each mitigation; Unsupported means how many kernels have a version before the mitigation is integrated; Protected shows

how many kernels adopt each mitigation.

Category Total Stack Protector PXN KASLR FreeList Usercopy Fortify Kernel RWX
Analyzed 3,347 2,831 839 2,062 2,063 1,980 525 564
Unsupported - 2,078 798 2,048 2,049 1,968 521 555
Protected - 159 41 0 0 3 4 9

TABLE X: Gap between the release time and the building time

se (429 F of kernels from our dataset (months). Gap Range shows the
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v4 firmware released by OpenWrt.

VI. MEASURING ADOPTION OF KERNEL-LEVEL
MITIGATIONS

From the collected firmware images, 7,977 Linux kernels
are extracted. We run an analysis on the kernels to identify
the mitigations in Table II. We only consider kernels that have
.config files extracted or can be converted to an ELF file
as our identification approach relies on that. Given a target
mitigation, we only include kernels built after the release
of the mitigation and only include kernels using the desired
architecture. Otherwise, the mitigation is certainly not adopted.

A. Analysis of Results

Table IX presents the results. Kernel-level mitigations are
rarely adopted in embedded devices. Stack Protector is applied
the most, but sill only to 159 out of 2,831 kernels. The other
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mitigations have an adoption rate close to zero. In particular,
KASLR and Freelist Randomization are not adopted at all.

A major reason why kernel-level mitigations are missing
is the vendors’ tendency to use old kernels. Fig. 14 in the
Appendix shows the distribution of kernels across versions.
Nearly half of the kernels have a version of v2.x, which was
released almost 20 years ago. Looking closely at the kernels,
we further find that they were mostly built years after the
release, as illustrated in Table X. The average gap between
the kernels’ release time and building time is over 5 years
(65.1 months). The gap for some kernels from Polycom and
Linksys even goes over 15 years.

A consequence of using old kernels is that the mitigations
are unsupported. As shown in Table IX, most kernels miss
mitigations because they are not new enough to have the
mitigations. A very possible incentive for the vendors to use



old kernels is reliability. When an older kernel runs well on the
products, it is often safer to continue using it since an upgrade
can easily introduce backward-incompatibility issues. To verify
this intuition a bit, we again check the firmware with multiple
versions but focus on the kernels this time. As shown in Fig. 15
in the Appendix, the vendors are in general “reluctant” to
use newer kernels when upgrading their firmware, indirectly
supporting our intuition.

B. Changes over Time

To understand the evolution of kernel-level mitigations, we
perform an additional time series analysis. We only consider
Stack Protector in this analysis because other mitigations have
too few samples. The results, presented in Fig. 6, show a pos-
itive trend. The adoption rate of Stack Protector consistently
increases over the past decade. The driving force behind the
trend is mainly the upgrading of kernels. As demonstrated
in Fig. 7, vendors are using more new kernels where Stack
Protector is more prevalently integrated. We envision this
trend, in the longer term, will also benefit other mitigations.

Summary: Kernel-level mitigations are missing in embedded
devices. A major reason is the vendors largely use old kernels
where the mitigations are not ready. Nonetheless, preliminary
evidence shows positive changes are happening.

VII. DISCUSSION: WHY MITIGATIONS ARE MISSING

The key takeaway of our study is that attack mitigations are
prevalently missing on embedded devices. Based on what we
have explained, the lack of kernel-level mitigations is primarily
caused by the excessive use of old kernels. In contrast, the
problem of lacking user-space mitigations is more complicated.
Hardware/runtime restrictions (e.g., the restriction by MIPS
on NX Stack) are undeniably a factor, but the primary reason
should be the “decision” of vendors. The key question worth
discussing here is why the vendors make such a decision?

Without comments from the vendors?, it is hard to get the
exact answer to the above question. But throughout analysis
of the commonalities shared by the firmware, we are able to
gain some observations that may help answer the question.

A. Restrictions of Building Tools

Vendors often rely on automated tools to build their em-
bedded systems. Buildroot [25] is one of the most popular
tools for Linux-based embedded systems. These automated
tools may delay the availability of attack mitigations for years.
Consider Buildroot as an example. As shown in Table XVI in
the Appendix, it does not offer full support of Stack Canaries
until 2013 (8 years after the release of Stack Canaries). This
similarly happens to other mitigations. In this regard, the use of
automated tools like Buildroot (in particular the older versions)
defers or even prevents the adoption of attack mitigations.

To gain a more concrete understanding, we zoom into the
firmware in our dataset generated with Buildroot. In total, there
are 690 of them. As shown in Fig. 8, most firmware was built
with Buildroot released at or before 2012, when no mitigation

SWe intentionally avoid interaction with vendors to prevent ethical issues.
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Fig. 8: Distribution of firmware based on the version of
Buildroot they are built with.

was supported. In result, all binaries built together with the
firmware would carry zero attack mitigations.

But should we only blame the automated tools? The answer
is clearly no. The vendors largely use old versions of Buildroot
even newer versions are available for years, just like what
they did to Linux kernels. Table XIII shows the gap between
the release time of Buildroot and the use time by vendors.
On average, the gap is 5 years. Even the smallest gap is
about 2.5 years. This amplified the delay of the availability
of attack mitigations. So essentially, the lateness in integrating
attack mitigations by the automated tools and the use of older
automated tools by embedded vendors together lead to an
barrier to the adoption of attack mitigations.

B. Massive Reuse of Binaries

We find that embedded vendors largely reuse binaries
across products. First, the same vendor often runs the same
group of binaries on different devices. Table XI shows the
number of unique binaries from each vendor. On average,
only 8.9% of the binaries are unique. In other words, the
same binary is reused for 11 firmware. Second, the binaries
can also frequently propagate across vendors. Fig. 16 in the
Appendix presents the number of unique binaries shared by
multiple vendors. Over 8,000 binaries are used by 2 vendors
and some binaries are even used by 10 vendors. The heatmap
in Fig. 17 in the Appendix gives more details about how
frequently vendors borrow binaries from each other.

Reusing binaries across products or even vendors is un-
derstandable since these binaries have proven reliability. But
how exactly the reuse of binaries affects attack mitigations? To
answer this question, we measure the adoption of attack miti-
gations in binaries reused by multiple vendors. In total, there
are 11,232 such binaries. The binaries present a significantly
lower adoption rate in most of the mitigations, compared to the
results with all binaries considered (compare Table XVII and
Table V). That means the propagation of those binaries brings
harm to the overall adoption of attack mitigations. Even more
worrisome is that the harm will continue until those binaries
get rebuilt and redistributed.

C. Cost of the Mitigations

The mitigations can bring extra cost, becoming a possible
reason affecting their adoptions. To quantify the cost, we



TABLE XI: Number of unique binaries from each vendor (k). The uniqueness of a binary is defined by its MDS5.
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TABLE XII: Cost of attack mitigations on SPEC CPU2006.
From left to right, the columns show the accumulative over-
head after we enable the mitigations, one after another.

TABLE XIII: Gap between the release time and the use time
of Buildroot (months). Gap Range shows the range of the
gaps for all firmware from the same vendor.

Overhead NX Canary PIE RELRO Fortify Vendor Number Gap Average Gap Range
Storage 0 6.7% 11.5% 17.3% 17.3% 360 1 50.0 [50, 50]
Memory 0 0 0 0 0 Belkin 2 31.5 [29, 32]
Runtime 0 6.6% 8.45%  10.7% 10.9% Linksys 20 73.0 [40, 104]

Netcore 8 72.4 [44, 98]
perform an evaluation of the storage/memory/performance TRENDnet 9 48.9 (8, 98]
overhead of user-space mitigations on SPEC CPU2006, using Tenda 37 41.6 [17, 104]
a Raspberry PI-4B board as the device (Broadcom BCM2711 TomatoShibby 23 32.0 (26, 54]
Quad-core Cortex-A72 with 8GB LPDDR4-3200 SDRAM). Tp-Link-zh 71 52.6 [29, 98]
Tp-Link-en 158 63.7 [28, 89]
Table XII shows the evaluation results. Overall, applying Dlink 6 58.9 [40, 80]
the mitigations together has no observable overhead on mem- NETGEAR 759 67.9 [22, 104]
ory usage but inFroduce.s a 10.9% and 17.3% ov.erhea.d on per- ASUS 50 51.0 [31, 66]
formance aqd binary size. Spec1ﬁcally, mitigations mcludmg Hikvision 15 33.1 [24, 38]
Stack Canaries, PIE, and~ RELRQ incur pbservable Qverhead in Ubiquiti ) 64.0 (62, 66]
both performance and binary size. Fortify Source, in contrast, Average 493 600 -

brings a lightweight performance overhead without increasing
the binary size. We believe these types of overhead may
impede the vendors from adopting the mitigations. However,
whether that indeed happens needs confirmation with the
vendors, which we intentionally avoid for ethical concerns.

Summary: Utilization of old building tools and massive
reuse of existing binaries are contributors to the lack of
attack mitigations in embedded binaries. Cost of the attack
mitigations may also potentially impede their adoption.

VIII. THREATS TO VALIDITY

A. Representativeness of Dataset

Similar to other sampling-based studies, our study can
present findings biased towards the collected dataset. We
considered this threat and extended two efforts to reduce
the threat. First, we attempted to cover all vendors that are
popular or included in previous studies. Second, we enumerate
the firmware images that are publicly available from each
vendor. In the end, we collected 18k firmware images from
38 vendors. The number of firmware images and the list
of vendors are comparable to existing large-scale studies on
embedded security [22], [20], [17], [14], [13].
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B. Imbalance in Dataset

The dataset we collected is not perfectly balanced, which
may harm our findings. First, not every vendor has the same
amount of data involved. Vendors like OpenWrt and NET-
GEAR contributed a large portion of the data, while other
vendors like Cerowrt and Haxorware only provided a tiny
part. Therefore, our generic findings may overfit the dominant
vendors. To this end, we break down the results to each vendor
in most analyses, which helps raise awareness of the overfitting
results. Overall, our generic findings broadly align with the
breakdown results. Second, given a mitigation, the applicable
data samples are not evenly distributed over time. This can
create abnormal points in the analysis of evolution trends. For
instance, QNAP released a large number of binaries with Stack
Canaries from 2016 to 2018, causing a sudden leap in the
evolution trend (recall §V-B). To mitigate the threat, we revisit
all the points that appear to be outliers, followed by clarifying
the impact of data imbalance (see §V-B and §VI-B).

C. Reliability of Mitigation ldentification

First, obfuscations can affect our identification of attack
mitigations. For instance, encoding strings can mislead our



detection of Stack Canaries and Fortify Source. In contrast,
destroying symbols can disrupt the detection relying on in-
dicator functions. However, we envision that obfuscations
should not have affected our study. First, we manually checked
many binaries and did not observe obfuscations. Second, the
firmware we collected is exclusively from mainstream, benign
vendors who have fewer motivations to obfuscate the code.

Second, we rely on static approaches to identify mitiga-
tions, which can raise two problems. First, some binaries may
not be used at all, so their results do not matter. We did
not exclude such binaries. In this regard, our study covers
a superset of truly security-relevant binaries. Second, some
mitigations can be affected by runtime configurations. For
instance, KASLR can be disabled by setting the nokaslr
parameter when booting the kernel [27]. We, without knowing
what happens at runtime, cannot exclude such mitigations. We
believe the two problems should not affect our findings much.
Based on our study, the adoption rates of attack mitigations are
extremely low, which shall still hold even considering a subset
of the data and excluding the falsely identified mitigations.

Third, the tools we reuse to help identify may have reliabil-
ity issues. For instance, FIRMADYNE can extract incomplete
kernel data, and Vmlinux-to-ELF can miss recovering kernel
functions. Both will hurt our identification of kernel-level mit-
igations. We realize this threat, but we consider the reliability
of existing tools out of this paper’s scope.

IX. RELATED WORK
A. Study of Threats to Embedded Devices

Past research has launched many attempts trying to under-
stand the threats faced by embedded devices. Alrawi et al. [8]
propose a modeling methodology to systematize the security
of home-based IoT devices from the dimensions of attack
vectors, mitigations, and stakeholders. They further evaluated
45 open-source or on-market home-based IoT devices, which
confirms security issues discussed by their study. Inspired by
the study and the evaluation, the authors eventually propose a
list of mitigations to address the related security issues. Falling
into the category of studying security mitigations, they focus
more on discussing the possible mitigations against the attack
vectors instead of the adoption of the mitigations in the wild.

Costin et al. [17] present a large-scale study to measure
security vulnerabilities in 32k firmware images running on em-
bedded devices. They designed and implemented a distributed
architecture to statically measure similarities between firmware
images, using a correlation engine. The study discovered
38 unknown vulnerabilities from 693 firmware images. The
study also unveils that vulnerabilities from known affected
devices can “propagate” to other devices. Similarly, Feng et
al. [22] propose and implement Genius, a bug search engine
based on features in the control-flow graph. Evaluating Genius
on a dataset of 33,045 firmware, the authors discovered 38
potentially vulnerable firmware images from 5 vendors. The
two studies and ours all rely on static analysis on a large corpus
of firmware to understand embedded security. However, they
focus on vulnerabilities while we focus on attack mitigations.

Chen et al. [13] develop FIRMADYNE, an automated,
dynamic firmware analysis system, to run firmware binaries
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through full system emulation and an instrumented kernel.
Leveraging FIRMADYNE, they run 74 exploits on 9,486
firmware images. The results unveil that firmware images
are largely vulnerable to existing vulnerabilities and exploits:
887 of the firmware images supporting at least 89 distinct
products can be affected by one or more of the exploits. Our
study complements this work by understanding the adoption
of mitigations against those exploits.

B. Study of Attack Mitigations for Embedded Devices

There also exist studies on attack mitigations in embedded
devices. The most closely related one to our study is presented
in [35]. The authors evaluate the availability of ASLR, Non-
executable Stack, RELRO, and Stack Canaries on 28 popular
home routers with either ARM or MIPS architecture. The study
presents some similar observations to ours. For instance, it
finds that the adoption rate of Stack Canaries is extremely
low, and NX Stack is more likely to be applied to ARM
binaries than MIPS binaries. Compared to this study, ours has
a much larger scope and a much higher depth, bringing more
systematic insights towards improving the situation.

Other studies in this line focus more on the challenges in
applying attack mitigations to embedded devices. Thompson
and Zatko [34] explore why MIPS devices usually miss ap-
plying NX Stack, as we explained in §V. Abbasi et al. [7]
investigate the challenges faced by embedded devices to adopt
attack mitigations. They found that many embedded devices,
particularly the low-end ones, often lack the hardware and OS
support needed by the mitigations. In our study, we concentrate
on Linux-based devices where the hardware and the OS are
less restricted. We aim to understand that, when objective
restrictions like those discussed in [34] do not exist, how often
the mitigations will be adopted.

C. Tools for Mitigation Measurement

At the time we conduct the study, many existing tools,
including Checksec [!2], Hardening-Check [36], and Pwn-
tools [31], can help detect user-space mitigations. Check-
sec [12] is a bash script designed to test standard security prop-
erties of ELF files. It additionally provides the feature of de-
tecting kernel-level mitigations in running systems. Hardening-
Check [36] is another tool providing similar features as Check-
sec. Pwntools [31] is a CTF framework and exploit develop-
ment library. It provides functionality to check the status of the
above security features applied in ELF binaries. We follow
these tools to develop many of our detection strategies, but
also extend them. First, we extend the mitigation detection to
handle cases like Stack Canaries in statically linked, stripped
binaries. Second, we add new supports to detect mitigations
applied in the kernel without running it in the actual device.

X. CONCLUSION

This paper measures the adoption of standard attack mitiga-
tions in embedded devices. It shows that attack mitigations are
largely missing even on devices where the needed hardware/OS
supports are fully available. The findings also complement
previous research that ties the absence of mitigations to the
lack of hardware/OS supports. By inspecting the evolution over
time, the study unveils that the situation does not improve



in the past decade, casting a worrisome prediction about the
upcoming future where embedded devices will explode. On the
positive side, the study identifies a set of doings hurting the
adoption of attack mitigations, which bring insights towards
improving the current practice.
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header CRC:0xC932233,
0x40 Linux kernel ARM boot
0x40FC gzip compressed data,
0x2A0000 JFFS2 filesystem,

size: 64 bytes,
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executable zImage

maximum compression
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BINWALK output for 1inksys-EA4500-2.1.42.183584 prod.img
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Fig. 9: An example of Linux-based firmware image.

; function

start

30: 1ldr 3 , data_101a0
34: ldr r4 , data_10la4
38: push {r0, rl, r2, 1r}
3c: 1ldr r6 , data_101a8
40: add r4 , pc , r4 ; {data_6a28f, xxx stack smashing detected xx*:...}
44: 1dr 15 ; [pc, r3]
48: mov r0 , r4d ; {data_6a28f, *x+ stack smashing detected ***:...}
4c: bl sub_10110
9c: bl sub_64d94
; function end
Listing 1: The stack chk fail function in a statically-linked binary.
.plt ; Readable, Executable
1030 <fwrite@plt>: v .
. » fwrite()
1030: £ff 25 52 23 00 00 jmpg *(.got.plt + 18) ———f::
1036: 68 00 00 00 00 pushg $0x0 <
103b: e9 e0 ff ff ff jmpq 1020 <.plt> ; Linker — Linker
Resolves symbol fwrite, updates .got.plt+18
entry with its address, and calls it
.got ; Readable, Writable .got ; Readable i .got ; Readable
.got.plt ; Readable, Writable .got.plt ; Readable, Writable § e
+18: 36 10 00 00 00 00 00 OO +18: 36 10 00 00 00 00 00 OO b 418 <absolute fwrite address>

No RELRO

Partial RELRO

Fig. 10: Binary with no/partial/full RELRO.

{

void printwpre(const char *sl, const char *s2)

char str[128];

strcpy(str,
strcat(str,
puts(str);

sl);
s2);

Full RELRO

{

void printwpre(const char *sl, const char *s2)

char str[128];

__strcpy_chk(str, sl,
__strcat_chk(str, s2,

128);
128);

puts(str);

gcc —D_FORTIFY SOURCE —O1 ..

Fig. 11: Replacement of dangerous libc functions with safer versions by Fortify Source.
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Fig. 12: Evolution score of individual firmware in the adoption of different mitigations. Each point represents a firmware with
multiple versions. The firmware is sorted based on the evolution score.

TABLE XIV: Breakdown results of evolution score of firmware with multiple versions. [scrl, scr2] in each cell means the
evolution score for all firmware of the same vendor ranges from scrl to scr2.

Vendor | # of Firmware | Canary | RELRO | NX |  Fortify | PIE
360 1 [7.4, 7.4] [0, 0] [0, 0] [0, 0] [0, 0]
AT&T 1 [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
Buffalo 1 [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
Phicomm 1 [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
TENVIS 1 [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
TRENDnet 2 [0, 0.3] [0, 2.8] [0, 0] [0, 0] [0, 2.8]
Zyxel 2 [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
AVM 3 [0, 0.3] [0, 5.1] [-0.06, 0] [0, 0] [0, 5.1]
Moxa 3 [0, 10.1] [0, 15.8] [0, 20.1] [0, 10.8] [0, 15.8]
Mercury 5 [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
TomatoShibby 5 [0, 0.02] [0, 0.2] [0, 5.6] [0, 0] [0, 0.2]
Netcore 6 [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
RouterTech 7 [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
MikroTik 8 [-0.01, 0] [-0.2, 0] [0, 0.01] [-0.1, 0] [-0.2, 0]
Belkin 12 [0, 0] [0, 3.2] [-10.7, 100] [0, 0] [0, 3.2]
QNAP 12 [-15.1, -13.8] [-3.0, -2.2] [-0.2, 0.08] [-0.7, -0.2] [-3.0, -2.2]
Linksys 14 [-0.01, 2.4] [-0.1, 24.4] [0, 99.5] [0, 0] [-0.1, 24.4]
Dlink 19 [-3.6, 0.8] [0, 0.2] [-0.4, 100] [-3.6, 0] [0, 0.2]
Tenda 61 [-0.1, 7.8] [-0.8, 4.5] [0, 0] [0, 0] [-0.8, 4.5]
Tp-Link-en 72 [-0.03, 7.2] [-0.3, 0.1] [-0.3, 0.09] [-0.05, 5.1] [-0.3, 0.1]
Tp-Link-zh 76 [-7.2, 7.6] [-1.7, 2.1] [-0.7, 100] [0, 0.7] [-1.7, 2.1]
Synology 94 [-3.8, 40.1] [-2.3, 17.5] [0, 0.5] [-1.4, 38.6] [-2.3, 17.5]
ASUS 143 [-2.0, 1.0] [-2.1, 1.0] [-0.9, 9.7] [-0.8, 0.5] [-2.1, 1.0]
Netgear 150 [-4.8, 60.3] [-27.4, 10.2] [-5.3, 8.3] [-4.8, 1.6] [-27.4, 10.2]
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Fig. 13: Distribution of binaries based on their architectures.
All binaries released before 2010 are aggregated into ~2010.
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Fig. 14: Distribution of different kernel versions.
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Fig. 15: Changes of kernels running on different versions of
the same firmware. Downgrading, No Change, Upgrading
respectively indicate the number of firmware with kernels
downgraded to older versions, with kernels remained at the
same version, and with kernels upgraded to newer versions.
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TABLE XV: Types of device covered in our study

Router, Web Camera, Network Port, Network Switch,
Network Storage, Network Access Point, Repeater,
Adapter, WIFI Extender, WIFI System, WIFI Bridge,
Controller, Video Recorder, Radio, Mother Board,
Gateway, Media Connector, Printer, Firewall Modem

TABLE XVI: Availability of attack mitigations in different
versions of Buildroot.

Version | Default Kernel | Canary | SC! Dependency | RELRO | Fortify | PIE

2021-02 v5.10 v v v v v
2020-11 v5.4 v v v v v
2019-11 v4.19 v v v v v
2018-11 v4.16 v v v v X
2017-11 v4.13 v v X X X
2016-11 v4.8 v v X X X
2015-11 v4.3 v v X X X
2014-11 v3.17 v v X X X
2013-11 v3.11 v v X X X
2012-11 v3.6 v X X X X
2011-11 v3.1 v X X X X
2010-11 v2.6 v X X X X
2009-11 v2.6 v X X X X
T“SC” is short for Stack Canaries.
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Fig. 16: Number of unique binaries reused by multiple vendors.
For example, the point at x = 2 means 8,452 unique binaries
are reused by 2 vendors (without considering binaries reused
by more than 2 vendors).

TABLE XVII: Adoption rates of user-space mitigations by
binaries shared by multiple vendors (%).

# of Binaries | Canary | RELRO | NX | Fortify | PIE
11232 | 154 | 92 [460] 153 |345




TABLE XVIII: Evolution of individual binaries in adopting attack mitigations (breakdown results). In each cell, +x / -y indicates
x binaries have the mitigation added and y binaries have the mitigation dropped; “-” means no change.

Vendor | ELF | Canary | RELRO | NX | Fortify | PIE
360 118 - - - - -
AT&T 190 - - - - -
Buffalo 9 - - - - -
Phicomm 147 - - - - -
TENVIS 36 - - - - -
TRENDnet 409 +1/-0 +6 /-0 - - -
Zyxel 154 - - - - -
AVM 358 +6 / -0 +20 /-0 - - +11/-0
Moxa 107 - - - - -
Mercury 232 - - - - -
TomatoShibby 735 - - - - -
Netcore 296 - - - - -
RouterTech 1086 - - - - +65 /-0
MikroTik 1100 - - - - -
Belkin 688 - - +69 /-0 - -
QNAP 9192 +11/-0 +0 /-39 - +26 /-0 +26 /-0
Linksys 3420 +1/-0 +3/-0 +171 /-0 - +4 /-3
Dlink 2399 - - +236 / -0 - -
Tenda 7266 +8 /-0 - - - +17 /-0
Tp-Link-en 9728 - - - - +0/-3
Tp-Link-zh 10110 +2/-2 - +221 /-0 - +0/-14
Synology 179949 +13/-233 +177 /-9 +139 /-0 +19 /7 -88 +353 /-0
ASUS 31581 +9 /-0 +0 /-1 +6 /-1 - +1/-0
Netgear 20289 +387 / -49 +117 1 -73 +164 / -218 +16 /-16 +333/-95
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Fig. 17: Heatmap showing how many binaries vendors borrow from each other.
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