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Abstract: This paper establishes a PIE (Partial Integral Equation)-based technique for the
robust stability and H∞ performance analysis of linear systems with interval delays. The delays
considered are time-invariant but uncertain, residing within a bounded interval excluding zero.
We first propose a structured class of PIE systems with parametric uncertainty, then propose
a Linear PI Inequality (LPI) for robust stability and H∞ performance of PIEs with polytopic
uncertainty. Next, we consider the problem of robust stability and H∞ performance of multi-
delay systems with interval uncertainty in the delay parameters and show this problem is
equivalent to robust stability and performance of a given PIE with parametric uncertainty.
The robust stability and H∞ performance of the uncertain time-delay system are then solved
using the LPI solver in the MATLAB PIETOOLS toolbox. Numerical examples are given to
prove the effectiveness and accuracy of the method. This paper adds to the expanding field of
PIE approach and can be extended to linear partial differential equations.
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1. INTRODUCTION

The uncertain time delay phenomenon appears frequently
and can severely affect the stability and performance of
control systems causing, for example, thermoacoustic in-
stability in combustion systems and chatter instability in
machining (Guo et al., 2019; Fazelinia, 2007). Numerous
results have been published to deal with the robust sta-
bility of delay systems in recent decades. Despite this ex-
tensive work, the problem of finding the maximum/exact
time-delay range for which the system is stable at a mini-
mum cost of computation remains unresolved.
The most commonly used method for estimating the maxi-
mum stable delay interval is to pose the problem as a linear
matrix inequality (LMI) - see Park et al. (2015); Seuret
and Gouaisbaut (2013); Zeng et al. (2015); Li et al. (2017).
Fundamentally, the LMI approach to robust stability and
control is a feasibility problem over parameter-dependent
set of LMIs, with feasibility required to hold for the entire
set of uncertain parameters - making the problem infinite-
dimensional (Oliveira and Peres, 2007). One approach to
solve this problem is to use bounding techniques including
the well known Jensen inequality, free weighting matri-
ces, Bessel inequality (Gouaisbaut and Seuret, 2015), etc.
However, the bounds used in such techniques are often
conservative. By scaling the number of inequalities, tech-
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niques such as the Bessel inequality have the potential to
approach necessity in the limit, but at the cost of high com-
putational complexity. Alternatively, the use of Integral
Quadratic Constraints (IQCs) has been used to address
the analysis problem of uncertain time-delay systems (Jun
and Safonov, 2010), but this approach generally can not
always be extended to the interval dependent problem. For
example, Matthieu et al. (2020) tested the robust stability
of a linear delay system, but only for the single delay case.
While there exist very effective methods for robust analysis
and control of finite-dimensional linear state-space systems
(ODEs), linear time delay systems (TDSs) are infinite
dimensional - making generalization of the methods de-
veloped for ODEs to robust analysis of TDSs challeng-
ing. Recently, efforts have been made to represent linear
time-delay systems in a manner which makes extension
of ODE-based methods more straightforward. Specifically,
the Partial Integral Equation (PIE) representation for
linear infinite dimensional systems was recently proposed
in Peet (2020). The PIE representation has a form sim-
ilar to linear state-space ODEs - ẋ(t) = Ax(t) + Bu(t)
and is parameterized by the algebra of Partial Integral
(PI) operators, which are a generalization of matrices to
infinite-dimensions. The PIE framework, then, is intended
to provide a way to generalize the mature theory for ODEs
to infinite dimensional systems such as time-delay systems.
This approach has already been studied for the estimation
and control issue of linear delay systems Peet and Gu



(2019); Wu et al. (2019) - an approach which yielded less
conservative numerical results (almost identical to avail-
able analytical results). It is worth noting that the PIE-
based approach builds upon the Sum of Squares method (it
uses the same parameterization of positive Lyapunov func-
tionals), and is typically more computationally efficient
compared with LMI methods for compareable accuracy.
The objective of this paper is to use PIE-based methods
to analyze stability and H∞ performance problem of linear
TDSs with uncertain delays. Firstly, a class of PIE system
with parametric uncertainties is provided, which can be
used to equivalently represent the solutions of a set linear
systems with uncertain delays in a compact and linear
time-invariant system (LTI) form. Then based on the
corresponding uncertain PIE system, we obtain robust
stability and H∞ performance conditions for a set of
linear delay systems with interval uncertainty in the delay.
These conditions are defined by Linear PI Inequalities
(LPIs) which can be solved efficiently using the MATLAB
toolbox PIETOOLS Shivakumar et al. (2020a). Numerical
examples are given to illustrate the proposed method.

1.1 Notations

I denotes the identity matrix with dimension clear from
context. A block-diagonal matrix is denoted by diag{· · · }.
We use Ln

2 [T ] to denote the vector-valued Lesbesque
square integrable functions which map T → Rn. The space
Zm,n:=Rm× Ln

2 [−1, 0] is an inner-product space with the
inner product defined as〈[

y
ψ

]
,

[
x
ϕ

]〉
= yTx+

∫ 0

−1

ψ(s)Tϕ(s)ds,

where x, y ∈ Rm and ψ, ϕ ∈ Ln
2 [−1, 0]. The inner product

⟨·, ·⟩ is in Zm,n space without any special notation.

2. PRELIMINARIES

Before we proceed to the main results, we define the class
of linear time-invariant PIE systems without uncertainty
and an associated notion of stability. The definition and
properties of Partial Integral operators used in this paper
are also introduced.

2.1 LMI-based robust stability condition of LTI systems

Lemma 1. (Horisberger and Belanger, 1976) Suppose there
exists a positive symmetric matrix P satisfying

AT
i P + PAi < 0, ∀i ∈ {1, · · · , N}. (1)

Then for any initial condition, the system

ẋ(t) =
N∑
i=1

αiAix(t), α ∈ ∆

is robustly stable over ∆ = {α ∈ RN : αi ∈
[0, 1],

∑N
i=1 αi = 1}.

This LMI-based robust stability lemma can be obtained for
LTI systems through a common quadratic Lyapunov func-
tion V (x(t)) = x(t)TPx(t). Note that this lemma actually
proves the stronger notion of quadratic stability, which
ensures stability with respect to time-varying uncertainty.

2.2 4-PI operators

Partial Integral (PI) operators are an extension of matrices
to infinite-dimensional spaces. Specifically, the class of 4-
PI operators form an algebra of bounded linear multiplier
and integral operators defined jointly on Rn and L2. We
say P is a 4-PI operator if it has the form(
P
[

P, Q1

Q2, {Ri}
2
i=0

] [
x
Φ

])
(s) :=

 Px+

∫ 0

−1

Q1(s)Φ(s)ds

Q2(s)x+
(
P{Ri}2

i=0

)
Φ(s)


where

P{Ri}2i=0
ϕ(s) := R0(s)ϕ(s) +

∫ s

−1

R1(s, θ)ϕ(θ)dθ +

∫ 0

s

R2(s, θ)ϕ(θ)dθ

For any two 4-PI operators, P1 and P2, we have
a. P1 + P2 is also a 4-PI operator.
b. P∗

1 stands for the adjoint of P1 and is also a 4-PI
operator.

c. P1P2 represents the composition of P1 and P2 and is
also a 4-PI operator.

d. P1(: X → Z) ≻ 0 if ∀σ ∈ X, ⟨σ,P1σ⟩ ≻ 0.
Remark 1. More details on the PI operator such as the
definition of the adjoint and verification of the positivity
using MATLAB package PIETOOLS are omitted here for
the space reasons and can be found in Shivakumar et al.
(2020a).

2.3 Defintion of PIE systems

A PIE system is a class of system described by a set
of differential equations that are parameterized by PI
operators. Specifically, we say z ∈ Zm,n solves the PIE
for initial condition z0 ∈ Zm,n if

T ż(t) = Az(t) + Bw(t)
z(t) = Cz(t) +Dw(t)

z(0) = z0 ∈ Zm,n (2)
where signals w ∈ Rp is the external input and z ∈ Rq

is the regulated output. Here T ,A : Zm,n → Zm,n,
B : Rp → Zm,n, C : Zm,n → Rq, and D : Rp → Rq

are PI operators. The PIE formulation provides a new
alternative representation to a large class of linear infinite
dimensional systems including delay differential (DDF)
formulation and PDE systems (Peet, 2020; Shivakumar
et al., 2020b). The stability of a PIE system is defined as
follows.
Definition 2. The PIE system (2) defined by {T ,A} with
w(t) ≡ 0 is said to be stable if any solution to the PIE
system (2) satisfies limt→∞ ∥T z∥ → 0.

Note that under this definition, LPI-based stability, H∞
performance, estimation and stabilization conditions for
PIE system (2) are studied in Shivakumar et al. (2020b),
Wu et al. (2019), and Peet (2020). However such results
have not been extended to uncertain PIEs.

3. LPI-BASED ROBUST ANALYSIS OF UNCERTAIN
PIE SYSTEMS

This section proposes the structure of a class of uncertain
PIE system with parametric uncertainty. Then, for un-
certain PIEs with polytopic uncertainty, we propose LPI



conditions for robust stability and input-out properties
(H∞ performance) of these uncertain PIEs.

3.1 PIE systems with parametric uncertainty
While uncertainties may enter the system in multiple
ways, for simplicity and clarity we only consider the case
where the uncertainty only appears in the generator A.
Stability and performance conditions when the parametric
uncertainties appear in B, C,D can be obtained in the
similar manner. The uncertain PIE system is defined as
follows.

T ż(t) = A(α)z(t) + Bw(t), α ∈ ∆

z(t) = Cz(t) +Dw(t),

z(0) = z0 ∈ Zm,n (3)
where w ∈ Rp, z ∈ Rq, α ∈ Ru, T ,A(α) : Zm,n → Zm,n,
B : Rp → Zm,n, C : Zm,n → Rq, and D : Rp → Rq are PI
operators. We define robust stability of an uncertain PIE
system (3) as follows.
Definition 3. The PIE system (3) defined by {T ,A(α)}
(w(t) ≡ 0) is said to be robustly stable over ∆ if the PIE
system (3) defined by {T ,A(α)} is stable for any given
α ∈ ∆.

3.2 Robust stability of PIEs with polytopic uncertainty

In this subsection, we consider the case where A(α) is
linear in the uncertain parameters and the parameters
lie in a polytope. In this case, the uncertain PIE is
parameterized by the vertex values Ai, so that A(α) :=∑N

i=1 αiAi,∆ = {α ∈ RN : αi ∈ [0, 1],
∑N

i=1 αi =
1}. Inspired by Lemma 1, a sufficient LPI-based robust
stability condition for (3) is obtained as follows.
Theorem 4. Suppose there exist a PI operator P satisfying
P∗ = P ≻ 0 and

A∗
iPT + T ∗PAi ≺ 0, i = 1, 2, · · · , N. (4)

Then the PIE system (3) defined by {T ,
∑N

i=1 αiAi} with
w(t) ≡ 0 is robustly stable over ∆ = {α ∈ RN : αi ∈
[0, 1],

∑N
i=1 αi = 1, i = 1, 2, · · · , N}.

Proof. Consider the Lyapunov candidate function
V (z) = ⟨T z,PT z⟩ .

Since P is bounded and positive, we get there exist
positive scalars λ1, λ2, λ1 ∥T z∥2 ≤ V (z) ≤ λ2 ∥T z∥2. Then
differentiating V (z) along the solutions of the PIE (3)
defined by {T ,

∑N
i=1 αiAi} we obtain

V̇ (z(t)) = ⟨T ż(t),PT z(t)⟩+ ⟨T z(t),PT ż(t)⟩

=

〈(
N∑
i=1

αiAi

)
z(t),PT z(t)

〉

+

〈
T z(t),P

(
N∑
i=1

αiAi

)
z(t)

〉
=
∑
i

αi ⟨z(t), (A∗
iPT + T ∗PAi) z(t)⟩ < 0.

Thus for any α ∈ ∆, V̇ (z(t)) < 0 holds, and we have the
PIE system (3) defined by {T ,

∑N
i=1 αiAi} is stable for

any given α ∈ ∆. We conclude from Definition 3, that the
PIE system (3) defined by {T ,

∑N
i=1 αiAi} with w(t) ≡ 0

is robustly stable over ∆.

3.3 H∞ performance condition for PIEs

We now consider the H∞ performance of the uncertain
PIE system (3). The aim is to find a smallest γ for which
any solution of the PIE satisfies ∥z∥L2[0,∞] ≤ γ ∥w∥L2[0,∞]

for any α ∈ ∆. By generalizing of the bounded real lemma
for uncertain PIE systems, we get the following theorem.
Theorem 5. Suppose there exist a positive scalar γ and a
bounded PI operator P satisfying P∗ = P ≻ 0 andT ∗PAi +A∗

iPT T ∗PB C∗

B∗PT −γI DT

C D −γI

 ≺ 0, i = 1, 2, · · · , N.

(5)
Then if z0 ≡ 0, for any w ∈ L2, any solution of the PIE
system (3) defined by {T ,

∑N
i=1 αiAi,B, C, D} satisfies

∥z∥L2[0,∞] ≤ γ ∥w∥L2[0,∞] for any ∆ = {α ∈ RN : αi ∈
[0, 1],

∑N
i=1 αi = 1, i = 1, 2, · · · , N}.

Proof. Define the Lyapunov candidate function (storage
function) as

V (z) = ⟨T z,PT z⟩ .
Since P is bounded and positive, there exist positive
scalars λ1, λ2, λ1 ∥T z∥2 ≤ V (z) ≤ λ2 ∥T z∥2. Set υ(t) =
1
γ z(t) for the positive scalar γ. Then differentiating V (z)

along the solutions of PIE (3) we find
V̇ (z(t))− γ∥w(t)∥2 − γ∥υ(t)∥2 + 2 ⟨υ(t), z(t)⟩
= ⟨T z(t),PBw(t)⟩+ ⟨Bw(t),PT z(t)⟩ − γ∥w(t)∥2

− γ∥υ(t)∥2 + ⟨υ(t), Cz(t)⟩+ ⟨Cz(t), υ(t)⟩+ ⟨υ(t),Dw(t)⟩

+ ⟨Dw(t), υ(t)⟩+

〈
T z(t),P

(
N∑
i=1

αiAi

)
z(t)

〉

+

〈(
N∑
i=1

αiAi

)
z(t),PT z(t)

〉

=
N∑
i=1

αi

[
z(t)
w(t)
v(t)

]T T ∗PAi + (·)∗ T ∗PB C∗

B∗PT −γI DT

C D −γI

[z(t)w(t)
v(t)

]
.

Therefore, if Eqn (5) is satisfied, we have

V̇ (z(t))− γ∥w(t)∥2 + 1

γ
∥z(t)∥2 < 0

for any α ∈ ∆. Integration of this inequality with respect
to t yields

V (z(t))−V (z(0))−γ
∫ t

0

∥w(s)∥2 ds+ 1

γ

∫ t

0

∥z(s)∥2 ds < 0.

Since V (z(0)) = 0 and V (z(t)) ≥ 0 for any t ≥ 0, then
as t → ∞, any solution of the PIE system (3) satisfies
∥z∥L2[0,∞] ≤ γ∥w∥L2[0,∞] for any α ∈ ∆.

Remark 2. Since a large class of uncertain DDFs and
neutral-type systems fit the PIE structure, Theorems 4
and 5 have a wide application. However, the equivalence
between the PIE representation and the original system
formulation should be been proved firstly. Luckily this
issue can be addressed with the help of Peet (2020) which
has shown the existence and equivalence of solutions for
PIEs, DDFs and neutral-type systems. Next section will
show how the proposed framework works.



4. APPLICATION TO LINEAR SYSTEMS WITH
UNCERTAIN DELAYS

In this section, we apply Theorem 4 and Theorem 5
to linear systems with uncertain delays. Specifically, we
consider linear systems with multiple delays and interval
delay uncertainty. These systems have the following form

ẋ(t) = A0x(t) +B0w(t) +
k∑

i=1

Aix(t− τi)

z(t) = C10x(t) +D10w(t) +
k∑

i=1

C1ix(t− τi)

x(s) = x0, s ∈ [−τ, 0], τ = max{τ1, · · · , τk}. (6)
where x(t) ∈ Rm is the system state with the initial func-
tion x0 ∈ L2[−τ, 0]. w(t) ∈ Rp is the disturbance input.
z(t) ∈ Rq is the regulated output. The delay parameters
τi, i = 1, 2, · · · , k are time-invariant but uncertain and
τ ∈ ∆τ := {τ ∈ Rk

+ : τi ∈
[
τ
[0]
i , τ

[1]
i

]
, i = 1, 2, · · · , k}.

(7)
where τ0i and τ1i are known positive constants defining the
lower and upper bound of the τi respectively.

4.1 The equivalent PIE representation of the linear TDS

To apply the LPI-condition for uncertain PIE system to
the uncertain TDS case, we first convert each instance of
the uncertain linear delay system (6) to a corresponding
PIE representation (3). First define

T := P
[
I, 0

I,{0, 0,−I}

]
,B := P

[
B0, 0

0, {0}

]
,

C := P

C10 +

k∑
j=1

C1j ,−
[
C11 · · · C1k

]
0, {0, 0, 0}

, D := D10. (8)

Note that none of these PI operators depend on the τi. The
effect of delay parameter is felt only in the generator Â(τ̂)
where τ̂ ∈ Rk

+ represents the vector of uncertain delay
parameters in the uncertain TDS. Specifically, define Â(τ̂)
as

Â(τ̂) := P

A0 +

k∑
j=1

Aj , −
[
A1 · · · Ak

]
0,

{
diag(τ̂)−1

, 0, 0
}
 (9)

diag(τ̂) = diag{τ̂1Im, · · · , τ̂kIm}.

In Peet (2020), it was shown that, using these definitions,
for any choice of τ̂ , any solution to the linear TDS corre-
sponds to a solution of the PIE defined by {T , Â(τ),B, D}.
This is stated in the following lemma.
Lemma 6. Given w, x0, positive constants τ

[0]
i , τ

[1]
i , i =

1, 2, · · · , k, and for any given τ ∈ ∆τ defined in Eqn (7),
the function x and z satisfy the linear TDS (6) de-
fined by {A0, Ai, B0, C10, C1i, D10, τ} if and only if z and
z satisfy the linear PIE (3) defined by {T , Â(τ),B, D}
where Â(τ) is as in Eqn (9), B, T , D are as in Eqn (8),

and z(t) =

[
x(t)

∂sϕ(t, s)

]
, z0 =

[
x0
∂sϕ0

]
where ϕ(t, s) =[

x(t+ τ1s)
T , · · · , x(t+ τks)

T
]T and ϕ0(s) =

[
xT0 , · · · , xT0

]T
for s ∈ [−1, 0].

Proof. This Lemma can be derived by a combination of
Lemma 1 and Lemma 4 in Peet (2020).

4.2 The equivalence between two uncertain PIE systems

The interval delay uncertainty set τ ∈ ∆τ in the linear
TDS can be equivalently represented as the convex box
formed by the set of vertices τ̂ ∈ T where the set of vertices
is defined as

T :=
{
τ̂ ∈ Rk : τ̂ =

[
τ
[γ1]
1 , · · · , τ [γk]

k

]
,

γ = [γ1, · · · , γk] ∈ {0, 1}k
}
. (10)

For convenience, we define and order the corresponding
vertices of Â(τ) as
{Â1, · · · , Â2k} :=

{
Â(τ̂) : Â(τ̂) satisfies Eqn (9), τ̂ ∈ T

}
.

(11)
Using this notation, we have the following lemma which
establishes equivalence between robust stability of the
linear TDS and robust stability of an uncertain PIE.
Lemma 7. Given positive constants τ [0]i , τ

[1]
i , i = 1, · · · , k,

suppose that T satisfies Eqn (8), Â(τ) satisfies Eqn (9),
the Âi are as defined in Eqn (11), and ∆τ is as defined in
Eqn (7). Then the PIE system (3) defined by {T , Â(τ)} is
robustly stable over ∆τ if and only if the PIE system (3)
defined by {T ,

∑2k

i=1 βiÂi} is robustly stable over ∆β =

{β ∈ R2k : βi ∈ [0, 1] ,
∑2k

i=1 βi = 1}.

Proof. Suppose the PIE system (3) defined by {T , Â(τ)}
is robustly stable over ∆τ . Then the PIE system (3)
defined by {T , Â(τ)} is stable for any given τ ∈ ∆τ . Since
for any given τ ∈ ∆τ , there exist a unique β ∈ ∆β such
that τ =

∑2k

i=1 βiτ̂i and Â(τ) =
∑2k

i βiÂi and the PIE
system (3) defined by {T ,

∑2k

i=1 βiÂi} is stable. Further,
one gets the PIE system (3) defined by {T ,

∑2k

i=1 βiÂi}
is robustly stable over ∆β . This establishes necessity.
Sufficiency follows by the same argument.

4.3 Robust stability synthesis of the uncertain TDS

We now propose LPI conditions for robust stability of
the uncertain linear TDS. Before proceeding to the main
result in Theorem 9, we define robust stability of the linear
uncertain delay system in Eqn (6).
Definition 8. Given w = 0, positive constants τ [0]i , τ

[1]
i , i =

1, 2, · · · , k, the linear TDS (6) defined by {A0, Ai, B0, C10,
C1i, D10, τ} is robustly stable over ∆τ defined in Eqn (7) if
the linear TDS (6) defined by {A0, Ai, B0, C10, C1i, D10, τ}
is stable for any given τ ∈ ∆τ .

We now give the main result.
Theorem 9. Given positive constants τ [0]i , τ

[1]
i , i = 1, · · · , k,

Suppose there exist a constant real-valued matrix P ∈
Rm×m and matrix-valued polynomials Q : [a, b] →
Rm×n, R0 : [a, b] →, Rn×n, and R1, R2 : [a, b] × [a, b] →
Rn×n, such that P := P

[
P, Q

Q
T
,{R0, R1, R2}

]
satisfies P∗ = P ≻

0 and
Â∗

iPT + T ∗PÂi ≺ 0, i = 1, 2, · · · , 2k (12)



where n = m · k, Âi is as defined in Eqn (11) and T is as
defined in Eqn (8). Then the linear TDS (6) with w ≡ 0
is robustly stable over ∆τ as defined in Eqn (7).

Proof. For any solution, x(t) of the linear TDS, de-

fine z(t) =

[
x(t)

∂sϕ(t, s)

]
, z0 =

[
x0
∂sϕ0

]
where ϕ(t, s) =[

x(t+ τ1s)
T , · · · , x(t+ τks)

T
]T
, s ∈ [−1, 0], and ϕ0(0) =[

xT0 , · · · , xT0
]T . From Lemma 6, z(t) satisfies the PIE sys-

tem (3) defined by {T , Â(τ)} (w ≡ 0 and z ≡ 0). Suppose
the LPI (12) is satisfied. From Theorem 4, the PIE sys-
tem (3) defined by {T ,

∑2k

i=1 βiÂi} with w ≡ 0 is robustly
stable over ∆β = {β ∈ R2k : βi ∈ [0, 1] ,

∑2k

i=1 βi = 1}.
Then from Lemma 7, the PIE system (3) defined by
{T , Â(τ)} is robustly stable over ∆τ . This implies that
for any given τ ∈ ∆τ , the PIE system (3) defined by
{T , Â(τ)} is stable and any solution to the the PIE sys-
tem (3) satisfies limt→∞ ∥T z(t)∥ → 0. Since T z(t) =

T
[

x(t)
∂sϕ(t, s)

]
=

[
x(t)
ϕ(t, s)

]
and ∥x(t)∥ ≤

∥∥∥∥[ x(t)ϕ(t, s)

]∥∥∥∥, one

gets limt→∞ ∥x(t)∥ → 0 for any given τ ∈ ∆τ . Thus and
the linear TDS (6) is stable for any given τ ∈ ∆τ . This
implies the linear TDS (6) is robustly stable over ∆τ .

4.4 H∞ performance

To determine input-output performance of linear TDSs
with uncertain delays, we extend the methodology pro-
posed for robust stability to Theorem 5.
Theorem 10. Given positive constants τ [0]i , τ

[1]
i , i = 1, · · · , k,

suppose there exist a positive scalar γ, a constant real-
valued matrix P ∈ Rm×m, matrix-valued polynomials
Q : [a, b] → Rm×n, R0 : [a, b] →, Rn×n, and R1, R2 : [a, b]×
[a, b] → Rn×n, such that P := P

[
P, Q

Q
T
,{R0, R1, R2}

]
satisfying

P∗ = P ≻ 0 andT ∗PÂi + Â∗
iPT T ∗PB C∗

B∗PT −γI DT

C D −γI

 ≺ 0, i = 1, 2, · · · , 2k

(13)
where n = m · k, Âi is defined by Eqn (11) and T ,
B, C, D are as defined in Eqn (8). Then for x0 ≡ 0, for
any w ∈ L2, the solution of the linear TDS (6) satisfies
∥z∥L2[0,∞] ≤ γ ∥w∥L2[0,∞] for any τ ∈ ∆τ where ∆τ is as
defined in Eqn (7).

Proof. The proof is similar to that for Theorem 9.

5. NUMERICAL IMPLEMENTATION

To demonstrate the accuracy and competitive performance
of the method, we apply the LPI conditions to several
numerical examples. In all cases, the LPI conditions are
enforced using the PIETOOLS Matlab interface. We first
test robust stability in Examples 1, 2, 3. In Example 3,
the robust H∞ performance is also analyzed. Moreover,
it is worth noting that when we set the bounds of delay
interval to the same value, Theorem 9 can also be used to
compute the maximum upper bound of the delay which the
linear TDS is stable. In this case, Example 4 is provided

x

t

x

t

Fig. 1. State response for Example 2

to prove the superiority of our method. Noted that with
the increase of number of independent delays, the number
of LPIs to be solved increases as well as the computation
cost, which is a common issue of the LMI-based method.

Example 1. Consider the following linear TDS.

ẋ(t) =

[
0 1
−2 0.1

]
x(t) +

[
0 0
1 0

]
x(t− τ)

Here τ is a constant delay satisfying τ ∈ [τ [0], τ [1]].
The robust stability region of this system has been well-
studied and the analytical delay interval is known to
be [0.100169, 1.7178], as listed in Table 1. It is worth
noting that using Theorem 9 we are able to prove robust
stability for τ ∈ [0.100169, 1.7178] - precisely matching the
analytical results.

Table 1. The maximum admissible range of τ

Methods Delay interval
Seuret and Gouaisbaut (2013) [0.1003, 1.5406]
Park et al. (2015)(Theorem 1) [0.1002, 1.5954]

Zeng et al. (2015) [0.100169, 1.7122]
Li et al. (2017) [0.100169, 1.7146]

Theorem 9 [0.100169, 1.7178]
the analytical range of τ [0.100169, 1.7178]

Example 2. Consider the linear system with commensu-
rate delays as follows

ẋ(t) =

 0 1 0 0
0 0 1 0
0 0 0 1
−2 −3 −5 −2

x(t) +
 0 0 0 0

0 0 0 0
0 0 0 0
−2 0 −1 0

x(t− τ)

+

 0 0 0 0
0 0 0 0
0 0 0 0
−2 −1 −1 0

x(t− 2τ) +

0 0 0 0
0 0 0 0
0 0 0 0
0 −5 0 −2

x(t− 3τ).

From Chen (1995), this system is stable for τ ≤ 0.3783. We
get by Theorem 9 the maximum delay interval which can
assure the robust stability is τ ∈

[
1.0× 10−11, 0.3786

]
. Fig

1. plots the state response when τ = 0.3786, which shows
the system is stable.

Example 3. Consider the following linear TDS system

ẋ(t) =

[
−3.09 2.67
−9.80 2.83

]
x(t) +

[
0.57 0.02
1.26 0.80

]
x(t− τ) +

[
1
0

]
w(t)

z(t) = [−1 0]x(t) + 0.5w(t).



When w(t) = 0, the exact delay bound is found in
Roozbehani and Knospe (2005) to be τ ∈ [0.2319, 0.8609].
Using Theorem 9, a maximum delay interval is derived
as [0.2319, 0.8609] exactly matching the analytical result.
When w(t) ̸= 0, we compute the robust H∞ performance
via Theorem 10 to obtain an L2 gain bound. When τ ∈
[0.28, 0.6], the analytical γ∗min is 4.962. While the result
in Roozbehani and Knospe (2005) obtains a bound of
γmin = 5.200, our results based on Theorem 10 yield
γmin = 4.9692, which is much closer to the analytical γ∗min.

Example 4. Consider the linear TDS

ẋ(t) =

[
0 1

−100 −1

]
x(t) +

[
0 0.1
0.1 0.2

]
x(t− τ)

where τ is a constant delay. The upper bound of delay
parameter which keep the system stability are derived
by using Theorem 9 with τ [0] = τ [1]. Table 2 lists the
computed upper bounds by different methods showing a
larger delay bound using our method than previous results.

Table 2. The maximum admissible range of τ

Methods Upper bound τM
Park et al. (2015) 0.126

Hien and Trinh (2015) 0.577
Zhao et al. (2017) 0.675
Tian et al. (2020) 0.728
Tao et al. (2018) 0.7495

Theorem 9 0.7519

6. CONCLUSION

This paper provides a new approach to robust analysis of a
class of linear infinite dimensional systems with polytopic
uncertainties. By making use of the recently proposed PIE
representation of linear infinite dimensional systems and
the PIETOOLs, a more convenient, more adaptable and
less conservative method is provided. The effectiveness
has been shown through application to the problem of
robust analysis of linear systems with uncertain delays.
Future work will address the problems of robust control
and extension to the problem of time-varying delays.
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