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Copyrights and license information

PIETOOLS is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA.
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Notation

R Set of real numbers (−∞,∞)

∂isx
∂ix
∂si

where s is in a compact subset of R
ẋ ∂x

∂t
where t is in [0,∞)

Ln2 [a, b] Set of lebesgue integrable functions from [a, b]→ Rn

RLm,n[a, b] Rm × Ln2 [a, b]
Hn
k [a, b] {f ∈ Ln2 [a, b] | ∂isf ∈ Ln2 [a, b]∀i ≤ k}

0m×n Zero matrix of dimension m× n
0n Zero matrix of dimension n× n
In Identity matrix of dimension n× n
∆a Dirac operator on f : C → X, ∆a(f) = f(a), for a ∈ C
B(X, Y ) Space of bounded linear operators from X to Y
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Chapter 1

About PIETOOLS

PIETOOLS is a free MATLAB toolbox for manipulating Partial Integral (PI) operators and
solving Linear PI Inequalities (LPIs) which are convex optimization problems involving PI
variables and PI constraints. PIETOOLS can be used to:

• define 3-PI or 4-PI operators

• declare 3-PI or 4-PI operators variables (postive semidefinite or indefinite)

• add operator inequality constraints

• solve LPI optimization problems

The interface is inspired by YALMIP and the program structure is based on that used
by SOSTOOLS. By default the LPIs are solved using SeDuMi, however, the toolbox also
supports use of other SDP solvers such as Mosek, sdpt3 and sdpnal.

To install and run PIETOOLS, you need:

• MATLAB version 2014a or later (we recommend MATLAB 2020a or higher. Please
note some features of PIETOOLS, for example PDE input GUI, might be unavailable
if an older version of MATLAB is used)

• The current version of the MATLAB Symbolic Math Toolbox (This is installed in most
default versions of Matlab.)

• An SDP solver (SeDuMi is included in the installation script.)

1.1 PIETOOLS 2021b Release Notes

PIETOOLS 2021b has three main additions, listed below, two of which are focused on
improving computation time, whereas the 3rd feature involves numerically solving a PIE to
obtain solutions for a DDE/PDE system.

1. Addition of dpvar class: A new MATLAB class structure was introduced to reduce the
lookup time for independent variables by storing the decision variables in a separate
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field. This additional significantly reduces the set up time because operations used in
set up (such as addition, composition, transpose, etc.) of polynomial SOS optimization
problem repeatedly perform a search and sort operation for independent variables.

• dpvar class organically leads to an extension of opvar to dopvar class which is a
class of opvar objects with decision variables.

• All methods/functions are now overloaded to handle different variations of these
new classes

2. Addition of sospsimplify option: A facial reduction algorithm is included to reduce
the size of the LMI optimization problem after the set up stage (but before the actual
solving stage). This reduces the total size of the problem and thus helps in reduction
of total runtime.

• sospsimplify can be initiated by using an optional argument passed to the
sossolve()

3. Addition of simulation tools: A solver and executive file has been included to numeri-
cally solve a PIE for some given initial conditions and inputs.

• User can run simulations using an examples library or directly using a PIE

• A time varying solution of the ODE and distributed components of the PIE so-
lution is returned as an output which can be used for plotting
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Part I

Theory of Partial Integral Operators
and Partial Integral Equations
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Chapter 2

Introduction

In this chapter, we briefly talk about the need for a computational tool that handle PI
operators and lightly touch upon, without going into details of solution, some popular ap-
plications.

2.1 Motivation

Semidefinite programming (SDPs) are a class of optimization problems which involve opti-
mization of a linear objective over the cone of positive semidefinite (PSD) matrices. The
development of efficient interior-point methods for semi definite programming (SDPs) prob-
lems made LMIs a powerful tool in modern control theory. As Doyle stated in [2], LMIs
played a central role in postmodern control theory akin to the role played by graphical meth-
ods like Bode, Nyquist plots etc in classical control theory. However, most of the application
of LMI techniques were restricted to finite dimensional systems, until sum-of-squares method
came into limelight. The sum-of-squares (SOS) optimization methods found application in
control theory, for example searching for Lyapunov functions or finding bounds on singular
values. SOS polynomials were also used in constructing relaxations to some optimization
problems with boolean decision variables. This gave rise to many toolboxes such as SOS-
TOOLS [5], SOSOPT [7] etc. that can handle SOS polynomials in MATLAB. However,
unlike the use of LMIs for linear ODEs, SOS methods could not be used for analysis and
control of PDEs without ad-hoc interventions. For example, in order to search for a Lya-
punov function that proves stability of a PDE one would usually hit a roadblock in the form
of boundary conditions which are typically resolved by using integration by parts, Poincare
inequality, Hölder’s Inequality etc.

In an ideal world, we would prefer to define a PDE, specify the boundary conditions
and let a computational tool take care of the rest. To resolve this problem, either we teach
a computer to perform these ”ad-hoc” interventions (Artificial Intelligence?) or come up
with a method that does not require such interventions to begin with. To achieve the
latter, we developed the Partial Integral Equation (PIE) representation of PDEs, which
is an algebraic representation of dynamical systems using Partial Integral (PI) operators.
The development of PIE representation led to a framework that can extend LMI-based
methods to infinite-dimensional systems. The PIE representation encompasses a broad class
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of distributed parameter systems and is algebraic - eliminating the use of boundary conditions
and continuity constraints [8], [1]. The development of the toolbox, PIETOOLS, that can
solve optimization problems involving these PI operators was an obvious consequence of the
PIE representation.

2.2 A simple, yet useful application...

Since PIETOOLS was developed to tackle problems that earlier methods could not directly
solve, let’s take a brief peek into what PIETOOLS can do. Recall, in case of a linear ODE
given by

ẋ(t) = Ax(t), t ≥ 0, x(0) = x0

one can prove stability by finding a positive definite matrix P such that ATP+PA is negative
semidefinite. Feasibility of such LMI constraints can easily be tested by using an SDP solver.
Now consider a similar problem on infinite dimensional space. Let

ẋ(t, s) = Ax(t, s), t ≥ 0, s ∈ (a, b),x(0) = x0 ∈ D(A)

where A = A0 + A1∂s + A2∂
2
s is a differential operator in spatial variable s and

D(A) :=

x ∈ H2[a, b] | B


x(a)
x(b)
xs(a)
xs(b)

 = 0

 .

The solution space is a subspace of H2[a, b], specified by the boundary conditions given by
B. To test for stability using LMIs or SOS, one would try to find a Lyapunov function

V (t) =

∫ b

a

x(t, s)TP (s)x(t, s)ds

such that time derivative V̇ (t) ≤ 0 for all time t and initial conditions x0. However, this
is not enough since the solution space is not entire H2[a, b] and some ad-hoc steps, such
as integration by parts and Poincare/Wirtinger’s inequality, must be taken to restrict the
solution space to D(A). With PIETOOLS, users can just define Ai, B and then let the
solver take care of the rest. In other words, PIETOOLS can directly search for a lyapunov
function V (t) = 〈x(t),Px(t)〉 which proves the stability. We will discuss the particulars
about how this is done in coming chapters. For now, just accept that we are one-step closer
to an ideal world described in the previous section.
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Chapter 3

Partial Integral Operators

Any operator that maps from a finite dimensional space to another finite dimensional space is
bounded and can be written as a matrix. On infinite dimensional inner product spaces, such
as Hilbert spaces, such a generalization does not exist, however, PI operators do provide a
class of parameterizable bounded operators. Even though parametrization using PI operators
is not be exhaustive, it is useful in solving many problems as will be seen in later chapters.

3.1 Definition

PI operator is a map from RLm,n to RLp,q and can be broadly categorized as 4-PI and 3-PI.
4-PI operators have 6 parameters whereas 3-PI have 3 parameters.

Definition 1. (4-PI:) A 4-PI operator is a bounded linear operator between that maps from
RLm,n to RLp,q and is parametrized as

P
[
P, Q1

Q2,{Ri}

] [
x
y

]
(s) =

[
Px+

∫ b
a
Q1(s)y(s)ds

Q2(s)x+ P{Ri}y(s)

]
(3.1)

where P ∈ Rp×m is a matrix, Q1 : [a, b] → Rp×n, Q2 : [a, b] → Rq×m are bounded integrable
functions and P{Ri} : Ln2 → Lq2 is a 3-PI operator of the form

(
P{Ri}x

)
(s) := R0(s)x(s) +

∫ s

a

R1(s, θ)x(θ)dθ +

∫ b

s

R2(s, θ)x(θ)dθ.

3.2 Algebra Of Partial Integral Operators

The following subsections show that the set of PI operators is closed under addition (Lemma
2) and composition (Lemma 4). Furthermore, the adjoint of a PI operator is also a PI
operator (Lemma 6). The proofs for the results are omitted as it is not the purpose of this
article, however, readers can refer to [8] for proofs.
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3.2.1 Addition Of PI Operators

In this subsection, we show that PI operators are closed under addition operation. Further,
we show that the set of PI operators parametrized by matrix valued polynomials is also
closed under addition operation.

Lemma 2. Suppose A,L ∈ Rm×p and B1,M1 : [a, b] → Rm×q, B2,M2 : [a, b] → Rn×p,
C0, N0 : [a, b] → Rn×q, Ci, Ni : [a, b] × [a, b] → Rn×q, for i ∈ {1, 2}, are bounded functions.
P , Q1, Q2 and Ri, for j ∈ {0, 1, 2} are such that

P = A+ L, Qi = Bi +Mi, Ri = Ci +Ni,

if and only if

P
[
P, Q1

Q2,{Ri}

]
= P

[
A, B1

B2,{Ci}

]
+ P

[
L, M1

M2,{Ni}

]
.

Corollary 3. Suppose A,L ∈ Rm×p and B1,M1 : [a, b] → Rm×q, B2,M2 : [a, b] → Rn×p,
C0, N0 : [a, b] → Rn×q, Ci, Ni : [a, b] × [a, b] → Rn×q, for i ∈ {1, 2}, are matrix valued
polynomials. If

P
[
P, Q1

Q2,{Ri}

]
= P

[
A, B1

B2,{Ci}

]
+ P

[
L, M1

M2,{Ni}

]
,

then P
[
P, Q1

Q2,{Ri}

]
is parametrized by matrix valued polynomials.

To see PIETOOLS implementation, check Section 7.2.1.

3.2.2 Composition Of PI operators

In this subsection, we show that 4-PI operators, with compatible dimensions, can be com-
posed to get an equivalent PI operator. Furthermore, since PI operators are bounded and
linear, the composition operation is associative and hence the set of PI operators forms an
associative algebra. We also show that PI operators parametrized by matrix valued polyno-
mials form an associative subalgebra.

Lemma 4. For any matrices A ∈ Rm×k, P ∈ Rk×p and integrable functions B1 : [a, b] →
Rm×l, Q1 : [a, b] → Rk×q, B2 : [a, b] → Rn×k, Q2 : [a, b] → Rl×p, C0 : [a, b] → Rn×l, R0 :
[a, b] → Rl×q, Ci : [a, b]2 → Rn×l, Ri : [a, b]2 → Rl×q, for i ∈ {1, 2}, the following identity
holds.

P
[
P̂ , Q̂1

Q̂2,
{
R̂i

}] = P
[
A, B1

B2,{Ci}

]
P
[
P, Q1

Q2,{Ri}

]
where

P̂ = AP +

∫ b

a

B1(s)Q2(s)ds, R̂0(s) = C0(s)R0(s),

Q̂1(s) = AQ1(s) + B1(s)R0(s) +

∫ b

s

B1(η)R1(η, s)dη +

∫ s

a

B1(η)R2(η, s)dη,
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Q̂2(s) = B2(s)P + C0(s)Q2(s) +

∫ s

a

C1(s, η)Q2(η)dη +

∫ B

s

C2(s, η)Q2(η)dη,

R̂1(s, η) = B2(s)Q1(η) + C0(s)R1(s, η) + C1(s, η)R0(η) +

∫ η

a

C1(s, θ)R2(θ, η)dθ

+

∫ s

η

C1(s, θ)R1(θ, η)dθ +

∫ b

s

C2(s, θ)R1(θ, η)dθ,

R̂2(s, η) = B2(s)Q1(η) + C0(s)R2(s, η) + C2(s, η)R0(η) +

∫ s

a

C1(s, θ)R2(θ, η)dθ

+

∫ η

s

C2(s, θ)R2(θ, η)dθ +

∫ b

η

C2(s, θ)R1(θ, η)dθ.

Corollary 5. Suppose P
[
A, B1

B2,{Ci}

]
: RLl,k → RLm,n and P

[
P, Q1

Q2,{Ri}

]
: RLp,q → RLl,k are

PI operators parametrized by matrix valued polynomials. Then P
[
P̂ , Q̂1

Q̂2,
{
R̂i

}] is a PI operator

parametrized by matrix valued polynomials where

P
[
P̂ , Q̂1

Q̂2,
{
R̂i

}] = P
[
A, B1

B2,{Ci}

]
P
[
P, Q1

Q2,{Ri}

]
.

To see PIETOOLS implementation, check Section 7.2.2.

3.2.3 Adjoint Of A PI Operator

On the set of PI operators, we define the involution to be the adjoint operator with respect
to RL-inner product. First, we provide the formulae for the adjoint of a PI operator and
then show that the set of PI operators is closed under adjoint operation and hence forms a
∗-algebra.

Lemma 6. Suppose P ∈ Rm×p and Q1 : [a, b] → Rm×q, Q2 : [a, b] → Rn×p, R0 : [a, b] →
Rn×q, R1, R2 : [a, b]2 → Rn×q are bounded functions. Then for any x ∈ RLm,n, y ∈ RLp,q.〈

P
[
P̂ , Q̂1

Q̂2,
{
R̂i

}]x, y〉
RL

=
〈
x,P

[
P, Q1

Q2,{Ri}

]
y
〉
RL
, (3.2)

where

P̂ = P>, Q̂1(s) = Q>2 (s), Q̂2(s) = Q>1 (s),

R̂0(s) = R>0 (s), R̂1(s, η) = R>2 (η, s), R̂2(s, η) = R>1 (η, s). (3.3)

To see PIETOOLS implementation, check Section 7.2.3.
For, bounded linear maps, addition and adjoint operations commute. If A,B : RLm,n →

RLp,q are PI operators, then (A + B)∗ = A∗ + B∗ [6]. Furthermore, for PI operators A :
RLl,k → RLm,n and B : RLp,q → RLl,k, AB∗ = B∗A∗ [6]. We also note, without proof, that
set of PI operators are closed under scalar multiplication. Hence, the set of PI operators
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forms a ∗-algebra with binary operations of addition and composition. Additionally, note that
the transpose of a matrix valued polynomial is a matrix valued polynomial. Consequently,
we can conclude that the adjoint of a PI operators parameterized by matrix valued functions
is also a PI operator with matrix valued functions as its parameters. Thus, the subset of PI
operators that are parametrized by matrix valued polynomials form a ∗-subalgebra.

3.3 Properties of Partial Integral Operators

We list some properties in this section, such as derivative of PI operator and Dirac delta
operator on PI operator, that become useful later on in Chapter 5 for reformulation of
systems in PIE form.

3.3.1 Differentiation of a PI operator

For a general PI operator P : Rm × Ln2 → Rp × Lq2, differentiation with respect to spatial
variable s may not always be well-defined. However, in this subsection, we will show that
if the domain D(P) ⊆ Rm × Hn

1 , then the differentiation is a well defined operation. Note
that, the parameters of a PI operator are matrix valued polynomials and hence always
differentiable. Hence differentiability of Px depends entirely on differentiability of x.

Lemma 7. Suppose P
[
P, Q1

Q2,{Ri}

]
: Rm × Hn

1 → Rp × Lq2, and define ∂sP
[
P, Q1

Q2,{Ri}

]
: Rm ×

Hn
1 × Ln2 → Rp × Lq2 as

∂sP
[
P, Q1

Q2,{Ri}

]
= P

[
0, 0
Q̄2,

{
R̄i

}] (3.4)

where Q̄2(s) = ∂sQ2(s), R̄0(s) =
[
∂sR0(s) + R1(s, s)−R2(s, s) R0(s)

]
and R̄i(s, θ) =[

∂sRi(s, θ) 0
]

for i ∈ {1, 2}. Then, for any x ∈ Rm, x ∈ Hn
1 ,

∂s

(
P
[
P, Q1

Q2,{Ri}

] [
x
x

])
=

(
∂sP

[
P, Q1

Q2,{Ri}

]) x
x
∂sx


To see PIETOOLS implementation, check Section 7.3.

3.3.2 Dirac operator on a PI operator

We now consider the composition of the Dirac operator with a 4-PI operator, evaluating Px
at some point inside the interval on which the 4-PI operator acts.

Lemma 8. Suppose P
[
P, Q1

Q2,{Ri}

]
: Rm×Ln2 → Rp×Lq2. Then composition of a Dirac operator

∆c with P is a 4-PI operator, ∆cP
[
P, Q1

Q2,{Ri}

]
: Rm ×Hn

1 × Ln2 → Rp+q, given by

∆cP
[
P, Q1

Q2,{Ri}

] [
x
x

]
= P

[
P̄ , Q̄1

∅, {∅}

] x
∆cx
x

 (3.5)
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where

P̄ =

[
P 0

Q2(c) R0(c)

]
, Q̄1(s) =


[
Q1(s)
R1(c, s)

]
, for s ≤ c[

Q1(s)
R2(c, s)

]
, for s > c

3.4 Matrix Parametrization of Positive Definite PI op-

erators

SOS polynomials are parametrized by a PSD matrix. In a similar manner, it is possible
to parameterize positive semidefinite 4-PI operators by using PSD matrices. The following
theorem gives a sufficient condition for the positivity of a 4-PI operator which is the key idea
behind solving optimization problems with 4-PI constraints.

Theorem 9. For any functions Z1 : [a, b] → Rd1×n, Z2 : [a, b] × [a, b] → Rd2×n, if g(s) ≥ 0
for all s ∈ [a, b] and

P = T11

∫ b

a
g(s)ds,

Q(η) = g(η)T12Z1(η) +

∫ b

η
g(s)T13Z2(s, η)ds+

∫ η

a
g(s)T14Z2(s, η)ds,

R1(s, η) = g(s)Z1(s)
>T23Z2(s, η) + g(η)Z2(η, s)

>T42Z1(η) +

∫ b

s
g(θ)Z2(θ, s)

>T33Z2(θ, η)dθ

+

∫ s

η
g(θ)Z2(θ, s)

>T43Z2(θ, η)dθ +

∫ η

a
g(θ)Z2(θ, s)

>T44Z2(θ, η)dθ,

R2(s, η) = g(s)Z1(s)
>T32Z2(s, η) + g(η)Z2(η, s)

>T24Z1(η) +

∫ b

η
g(θ)Z2(θ, s)

>T33Z2(θ, η)dθ

+

∫ η

s
g(θ)Z2(θ, s)

>T34Z2(θ, η)dθ +

∫ s

a
g(θ)Z2(θ, s)

>T44Z2(θ, η)dθ,

R0(s) = g(s)Z1(s)
>T22Z1(s). (3.6)

where

T =


T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44

 < 0,

then the operator P
[
P, Q1

Q2,{Ri}

]
as defined in (3.1) is positive semidefinite, i.e.

〈
x,P

[
P, Q1

Q2,{Ri}

]〉
≥

0 for all x ∈ Rm × Ln2 [a, b].

To see PIETOOLS implementation, check Section 8.2.1.
In the next chapter, we will take a brief look at the general structure of an optimization

problem involving 4-PI variables and 4-PI constraints and a couple of examples on where
these generally appear.
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3.5 Inverse of a 4-PI operator

In [3], an analytical expression for inverse of a 4-PI operator P
[
P, Q
QT ,{Ri}

]
was derived with

the assumption that the kernel of the integral terms in Ri are separable and the 4-PI operator
is self-adjoint, i.e. P = P T , Q2 = QT

1 , R0 = RT
0 and R1 = R2. The closed form the solution

is given below.

Lemma 10. Suppose that Q(s) = HZ(s) and R1(s, θ) = Z(s)TΓZ(θ) and P := P{P,Q,R0,R1}
is a coercive and self-adjoint operator where P : X → X. Then we get P−1 := P{P̂ ,Q̂,R̂0,R̂}
where

P̂ =
(
I − ĤKHT

)
P−1, Q̂(s) = ĤZ(s)R0(s)

−1

R̂0(s) = R0(s)
−1, R̂1(s, θ) = R̂T

0 (s)Z(s)T Γ̂Z(θ)R̂0(θ),

if we define

K =

∫ 0

−1
Z(s)R0(s)

−1Z(s)Tds

Ĥ = P−1H
(
KHTP−1H − I −KΓ

)−1
Γ̂ = −(ĤTH + Γ)(I +KΓ)−1

and P−1 is self-adjoint where P−1 : X → X, and P−1Px = PP−1x = x for any x ∈ Zm,n,K

There is no known closed form solution for the inverse in case of a general 4-PI operator.
Moreover, even in the case of sign definite 4-PI operators, the inverse has not be found
analytical when the kernel is not separable. There are alternatives involving numerical
approximation of the inverse for 4-PI operators, however, more research into this topic is
necessary. To see PIETOOLS implementation, check Section 7.2.6.
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Chapter 4

Linear Partial Integral Inequalities

In general, a convex optimization problems have the general form

min
x∈R

f(x)

gi(x) ≥ 0, 1 ≤ i ≤ n

hj(x) = 0, 1 ≤ j ≤ m

where f : X → R, gi : X → R and hj : X → R are convex functions. LPIs are no different
and have the same form. However, the decision variables, x, in the case of an LPI are 4-
PI operators and the inequality constraints are positive semidefinite constraints on a 4-PI
operator.

4.1 A General Class of LPI problems

A convex optimization problem with PI operator decision variables and Linear PI Inequality
constraints are called Linear PI Inequalities (LPIs) and take the form

min
P,Qi,Ri

f

(
P
[
P, Q1

Q2,{Ri}

])
n∑
i=1

E∗ijP
[
P, Q1

Q2,{Ri}

]
Eij +Qj < 0, 1 ≤ j ≤ m (4.1)

where P ∈ Rp×m, Q1 : R → Rp×n, Q2 : R → Rq×m, R0 : R → Rq×n, R1, R2 : R2 → Rq×n

are decision variables, f : B(RLm,n, RLp,q) → R is a convex linear functional. Eij, Qj are
known 4-PI operators where Qj must necessarily be self-adjoint 4-PI operators. For details
on setting up an LPI in PIETOOLs, see Section 8.

4.2 Application of LPIs

LPIs appear in optimization problems involving infinite dimensional vector spaces. For
example, estimation of Poincare constant can be posed as an LPI optimization problem.
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Similarly, operator norms for integral operators such as Volterra, Fredholm operators etc
can be estimated by solving LPIs. A major application of LPIs is in the field of control
theory. Analysis and control of infinite dimensional systems such as PIEs (see Chapter 5)
can be done using LPIs. Any LMI used in analysis and control of linear ODEs can, in theory,
be extended to an LPI for linear PIEs. For example, test for stability or classical results
such as bounded-real lemma and positive-real lemma can be extended to PIEs using an LPI.
See Section 10.3 for a list of standard LPIs that arise in analysis and control of PIEs.
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Chapter 5

Partial Integral Equations

In this chapter, we focus on one of the key applications of PIETOOLS which is the analysis
and control of infinite dimensional systems called Partial Integral Equations (PIEs). First,
we define a general PIE system with inputs and disturbances in state-space form and the
notion of solutions of a PIE system and stability of solutions of a PIE system.

5.1 Definition

A PIE is a dynamical system, whose system parameters are given by 3-PI or 4-PI operators.
The general form a PIE is

T v̇(t) + Twẇ(t) + Tuu̇(t) = Av(t) + B1w(t) + B2u(t), v(0) = v0 ∈ RLm,n

z(t) = C1v(t) +D11w(t) +D12u(t),

y(t) = C2v(t) +D21w(t) +D22u(t), (5.1)

where the T ,A : RLm,n → RLm,n, Tw : Rp → RLm,n, Tu : Rq → RLm,n, B1 : Rp → RLm,n,
B2 : Rq → RLm,n, C1 : RLm,n → Rk, C2 : RLm,n → Rl, D11 ∈ Rk×p, D12 ∈ Rk×q, D21 ∈ Rl×p

and D22 ∈ Rl×q are 4-PI operators.

5.2 Application of PIE framework

As discussed in Chapter 2, PIE framework was developed for PDEs, however, is not restricted
to only PDEs. Many standard systems, such as Time-delay systems, DDEs, ODE coupled
with PDEs etc. can be written in PIE form when certain conditions are met. In this section,
we list two classes of systems, namely DDEs and PDEs, that can be converted to PIEs. We
will not go into method of conversion as it is beyond the scope of this manual, however,
relevant references on the topic will be introduced in appropriate locations.
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5.2.1 DDE to PIE

A general class of linear DDEs, with delay in disturbance and inputs, can be written in the
form

ẋ(t) = A0x(t) +
K∑
i=1

Aix(t− τi) +
K∑
i=1

∫ 0

−τi
Adi(s)x(t+ s)ds+B1w(t) +

K∑
i=1

B1iw(t− τi)

+
K∑
i=1

∫ 0

−τi
B1diw(t+ s)ds+B2u(t) +

K∑
i=1

B2iu(t− τi) +
K∑
i=1

∫ 0

−τi
B2diu(t+ s)ds

z(t) = C10x(t) +
K∑
i=1

C1ix(t− τi) +
K∑
i=1

∫ 0

−τi
C1di(s)x(t+ s)ds+D11w(t) +

K∑
i=1

D11iw(t− τi)

+
K∑
i=1

∫ 0

−τi
D11diw(t+ s)ds+D12u(t) +

K∑
i=1

D12iu(t− τi) +
K∑
i=1

∫ 0

−τi
D12diu(t+ s)ds

y(t) = C20x(t) +
K∑
i=1

C2ix(t− τi) +
K∑
i=1

∫ 0

−τi
C2di(s)x(t+ s)ds+D21w(t) +

K∑
i=1

D21iw(t− τi)

+
K∑
i=1

∫ 0

−τi
D21diw(t+ s)ds+D22u(t) +

K∑
i=1

D22iu(t− τi) +
K∑
i=1

∫ 0

−τi
D22diu(t+ s)ds.

(5.2)

Any DDE in the form Eq.(5.2) can be converted to a PIE of the form Eq. (5.1) using
the conversion formulae provided in [4] (see Eq. (12)-(14)). PIETOOLS allows conversion of
DDEs to PIEs via the script files (see Section 21.1.6). User can define the DDE parameters
mentioned in Eq. (5.2) to obtain corresponding PI operators in Eq. (5.1).

5.2.2 ODE-PDE to PIE

We begin by defining a general representation and parameterization of ODE-PDE-PIDE
interconnected systems. First, we divide the ODE-PDE-PIDE system into PDE and ODE
subsystems. The ODE subsystem maps signals (w, u, r) 7→ (z, y, v) ((w(t), u(t), r(t)) ∈
Rnw+nu+nr and (z(t), y(t), v(t)) ∈ Rnz+ny+nv) where (for given initial conditions x(0)) the
mapping is uniquely defined by

ẋ(t)
z(t)
y(t)
v(t)

 =


Ax Bxw Bxu Bxr

Cz Dzw Dzu Dzr

Cy Dyw Dyu Dyr

Cv Dvw Dvu 0



x(t)
w(t)
u(t)
r(t)

 .
(5.3)

The partition of both the input and output signals into 3 components is included so as to
specify which input channels are used for control (u), for exogeneous disturbances or forcing
(w) and which channels interact the PDE subsystem (r). Furthermore, the output channel
is partitioned into channels for regulation (z), sensor measurements (y), and for driving of
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the PDE subsystem (v). Note that the driving signal, v can affect the PDE both through
the boundary conditions and the interior of the domain.

The PDE subsystem is defined by three constraints: the continuity constraints, the dy-
namics, and the boundary conditions. The continuity constraint is first used to specify
the state dimensions and corresponding continuity so that for a given order N , we have
n ∈ NN+1 = {n0, · · ·nN} implies xi ∈ W ni

i with the concatenated state x defined as

x(t, s) =

x0(t, s)
...

xN(t, s)

 ∈ W n.

Furthermore, to simplify the presentation, for a given set of state dimensions n ∈ NN+1 =

{n0, · · · , nN}, we introduce the nilpotent shift operator Si : R
∑N

j=0 nj → R
∑N

j=i nj where

Si =
[
0(

∑N
j=i nj)×(

∑i−1
j=0 nj) I(

∑N
j=i nj)

]
,

so that

(Six)(s) =

 xi(s)
...

xN(s)

 ∈ R
∑N

j=i nj and hence (∂jsS
ix)(s) =

 ∂
j
sxi(s)

...
∂jsxN(s)

 .
The PDE is parameterized using the parameter set {A0,i, A1,i, A2,i, Cr,i, Bxv, Bxb, Drv,

Drb, Bx,i, Bv, B} where A0,i(s), A1,i(s, θ), A2,i(s, θ) ∈ R
∑
ni×

∑N
j=1 nj , Dv(s) ∈ R

∑
ni×nv and

Db(s) ∈ R
∑
ni×2

∑N
i=1 ni . In the following format, we combine three equations: the dynamics of

the PDE; an output, r(t), which influences the ODE state; and a set of boundary conditions.
For simplicity, we do not directly include a regulated or sensed output, since such terms
can be routed through r(t) to the ODE which has regulated and sensed outputs. All three
equations are influenced by the distributed state, x, the signal from the ODE, v(t), and the
set of boundary values, xb(t). Again, for simplicity, we do not include disturbances or control
inputs in the PDE, as these can be routed from the ODE using the signal v. Finally, recall
that for the spatial derivatives to exist and for the boundary values to be well-posed, we also
have the implicit constraint x ∈ W n. The PDE can now be defined asẋ(t, s)
r(t)

0

 =
N∑
i=0

Ap0,i(s) +
∫ s
a
Ap1,i(s, θ) +

∫ b
s
Ap2,i(s, θ)∫ b

a
Crp,i(s)∫ b

a
Ebp,i(s)

 ∂iSix(t) +

Bpv(s) Bpb(s)
Drv Drb

Ebv Ebb

[ v(t)
xb(t)

]
,

(5.4)

where the boundary values are defined using a Dirac operator as

xb(t) =

[
∆a

∆b

]
Sx(t, s)

∂sS
2x(t, s)

...
∂N−1s SNx(t, s)

 ∈ R2
∑N

j=1

∑N
j=i ni , ∆ax(s) := x(a), (5.5)
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Note the form of boundary conditions can be used to represent any linear boundary condition,
for example, Dirichlet, Neumann, Robin, periodic, integral boundary conditions, etc. For
convenience, for given n ∈ NN+1, we define the following state-space, Xv, where the v
subscript represents the explicit dependence of this space on the time-varying value of v(t).

Xv :=



x ∈ W n[a, b] :

Ebb

[
∆a

∆b

]
Sx(s)

∂sS
2x(s)
...

∂N−1s SNx(s)

+
∫ b
a

N∑
i=0

Ebp,i(s)∂
i
sS

ix(s)ds+ Ebvv = 0,


.

(5.6)

Having defined Xv, we may also include initial conditions x(0) = x0 ∈ Xv(0).
Obviously, PIETOOLS provides functions (see Section 21.1) to perform the conversion.

The reference listed above is to satiate any curiosity about things happening behind the
black box. The users need not perform those steps for converting a PDE to PIE.
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Part II

PIETOOLS: A computational toolbox
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Chapter 6

PIETOOLS 2021b

PIETOOLS 2021b is compatible with Windows, Mac or Linux systems and has been verified
to work with MATLAB version 2014 or higher, however, we suggest to use the latest version
of MATLAB.

6.1 Getting Started

Before you start, make sure that you have

1. MATLAB with version 2014a or newer. (MATLAB 2020a or newer for GUI input)

2. MATLAB has permission to create and edit folders/files in your working directory.

6.1.1 Installation

PIETOOLS 2021b can be installed in two ways.

1. Using install script: The script installs the following files — tbxmanager (skipped if
already installed), SeDuMi 1.3 (skipped if already installed), SOSTOOLS 4.00 (always
installed), PIETOOLS 2021b (always installed). Adds all the files to MATLAB path.

• Go to the website control.asu.edu/pietools/.

• Download the file pietools install.m and run it in MATLAB.

• Run the script from the folder it is downloaded in to avoid path issues.

2. Setting up PIETOOLS 2021b manually:

• Download and install C/C++ compiler for the OS.

• Install an SDP solver. SeDuMi can be obtained from this link.

• Download SeDuMi and run install sedumi.m file.

– Alternatively, install MOSEK, obtain license file and add to MATLAB path.

• Download PIETOOLS 2021b.zip from this link, unzip, and add to MAT-
LAB path.
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6.2 Demos of PDEs and Integral Operators in PIETOOLS

To make your first program in PIETOOLS 2021b, the best way is to run one of the demo
files located in GetStarted DOCS DEMOS folder. The following chapters will introduce the
opvar class objects and LPI optimization problems that can be used to solve various control
and analysis problems described in Chapter ??.
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Chapter 7

opvar and dopvar: MATLAB classes
for PI operators

PIETOOLS introduces a MATLAB class, named opvar, to store all the parameters related
to a 4-PI operator. Recall that a 4-PI operator has 6 parameters:

1. a matrix P

2. three matrix valued polynomials in s — Q1, Q2 and R0

3. two matrix valued polynomials in s and θ — R1 and R2

The opvar class has 8 accessible properties, including the 6 parameters mentioned above.
The properties of an opvar object, T: RLp,q[a, b]→ RLm,n[a, b], can be accessed using “.” as
shown below:

• T.P: m× p matrix

• T.Q1 and T.Q2: m× q and n× p matrix of polynomials in pvar s

• T.R: A MATLAB struct

– R.R0 : a n× q matrix of polynomials in pvar s

– R.R1, R.R2 : n× q matrices of polynomials in pvars s and θ

• T.dim:

[
m p
n q

]
• T.I: [a b]

There are two additional parameters T.var1 and T.var2 that are set as pvars s and
θ. Although, these can be modified, it is highly recommended not to. Note that T.dim

is dependent on size of the 6 parameters P, Qi and R.Ri. Modifying those parameters
automatically changes the value stored in dim property. If the dimensions of the parameters
are incompatible, dim property stores Nan as its value to alert the user about the discrepancy.
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7.1 Initialization and Assignment

4-PI operators can be defined in PIETOOLS using the opvar class command. To initialize
an opvar object use the syntax

opvar T;

This command creates an empty opvar object with all dimensions 0. Consequently, the
parameter P,Qi,Ri are initialized to 0× 0 matrices. If the desired dimension of the opvar T
is known, lets say [2, 3; 3, 4] for example, it can be assigned by using the command

T.dim = [2 3; 3 4];

The above code, when executed, allocates the dimensions of the parameters by setting them
to zero matrices of appropriate dimensions. In this example, the parameter P is set to 02×3,
Q1 to 02×4, Q2 to 03×3 and Ri to 03×4. Similarly, to assign a value to the interval of T (for
example, lets set it to [2, 3]), just use the command

T.I = [2,3];

The parameters P, Qi, R.Ri can also be modified separately by using the method described
above using “.” operation.

T.Q2 = [s^2 0 0; 3 s^3 0; 0 s+2*s^2 0];

Note that, assigning parameters with values that have incompatible dimensions will lead
to invalid 4-PI operator whose dim will store Nan. For example, since R.Ri are set to map to
L3
2[2, 3], assigning T.Q2 = [s^2 0 0; 0 s+2*s^2 0]; will lead to a discrepancy in output

dimensions since Q2 now maps to L2
2[2, 3].

7.2 opvar class methods

In this section, we go over various methods that help in manipulating and handling of opvar
objects in PIETOOLS.

7.2.1 +

opvar objects, A and B, can be added simply by using the command

A+B

For two opvar objects to be added, they must have same dimensions, A.dim=B.dim and
domains A.I=B.I. Furthermore, if A (or B) is a scalar then PIETOOLS considers that as
adding A*I (or B*I) where I is an identity matrix. Again, this operation is appropriate if
and only if dimensions match. Similarly, if A (or B) is a matrix with matching dimension, it
can be added to opvar B (or A) using the same command.
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7.2.2 *

opvar objects, A and B, can be composed simply by using the command

A*B

For two opvar objects to be composed, they must have same domains, A.I=A.B, and the out-
put dimension of B must match the input dimension of A, so that A.dim(:,2)=B.dim(:,1).
Furthermore, if A (or B) is a scalar then PIETOOLS considers that as a scalar multiplication
operation, thus multiplying all parameters of B (or A) by that value.

7.2.3 ’

Adjoint of an opvar object, A, can be calculated by using the command

A’

7.2.4 Concatenation

opvar objects can be concatenated in any order just like matrices, provided the dimensions
match. For example, opvar A and B, can be horizontally or vertically concatenated by using
the command

[A B] %for horizontal

[A; B] %for vertical

Note that A and B can be horizontally concatenated if and only if they have same value in
I and first columns of A.dim and B.dim are same. Similarly, two opvars A and B can be
vertically concatenated if and only if the have same interval I and second columns of A.dim
and B.dim are equal.

7.2.5 isvalid

This function is mostly used for internal error checking. However, the users can verify if the
opvar object is initialized and assigned compatible values by using this function.

isvalid(P)

The function returns a logical value. 0 is everything is in order, 1 if the object has incom-
patible dimensions, 2 if property P is not a matrix, 3 if properties Q1, Q2 or R0 are not
polynomials in s, 4 if properties R1 or R2 are not polynomials in s and θ. The function also
returns an error message as an optional output describing the exact cause of error.
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7.2.6 inv opvar

Inverse of an opvar object T can be numerically calculated in the case when T.R.R1=T.R.R2.
This is performed using the function

inv opvar(T)

Note that, currently there is no known closed form solution for an inverse when T is not
self-adjoint or when R1 and R2 are not equal.

7.2.7 Conditional statements involving PI operators

4-PI operators can also be used in conditions statements to test for equality or inequality.
For example, if A and B are two opvar objects, user can write a conditional test to verify if
they are equal using the syntax

A==B

This code returns a boolean value. Additionally, there is a function isempty opvar which
is essentially verifies if A==0 (a zero operator) or if A==φ (a null operator).

7.2.8 subsref or sliced indexing

4-PI operators can also be sliced the way matrices are sliced in matrices. The index slicing
is performed in the same manner as matrices.

T(row ind, col ind)

Indexing 4-PI operators is slightly different due to presence of multiple components. The
general idea is described here. Assume components of 4-PI operator is stacked in a big
matrix as shown below.

B =

[
P Q1

Q2 Ri

]
Then, row indices specified in row ind correspond to the rows in this big matrix. Column
indices, col ind, are associated with the columns of this big matrix in similar manner. The
retrieved slices are put in appropriate components and a 4-PI operator is returned. Note
the bottom-right block of the big matrix B has 3 components in Ri. If indices in the slice
correspond to rows and columns in this block, then the slice is extracted from all three
components and stored in a Ri part of the new sliced PI operator.

7.3 Additional methods for opvar objects

There are some additional, quality of life, functions included in PIETOOLS that can be used
in debugging or as the user sees fit. In this section, we compile the list of those functions,
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without going into details or explanation. However, users can find additional information by
using help command in MATLAB.

Function Name Description
degbalance(T) Estimates polynomial degrees needed to create a poslpi-

var, Q, such that T=Q has at least one solution
getdeg(T) Returns highest and lowest degree of s and θ in the

components of the opvar object T

rand opvar(dim, deg) Creates a random opvar object of specified dimensions
dim and polynomial degrees deg

show(T,opts) Altenative display format for opvar objects with op-
tional argument to omit selected properties from display
output

opvar postest(T) Numerically test for sign definiteness of T. Returns -1 if
negative definite, 0 if indefinite and 1 if positive definite.

diff opvar(T) Returns composition of derivative operator with opvar
T as described in Lem. 7

7.4 dopvar: An opvar with decision variables

In addition to the opvar data structure, used to implement PI operators with known param-
eters, PIETOOLS also uses the dopvar data structure, to implement PI operator decision
variables. To illustrate, suppose we have PI operators T andA, and want to test for existence
of a PI operator P � 0 such that

T ∗PA+A∗PT � 0.

(See also Section 10.1). To solve this LPI, we can implement A and T as opvar class
objects, assigning a polynomial class object to each of the different parameter fields P

through R. However, the PI operator P is a variable in the LPI, and the coefficients defining
the parameters of P are unknown, so that e.g.

R0(s) = d1s+ d2s
2 + d3s

3,

where now d1, . . . , d3 are the decision variables in the optimization problem. To implement
such polynomial variables, we use the dpvar class object, an extension of the polynomial

class object to polynomials with variable coefficients. Accordingly, to define the decision PI
operators, we use the dopvar class object, an extension of the opvar structure to operators
parameterized by polynomial variables.

The structure of dopvar objects is the same as that of opvar objects, defined by the same
fields dim, I, P, Q1, Q2 and R. However, the difference is that the polynomial parameters that
constitute the dopvar objects (e.g. Q1) have decision variables in them and are therefore
stored as dpvar class objects. Consequently, any PI operator P that has decision variables
in it, is by default a dopvar class which can be initialized using the syntax

dopvar P;
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All the properties of P can be accessed in a manner similar to opvar objects as previously
described in this chapter.

Likewise, all operations such as addition, composition, transpose, concatenation, subsref,
subsasgn, etc., are overloaded using the same operator symbols that are used for opvar.
Note, however, that dpvar objects (polynomial variables) and therefore dopvar objects (PI
variables) are by definition linear in the decision variables. Therefore, composition of
two dopvars is not a valid operation as it leads to a product of decision variables and hence
will not be allowed. That being said, dopvar class objects can be freely multiplied with opvar

operators, and similarly operations such as addition and concatenation between dopvar and
opvar objects can be performed using the overloaded operator symbols. The output of such
operations will always be dopvar class objects.
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Chapter 8

PIETOOLS: Setting up and solving
LPIs

In this chapter, we focus on the functions required to set up an LPI optimization problem.
To set up and solve an optimization problem we need functions that can declare variable 4-PI
operators and constraints involving 4-PI operators. Furthermore, we need a structure that
can store the information related to the optimization problem. For this purpose, we utilize
SOSTOOLS 4.00 [5]. Using sosprogram we initialize a structure that can store decision
variables, objective functions and constraints related to LPIs.

8.1 Optimization problem structure

An optimization problem is intialized using

pvar s theta;

prog=sosprogram([s,theta]);

where s and theta are the independent variables appearing in the optimization problem.
The output prog is a SOSTOOLS program structure, to which we can add decision variables,
constraints, and an objective function, defining the desired optimization problem.
To add a decision variable to the problem, we call

dpvar gamma;

prog=sosdecvar(prog, gamma);

first initializing the variable gamma, and subsequently passing it as decision variables to the
optimization program. If we wish to minimize the value of this variable in the optimization
problem, we may add f(γ) = γ as objective function by calling

prog=sossetobj(prog, gamma);

Note that the objective function need not be a single variable, but can be any linear com-
bination of decision variables, specified as a dpvar class object. For example, a function
f(γ1, γ2) = γ1 + 5γ2 may be specified as objective function using

sossetobj(prog, gamma1+5*gamma2);
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so long as both gamma1 and gamma2 are initialized as dpvar class objects themselves. Note
also that, in solving the optimization problem, the objective function will always be mini-
mized, so a negative sign should be added to maximize the function instead, e.g. calling

sossetobj(prog, -(gamma1+5*gamma2));

8.2 4-PI Decision Variables

Having discussed how to initialize an optimization program structure prog, and how to add
an objective function, in this section, we introduce functions related to declaration of variable
opvar objects and retrieval of the solution once the LPI is solved.

8.2.1 poslpivar

Positive definite opvar variables can be defined by using poslpivar function as shown below.

[prog,T] = poslpivar(prog,n,I,d,opts);

This function takes three mandatory inputs.

• prog: an sosprogram that stores all decision variables and constraints

• n: a 2× 1 vector specifying the dimensions of T

• I: a 2× 1 vector specifying the interval of T

• d (optional): a cell structure of the form {a,[b0,b1,b2]}, specifying the degree a of
s in Z1(s), the degree b0 of s in Z2(s, θ), the degree b1 of θ in Z2(s, θ), and the degree
b2 of s and θ combined in Z2(s, θ). (see Theorem 9)

• opts (optional): This is a structure with fields

– exclude: 4× 1 vector with 0 and 1 values. Excludes the block Tij (see Theorem
9) if i-th value is 1.

– psatz: Sets g(s) = 1 if set to 0, and g(s) = (b− s)(s− a) if set to 1

– sep: Constrains R1=R2 if set to 1

The output is a program structure with new decision variables and a dopvar class object T

representing a positive definite PI operator. The poslpivar function has other experimental
features to impose sparsity constraints on the T matrix of Theorem 9, which should be used
with caution. Use help poslpivar for more info.
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8.2.2 lpivar

Indefinite dopvar objects can be defined by using the lpivar function as shown below.

[prog,T] = lpivar(prog,n,I,d);

This function takes three mandatory inputs.

• prog: an sosprogram that stores all decision variables and constraints

• n: a 2× 2 vector specifying the dimensions of T

• I: a 2× 1 vector specifying the interval of T

• d (optional): an array structure of the form [b0,b1,b2], specifying the degree b0 of s
in Q1, Q2, R0, the degree b1 of θ in R1, R2, and the degree b2 of s in R1, R2.

The output is a program structure with new decision variables and a dopvar object T rep-
resenting an indefinite PI variable.

8.2.3 getsol lpivar

Optimization problems are solved using sossolve(prog) command. Once the LPI is solved,
the solutiong to any dopvar decision variables can be retrieved by using the command

T = getsol opvar(prog,T)

Note that sosprogram prog must be in a solved state (sossolve must be used) to retrieve
the solution for the input dopvar T. The output will then be a opvar class object, with the
solved values of the decision variables substituted into the associated parameters.

8.3 4-PI Constraints

In addition to the decision variables and objective function, constraints form a crucial aspect
of most optimization problems. In LPIs, constraints often appear as equality or inequality
conditions on 4-PI objects (e.g. P � 0). These constraints can be set up using the functions
lpi eq and lpi ineq respectively.

8.3.1 lpi eq

Given a program structure prog and dopvar object T (representing a PI operator variable
T ), an equality constraint T = 0 can be added to the program by calling

prog = lpi eq(prog,T)

This returns a modified optimization structure prog with the constraints T=0 included. Note
that equality constraints such as T1 = T2 may be equivalently written as e.g T1 − T2 = 0,
which may be implemented as prog = lpi eq(prog,T1-T2).
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8.3.2 lpi ineq

Given a program structure prog and dopvar object T (representing a PI operator variable
T ), an inequality constraint T � can be added to the program by calling

prog = lpi ineq(prog,T)

This returns a modified optimization structure prog with the constraints T>=0 included.
Note that inequality constraints on dopvar objects always refer to positive (or negative)
(semi-)definite constraints on the PI operators, imposed by using the result in Theorem 9.
Note also that the constraints imposed are always non-strict. For strict positivity, an offset
ε > 0 may be introduced, enforcing T − ε � 0 to ensure T � 0. This may be implemented as
lpi ineq(prog,T-ep) where ep is a small positive number. Similarly, negativity constraints
T � 0 may be implemented using −T � 0.
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Part III

PIEs: Representation, Analysis, and
Control
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Chapter 9

Representation of PIEs

In part I, we briefly described some benefits of PIE representation over classical representa-
tions such as DDEs, PDEs, DDFs, etc. Now, we describe how PIE systems are defined in
MATLAB followed by a few examples.

9.1 Elements of the PIE data structure

A PIE system, which is free from any constrainst on the PIE state, is defined by 12-PI
operators as shown below. To allow convenient transfer of parameters to functions that
requires all the PI operators that define a PIE system we bundle all the PI operators under
a single MATLAB structure with 12 fields that correspond to each of the 12 PI operators
(refer to Table 9.1), respectively. Let

T v̇(t) + Twẇ(t) + Tuu̇(t) = Av(t) + B1w(t) + B2u(t), v(0) = v0 ∈ RLm,n

z(t) = C1v(t) +D11w(t) +D12u(t),

y(t) = C2v(t) +D21w(t) +D22u(t), (9.1)

be a general PIE system whose signals v(t) ∈ Rnx × L
np

2 (a, b), w(t) ∈ Rnw , u(t) ∈ Rnu ,
z(t) ∈ Rnz and y(t) ∈ Rny . A standard PIE structure for the above system, named PIE

(variable name can be different from PIE), in MATLAB would have the fields each PI operator
as described below:

1. PIE.T: opvar class object of dimension [nx nx; np np]

2. PIE.Tw: opvar class object of dimension [nx nw; np 0]

3. PIE.Tu: opvar class object of dimension [nx nu; np 0]

4. PIE.A: opvar class object of dimension [nx nx; np np]

5. PIE.B1: opvar class object of dimension [nx nw; np 0]

6. PIE.B2: opvar class object of dimension [nx nu; np 0]

7. PIE.C1: opvar class object of dimension [nz nx; 0 np]
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8. PIE.C2: opvar class object of dimension [ny nx; 0 np]

9. PIE.D11: opvar class object of dimension [nz nw; 0 0]

10. PIE.D12: opvar class object of dimension [nz nu; 0 0]

11. PIE.D21: opvar class object of dimension [ny nw; 0 0]

12. PIE.D22: opvar class object of dimension [ny nu; 0 0]

PIE parameters in:
Eqn. (9.1) PIE. Eqn. (9.1) PIE. Eqn. (9.1) PIE.

T T Tw Tw Tu Tu

A A B1 B1 B2 B2

C1 C1 D11 D11 D12 D12

C2 C2 D21 D21 D22 D22

Table 9.1: Equivalent names of Matlab elements of the PIE structure terms for terms in
Eqn. (9.1). For example, to set term T to I, we use PIE.T=I.

While all the fields in a PIE structure is not necessary for every LPI test, it is good rule
of thumb to initialize unnecessary PI operators by opvars of appropriate dimensions to have
a consistent MATLAB structure.

CAUTION: Currently, the PIE structure is not implemented as a class in PIETOOLS
— a PIE MATLAB class will be included in a future release. The user must be careful and
ensure that the dimensions of the opvar objects stored in the PIE structure are consistent
because there are no error checks implemented by MATLAB itself to prevent any dimension
mismatch.

9.2 Initializing and modifying a PIE data structure

In MATLAB, a PIE structure can be initialized by directly assigning fields with opvar

objects of appropriate dimensions. For example, to define sysA as a PIE structure that is
compatible with PIETOOLS, we can use the following set of commands.

opvar T A;

T.I = [0,1]; A.I = [0,1];

T.dim = [2,2;2,2]; A.dim = [2,2;2,2];

sysA.T = T; sysA.A = A;

The above snippet of code initializes two opvar objects T and A whose PI parameters are
all zero-valued matrices of dimension 2× 2. Then the opvars are assigned to a PIE structure
sysA. Once initialized, parameters of PI operators can be modified directly by using . access.
For example,

sysA.T.R0 = eye(2);
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changes the R0 component of sysA.T to an identity matrix. Similarly, other properties like
dimensions, interval, polynomial variables can be modified using dot access supported by
manipulation routines described in 7.1.

Note: All opvar objects in sysA are assumed to be defined on the same interval as T.I.
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Chapter 10

LPIs for Analysis, Estimation, and
Control of PIEs

10.1 LPIs for Analysis of PIEs

Consider the following PIEs

T v̇(t) + Twẇ(t) + Tuu̇(t) = Av(t) + B1w(t) + B2u(t), v(0) = v0 ∈ RLm,n

z(t) = C1v(t) +D11w(t) +D12u(t),

y(t) = C2v(t) +D21w(t) +D22u(t), (10.1)

where all the operators are 4-PI operators. Using LPIs, several properties of this system
may be tested, as listed in this section. In particular, the LPIs listed below are extensions of
classical results used in analysis of ODEs using LMIs. For each of these LPIs, PIETOOLS
includes an executive function that may be run to solve it for a given PIE.

1. Stability: For given 4-PI operators T and A, the following LPIs are needed to be
solved to test stability of PIEs.

P � 0

T ∗PA+A∗PT 4 0 (10.2)

If P is feasible, the PIE is stable. Given a structure PIE, this LPI may be solved for
the associated PIE by calling

[prog, Pop] = PIETOOLS_stability(PIE, settings)

Here prog will be an SOS program structure describing the solved problem and Pop

will be a dopvar object describing the (unsolved) decision operator P from which the
solved operator can be derived using

Pop = getsol_lpivar(prog,Pop);
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See Chapter 11 for more information on the operation of this function and the settings
input.

2. Dual Stability:For given 4-PI operators T and A, the following LPIs are needed to
be solved to test stability of PIEs.

P � 0

T PA∗ +APT ∗ 4 0 (10.3)

If P is feasible, PIE is stable. Given a structure PIE, this LPI may be solved for the
associated PIE by calling

[prog, Pop] = PIETOOLS_stability_dual(PIE, settings)

Here prog will be an SOS program structure describing the solved problem and Pop

will be a dopvar object describing the (unsolved) decision operator P .

3. L2-gain from w to z This amounts to determining the minimum value of γ > 0 such
that ‖z‖ ≤ γ‖w‖. This is achieved by solving the following LPIs

min
γ,P

γ

P � 0−γI D∗11 B∗1PT
(·)∗ −γI C1
(·)∗ (·)∗ T ∗PA+A∗PT

 4 0 (10.4)

Given a structure PIE, this LPI may be solved for the associated PIE by calling

[prog, Pop, gam] = PIETOOLS_Hinf_gain(PIE, settings)

Here prog will be an SOS program structure describing the solved problem, and gam

will be the found optimal value for γ. Output Pop will be a dopvar object describing
the (unsolved) decision operator P .

4. Dual L2-gain from w to z This amounts to determining the minimum value of γ > 0
such that ‖z‖ ≤ γ‖w‖ for the dual PIEs. This is achieved by solving the following
LPIs

min
γ,P

γ

P � 0−γI D11 T PC1
(·)∗ −γI B∗1
(·)∗ (·)∗ T PA∗ +APT ∗

 4 0 (10.5)

Given a structure PIE, this LPI may be solved for the associated PIE by calling
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[prog, Pop, gam] = PIETOOLS_Hinf_gain_dual(PIE, settings)

Here prog will be an SOS program structure describing the solved problem, and gam

will be the found optimal value for γ. Output Pop will be a dopvar object describing
the (unsolved) decision operator P .

10.2 LPIs for Optimal Estimation of PIEs

For the following PIE

T v̇(t) + Twẇ(t) = Av(t) + B1w(t),

z(t) = C1v(t) +D11w(t),

y(t) = C2v(t) +D21w(t), (10.6)

a state estimator has the following structure:

T ˙̂v(t) = Av̂(t) + L(y(t)− ŷ(t)),

ẑ(t) = C1v̂(t)

ŷ(t) = C2v̂(t). (10.7)

The H∞ optimal estimation problem amounts to synthesizing L such that the estimation
error z − ẑ admits ‖z − ẑ‖ ≤ γ‖w‖ for a particular γ > 0.

The following LPIs yield a feasible PI operators P and Z for which L := P−1Z results
in a minimum value of γ > 0 such that ‖z − ẑ‖ ≤ γ‖w‖.

min
γ,P

γ

P � 0T ∗w (PB1 + ZD21) + (·)∗ 0 (·)∗
0 0 0

−(PA+ ZC2)∗Tw 0 0

+
−γI −D>11 −(PB1 + ZD21)

∗T
(·)∗ −γI C1
(·)∗ (·)∗ (PA+ ZC2)∗T + (·)∗

 4 0 (10.8)

Given a structure PIE, this LPI may be solved for the associated PIE by calling

[prog, Lop, gam, Pop, Zop] = PIETOOLS_Hinf_estimator(PIE, settings)

Here prog will be an SOS program structure describing the solved problem, gam will be the
found optimal value for γ, and Lop will be an opvar object describing the optimal estimator
L. Outputs Pop and Zop will be dopvar objects describing the (unsolved) decision operators
P and Z, from which the solved operators can be derived using

Pop = getsol_lpivar(prog,Pop); Zop = getsol_lpivar(prog,Zop);

See Chapter 11 for more information on the operation of this function and the settings

input.

44



10.3 LPIs for Optimal Control of PIEs

In this chapter, we discuss the synthesis of H∞ optimal control of PIEs. To this end, consider
the PIE that has the form

T v̇(t) = Av(t) + B1w(t) + B2u(t), v(0) = v0 ∈ RLm,n

z(t) = C1v(t) +D11w(t) +D12u(t),

where all the operators are 4-PI operators.
The problem of synthesizing an H∞ optimal controller amounts to determining a PIE

operator u(t) = Kv(t) such that the regulated output z admits ‖z‖ ≤ γ‖w‖ for a particular
γ > 0.

The following LPIs yield a feasible PI operators P and Z for which K := ZP−1 results
in a minimum value of γ > 0 such that ‖z‖ ≤ γ‖w‖.

min
γ,P

γ

P � 0−γI D11 (C1P +D12Z)T ∗
D∗11 −γI B∗1
()∗ B1 ()∗ + (AP + B2Z) T ∗

 4 0 (10.9)

Given a structure PIE, this LPI may be solved for the associated PIE by calling

[prog, Kop, gam, Pop, Zop] = PIETOOLS_Hinf_control(PIE, settings)

Here prog will be an SOS program structure describing the solved problem, gam will be the
found optimal value for γ, and Kop will be an opvar object describing the optimal feedback
K. Outputs Pop and Zop will be dopvar objects describing the (unsolved) decision operators
P and Z, from which the solved operators can be derived using

Pop = getsol_lpivar(prog,Pop); Zop = getsol_lpivar(prog,Zop);

See Chapter 11 for more information on the operation of this function and the settings

input.
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Chapter 11

LPI Implementation in PIETOOLS:
The Executive Files

Various executive funtcions used in PIETOOLS are described in Section 21.2. However, in
this section we discuss in detail the process typically involved in setting up and solving an
LPI. In implementing LPIs from the previous chapter in PIETOOLS, the different executive
functions perform roughly the same steps. Specifically, each of them starts by initializing a
SOSTOOLS program as

1. prog = sosprogram(varlist);

where varlist corresponds to the spatial variables (s and theta) appearing in the program.
Next, the positive PI variable P is implemented as a dopvar object P1op by calling

2a. [prog, Pop] = poslpivar(prog,[nx1,nx2],dom,dd1,options1);

2b. Pop.P = Pop.P+eppos*eye(nx1);

2c. Pop.R.R0 = Pop.R.R0+eppos2*eye(nx2);

Here, poslpivar initializes the positive semidefinite operator P ∈ RLnx1,nx2[a, b] on domain
[a,b] (see also Chapter 8). To make sure this operator is strictly positive definite (rather
than positive semidefinite), we add strictly positive matrices to parameters P and R0 defining
this operator, with eppos << 1 and eppos2 << 1 in general.

In addition to the positve decision operator P , we may need to define a decision operator
Z, as in the case of optimal estimator and controller construction. This is achieved simply
as

3. [prog,Zop] = lpivar(prog,[nx1 ny;nx2 0],dom,ddZ);

for the estimator LPI, or

3. [prog,Zop] = lpivar(prog,[nu nx1;0 nx2],dom,ddZ);

for the controller LPI, where nu and ny correspond to the number of controlled inputs and
observed outputs respectively. Finally, for LPIs with some objective function γ, the executive
files implement a decision parameter gam as
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4a. dpvar gam;

4b. prog = sosdecvar(prog, gam);

Here, 4b ensures the value of gam will be minimized in solving the problem.
Given now the decision operator P ,Z as dopvar class objects, and the system operators

T ,B1,D11, etc. as opvar class objects T, B1, D11, etc., we can the define the operator we
require to be negative. For example, to implement the stability LPI (10.2), we may call

5. Dop = Top’*Pop*Aop + Aop’*Pop*Top + epneg*Top’*Top;

Note here that, in order to enforce strict negativity, we will implement T ∗PA + A∗PT ≤
−εnegT ∗T , where we generally let epsneg = εneg << 1. Note further that, deicision variables
P, Z and gam may be freely used to describe any constraint, so long as they appear linearly
in the final expression.

Once we have defined the negative operator, it remains of course to actually enforce the
negativity. One way this may be done is using the function lpi ineq as

6. prog = lpi_ineq(prog,-Dop,opts);

This will require −Dop to be negative semidefinite, so that Dop will be positive semidefinite.
To use this option, set sosineq = 1 in the settings passed to the executive file. Alternatively,
if sosineq = 0, negativity will be enforced directly using an equality constraint as

6a. [prog, Deop] = poslpivar(prog, [nx1, nx2],dom,dd2,options2);

6b. prog = lpi_eq(prog,Deop+Dop);

This will require Dop = −Deop for some positive decision operator Deop, thus also enforcing
our LPI constraint. With this, then, we have defined the LPI, and we can solve it with an
SDP solver of choice as

7. prog = sossolve(prog,sos_opts);

Here sos opts can be used to specify which SDP solver to call (e.g. sos opts.solver=‘sedumi’),
and whether to simplify the problem with a facial reduction scheme before solving it (e.g.
sos opts.simplify=1). The output structure prog will then provide information concern-
ing the solution of the problem, which the executive file will use to determine if the problem
was actually solved, and display a message accordingly. If an objective function was mini-
mized in the program, the optimal value of gam found in solving the program will also be
extracted as

8. gam = sosgetsol(prog,gam);

The executive file will output this value, along with the structure prog, and possibly the
decision variables Pop and Dop. The values associated to these variables can then be extracted
using

9a. Pop = getsol_lpivar(prog,Pop);

9b. Dop = getsol_lpivar(prog,Dop);

In the executive files for optimal estimator and controller design, the solved operators P and
Z will be used to produce the operators L = P−1Z and K = ZP−1 for optimal estimation
and control, output as opvar class objects Lop and Kop.
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11.1 Executive File Settings

Any executive file in PIETOOLS will take two inputs: the PIE structure for which to solve
the LPI, and an optional structure settings of settings to use in solving the LPI. If passed,
this settings structure must provide values of any parameters used in implementing the
LPI, such as eppos and dd1. Another crucial setting that must be specified, is the override1
value. If this value is set to zero, rather than defining just one positive operator Pop as

2. [prog, Pop] = poslpivar(prog,[nx1,nx2],dom,dd1,options1);

two operators will be defined, and combined as

2a. [prog, P1op] = poslpivar(prog, [nx1 ,nx2],dom,dd1,options1);

2b. [prog, P2op] = poslpivar(prog, [nx1 ,nx2],dom,dd12,options12);

2c. Pop=P1op+P2op;

In doing so, we allow the monomial degrees dd and the options options used to specify the
operators P1op and P2op to be different. In particular, the idea of this splitting is to let
options1.psatz = 0 and options12.psatz = 1, requiring P1op to be positive at any spatial
position, whilst P2op need only be positive in the domain specified by dom. Adding these
two operators, then, Pop will be allowed to be any linear combination of operators positive
only on dom and operators which are positive everywhere. This will significantly increase
the freedom in finding a solution Pop to the LPI, though increasing the computational cost
accordingly.

Similar to the override1 option, there is also a override2 option, splitting

6a. [prog, Deop] = poslpivar(prog, [nx1, nx2],dom,dd2,options2);

6b. prog = lpi_eq(prog,Deop+Dop);

into

6a. [prog, De1op] = poslpivar(prog, [nx1, nx2],dom,dd2,options2);

6b. [prog, De2op] = poslpivar(prog, [nx1, nx2],dom,dd3,options3);

6c. prog = lpi_eq(prog,De1op+De2op+Dop);

Of course, this option is only relevant if lpi ineq is not used, which may be enforced by
setting sosineq on = 0. Alternatively, if sosineq on = 1, Step 6 will be performed as

6. prog = lpi_ineq(prog,-Dop,opts);

where now the options opts can be specified. In particular, setting opts.psatz=1, the
lpi ineq will also invoke the Positivstellensatz in enforcing negativity of Dop, in a manner
identical to Steps 6a-6c.

A list of fields that may (must) be specified in passing settings to an executive file is
presented in Table 11.1. Several files constructing such settings structures for the executive
files are implemented in the settings folder scripts. Different standard settings are included
for different problem complexities, where simpler problems may require lighter settings whilst
more complicated ones may required heavier settings. A custom settings file is also available,
so that you may define your own settings suitable for the problem you wish to solve.
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settings Field Application
eppos Nonnegative (small) scalar to enforce strict positivity of Pop.P

eppos2 Nonnegative (small) scalar to enforce strict positivity of Pop.R0

epneg Nonnegative (small) scalar to enforce strict negativity of Dop

sosineq Binary value, set 1 to use sosineq

override1 Binary value, set 1 to let P2op = 0
override2 Binary value, set 1 to let De2op = 0
dd1 1x3 cell structure defining monomial degrees for Pop

dd12 1x3 cell structure defining monomial degrees for P2op

dd2 1x3 cell structure defining monomial degrees for Deop

dd3 1x3 cell structure defining monomial degrees for De2op

ddZ 1x3 array defining monomial degrees for Zop

options1 Structure of poslpivar options for Pop
options12 Structure of poslpivar options for P2op
options2 Structure of poslpivar options for Deop
options3 Structure of poslpivar options for De2op
opts Structure of lpi ineq options for enforcing Dop ≤ 0
sos opts Structure of sossolve options for solving the LPI

Table 11.1: Fields of settings structure passed on to PIETOOLS executive files
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Part IV

PDEs: Representation, Analysis, and
Control
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Chapter 12

A GUI for Defining PDEs

In this latest edition of PIETOOLS 2021, we have gone the extra mile to ease the process of
inputting a user-defined model! As a user, there is now no need to wrap your head around
the new, extensive notations and definitions of define the model you aim to work on. Utilize
the new feature, PIETOOLS Graphical User Interface, that provides a simple, intuitive and
interactive visual interface to directly input the model. So take a seat back, relax, and let
PIETOOLS take all the burden behind the background. You can open the GUI by simply
clicking on PIETOOLS 2021b.mlapp. You see something similar to the picture below:

Figure 12.1: GUI overview.
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Now we will go over the GUI step-by-step to demonstrate how to define your own model
in PIETOOLS.

12.1 Step 1: Define States, Outputs and Inputs

First, we start with the right side of the screen as follows:

Figure 12.2: Step 1: Define States, Outputs and Inputs

1. The drop-down menu PDE State provides a list of all the possible variables to be
defined on your model. Clicking on the PDE State menu reveals the list

Figure 12.3: Adding variables your model
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2. After selecting your intended variable, you can add them by clicking on the Add button.

3. Specifically, when you select PDE State from the drop-down menu and attempt to PDE

State, you also have to specify what is highest order of derivative the particular state
admits.

Figure 12.4: Enter the highest order of derivative the particular state admits

4. Once the variables are added, it automatically gets displayed in the display panel in
the middle. As, no dynamics is specified to the model so far, all the variables are set
to the default setting temporarily.

Figure 12.5: After adding the variables to the model

5. At the bottom there are options of Remove, Undo, Redo to delete or recover variables.
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12.2 Step 2: Select an Equation to Add a Term

Now we specify the dynamics and the terms corresponding to each variables defined in Step
1. This is located on the left hand side of the GUI.

Figure 12.6: Step 2: Select an Equation to Add a Term

This has two parts. On the top, we have a panel for Select an Equation type and

the select the equation- to choose which part of the model to be defined. Then, for
each of the part, there an another panel below that has to be used to Select term type

and then define the term-.

1. In the panel titled Select an Equation type and the select the equation-, se-
lect either Dynamics, Output or BC (i.e. Boundary Conditions).

2. If you select Dynamics, all the PDE and ODE states that you specified in Step 1
appears.

3. Once you select the desired state for which the dynamics term is needed to be added
to, go down to the Step 2.a Select term type and then define the term-.
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4. For individual PDE state, you may have two kinds of terms, a Standard, a multiplier
coefficient associated with a state or a Integral, an integral term associated with a
state.

5. The Standard option allows to define all the multiplier terms associated with each
variables. On the other hand, the Integral option is only available for the PDE
states.

6. Now in Standard option, one has to select the variable and add the coefficient in the
adjacent panel. Moreover, the PDE states may also contain its derivatives. If you
select PDE state, you can input the order of derivative (from 0 up to the highest order
derivative for that state), the independent variable with respect to which the function
is defined (it is s for in-domain, 0, 1 for boundary), and the corresponding coefficient
terms. Then, by clicking on the Add button, we can add that term to the model and
it gets shown in the display panel readily.
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Note: Only the PDE states can be a function of ‘s’. For other terms option of adding
′s′ as an independent variable is not available. Moreover, the order of derivative can
not exceed the highest order derivative for that state. If the input value exceed that,
while adding it throws the following error

7. One can also add an integral term by selecting Integral. Here, identical to the
Standard option, we can define the order or derivative, the coefficient and the limits
of integral which can be 0 or s for lower limit and s or 1 for upper limit. The functions
are always with respect to θ.

Note: The integral term of PDE states can only be a function of ′θ′. Moreover, the
order of derivative can not exceed the highest order derivative for that state. If the
input value exceed that, while adding it throws an error.

Note: Addition of these terms are made for one variable at a time. Once you select
the corresponding variable and one of the options (Dynamics, Output, BC) from the
top, the terms can be added from the bottom part (Step 2.a). To select an another
variable for which you aim to add terms, one must repeat the above steps.
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8. To define the outputs and boundary conditions, one must follow the same steps as
above.

After adding all the corresponding terms for dynamics, outputs and boundary conditions,
the complete description of an example model looks something like below:
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Figure 12.7: An example of a complete model as displayed in the GUI

12.3 Step 3: (Optional) Add or Remove BC

As an option, the user can either add a new boundary condition or remove one. Note that
the number of boundary condition has to be coherent with the number of state variables.

12.4 Step 4-5: Parse PDE Parmeters and Convert Them

to PIE

1. Now clicking Get PDE Object, you can extract all the parameters related to your
model and store them in an object called PDE GUI which directly gets loaded into the
MATLAB workspace.

2. Now clicking convert to PIE, you can convert your model to PIE and store them in
an object called PIE GUI which directly gets loaded into the MATLAB workspace.
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Chapter 13

The PDE Input Formats

13.1 The Batch Input Format

The batch input format restricts the types of terms which can be used, but is useful for
defining large systems of relatively uncomplicated linear 1-D PDEs. This input format is
also compatible with PIETOOLS. In this format, there are relatively few options and we
can split the governing equations into three parts, which define the dynamics of the ODE,
dynamics of the PDE, the output, and the boundary conditions. Any term not specified in
the PDE structure is assumed to be zero by the initialization routine. In PIETOOLS, the
ODE-PDE coupled models had the following form:

z(t)
y(t)
ẋ(t)
ẋ(t)

 =


D11 D12 C1 C1p
D21 D22 C2 C2p
B11 B12 A Ep
B21 B22 E Ap



w(t)
u(t)
x(t)
x(t)

 . (13.1)

The model is stored in an object named PDE. The dimension of each variable is defined as
follows:

1. PDE.nx number of ODE states x
2. PDE.nw number of disturbances w
3. PDE.nu number of inputs u
4. PDE.nz number of regulated outputs z
5. PDE.ny number of observed outputs y

Moreover, the PDE state x is partitioned based on the order differentiation it admits.
1. PDE.n0 number of undifferentiated PDE states x0

2. PDE.n1 number of single differentiated PDE states x1

3. PDE.n2 number of twice differentiated PDE states x1

4. PDE.a starting point of the spatial interval
5. PDE.b end point of the spatial interval

59



13.1.1 Dynamics of the PDE

PDE dynamics is defined by the operator Ap which is defined as follows

(Apx)(s) :=A0(s)

x0

x1

x2

 (s) + A1(s)∂s

[
x1

x2

]
(s) + A2(s)∂

2
s

[
x2

]
(s).

(Ex)(s) :=E(s)x.

(B21w)(s) :=B21(s)w.

(B22u)(s) :=B22(s)u. (13.2)

1. PDE.A0 matrix function of s of dimension n0+n1+n2 x n0+n1+n2
2. PDE.A1 matrix function of s of dimension n0+n1+n2 x n1+n2
3. PDE.A2 matrix function of s of dimension n0+n1+n2 x n2
4. PDE.E pvar matrix in variable s of dimension n0+n1+n2 x nx
5. PDE.B21 polynomial matrix in pvar s of dimension (n0+n1+n2) x nw
6. PDE.B22 polynomial matrix in pvar s of dimension (n0+n1+n2) x nu

13.1.2 Dynamics of the ODE

The ODE dynamics is given by Ep according to

(Epx)(s) :=

b∫
a

(
Ea(s)

x0

x1

x2

 (s) + Eb(s)∂s
[
x1x2

]
(s) + Ec(s)∂

2
s

[
x2

]
(s)

)
ds

+ E0


x1(a)
x1(b)
x2(a)
x2(b)
∂sx2(a)
∂sx2(b)

 , (13.3)

Moreover, A,B11, B12 are constant matrices
1. PDE.E0 matrix of dimension nx x 2*n1+4*n2
2. PDE.Ea polynomial matrix in pvar s of dimension nx x (n0+n1+n2)
3. PDE.Eb polynomial matrix in pvar s of dimension nx x n1+n2
4. PDE.Ec polynomial matrix in pvar s of dimension nx x n2
5. PDE.A matrix of dimension nx x nx
6. PDE.B11 matrix of dimension nx x nw
7. PDE.B12 matrix of dimension nx x nu

13.1.3 The Output Equation

The output operators C1p and C2p are defined as follows:

(C1px)(s) :=

b∫
a

(
Ca1(s)

x0

x1

x2

 (s) + Cb1(s)∂s

[
x1

x2

]
(s) + Cc1(s)∂

2
s

[
x2

]
(s)

)
ds
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+ C10


x1(a)
x1(b)
x2(a)
x2(b)
∂sx2(a)
∂sx2(b)

 ,

(C2px)(s) :=

b∫
a

(
Ca2(s)

x0

x1

x2

 (s) + Cb2(s)∂s

[
x1

x2

]
(s) + Cc2(s)∂

2
s

[
x2

]
(s)

)
ds

+ C20


x1(a)
x1(b)
x2(a)
x2(b)
∂sx2(a)
∂sx2(b)

 , (13.4)

Moreover, C1, C2, D11, D12, D21, D22 are constant matrices.
1. PDE.C10 matrix of dimension nz x 2*n1+4*n2
2. PDE.Ca1 polynomial matrix in pvar s of dimension nz x (n0+n1+n2)
3. PDE.Cb1 polynomial matrix in pvar s of dimension nz x n1+n2
4. PDE.Cc1 polynomial matrix in pvar s of dimension nz x n2
5. PDE.C1 matrix of dimension nz x nx
6. PDE.D11 matrix of dimension nz x nw
7. PDE.D12 matrix of dimension nz x nu
8. PDE.C20 matrix of dimension ny x 2*n1+4*n2
9. PDE.Ca2 polynomial matrix in pvar s of dimension ny x (n0+n1+n2)
10. PDE.Cb2 polynomial matrix in pvar s of dimension ny x n1+n2
11. PDE.Cc2 polynomial matrix in pvar s of dimension ny x n2
12. PDE.C2 matrix of dimension ny x nx
13. PDE.D21 matrix of dimension ny x nw
14. PDE.D22 matrix of dimension ny x nu

13.1.4 The Boundary Conditions

The boundary conditions are defined by

[
Bw Bu Bx Bc

] 
w(t)
u(t)
x(t)
x(t)

 = 0, (13.5)
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where,

(Bcx) := −B


x1(a)
x1(b)
x2(a)
x2(b)
∂sx2(a)
∂sx2(b)

 (13.6)

Moreover, Bw, Bu, Bx are constant matrices.
1. PDE.B matrix of dimension n1+2*n2 x n0+n1+n2

(must have row rank n1+2n2 and contain no prohibited boundary conditions)
2. PDE.Bw matrix of dimension n1+2*n2 x nw (must be full row rank)
3. PDE.Bu matrix of dimension n1+2*n2 x nu (must be full row rank)
4. PDE.Bx matrix of dimension n1+2*n2 x nx

13.2 The Term-Based Input Format

To define an ODE-PDE system in PIETOOLS 2021b, we use a Matlab struct called PDE.
This structure contains the following fields:

1. PDE.vars Contains information concerning the variables used by PIETOOLS.
2. PDE.dom Contains information concerning the domain of the PDE.
3. PDE.n Contains information concerning the size of our PDE.
4. PDE.ODE Contains information concerning the ODE dynamics.
5. PDE.PDE Contains information concerning the PDE dynamics.
6. PDE.BC Contains information concerning the boundary conditions (BCs).

We will describe how each of these fields should be specified in the following sections.

13.2.1 The Variables and their Domain

The first two fields describing our PDE are vars and dom, specifying the spatial variables used
in the PDE and the domain on which they exist, respectively. Crucially, PDE.vars should
always be set to [‘s’;‘theta’], specifying s and θ as variables, independent of what your
PDE may look like on paper. This is because these variables are used by various codes in the
toolbox, and changing them may lead to errors. As such, we suggest you do NOT specify
the value of PDE.vars, and do NOT change its value at any point. Once you convert
your PDE to a PIE, PIETOOLS will automatically add these variables to your structure PDE.

What you do need to specify, though, is the spatial domain [a, b] on which your PDE
exists. This domain can be specified assigning PDE.dom.a the value of your lower boundary,
and PDE.dom.b that of your upper boundary.
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13.2.2 The Size of the Problem

The third field describing your ODE-PDE concerns the size of the variables involved. This
field is split into several subcomponents as:

PDE.n.nx Integer specifying the number of ODE state variables.
PDE.n.nw Integer specifying the number of disturbances in the ODE.
PDE.n.nu Integer specifying the number of controlled inputs in the ODE.
PDE.n.nz Integer specifying the number of regulated outputs of the ODE.
PDE.n.ny Integer specifying the number of observed outputs of the ODE.
PDE.n.nv Integer specifying the number of ODE to PDE interconnection signals.
PDE.n.nr Integer specifying the number of PDE to ODE interconnection signals.
PDE.n.n pde Array specifying the number of PDE state variables as divided according

to order differentiability.
For most of these elements, assigning an explicit value is not required, so long as you describe
the dynamics correctly. For example, for a simple system

ẋ(t) = Ax+Bu

y = Cx+Du

so long as you specify the matrices A, B, C and D correctly (as described in the next
section), PIETOOLS will be able to derive the values of no, nu and ny from the size of your
matrices. If you do not specify any other terms, the fields nw, nz, nv and nr will also be
assigned a value zero upon converting your PDE to a PIE. However, the field PDE.n.n pde

must always be specified. In order to do this, you must first split the PDE state into
N + 1 components as

x =


x0

x1
...

xN

 ∈

L2

H1
...
HN

 ,
where xn for n ∈ {0, . . . , N} contains all state variables differentiable up to order n, so that
N corresponds to the highest order of differentiability of any state variable. Then, the size
of the PDE state can be specified by setting the nth element of PDE.n.n pde equal to the
size of state component xn. For example, for a PDE

ω̇(t, s) = ∂sφ(t, s)

φ̇(t, s) = ∂sψ(t, s)

ψ̇(t, s) = −∂sφ(t, s)∂3sω(t, s)

we see that state variable ω must be three times differentiable, whilst state variables φ and
ψ need only be once differentiable. Our PDE state in this case may thus be given as

x =

[
x1

x3

]
=

φψ
ω

 ,
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so we can assign a size to our state in PIETOOLS by setting:

PDE.PDE.n pde = [0,2,0,1]

Note here that, our array is of size N +1 = 3+1 = 4, as the highest order of differentiability
of any state variable is 3. Also, we specify the lack of zeroth and second order differentiable
variables by setting the corresponding elements in PDE.PDE.n pde equal to zero. It is im-
portant to keep track of the order of differentiability of your state components, as this will
also be used when defining the actual dynamics in section 4.

13.2.3 The ODE

The fourth field of our PDE struct, the field PDE.ODE, is used to describe the dynamics of the
ODE component of our ODE-PDE system. This field assumes the ODE to be of the form:

ẋ(t)
z(t)
y(t)
v(t)

 =


A Bxw Bxu Bxr

Cz Dzw Dzu Dzr

Cy Dyw Dyu Dyr

Cv Dvw Dvu 0



x(t)
w(t)
u(t)
r(t)

 , (13.7)

with x denoting our ODE state, w, u and r denoting disturbances, controlled inputs, and
PDE to ODE interconnection signals, and z, y and v denoting regulated outputs, observed
outputs, and ODE to PDE interconnection signals. To specify this ODE, we simply have to
assign values to each of the matrices in this system:

PDE.ODE.A nx × nx array mapping x to ẋ.
PDE.ODE.Bxw nx × nw array mapping w to ẋ.
PDE.ODE.Bxu nx × nu array mapping u to ẋ.
PDE.ODE.Bxr nx × nr array mapping r to ẋ.
PDE.ODE.Cz nz × nx array mapping x to z.
PDE.ODE.Dzw nz × nw array mapping w to z.
PDE.ODE.Dzu nz × nu array mapping u to z.
PDE.ODE.Dzr nz × nr array mapping r to z.
PDE.ODE.Cy ny × nx array mapping x to y.
PDE.ODE.Dyw ny × nw array mapping w to y.
PDE.ODE.Dyu ny × nu array mapping u to y.
PDE.ODE.Dyr ny × nr array mapping r to y.
PDE.ODE.Cv nv × nx array mapping x to v.
PDE.ODE.Dvw nv × nw array mapping w to v.
PDE.ODE.Dvu nv × nu array mapping u to v.

Note that there is no ODE map from r to v, as this relation is described by the PDE. Now,
to specify the ODE, you need only assign values to the nonzero matrices in the standardized
format. For example, for our simple system

ẋ(t) = Ax+Bu

y = Cx+Du
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we only need to specify the values of A, Bxu, Cy and Dyu. Then, upon converting the PDE
to a PIE, PIETOOLS will assign all other fields a zero array of appropriate size. Of course,
for the matrices that you do define, it is important that their sizes match up (e.g. A must
have the same number of rows as Bxu), as otherwise PIETOOLS will set your matrix to
zero. This also means that, if you do insist on specifying a size value such as PDE.n.no

yourself, you must make sure this value matches the size of the matrices that you define, as
PIETOOLS will assume the value assigned to PDE.n.no to be correct, and adjust the fields
of PDE.ODE accordingly.

13.2.4 The PDE

The fifth field of the PDE struct specifies the actual PDE dynamics, and the interconnection
with the ODE. We will describe each of these inputs in separate subsections.

The Dynamics

To describe the PDE dynamics, we once again split our PDE state x into N + 1 components
x0, . . .xN ordered according to differentiability, and consider the evolution equation for each
component separately. In particular, for each component ` ∈ {0, . . . , N}, we assume this
evolution equation to be of the form

ẋ`(t, s) =
N∑
k=0

k∑
d=0

2∑
i=0

∫
i

Aidk`(s, θ)∂
d
θxk(t, θ)dθ +

N∑
k=1

k−1∑
d=0

1∑
j=0

Bpb,jdk`(s)∆j∂
d
sxr(t, s) + Bpv,`(s)v(t)

(13.8)

where we define the integral
∫
i

for i ∈ {0, 1, 2}, and the Delta operator ∆j for j ∈ {0, 1}
such that, for any function F ∈ L2[a, b],∫

0

F (θ)dθ = F (s),

∫
1

F (θ)dθ =

∫ s

a

F (θ)θ,

∫
2

F (θ)dθ =

∫ b

s

F (θ)θ,

and

∆0F = F (a), ∆1F = F (b).

Then, our structure PDE.PDE can be used to specify the different functions A, Bpb and Bpv,
being described by fields:

PDE.PDE.A Cell specifying the contribution of the PDE state to the evolution
equation.

PDE.PDE.Bpb Cell specifying the contribution of the boundary state to the evolution
equation.

PDE.PDE.Bpv Polynomial object or array specifying the contribution of
the ODE-PDE interconnection signal to the evolution equation.

Let us start with PDE.PDE.A. This field is described by the cell, in of which each element
corresponds to a single term in the evolution equation of some state component. For exam-
ple, consider an arbitrary element m of this cell. This element will be a struct, with the
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following fields:

PDE.PDE.A{m}.Lstate Integer specifying which evolution equation the term is added to.
PDE.PDE.A{m}.Rstate Integer specifying which state component is considered in the term.
PDE.PDE.A{m}.D Integer specifying what derivative of the state component

is considered.
PDE.PDE.A{m}.I Integer specifying what integral of the term is considered.
PDE.PDE.A{m}.coeff Polynomial object or array specifying the pre-multiplication

factor of the term.
Now, we can add a term to the evolution equation of some state component ` ∈ {0, . . . , N}

as

x`(t, s)︸ ︷︷ ︸
Lstate

+
=

∫
i︸︷︷︸
I

Aidk`(s, θ)︸ ︷︷ ︸
coeff

∂dθ︸︷︷︸
D

xk(t, θ)︸ ︷︷ ︸
Rstate

 dθ

by specifying

PDE.PDE.A{m}.Lstate = ell

PDE.PDE.A{m}.Rstate = k

PDE.PDE.A{m}.D = d

PDE.PDE.A{m}.I = i

PDE.PDE.A{m}.coeff = A pol

where A pol is some polynomial (or array, or double) specifying the function (or matrix, or
scalar) Aidk`(s, θ). Note that, it does not matter what element m of the cell we are assigning
these values to, and so it also doesn’t matter in what order you specify your terms. Also,
you need not specify combinations of Lstate, Rstate, D and I that do not appear in your
PDE, as PIETOOLS will automatically set these to zero. However, any term that does
appear in your system must be assigned to a separate cell element, and any cell element
must correspond to a single term. For example, for the simple PDE

φ̇(s, t) = ∂sψ(t, s)

ψ̇(s, t) = −∂sφ(t, s)∂3sω(t, s)

ω̇(s, t) = ∂sφ(t, s)

with state components x1 =

[
φ
ψ

]
and x3 = ω, we may write it in the standardized format as

ẋ1(t, s) =

[
0 1
0 0

]
∂sx1(t, s) +

[
0
1

]
∂3sx3(t, s)

ẋ3(t, s) =
[
1 0

]
∂sx1(t, s)

and we can implement this by setting
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PDE.PDE.A{1}.Lstate = 1 PDE.PDE.A{2}.Lstate = 1 PDE.PDE.A{3}.Lstate = 3

PDE.PDE.A{1}.Rstate = 1 PDE.PDE.A{2}.Rstate = 3 PDE.PDE.A{3}.Rstate = 1

PDE.PDE.A{1}.D = 1 PDE.PDE.A{2}.D = 3 PDE.PDE.A{3}.D = 1

PDE.PDE.A{1}.I = 0 PDE.PDE.A{2}.I = 0 PDE.PDE.A{3}.I = 0

PDE.PDE.A{1}.coeff = [0,1;-1,0] PDE.PDE.A{2}.coeff = [0;1] PDE.PDE.A{3}.coeff = [1,0]

Then, exchanging the order of any of these cell elements (e.g. PDE.PDE.A{1} and PDE.PDE.A{2})
will still specify the same PDE. However, if you were to divide the information of the first
element PDE.PDE.A{1} over two elements as

PDE.PDE.A{1}.Lstate = 1 PDE.PDE.A{4}.Lstate = 1

PDE.PDE.A{1}.Rstate = 1 PDE.PDE.A{4}.Rstate = 1

PDE.PDE.A{1}.D = 1 PDE.PDE.A{4}.D = 1

PDE.PDE.A{1}.I = 0 PDE.PDE.A{4}.I = 0

PDE.PDE.A{1}.coeff = [0,1;0,0] PDE.PDE.A{4}.coeff = [0,0;-1,0]

(e.g. to separate the contributions of φ and ψ), PIETOOLS will get rid of one of these
elements. This is because they have the same values of Lstate, Rstate, D and I, specifying
a single term in the evolution equation, and must thus be assigned a single cell element.

Now, to specify contributions of the boundary state to the evolution equation, we use
the cell PDE.PDE.Bpb, which is structured in a very similar way to PDE.PDE.A. That is, an
arbitrary element m of this cell is a struct with fields

PDE.PDE.Bpb{m}.Lstate Integer specifying which evolution equation the term is added to.
PDE.PDE.Bpb{m}.Rstate Integer specifying which state component is considered in the term.
PDE.PDE.Bpb{m}.D Integer specifying what derivative of the state component

is considered.
PDE.PDE.Bpb{m}.delta Integer specifying what at what boundary the term is evaluated.
PDE.PDE.Bpb{m}.coeff Polynomial object or array specifying the pre-multiplication

factor of the term.
replacing the integral field I with a field delta specifying whether the term should

be evaluated at the lower boundary PDE.dom.a (setting delta=0) or the upper boundary
PDE.dom.b (setting delta=1). Then, we can add a term to the evolution equation of some
state component ` ∈ {0, . . . , N} as

ẋ`(t, s)︸ ︷︷ ︸
Lstate

+
= Bpb,jdk`(s)︸ ︷︷ ︸

coeff

∆j︸︷︷︸
delta

∂ds︸︷︷︸
D

xk(t, s)︸ ︷︷ ︸
Rstate

by specifying

PDE.PDE.Bpb{m}.Lstate = ell

PDE.PDE.Bpb{m}.Rstate = k

PDE.PDE.Bpb{m}.D = d

PDE.PDE.Bpb{m}.delta = j

PDE.PDE.Bpb{m}.coeff = B pol

where B pol is some polynomial (or array, or double) specifying the function (or matrix,
or scalar) Bjdk`(s, θ). Once again, it does not matter in what order these cell elements are
specified, so long as each term is assigned a single element, and each element corresponds to

67



a single term.

Finally, we consider the contribution of the ODE-PDE interconnection signal to the
evolution equation. For a particular state component ` ∈ 0, . . . , N , this contribution is
defined by a matrix-valued function Bpv,` as

ẋ`(t, s) = . . . Bpv,`(s)v(t)

To specify this contribution in PIETOOLS, you have to concatenate the different polynomials
Bpv,` into a single object

Bpv =

Bpv,0
...

Bpv,N


which can then be assigned to PDE.PDE.Bpv. Note that it is important to concatenate the
different functions Bpv,` in accordance with the way the different components of your state
are concatenated, increasing in order of differentiability.

The PDE to ODE Output

We now consider how to specify the equation for the PDE to ODE output signal r. For this,
we assume the equation may be written in the form

r(t) =
N∑
k=0

k∑
d=0

∫ b

a

Crp,dk(s)∂
d
sxk(t, s)ds+

N∑
k=1

k−1∑
d=0

1∑
j=0

Drb,jdk∆j∂
d
sxr(t, s) +Drvv(t)

where we define the Delta operator ∆j as before. Then, we can specify the different function
Crp and matrices Drb and Drv in PIETOOLS by assigning values to fields:

PDE.PDE.Crp Cell specifying the contribution of the PDE state to the
PDE to ODE signal.

PDE.PDE.Drb Cell specifying the contribution of the boundary state to the
PDE to ODE signal.

PDE.PDE.Drv Array specifying the contribution of the ODE-PDE signal to the
PDE to ODE signal.

Here, the cell PDE.PDE.Crp is structured very similarly to cell PDE.PDE.A, with each element
m being specified by fields Rstate, D and coeff, so that a term

r(t)
+
=

∫ b

a

Crp,dk(s)︸ ︷︷ ︸
coeff

∂ds︸︷︷︸
D

xk(t, s)︸ ︷︷ ︸
Rstate

 ds

may be added to the output by specifying some cell m as

PDE.PDE.Crp{m}.Rstate = k

PDE.PDE.Crp{m}.D = d

PDE.PDE.Crp{m}.coeff = C pol
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with C pol describing the desired matrix-valued polynomial Crp,dk. Similarly, the field
PDE.PDE.Drb is set up in the same way as PDE.PDE.Brb, so that a term

r(t)
+
= Drb,jdk︸ ︷︷ ︸

coeff

∆j︸︷︷︸
delta

∂ds︸︷︷︸
D

xk(t, s)︸ ︷︷ ︸
Rstate

can be added to the output by specifying

PDE.PDE.Drb{m}.Rstate = k

PDE.PDE.Drb{m}.D = d

PDE.PDE.Drb{m}.delta = j

PDE.PDE.Drb{m}.coeff = D mat

where D mat describes the desired matrix Drb,jdk. Finally, to add a contribution Drvv(t) to
the output, simply set PDE.PDE.Drv equal to this matrix, and you are done!

13.2.5 The Boundary Conditions

The final elements that must be specified (no PDE is complete without them) are the bound-
ary conditions. To describe these, we assume (once again) that our PDE state has been split
into different components according to differentiability, and that the boundary conditions
are written as

0 =
N∑
k=0

k∑
d=0

∫ b

a

Ebp,dk(s)∂
d
sxk(t, s)ds+

N∑
k=1

k−1∑
d=0

1∑
j=0

Ebb,jdk∆j∂
d
sxr(t, s) + Ebvv(t)

Each of the components in this system can then be described by assigning appropriate values
to:

PDE.BC.Ebp Cell specifying the contribution of the PDE state to the
boundary conditions.

PDE.BC.Ebb Cell specifying the contribution of the boundary state to the
boundary conditions.

PDE.BC.Ebv Polynomial object or array specifying the contribution of
the ODE to PDE signal to the boundary conditions.

Here, the fields PDE.BC.Ebp is structured identically to cell PDE.PDE.Crp, with each
element m being specified by fields Rstate, D and coeff, so that a term

0
+
=

∫ b

a

Ebp,dk(s)︸ ︷︷ ︸
coeff

∂ds︸︷︷︸
D

xk(t, s)︸ ︷︷ ︸
Rstate

 ds

may be added to the boundary conditions by specifying some cell m as

PDE.BC.Ebp{m}.Rstate = k

PDE.BC.Ebp{m}.D = d

PDE.BC.Ebp{m}.coeff = E pol
where E pol describes the desired polynomial Ebp,dk. Note that this array E pol must always
have a total number of rows equal to the total number of boundary conditions considered
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in your system, even if the particular state component Rstate=k appears in only one (or
a few) of these conditions. This can (of course) be achieved by setting all rows equal to
zero that correspond to BCs in which this particular component does not appear. Further-
more, remember that for any state variable differentiable up to order n, you must add n
boundary conditions to your system, so that the total number of BCs is always equal to
sum(PDE.n.n pde(1:end)).

Now, regarding the field PDE.BC.Ebb, this cell is structured identically to cell PDE.PDE.Drb,
so that a term

0
+
= Ebb,jdk︸ ︷︷ ︸

coeff

∆j︸︷︷︸
delta

∂ds︸︷︷︸
D

xk(t, s)︸ ︷︷ ︸
Rstate

may be added to the boundary conditions by specifying some cell m as

PDE.BC.Ebb{m}.Rstate = k

PDE.BC.Ebb{m}.D = d

PDE.BC.Ebb{m}.delta = j

PDE.BC.Ebb{m}.coeff = Ebb mat
with Ebb mat describing the desired matrix. Once again, the number of rows of this matrix
must be equal to the total number of boundary. Finally, to add a term Ebvv(t) to the
boundary conditions, simply set PDE.BC.Ebv equal to the desired matrix.

13.3 Initializing your PDE

Using the format presented above, you can specify any 1D ODE-PDE system you desire to
PIETOOLS. In doing so, note that you do not need to specify terms that do not appear in
your PDE. If your system has no ODE subcomponent, you don’t need to define PDE.ODE.
If your PDE contains no terms involving the boundary values, you don’t need to define the
field PDE.Bpb. If your PDE involves only a single term, you only need to define a single
element of PDE.PDE.A. That being said, in order to convert your PDE to a PIE, PIETOOLS
will require all of these fields to be specified. For this reason, we have created the script
initialize PIETOOLS PDE terms, which will fill in all the blanks and rearrange the different
cell elements to be in the correct order. This file will be automatically run when you con-
vert your PDE to a PIE using convert PIETOOLS PDE terms, so you do not need to worry
about initializing yourself. However, initialization will produce several warnings if you did
not specify all the fields, informing you of some of the changes that might have been made.
Note also that, because of these changes, your PDE struct may look somewhat different after
initialization (with the cell elements having been rearranged and such), so be careful with
making changes after initialization.

For some examples of the PDE input format, see the examples PDE library PIETOOLS

file. Also, check out the GetStarted DEMO file for an idea on how to set up a simple PDE
stability test. Finally, don’t forget that there is a GUI in which you can define your PDE,
and which will convert it to the proper format. Have fun!
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Chapter 14

Library of PDE Example Problems

To help you get started with PIETOOLS, and give you something to do when you’re bored,
we have implemented a variety of PDEs for you. These systems are described in the func-
tion examples PDE library PIETOOLS.m, and include common PDEs, and examples from
the literature. Each example has been specified in each of the three input formats: using the
GUI, using the batch input format, and using the term-based input format. This allows you
to see how the same PDE may be specified in the different formats, hopefully giving you a
better understanding of how each of the formats works.

To get the PDE structure corresponding to one of the examples, the first thing you will
need to do is open the actual file examples PDE library PIETOOLS.m, and check the header.
Each example has been assigned a label, and listed in a ”table of contents” at the top of
the file. In this table, the center column describes the PDE with boundary conditions that
is considered, with the left-most column providing the label assigned to this system. The
right-most column provides the default values of potential parameters occurring in the sys-
tem, which we will get back to in a minute. Right of this column, just outside the table,
notes and/or references concerning some of the systems are provided.

Now, say you want to load example 10 (good choice!). To do so, simply call the function
with as argument your desired example:

>> PDE = examples PDE library PIETOOLS(10);

Then, the output PDE will be a MATLAB structure describing the PDE example 10 from
the file in the batch input format. If you want to get your PDE in the term-based input
format, this can be achieved by specifying an optional argument ‘terms’:

>> PDE = examples PDE library PIETOOLS(10,‘terms’);

Running this code, the output PDE struct will describe the same system, but using the term-
based input format. Similarly, if you want to load the example into the GUI, you can use
the optional argument ‘GUI’:

>> examples PDE library PIETOOLS(10,‘GUI’);
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Note that in this case, we get no output structure. Instead, a file describing the system
is loaded into the GUI, at which point you can use the Get PDE Object button to add the
corresponding PDE structure PDE GUI (in term-based input format) to your workspace. If
you want to compare the different input structures, you can also specify multiple optional
arguments. For example, running

>> [PDE batch,PDE terms] = examples PDE library PIETOOLS(10,‘batch’,‘terms’);

the output consists of two structures, with PDE batch describing the PDE in batch format,
and PDE terms describing the PDE in terms-based format. Here, the order in which you
specify the formats will determine the order in which you receive them, so that we may
achieve the same result by running:

>> [PDE terms,PDE batch] = examples PDE library PIETOOLS(10,’terms’,’batch’);

Also, if you’re not a fan of using characters, you can replace ‘batch’ by a value 1, ‘terms’
by a value 2, and ‘GUI’ by a value 3. Thus, running

>> [PDE terms,PDE batch] = examples PDE library PIETOOLS(10,2,1);

will produce the same result.

When you run one of the examples, you may note that a message such as stability=1,
Hinf gain=1, Hinf estimator=1 or Hinf control=1 appears in your command window.
This is because each system corresponds to a particular problem, which is either stability
analysis, H∞-gain computation, or constructing an H∞-optimal observer or controller. Each
of these problems has been specified as an LPI in PIETOOLS, implemented in the “exectu-
ives” folder. By specifying e.g. stability=1, the script PIETOOLS PDE in the root directory
will know that you wish to perform stability analysis, and will call the corresponding exe-
cutable. Of course, if you want to solve another problem for some example PDE, for example
computing the H∞-gain, you can specify this after running the examples function by setting
Hinf gain=1. In doing so, keep in mind that not every problem is well-defined for each ex-
ample. For example, there’s no sense in computing an H∞-gain if your system has no outputs.

Let’s return now to the parameters mentioned earlier. Certain examples, such as our
example 10, rely on parameters to be specified. In any such case, default parameters have
been set, often corresponding to the values presented in the paper from which an example
might have been extracted. However, if you want to use different parameters, it is also
possible to specify these as optional arguments. For example, our example 10 relies on a
parameter R to be specified, which is defaulted to a value R = 30. If you wish to change
this value to, say, R = 20, you can do so by adding the argument ‘R=20’ to your function
call. That is, running

>> PDE = examples PDE library PIETOOLS(10,‘batch’,‘R=20;’);

your output structure PDE will describe example 10 in the batch format, and with parameter
value R = 20. If you want to specify the value of multiple parameters, you can do so by
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adding multiple arguments, each corresponding to a different parameter. Note that this will
not adjust the parameters used in the GUI definition of the system, as the GUI will load a
predefined file.

As a warning, please realize that the way in which the function executes the parameter
specifications allows you to specify all kinds of nonsense, that may not produce the desired
result, or even adversely affect your program. As such, we strongly advise you to only specify
values of parameters presented in the right-most column of the table of contents. Each row in
this column describes the parameter names, along with their default values. If no parameters
are mentioned, you shouldn’t specify any values. If you do specify parameters, make sure
that the name you specify does indeed match a parameter name for your considered example
exactly (case-sensitive). Otherwise, the default value will be retained, and you may be
adjusting some internal value necessary for proper execution. Remember: with great power,
comes great responsibility.
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Chapter 15

Analysis, Control, and Estimation of
PDEs

The workflow for analysis, estimation and control of PDEs is specified in the PIETOOLS PDE

script file placed in the root folder. To use the script PIETOOLS PDE for analysis, first,
define the PDE using any of the methods discussed in the previous chapter. Analysis can
be performed on PDEs either in batch format or terms format, however, the name of the
variable must be PDE (other names cannot be used with the script).

15.1 Defining the PDE object

At this point we have discussed four different ways you can specify a PDE in PIETOOLS:
using the GUI (highly recommended), using the batch input format (useful for larger 2nd
order systems), using the term-based input format (useful for larger higher order systems),
and by simply calling an example from the library (if you want to see how this works). Using
examples defined in the examples PIETOOLS PDE function automatically defined the PDE
object in workspace under the name PDE, whereas using the GUI creates the PDE object
under the name PDE GUI. If the PDE object is manually defined using either batch or terms
format, it is recommended that the variable be named PDE.

15.2 Converting to a PIE

Once the PDE object has been defined, we can determine different properties of PDEs by
solving an appropriate LPI. However, to use the LPIs PDE objects must be converted to
PIEs objects first by using conversion functions (see 21.1) or through the GUI.

For example, if the PDE object has been defined using the GUI, PIE can be obtained
by using the ”Convert to PIE” button which dumps the PIE object in the workspace as
PIE GUI. Alternatively, if the PDE is stored under a variable name PDE sys in terms format,
then the following command converts it to a PIE object.

PIE = convert PIETOOLS PDE terms(PDE sys);
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Binary variable specification Operation in PIETOOLS PDE

stability=1 Test stability of the provided PDE
stability dual=1 Test stability using dual LPI method
Hinf gain=1 Compute the H∞ gain of the specified PDE
Hinf gain dual=1 Compute the H∞ gain using dual LPI method
Hinf estimator=1 Construct an H∞-optimal observer for the specified PDE
Hinf controller=1 Construct an H∞-optimal controller for the specified PDE

Table 15.1: Binary variables available to specify a PDE analysis problem

Similarly, for batch format, the following command can be used.

PIE = convert PIETOOLS PDE batch(PDE sys);

15.3 Choosing an Executive Mode

After obtaining the PIE representation of the PDE, we can solve LPIs to test stability,
compute the H∞ gain, and search for optimal controllers and observers for the PDE (see
Chapters 4 and 10.1). Each of these LPIs has been implemented in a function in the “exec-
utives” folder, allowing you to test a property by calling the appropriate function. However,
we recommend you use the script PIETOOLS PDE (in the root directory) instead.

The executive mode, or the LPI to be tested, is specified by defining the binary variables
presented in Table 15.1, either running the command in your command line, or uncomment-
ing the corresponding command in the PIETOOLS PDE script.

15.4 Specifying Settings and SDP Solver

In addition to specifying what test you wish to perform, you can also specify the solver
settings used when executing this test by uncommenting certain lines. In particular, recall
that in solving LPIs, the PI operators are parameterized by matrices using monomials up to
a certain degree. If this degree is higher, you are expanding the domain of feasible solutions
in your program, increasing the accuracy but also the computational complexity. For param-
eters such as this degree, different options have been predefined in the settings PIETOOLS

scripts, which you can call by uncommenting the corresponding line in the PIETOOLS PDE

script. For example, uncommenting settings PIETOOLS extreme rather than the default
settings PIETOOLS light, your program may be more successfull, but this will come at a
higher computational cost. As such, we suggest you adapt the settings according to your
problem: if light settings do not yield the expected result, try heavier settings. Keep in
mind that optimal controller or observer constructing may also need more effort than sta-
bility analysis. The root script PIETOOLS PDE default the settings to light by running the
script settings PIETOOLS light. These settings specify rather simple opvar variables in
the LPI and should be sufficient for all simple PDE problems. However, if you have a more
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difficult example, spatially varying coefficients, or require additional accuracy (at the cost of
additional computation time), simply comment out this script and uncomment ONE of the
following.

settings PIETOOLS heavy;

settings PIETOOLS veryheavy;

Alternatively, if you have a very large-scale systems with lots of states but constant coeffi-
cients, you may uncomment ONE of the following to decrease the computation time (at the
cost of decreased accuracy).

settings PIETOOLS stripped;

settings PIETOOLS extreme;

In addition to these settings, you can also specify how positive your PI operators should
be in each LPI. That is, PIETOOLS can only restrict PI operators to be positive (negative)
semidefinite, not to be strictly positive (negative) definite. To impose this strict condition,
rather than enforcing P < 0, we enforce P < ε for some small value ε << 1, ensuring the PI
operator P is strictly positive. You can specify the value of epsilon for both the positivity of
the Lyapunov function and the negativity of its derivative, by changing the default value in
the script PIETOOLS PDE. Finally, you may tinker with the settings by altering and running
the script settings PIETOOLS custom.

There are several supported SDP solvers. By default the root script runs SeDuMi. How-
ever, if you have one of the other supported SDP solvers installed, you may specify this
solver by commenting settings.sos opts.solver=’sedumi’ and uncommenting ONE of
the following.

settings.sos opts.solver=’mosek’;

settings.sos opts.solver=’sdpnalplus’;

settings.sos opts.solver=’sdpt3’;

15.5 Solving the problem, interpreting the output, and

implementing the controller

If the LPI is successfully solved, the opvar (PI operator) solving the LPI will be added to your
workspace, named P. The solved SOS program prog will also be added to your workspace,
along with potential additional outputs. For example, if the H∞ gain was successfully
computed, this gain will be specified by gamma in the workspace. If you set Hinf estimator=1

or Hinf controller=1, the optimal observer or controller will be specified by opvar L or K

respectively, provided settings.option1.sep=1 is chosen. Whatever output you get, be
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sure to check whether your problem was actually solved (for example by looking at the
prog.solinfo, as the presented output may not always be a valid solution if the optimization
problem was infeasible.

• The first output you will notice when running the root script is the initialization
algorithms setting all undeclared parameters to zero.

• Next, the chosen executive will set up the LPI and convert it to an LMI. This is
arguably the slowest part of the code. If it is taking too long, you can reduce the
complexity by using one of the settings script.

• Next, the SDP will be passed to your desired SDP solver and the solver will execute.
The output format differs with solver. However, you should take note of whether the
solver is able to find a feasible solution. For sedumi, this means a feasratio of around
+1.

• After the SDP solver has completed, the executive will summarize the result. For
stability analysis, this is a binary answer. For H∞ gain analysis, optimal estimation,
and optimal control, the summary will state the bound on the closed or open loop
H∞-gain as appropriate.

• Finally, for the optimal control and estimation problems, the executive will construct
the feedback gains (K or L) in the form of a 4PI-operator. For an optimal controller,
this means the control input should be

u(t) = K


x(t) x0(t)

...
∂Ns xN(t)




where recall xi(t, s) is the i-times differentiable PDE state and x is the ODE state
from the PDE representation. The construction of observer gains is similar. The
feedback gains are output from the executive function and placed in the workspace
only if settings are chosen such that settings.option1.sep=1. Of course, the simplest
way to implement the controller is to simply construct the closed loop PIE using, e.g.
Acl = A+B2K which can, alternatively obtained by using the function closedLoopPIE.
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Part V

Delayed Systems: Representation,
Analysis and Control
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Chapter 16

Constructing and Representing
Systems with Delay

In contrast to PDE systems, systems with delay have a widely recognized input format.
For this reason, the input format for systems with delay is only available in batch mode.
However, there are three distinct types of delay system which can be included in PIETOOLS.
We address each of these separately. In each case, the problem data should be included in a
DDE, NDS, or DDF structure and terms which are not included are assumed to be zero.

16.1 The Delay Differential Equation (DDE) Format

The DDE data structure allows the user to declare any of the matrices in the following
general form of Delay-Differential equation.ẋ(t)

z(t)
y(t)

 =

A0 B1 B2

C1 D11 D12

C2 D21 D22

x(t)
w(t)
u(t)

+
K∑
i=1

Ai B1i B2i

C1i D11i D12i

C2i D21i D22i

x(t− τi)
w(t− τi)
u(t− τi)


+

K∑
i=1

∫ 0

−τi

Adi(s) B1di(s) B2di(s)
C1di(s) D11di(s) D12di(s)
C2di(s) D21di(s) D22di(s)

x(t+ s)
w(t+ s)
u(t+ s)

 ds (16.1)

In this representation, it is understood that

• The present state is x(t).

• The disturbance or exogenous input is w(t). These signals are not typically known or
alterable. They can account for things like unmodelled dynamics, changes in reference,
forcing functions, noise, or perturbations.

• The controlled input is u(t). This is typically the signal which is influenced by an
actuator and hence can be accessed for feedback control.

• The regulated output is z(t). This signal typically includes the parts of the system to
be minimized, including actuator effort and states. These signals need not be measured
using senors.
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• The observed or sensed output is y(t). These are the signals which can be measured
using sensors and fed back to an estimator or controller.

To add any term to the DDE structure, simply declare is value. For example, to represent

ẋ(t) = −x(t− 1), z(t) = x(t− 2)

we use

DDE.tau = [1 2];

DDE.Ai{1} = -1;

DDE.C1i{2} = 1;

All terms not declared are assumed to be zero. The exception is that we require the user
to specify the values of the delay in DDE.tau. When you are done adding terms to the
DDE structure, use the function DDE=PIETOOLS initialize DDE(DDE), which will check
for undeclared terms and set them all to zero. It also checks to make sure there are no
incompatible dimensions in the matrices you declared and will return a warning if it detects
such malfeasance. The complete list of terms and DDE structural elements is listed in
Table 16.1.

ODE Terms:
Eqn. (16.1) DDE. Eqn. (16.1) DDE. Eqn. (16.1) DDE.

A0 A0 B1 B1 B2 B2

C1 C1 D11 D11 D12 D12

C2 C2 D21 D21 D22 D22

Discrete Delay Terms:
Eqn. (16.1) DDE. Eqn. (16.1) DDE. Eqn. (16.1) DDE.

Ai Ai{i} B1i B1i{i} B2i B2i{i}
C1i C1i{i} D11i D11i{i} D12i D12i{i}
C2i C2i{i} D21i D21i{i} D22i D22i{i}

Distributed Delay Terms: May be functions of pvar s

Eqn. (16.1) DDE. Eqn. (16.1) DDE. Eqn. (16.1) DDE.

Adi Adi{i} B1di B1di{i} B2di B2di{i}
C1di C1di{i} D11di D11di{i} D12di D12di{i}
C2di C2di{i} D21di D21di{i} D22di D22di{i}

Table 16.1: Equivalent names of Matlab elements of the DDE structure terms for terms in
Eqn. (16.1). For example, to set term XX to YY, we use DDE.XX=YY. In addition, the delay
τi is specified using the vector element DDE.tau(i) so that if τ1 = 1, τ2 = 2, τ3 = 3, then
DDE.tau=[1 2 3].

80



16.1.1 Initializing a DDE Data structure

The user need only add non-zero terms to the DDE structure. All terms which are not added
to the data structure are assumed to be zero. Before conversion to another representation
or data structure, the data structure will be initialized using the command

DDE = initialize PIETOOLS DDE(DDE)

This will check for dimension errors in the formulation and set all non-zero parts of the
DDE data structure to zero. Not that, to make the code robust, all PIETOOLS conversion
utilities perform this step internally.

16.2 Input of Neutral Type Systems

The input format for a Neutral Type System (NDS) is identical to that of a DDE except for
6 additional terms:ẋ(t)

z(t)
y(t)

 =

A0 B1 B2

C1 D11 D12

C2 D21 D22

x(t)
w(t)
u(t)

+
K∑
i=1

Ai B1i B2i Ei
C1i D11i D12i E1i

C2i D21i D22i E2i



x(t− τi)
w(t− τi)
u(t− τi)
ẋ(t− τi)


+

K∑
i=1

∫ 0

−τi

Adi(s) B1di(s) B2di(s) Edi(s)
C1di(s) D11di(s) D12di(s) E1di(s)
C2di(s) D21di(s) D22di(s) E2di(s)



x(t+ s)
w(t+ s)
u(t+ s)
ẋ(t+ s)

ds (16.2)

These new terms are parameterized by Ei, E1i, and E2i for the discrete delays and by Edi, E1di,
and E2di for the distributed delays. As for the DDE case, these terms should be included in
a NDS object as, e.g. NDS.E{1}=1.

16.2.1 Initializing a NDS Data structure

The user need only add non-zero terms to the NDS structure. All terms which are not added
to the data structure are assumed to be zero. Before conversion to another representation
or data structure, the data structure will be initialized using the command

NDS = initialize PIETOOLS NDS(NDS)

This will check for dimension errors in the formulation and set all non-zero parts of the
NDS data structure to zero. Not that, to make the code robust, all PIETOOLS conversion
utilities perform this step internally.

16.3 The Differential Difference Equation (DDF) For-

mat

A Differential Difference Equation (DDF) is a more general representation than either the
DDE or NDS. Most importantly, unlike the DDE or NDS, it allows one to represent the
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structure of the delayed channels. As such, it is the only representation for which the
minimal realization features of PIETOOLS are defined. Nevertheless, the general form of
DDF is more compact that of the DDE or NDS. The distinguishing feature of the DDF
is decomposition of the output signal from the ODE part into sub-components, ri, each
of which is delayed by amount τi. Identification of these ri is often challenging and hence
most users will input the system as an ODE or NDS and then convert to a minimal DDF
representation. The form of a DDF is given as follows.


ẋ(t)
z(t)
y(t)
ri(t)

 =


A0 B1 B2

C1 D11 D12

C2 D21 D22

Cri Br1i Br2i


x(t)
w(t)
u(t)

+


Bv

D1v

D2v

Drvi

 v(t)

v(t) =
K∑
i=1

Cviri(t− τi) +
K∑
i=1

∫ 0

−τi
Cvdi(s)ri(t+ s)ds. (16.3)

As for a DDE or NDS, each of the non-zero parameters in Eqn. (16.3) should be added
to the DDF structure, along with the vector of values of the delays DDF.tau. The elements
of the DDF structure which can be defined by the user are included in Table 16.3.

16.3.1 Initializing a DDF Data structure

The user need only add non-zero terms to the DDF structure. All terms which are not added
to the data structure are assumed to be zero. Before conversion to another representation
or data structure, the data structure will be initialized using the command

DDF = initialize PIETOOLS DDF(DDF)

This will check for dimension errors in the formulation and set all non-zero parts of the
DDF data structure to zero. Not that, to make the code robust, all PIETOOLS conversion
utilities perform this step internally.
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ODE Terms:
Eqn. (16.2) NDS. Eqn. (16.2) NDS. Eqn. (16.2) NDS.

A0 A0 B1 B1 B2 B2

C1 C1 D11 D11 D12 D12

C2 C2 D21 D21 D22 D22

Discrete Delay Terms:
Eqn. (16.2) NDS. Eqn. (16.2) NDS. Eqn. (16.2) NDS. Eqn. (16.2) NDS.

Ai Ai{i} B1i B1i{i} B2i B2i{i} Ei Ei{i}
C1i C1i{i} D11i D11i{i} D12i D12i{i} E1i E1i{i}
C2i C2i{i} D21i D21i{i} D22i D22i{i} E2i E2i{i}

Distributed Delay Terms: May be functions of pvar s

Eqn. (16.2) NDS. Eqn. (16.2) NDS. Eqn. (16.2) NDS. Eqn. (16.2) NDS.

Adi Adi{i} B1di B1di{i} B2di B2di{i} Edi Edi{i}
C1di C1di{i} D11di D11di{i} D12di D12di{i} E1di E1di{i}
C2di C2di{i} D21di D21di{i} D22di D22di{i} E2di E2di{i}

Table 16.2: Equivalent names of Matlab elements of the NDS structure terms for terms in
Eqn. (16.2). For example, to set term XX to YY, we use NDS.XX=YY. In addition, the delay
τi is specified using the vector element NDS.tau(i) so that if τ1 = 1, τ2 = 2, τ3 = 3, then
NDS.tau=[1 2 3].

ODE Terms:
Eqn. (16.3) DDF. Eqn. (16.3) DDF. Eqn. (16.3) DDF. Eqn. (16.3) DDF.

A0 A0 B1 B1 B2 B2 Bv Bv

C1 C1 D11 D11 D12 D12 D1v D1v

C2 C2 D21 D21 D22 D22 D2v D2v

Cri Cri{i} Br1i Br1i{i} Br2i Br2i{i} Drvi Drvi{i}

Discrete Delay Terms:
Eqn. (16.3) DDF.

Cvi Cvi{i}

Distributed Delay Terms: May be functions of pvar s

Eqn. (16.3) DDF.

Cvdi(s) Cvdi{i}

Table 16.3: Equivalent names of Matlab elements of the DDF structure terms for terms in
Eqn. (16.3). For example, to set term XX to YY, we use DDF.XX=YY. In addition, the delay
τi is specified using the vector element DDF.tau(i) so that if τ1 = 1, τ2 = 2, τ3 = 3, then
DDF.tau=[1 2 3].
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Chapter 17

Converting between DDEs, NDSs,
DDFs, and PIEs

For a given delay system, there are several alternative representations of that system. For
example, a DDE can be represented in the DDE, DDF, or PIE format. However, only the
DDF and PIE formats allow one to specify structure in the delayed channels, which are
infinite-dimensional. For that reason, it is almost always preferable to efficiently convert
the DDE or NDS to either a DDF or PIE - as this will dramatically reduce computational
complexity of the analysis, control, and simulation problems (assuming you have tools for
analysis, control and simulation of DDFs and PIEs - which we do!). However, identifying an
efficient DDF or PIE representation of a given DDF/NDS is laborious for large systems and
requires detailed understanding of the DDF format. For this reason, we introduce a set of
functions for automating this conversion process.

17.1 DDF to PIE

To convert a DDF data structure to an equivalent PIE representation, we have two utilities
which are typically called sequentially. The first uses the SVD to identify and eliminate
unused delay channels. The second näıvely converts a DDF to an equivalent PIE.

17.1.1 Minimal DDF Realization of a DDF

The typical first step in analysis, simulation and control of a DDF is elimination of unused
delay channels. This is accomplished using the SVD to identify such channels in a DDF
structure and output a smaller, equivalent DDF structure. To use this utility, simply declare
your DDE and enter the command

DDF = minimize PIETOOLS DDF(DDF)

17.1.2 Converting a DDF to a PIE

Having constructed a minimal (or not) DDF representation of a DDE, NDS or DDF, the
next step is conversion to an equivalent PIE. To use this utility, simply declare your DDF
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structure and enter the command

PIE = convert PIETOOLS DDF2PIE(DDF)

17.2 DDE to DDF or PIE

We next address the problem of converting a DDE data structure to a DDF or PIE data struc-
ture. Because the DDE representation does not allow one to represent structure, this con-
version is almost always performed using the minimize PIETOOLS DDE2DDF function followed
possibly by convert PIETOOLS DDF2PIE. However, we also include a convert PIETOOLS DDE2PIE

function, although we do not recommend using this feature.

17.2.1 Minimal DDF and PIE Realizations of DDEs

The utility minimal PIETOOLS DDE2DDF function takes a DDE data structure and constructs
an equivalent DDF representation with associated structure. This utility uses the SVD to
eliminate unused delay channels in the DDF - resulting in a much more compact repre-
sentation of the same system. To use this utility, simply declare your DDE and enter the
command

DDF = minimize PIETOOLS DDE2DDF(DDE)

After constructing the minimal DDF realization of the DDE, the user may then convert to
a PIE using

PIE = convert PIETOOLS DDF2PIE(DDF)

17.2.2 DDE direct to PIE [NOT RECOMMENDED!]

Although it should never be used in practice, we also include a utility to construct the
equivalent näıve PIE representation of a DDE. This is occasionally useful for purposes of
comparison. To use this utility, simply declare your DDE and enter the command

DDF = convert PIETOOLS DDE2PIE(DDE)

Because of the limited utility of the unstructured representation, we have not included a
näıve DDE to DDF utility.

17.3 NDS to DDF or PIE

Finally, we next address the problem of converting a NDS data structure to a DDF or
PIE data structure. Like the DDE, the NDS representation does not allow one to represent
structure and so the typical process is involves 3 steps: direct conversion of the NDS to a DDF
using convert PIETOOLS NDS2DDF; constructing a minimal representation of the resulting
DDF using minimize PIETOOLS DDF; and conversion of the reduced DDF to a PIE (if desired)
using convert PIETOOLS DDF2PIE. Since the latter two functions are already described in
Section 21.1.7, we only describe the first utility.
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17.3.1 Converting NDS to DDF

Given an NDS data structure, the user may construct an equivalent DDF data structure and
associated representation using the utility

DDF = convert PIETOOLS NDS2DDF(NDS)

The typical user should follow this up with the utility

DDF = minimize PIETOOLS DDE2DDF(DDE)

After constructing the minimal DDF realization of the NDS, the user may then convert to
a PIE using

PIE = convert PIETOOLS DDF2PIE(DDF)
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Chapter 18

DDE, NDS, and DDF: Library of
Examples

In this chapter, we give a brief explanation of the example problem libraries for DDEs, NDSs,
and DDFs. At present, these example files are implemented as scripts (in contrast to the
PDE example library). This means the user must edit the file to uncomment the desired
example prior to calling the script. We expect to update this file in a future release to match
the format used for the PDE example library.

18.1 DDE Examples

We have compiled a list of 23 DDE numerical examples, grouped into: stability analysis
problems; input-output systems; Estimator design problems; and feedback control problems.
These examples are drawn from the literature and citations are used to indicate the source
of each example. For each group, the relevant flags have been included to indicate which
executive mode should be called after the example has been loaded.

18.2 NDS and DDF Examples

There are relatively few DDFs which do not arise from a DDE or NDS. Hence, we have com-
bined the DDF and NDS example libraries into the script examples NDSDDF library PIETOOLS.
The Neutral Type systems are listed first, and currently consist only of stability analysis
problems - of which we include 13. As for the DDE case, the library is a script, so the user
must uncomment the desired example and call the script from the root file or command
window. For the NDS problems, after calling the example library, in order to convert the
NDS to a DDF or PIE, the user can use the following commands:

NDS=initialize PIETOOLS NDS(NDS)

DDF=convert PIETOOLS NDS2DDF(NDS)

DDF=minimize PIETOOLS DDF(DDF)

PIE=convert PIETOOLS DDF2PIE(DDF)
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In contrast to the NDS case, we only include 3 DDF examples. The first two are difference
equations which cannot be represented in either the NDS or DDE format. The third is a
network control problem, which is also included in the DDE library in DDE format.

88



Chapter 19

DDEs, NDSs, DDFs: Stability
Analysis and Controller Synthesis

The workflow for analysis, estimation and control of DDEs, NDSs, or DDFs is included in
the PIETOOLS DDE and PIETOOLS DDF root scripts.

19.1 Input DDE or DDF Representation

A description of the DDE and DDF input formats are included in the header of the root
scripts PIETOOLS DDE and PIETOOLS DDF. A description of the NDS format is included at the
end of the PIETOOLS DDF root script. These formats are also described in Chapter 16. The
user can input a desired DDE, NDS, or DDF by hand or may uncomment one of the examples
in the examples script examples DDE PIETOOLS and run the script from the command line
or root script.

19.2 Convert to a PIE

The Stability, Analysis, Estimation, and Control functions of PIETOOLS require the DDE/NDS/DDF
to be first converted to PIE format. This is done in the root script, defaulting to a minimal
realization of the DDE or NDS format. To override this option (Not recommended) and use
the original DDE/NDS/DDF representation, use the command

DDE minimal rep=0

Otherwise, the root script PIETOOLS DDE converts a DDE to PIE using

DDE=initialize PIETOOLS DDE(DDE);

DDF=minimize PIETOOLS DDE(DDE)

PIE=convert PIETOOLS DDF2PIE(DDF)
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For a DDF, the script PIETOOLS DDF converts a DDF to PIE using

DDF=initialize PIETOOLS DDF(DDF);

DDF=minimize PIETOOLS DDF(DDF)

PIE=convert PIETOOLS DDF2PIE(DDF)

For an NDS, the script PIETOOLS DDF determines whether a data structure called NDS exists
and if so, it converts it to a DDF using

DDF=convert PIETOOLS NDS2DDF(NDS);

The script then proceeds as for a DDF.

19.3 Choose Executive Mode

If the executive mode has not already been defined in the examples DDE PIETOOLS script,
then the user should uncomment one of the following lines in the PIETOOLS DDE root script.

stability=1;

stability dual=1;

Hinf gain=1;

Hinf gain dual=1;

Hinf control=1;

Hinf estimator=1;

These options call the corresponding executive as described in Chapters 10.1, 10.2, and 10.3.

19.4 Specify Settings and SDP Solver

The root scripts PIETOOLS DDE and PIETOOLS DDF default the settings to light by running
the script settings PIETOOLS light. These settings specify rather simple opvar variables in
the LPI and should be sufficient for all but the most complex DDE, NDS, or DDF problems.
However, if you have a more difficult example or require additional accuracy (at the cost of
additional computation time), simply comment out this script and uncomment ONE of the
following.

settings PIETOOLS heavy;

settings PIETOOLS veryheavy;
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Alternatively, if you have a very large-scale systems with lots of delayed channels, you may
uncomment ONE of the following to decrease the computation time (at the cost of decreased
accuracy).

settings PIETOOLS stripped;

settings PIETOOLS extreme;

Finally, you may tinker with the settings by altering and running the script settings PIETOOLS custom.
There are several supported SDP solvers. By default the root script runs SeDuMi. How-

ever, if you have one of the other supported SDP solvers installed, you may specify this
solver by commenting settings.sos opts.solver=’sedumi’ and uncommenting ONE of
the following.

settings.sos opts.solver=’mosek’;

settings.sos opts.solver=’sdpnalplus’;

settings.sos opts.solver=’sdpt3’;

19.5 Solving the problem, interpreting the output, and

implementing the controller

After all the proceeding steps have been completed, the root script calls the chosen executives
as specified above. These executives perform the desired task and output the Lyapunov
variables and controller/estimator gains as relevant. The following outputs are produced in
the Matlab command window:

• The first output you will notice when running the root script is the initialization
algorithms setting all undeclared parameters to zero.

• Next, the chosen executive will set up the LPI and convert it to an LMI. This may take
some time, so please be patient. If it is taking too long, you can reduce the complexity
by using one of the settings script.

• Next, the SDP will be passed to your desired SDP solver and the solver will execute.
The output format differs with solver. However, you should take note of whether the
solver is able to find a feasible solution. For sedumi, this means a feasratio of around
+1.

• After the SDP solver has completed, the executive will summarize the result. For
stability analysis, this is a binary answer. For H∞ gain analysis, optimal estimation,
and optimal control, the summary will state the bound on the closed or open loop
H∞-gain as appropriate.
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• Finally, for the optimal control and estimation problems, the executive will construct
the feedback gains (K or L) in the form of a 4PI-operator. For an optimal controller,
this means the control input should be

u(t) = K


x(t)

∂s

 r1(t+ τ1s)
...

rK(t+ τKs)


 = K


x(t)

∂s


1
τ1
r1(t+ s)

...
1
τK
rK(t+ s)


 = K


x(t)

1
τ1
ṙ1(t+ s)

...
1
τK
ṙK(t+ s)


 .

where recall ri(t, s) is the delayed signal from the DDF representation. If you don’t
recall how ri is defined, refer to Chapter 16 where we let

[
ri(t)

]
=
[
Cri Br1i Br2i

] x(t)
w(t)
u(t)

+
[
Drvi

]
v(t)

v(t) =
K∑
i=1

Cviri(t− τi) +
K∑
i=1

∫ 0

−τi
Cvdi(s)ri(t+ s)ds.

These parameters can be found in the DDF data structure created using minimize PIETOOLS DDE

or minimize PIETOOLS DDF. The construction of observer gains is similar. The feed-
back gains are output from the executive function and placed in the workspace. Of
course, the simplest way to implement the controller is to simply construct the closed
loop PIE using, e.g. Acl = A+B2K. This can be simulated using one the PIETOOLS
PIE Simulators which will be released in the next version of PIETOOLS.
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Part VI

PIESIM
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Chapter 20

Simulation of PDEs/DDEs/PIEs

As part of PIETOOLS 2021b release, functions and scripts files have been added to simulate
a PIE system. Once a PIE system, either by direct definition or by converting a TDS/PDE
to PIE, simulation can be performed by approximating the solution of the PIE by a linear
combination of Chebyshev polynomials up to order N . Given a PIE system

T v̇(t) + Twẇ(t) = Av(t) + Bw(t), v(0, s) = v0(s), s ∈ [−1, 1], t ≥ 0,

z(t) = Cv(t) +Dw(t), (20.1)

the solution v(t, s) ∈ Ln2 [−1, 1], t ≥ 0 is projected on to a finite dimensional vector space
spanned by Chebyshev polynomials up to order N . The projected solution, vN u v, is of
the form

vN(t, s) =
N∑
i=0

αi(t)Pi(s), s ∈ [−1, 1], t ≥ 0, (20.2)

where Pi is a Chebyshev polynomial of degree i.
By substituting vN in the form of (20.2) into the PIE and taking an inner product with

each basis Chebyshev polynomial function, we obtain an ODE approximation of the PIE as

T α̇(t) + Twẇ(t) = Aα(t) + Bw(t), α =
[
α0 α1 · · · αN

]T
, (20.3)

where T , Tw, A and B are matrices obtained by spectral discretization of the PI operators.
The initial conditions for the ODE (20.3) are obtained using the initial conditions of the

PIE (20.1) using the identity

αk(0) =
2

N + 1

N+1∑
i=0

v(0, si)PK(si), si = cos
iπ

N
, k = 0, 1, · · · , N.

Once the initial conditions are determined, the ODE (20.3) can be solved numerically via
time integration or analytically (when the matrix T is invertible). Using the ODE solution
α(t), we reconstruct the PIE solution vN using the equation (20.2). Furthermore, the PIE
solution vN can be used to find an approximate solution of the original PDE (or DDE) using
the equation

x(t, s) = T v(t, s) + Tww(t) ≈ TvN(t, s) + Tww(t). (20.4)
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20.1 PIE simulation using PIETOOLS

PIETOOLS 2021b supports simulation of PIEs obtained by transforming a DDE/DDF or a
PDE with spatial derivatives up to order 2. Users can run PIE simulations either by using
the script solver PIESIM.m located in the PIESIM folder or by directly calling the function
PIESIM(). A guide to use both the methods will be presented in the following subsections.

20.1.1 Using solver PIESIM script

The script file is organized as a template for the user to demonstrate a typical workflow
involved in simulation of the PIEs. The simulation procedure can be broken down into the
following steps.

1. Rescale the spatial dimension in case of PDEs (the delay interval in case of DDEs) to
the interval [−1, 1], or alternatively use rescalePIE() function after conversion

2. (Mandatory) Define a PDE/DDE model

• Alternatively, the above step can be skipped if the PIE is already known, however,
that feature is restricted to executive function file

3. Convert PDE/DDE to a PIE (Use converter functions)

4. (Optional) Define all the simulation settings listed below under opts structure

• Order of approximation N

• Time of simulation tf

• Time integration scheme intScheme

• Order of time integration scheme Norder (only if intScheme=1)

• System type type

• Time step dt

• Flag to turn plotting on or off plot

5. (Optional) Define all the system inputs listed below under uinput structure

• Initial condition ic.ODE and ic.ODE (or ic.DDE for DDE model, ic.PDE for PIE
model) as MATLAB symbolic expression in sx (space) and st

• Disturbance (MATLAB symbolic expression in time st) w

• Control input (MATLAB symbolic expression in time st) u

• Flag for comparing with exact solution ifexact

• Exact solution as a MATLAB symbolic expression in time st and space sx under
exact

6. Call PIESIM(model,opts,uinput) with the above inputs

7. Reconstruct PDE/DDE solution (performed inside PIESIM())
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20.1.2 Using PIESIM function

By using the function, the user can directly employ simulation results in a other scripts.
While the systems definitions for PDE/DDE/PIE and uinput, and opts have the same
format.

This function can be called using the syntax

solution = PIESIM(system, opts, uinput, n pde)

where system is a PDE, DDE, or PIE structure whereas opts is the simulation options
structure and uinput is a structure as described in the previous subsection both of which
are optional for PDE/DDE systems. Notice, the additional input n pde that is required
only if the system defined is of the type ‘PIE’. In case a PIE is directly passed, the user
has to provide order of differentiablity of the original PDE/DDE states that generated the
PIE form as the fourth argument. Furthermore, the information in the uinput, such as IC
and input, must now correspond to the PIE (and NOT the original system). The syntax to
simulate a PIE directly using executive function is given by

solution = PIESIM(PIE, opts, uinput, n pde)

where n pde is a vector describing the number of continuous, differentiable and twice dif-
ferentiable states in the original PDE/DDE, in the same order. For example, n pde =

[n0,n1,n2] implies the original PDE/DDE has n0 continuous states, n1 differentiable states,
and n2 twice differentiable states.

This function returns an output structure solution with the fields

• tf - scalar - actual final time of the solution

• final.pde - array of size (N + 1) × ns, ns = n0 + n1 + n2 - PDE (distributed state)
solution at a final time

• final.ode - array of size nx - ODE solution at a final time

• final.observed - array of size ny - final value of observed outputs

• final.regulated - array of size nz - final value of regulated outputs

• timedep.dtime - array of size 1 × Nsteps - array of temporal stamps (discrete time
values) of the time-dependent solution (only if intScheme=1)

• timedep.pde - array of size (N + 1)×ns×Nsteps - time-dependent solution of ns PDE
(only if intScheme=1) (distributed) states of the primary PDE system

• timedep.ode - array of size nx × Nsteps - time-dependent solution of nx ODE states,
where Nsteps = tf/dt (only if intScheme=1)

• timedep.observed - array of size ny×Nsteps - time-dependent value of observed outputs
(only if intScheme=1)

• timedep.regulated - array of size nz × Nsteps - time-dependent value of regulated
outputs (only if intScheme=1)
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20.2 Plotting the solution

Simulation of PIEs, either by using solver file or directly using the executive file, generates
figures that plot time-varying ODE states (from 0 to final simulation time) for each ODE
state. Further, a plot showing the spatial distribution (only at final simulation time) is
generated for all distributed states in the PIE. Note, that plots correspond to the solution
of the original PDE/DDE and not the PIE solution. In general, given a PIE of the form
(20.1), the solution which is plotted is (20.4). However, the value of time-varying distributed
state at each simulation time step is stored under the solution output which is given by the
executive file. The user can use this output to generate further plots to calculate outputs z
as defined in (20.1).

20.3 PIESIM Demonstration: PDE example

In this section, we will demonstrate the standard process involved in simulation of PIEs
using an example from the examples pde library PIESIM file.

First, to choose an example from the examples library, we set the library flag to one.
Then, an example can be selected by specifying the example number (between 1 and 34) to
load the example.

init option=1;

[PDE,uinput]=examples pde library PIESIM(example);

In this demonstration, we choose the example

ẋ(t, s) = s∂2sx(t, s), s ∈ [0, 2], t ≥ 0

x(t, 0) = 0, x(t, 2) = w1(t), x(0, s) = −s2.

where w1(t) = −4t − 4. For this PDE, the exact solution is known and is given by the
expression x(t, s) = −2st− s2 which can be specified under uinput structure for verification
as shown below.

uinput.exact(1) = -2*sx*st-sx^2;
uinput.ifexact=true; Likewise, other input parameters such as, initial conditions and

inputs at the boundary are specified as
uinput.w(1) = -2*b*st-b^2;
uinput.ic.PDE=-sx^2;

where sx, st are MATLAB symbolic objects. However, the example automatically defines
the uinput structure and the above expressions are provided for demonstration only and not
necessary when using a PDE from example library. Once the PDE and system inputs are
defined, we have to specify simulation parameters under opts structure. First, we turn on
the plotting by specifying the plotting flag as show below.

opts.plot=’yes’;

Then, we specify the order of discretization (order of chebyshev polynomials to be used in
approximation of PDE solution N) and time of simulation as

opts.N=8;

opts.tf=0.1;
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Figure 20.1: Final solution x(t, ·) at t = 0.1s obtained by analytical expression (solid line)
and by PIE simulation (dots) are plotted against space [0, 2]

Then, we select a time-integration scheme (backward difference scheme is used in this demon-
stration, however, one can chose symbolic integration by setting intScheme=2). In solver file,
time step and order of truncation are automatically chosen for backward difference scheme
as shown below, however, the user can modify these parameters as needed.

opts.intScheme=1;

opts.Norder = 2;

opts.dt=1e-3;

Now that we have defined all necessary parameters we can run the simulation using the
command

solution = PIESIM(PDE,opts,uinput);

which produces the plot Fig. 20.1, where we see that simulation result in dots whereas the
analytical solution is plotted using the solid line. If the analytical solution is not passed,
then only the dots are plotted.

20.4 PIESIM Demonstration: DDE example

Simulation of DDEs can be performed using the same steps as the simulation of PDEs,
however, there is a main difference which is the first argument to PIESIM() function a DDE
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Figure 20.2: DDE solutions x1(t) and x2(t) obtained by by PIE simulation are plotted against
time t

model.
DDE.A0=[-1 2;0 1]; DDE.Ai1=[.6 -.4; 0 0]; DDE.Ai2=[0 0; 0 -.5]; DDE.B1=[1;1];

DDE.B2=[0;1]; DDE.C1=[1 0;0 1;0 0]; DDE.D12=[0;0;.1]; DDE.tau=[1,2];

We can use the same opts and uinput from previous section and use the command
solution = PIESIM(DDE,opts,uinput);

to simulate the system which gives us the Figure 20.2.

20.5 PIESIM Demonstration: PIE example

In the above DDE example, the solution is clearly unstable. For this system, we can design
a stabilizing controller for the PIE form and then simulate the solution again to see the
behaviour of the control system under the action of the controller. However, conversion of a
PIE back to DDE/PDE is often tricky (and unnecessary) because PIESIM() can be used
to simulate a system is PIE form directly. For the above the given DDE example, we can
find the controller by using the following code.

DDE=initialize PIETOOLS DDE(DDE);

DDF=minimize PIETOOLS DDE2DDF(DDE);
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Figure 20.3: DDE solution x1(t) and x2(t) obtained by PIE simulation for the closed loop
PIE of the previous DDE example is plotted against time t

PIE=convert PIETOOLS DDF2PIE(DDF);

[prog, K, gamma, P, Z] = PIETOOLS Hinf control(PIE);

See the file ‘DDE simulation demo.m’ in the ‘GetStarted DOCS DEMOS’. We then use the
controller gains K to find the closed loop PIE system to using the following function.

PIE = closedLoopPIE(PIE,K);

which can then be simulated using the following code.
ndiff = [0, PIE.T.dim(2,1)];

solution=PIESIM(PIE,opts,uinput,ndiff);

The main difference from PDE/DDE simulations to PIE simulations is the new input
argument ndiff which describes how many states are differentiable. In case of DDEs, all
states with delays are at least once differentiable along the delay variable and hence are all
placed under n1. The other arguments such as opts and uinput are same as the inputs
described in earlier sections. Behaviour of the DDE solution (for same initial conditions)
simulated using a PIE is shown in Figure 20.3. Note the solution returned by the function,
given some inputs w and u, is always T v(t) + Tww(t) + Tuu(t) (irrespective of the system
type: PDE/DDE/PIE).
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Part VII

List of Files, Functions and Scripts
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Chapter 21

PIETOOLS Scripts: Initialize
Systems, Convert To PIEs And More

A large number of applications involving 4-PI operators and LPIs revolve around analysis
and control of infinite dimensional systems — more specifically, analysis and control of PIEs.
In Chapter 5, we described to class of systems which can be converted to PIEs. Traditionally,
these systems are not written in PIE form and reformulating them as PIEs usually requires
many, tedious, steps. To alleviate the burden of conversion from the users, PIETOOLS per-
forms all the heavy-lifting by providing ”helper” functions, that usually start as convert ....
These functions can convert systems from a standard form to PIE form provided all the pa-
rameters are appropriately defined. Additionally, there are initialize ... files which help
in verifying if the parameters are appropriately defined and populate MATLAB workspace
with variables that maybe necessary but missing in the definition.

21.1 converters

Since the standard form of DDEs/DDFs and PDEs shown earlier in Chapter 5 is a large class,
they involve many parameters which can be overwhelming to a new user. Furthermore, in
most real-life systems, most of the parameters may in fact be empty or just zeroes. To avoid
defining unnecessary parameters, initialize ... script files are used to get the minimal
required information about the DDE/DDF/PDE from the user and then converted to PIE
using convert ... script files.

21.1.1 initialize PIETOOLS DDE(DDE)

This function file takes input from the user, which describe the DDE system in the standard
form Eq. (16.1) whose structure is as described in Section 16.1 and verifies if the parame-
ters defined are consistent in dimension. The script also automatically defines any missing
parameters. The inputs to this script file is the DDE object. The function returns another
object which too is in the standard format mentioned in Section 16.1, however, the latter
object is verified to have correct dimensions and parameters.
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21.1.2 initialize PIETOOLS DDF(DDF)

This function file takes input from the user, which describe the DDF system in the standard
form (see (16.3)) and verifies if the parameters defined are consistent in dimension. The
script also automatically defines any missing parameters. The inputs to this script file is
the DDF object. The function returns another object which too is in the standard format
mentioned in Section 16.3, however, the latter object is verified to have correct dimensions
and parameters.

21.1.3 initialize PIETOOLS NDS(NDS)

This function file takes input from the user, which describe the NDS system in the standard
form (see (16.2)) and verifies if the parameters defined are consistent in dimension. The
script also automatically defines any missing parameters. The inputs to this script file is
the NDS object. The function returns another object which too is in the standard format
mentioned in Section 16.2, however, the latter object is verified to have correct dimensions
and parameters.

21.1.4 initialize PIETOOLS PDE batch(PDE)

This function file takes input from the user, which describe the PDE system in the standard
form Eq. (13.7)-(13.8) and verifies if the parameters defined are consistent in dimension.
The script also automatically defines any missing parameters. The inputs to this script file
is the PDE object. The function returns another object which too is in the standard format
mentioned in Section 13.1, however, the latter object is verified to have correct dimensions
and parameters.

21.1.5 initialize PIETOOLS PDE terms(PDE)

This function file takes input from the user, which describe the PDE system in the standard
form Eq. (13.7)-(13.8) and verifies if the parameters defined are consistent in dimension.
The script also automatically defines any missing parameters. The inputs to this script file
is the PDE object. The function returns another object which too is in the standard format
mentioned in Section 13.2, however, the latter object is verified to have correct dimensions
and parameters.

21.1.6 convert PIETOOLS DDE(DDE)

This function takes a DDE object in the format specified in Section 16.1 is converted to PIE
structure with all the PI operators in 9.1 which is then sent as an output. Additionally,
this script file calls initialize PIETOOLS DDE function in the beginning to verify the input
format of DDE.
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21.1.7 convert PIETOOLS DDF(DDF)

This function takes a DDF object in the format specified in Section 16.3 is converted to PIE
structure with all the PI operators in 9.1 which is then sent as an output. Additionally,
this script file calls initialize PIETOOLS DDF function in the beginning to verify the input
format of DDF.

21.1.8 convert PIETOOLS NDS2DDF(NDS)

This function takes a NDS object in the format specified in Section 16.2 is converted to PIE
structure with all the PI operators in 16.3 which is then sent as an output. Additionally,
this script file calls initialize PIETOOLS NDS function in the beginning to verify the input
format of NDS.

21.1.9 convert PIETOOLS PDE batch(PDE)

This function takes a PDE object in the format specified in Section 13.1 is converted to PIE
structure with all the PI operators in 9.1 which is then sent as an output. Additionally,
this script file calls initialize PIETOOLS PDE batch function in the beginning to verify the
input format of PDE.

21.1.10 convert PIETOOLS PDE terms(PDE)

This function takes a PDE object in the format specified in Section 13.2 is converted to PIE
structure with all the PI operators in 9.1 which is then sent as an output. Additionally,
this script file calls initialize PIETOOLS PDE terms function in the beginning to verify the
input format of PDE.

21.1.11 convert PIETOOLS PDE batch2terms(PDE)

This function takes a PDE object in the format specified in Section 13.1 is converted to PDE
structure in terms format 13.2 which is then sent as an output. Additionally, this script file
calls initialize PIETOOLS PDE batch function in the beginning to verify the input format
of PDE.

21.2 executives

Executive files are preset function files that have standard LPIs hardwired in them. These
files can be used to solve standard LPIs for any given PIE, provided the PIE system is passed
as an argument along with settings related to the LPI optimization problem. For example,
after defining a PIE structure PIE (refer 9.1), stability LPI can be solved by just calling
PIETOOLS stability(PIE, settings) file. However, note that a executive files are deeply
integrated with settings files. Currently, at least one settings ... file must be called before
calling an executive.
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21.2.1 [prog,P]=PIETOOLS stability(PIE, settings)

This function file solves the stability LPI for a PIE. 4-PI operators T and A are mandatory
inputs and must be defined before calling this script. Displays whether the LPI has a
feasible solution or not and returns the Lyapunov operator P which proves stability. If a
feasible solution exists, then the PIE is stable.

The function returns a solved sosprogram structure prog along with the opvar object P,
the decision variable in the LPI (10.2).

21.2.2 [prog,P]=PIETOOLS stability dual(PIE, settings)

This function file, same as the previous one, solves the dual LPI for stability of a PIE. 4-PI
operators T and A are mandatory inputs and must be defined before calling this script.
Displays whether the LPI has a feasible solution or not and returns the Lyapunov operator
P which proves stability. If a feasible solution exists, then the PIE is stable.

The function returns a solved sosprogram structure prog along with the opvar object P,
the decision variable in the LPI (10.3)

21.2.3 [prog,P,gam]=PIETOOLS Hinf gain(PIE, settings)

This function file finds an upper bound on the L2 gain from disturbances w to outputs z in
a PIE Eq. (5.1). 4-PI operators T , A, B1, C1 and D11 are mandatory inputs and must be

defined before calling this script. Displays the smallest γ such that
‖z‖L2

‖w‖L2
≤ γ.

The function returns a solved sosprogram structure prog, H∞-gain gam, and the opvar
object P, the operator in the quadratic storage function that proves the KYP-lemma LPI
(10.4).

21.2.4 [prog,P,gam]=

PIETOOLS Hinf gain dual(PIE, settings)

This function file also finds an upper bound on the L2 gain from disturbances w to outputs
z in a PIE Eq. (5.1), however, it uses dual LPI instead of the primal. 4-PI operators T , A,
B1, C1 and D11 are mandatory inputs and must be defined before calling this script. Displays

the smallest γ such that
‖z‖L2

‖w‖L2
≤ γ.

The function returns a solved sosprogram structure prog, H∞-gain gam, and the opvar
object P, the operator in the quadratic storage function that proves the dual KYP-lemma
LPI (10.5).

21.2.5 [prog,L,gam,P,Z]=

PIETOOLS Hinf estimator(PIE, settings)

This function file finds an H∞-optimal estimator for the PIE Eq. (5.1) if one exists and
returns the gains of the P and Z which can then be used to find the observer gains using
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the relation L = P−1Z. 4-PI operators T , A, B1, C1, C2, D11 and D21 are mandatory inputs
and must be defined before calling this script.

The function outputs a solved sosprogram structure prog, observer gains L, H∞ norm
gam and the Lyapunov operator P which proves observer stability and the observer gains L

and Z the variable used in change of variable step to eliminate bilinearity.

21.2.6 [prog,K,gam,P,Z]=

PIETOOLS Hinf control(PIE, settings)

This function file finds an H∞-optimal controller for the PIE Eq. (5.1) if one exists and
returns the opvar objects P and Z which can then be used to find the controller gains using
the relation K = ZP−1.

The function outputs a solved sosprogram structure prog, controller gains K, H∞ norm
gamma, the Lyapunov operator P which proves controller stability and Z the variable used in
change of variable step to eliminate bilinearity.

21.3 settings

Settings files are used to set up parameters related to LPI optimization problems such as
d and opts in poslpivar and lpivar functions. These settings also declare strictness of
sign-definite constraints on opvar objects. Although, these are not universal for all exam-
ples of PIEs, they seem to work well in most cases. Feel free to use different settings from
the one given in this scripts to tailor the code for specific examples. Current list of set-
tings files and a brief overview of what they do is given below. Additionally, we provide a
settings PIETOOLS custom file to allow users to freely modify and explore different settings
without having out to worry about breaking the default values.

Settings Description
settings PIETOOLS extreme low degree polynomials in P and Z, highly

sparse PI variables
settings PIETOOLS stripped low degree polynomials in P and Z, moder-

ately sparse PI variables
settings PIETOOLS light low degree polynomials in P and Z, non

sparse
settings PIETOOLS heavy high degree polynomials in P and Z, non

sparse
settings PIETOOLS veryheavy very high degree polynomials in P and Z,

non sparse
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Chapter 22

Troubleshooting

This chapter is dedicated to tackling issues related to installation and setting up of PIETOOLS
2021. Additionally, we also discuss some common issues users may run into while solving
LPIs.

22.1 Troubleshooting: Installation

When installing the PIETOOLS toolbox using the install script, in rare circumstances, the
user may run into one of following errors. In case of an error, a message is displayed explaining
the issue, which can be one of the following.

1. An error appeared when trying to create the folder ...
Check if the folder already has a folder named PIETOOLS 2021b. If that does not
resolve the issue try running MATLAB from an administrator account which has the
authority to create or modify folders. As a last resort, try installing in a different
folder. If that does not fix this, contact us.

2. The installation directory “ ” already exists...
Obvious error. However, if there is no folder with the name PIETOOLS 2021b, check
for a hidden folder.

3. ‘tbxmanager’ or ‘SeDuMi’ were not downloaded or installed...
Check your internet connection. Verify that MATLAB is allowed to download files
using the internet connection. Check if the websites for tbxmanager and SeDuMi are
operational.

4. ‘PIETOOLS’ was not downloaded or installed...
Check the suggestions for the previous error. If that does not fix the issue, contact us.

5. Could not modify the initialization file “startup.m”...
Try running MATLAB from an administrator account which has the authority to create
or modify folders. If that does not fix the issue, manually add SeDuMi or the relevant
SDP solver (like MOSEK, sdpt3, sdpnal) to your MATLAB path, and extract the files
in PIETOOLS 2021b.zip. Also add PIETOOLS to your MATLAB path.
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6. Could not save the path to a default location...
Try running MATLAB from an administrator account which has the authority to create
or modify folders. If that does not fix it, just add PIETOOLS and SeDuMi to your
MATLAB path and skip this step.

22.2 Troubleshooting: Solving LPIs

PIETOOLS can be used for solving LPI optimization problems and users may run into errors
while setting up and solving them. For any errors in setting up an LPI, refer to the function
and script headers to ensure that input-output formats are correct. Ensure that PI objects,
defined in the LPI problem, are well-defined and valid PI operators. You can use the isvalid
function to check if a PI operator is well defined. If that does not fix the problem, feel free
to contact us.
PIETOOLS 2021 relies on recently released SOSTOOLS 4.00 with solver SeDuMi to solve
optimization problems. If you are unfamiliar with SOSTOOLS, and are unsure how to
intepret the results of a solved optimization problem, please check the SOSTOOLS manual
available at http://www.cds.caltech.edu/sostools/, or the SeDuMi manual avaialable
at https://sedumi.ie.lehigh.edu/?page_id=58 for more information. A brief overview
of how to interpret results, and what to do in case of error, is provided below:

1. How do I interpret the results of a solved optimization problem?
A general rule of thumb is to look at: pinf, dinf, feasratio and Residual norm. pinf and
dinf should be 0, while feasratio is in between -1 and 1 (preferably closer to 1). The
lower the residual norm the better. Refer to SeDuMi manual to interpret other output
parameters and more details.

2. What if pinf is 1?
Verify if the LPI constraints are in fact feasible. Verify if the sign-definiteness of the
PI operator is on a compact interval (use psatz term if local sign-definite is needed)
or the entire real line. Use ’getdeg’ function to check if your LPI constraint has high
degree polynomials. If yes, make sure that all opvar variables used in lpi eq function
have high enough degrees to match it. If this does not resolve the issue contact us and
attach the files that you are trying to run along with a snapshot of the error/output.

3. What if dinf is 1 and feasratio is -1?
This issue typically occurs when the objective function is unbounded from below and
becomes −∞. Check if the objective function is bounded below. If this does not resolve
the issue contact us by email and attach the files that you are trying to run along with
a snapshot of the error/output.

22.3 Contact Details

To resolve issues, report bugs or to collaborate on any development work regarding PIETOOLS,
please contact us through email and we will get back to you as quickly as possible. In case
of issues with installation, solving problems or bugs identified, please include the script file
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that generates the error along with images of the error generated in MATLAB. You can
reach us through email at: sshivak8@asu.edu, ad2079@cam.ac.uk, djagt@asu.edu and
mpeet@asu.edu

109

sshivak8@asu.edu
ad2079@cam.ac.uk
djagt@asu.edu
mpeet@asu.edu


Bibliography

[1] A. Das, S. Shivakumar, S. Weiland, and M. Peet. H∞ optimal estimation for linear
coupled PDE systems. In Proceedings of the IEEE Conference on Decision and Control,
2019.

[2] John Doyle, Andy Packard, and Kemin Zhou. Review of LFTs, LMIs, and µ. 1991.

[3] M. Peet. A convex solution of the H∞-optimal controller synthesis problem for multi-
delay systems. SIAM Journal on Control and Optimization, 2019. Submitted.

[4] Matthew M Peet. Representation of networks and systems with delay: Ddes, ddfs, ode–
pdes and pies. Automatica, 127:109508, 2021.

[5] Stephen Prajna, Antonis Papachristodoulou, and Pablo A Parrilo. Introducing SOS-
TOOLS: A general purpose sum of squares programming solver. In Proceedings of the
41st IEEE Conference on Decision and Control, 2002., volume 1, pages 741–746. IEEE,
2002.

[6] Walter Rudin. Functional analysis, 1973.

[7] Peter Seiler. SOSOPT: A toolbox for polynomial optimization. arXiv preprint
arXiv:1308.1889, 2013.

[8] S. Shivakumar, A. Das, S. Weiland, and M. Peet. A generalized lmi formulation for
input-output analysis of linear systems of odes coupled with pdes. In Proceedings of the
IEEE Conference on Decision and Control, 2019.

110


	1 About PIETOOLS
	1.1 PIETOOLS 2021b Release Notes

	I Theory of Partial Integral Operators and Partial Integral Equations
	2 Introduction
	2.1 Motivation
	2.2 A simple, yet useful application...

	3 Partial Integral Operators
	3.1 Definition
	3.2 Algebra Of Partial Integral Operators
	3.2.1 Addition Of PI Operators
	3.2.2 Composition Of PI operators
	3.2.3 Adjoint Of A PI Operator

	3.3 Properties of Partial Integral Operators
	3.3.1 Differentiation of a PI operator
	3.3.2 Dirac operator on a PI operator

	3.4 Matrix Parametrization of Positive Definite PI operators
	3.5 Inverse of a 4-PI operator

	4 Linear Partial Integral Inequalities
	4.1 A General Class of LPI problems
	4.2 Application of LPIs

	5 Partial Integral Equations
	5.1 Definition
	5.2 Application of PIE framework
	5.2.1 DDE to PIE
	5.2.2 ODE-PDE to PIE



	II PIETOOLS: A computational toolbox
	6 PIETOOLS 2021b
	6.1 Getting Started
	6.1.1 Installation

	6.2 Demos of PDEs and Integral Operators in PIETOOLS

	7 opvar and dopvar: MATLAB classes for PI operators
	7.1 Initialization and Assignment
	7.2 opvar class methods
	7.2.1 +
	7.2.2 *
	7.2.3 '
	7.2.4 Concatenation
	7.2.5 isvalid
	7.2.6 inv_opvar
	7.2.7 Conditional statements involving PI operators
	7.2.8 subsref or sliced indexing

	7.3 Additional methods for opvar objects
	7.4 dopvar: An opvar with decision variables

	8 PIETOOLS: Setting up and solving LPIs
	8.1 Optimization problem structure
	8.2 4-PI Decision Variables
	8.2.1 poslpivar
	8.2.2 lpivar
	8.2.3 getsol_lpivar

	8.3 4-PI Constraints
	8.3.1 lpi_eq
	8.3.2 lpi_ineq



	III PIEs: Representation, Analysis, and Control
	9 Representation of PIEs
	9.1 Elements of the PIE data structure
	9.2 Initializing and modifying a PIE data structure

	10 LPIs for Analysis, Estimation, and Control of PIEs
	10.1 LPIs for Analysis of PIEs
	10.2 LPIs for Optimal Estimation of PIEs
	10.3 LPIs for Optimal Control of PIEs

	11 LPI Implementation in PIETOOLS: The Executive Files
	11.1 Executive File Settings


	IV PDEs: Representation, Analysis, and Control
	12 A GUI for Defining PDEs
	12.1 Step 1: Define States, Outputs and Inputs
	12.2 Step 2: Select an Equation to Add a Term
	12.3 Step 3: (Optional) Add or Remove BC
	12.4 Step 4-5: Parse PDE Parmeters and Convert Them to PIE

	13 The PDE Input Formats
	13.1 The Batch Input Format
	13.1.1 Dynamics of the PDE
	13.1.2 Dynamics of the ODE
	13.1.3 The Output Equation
	13.1.4 The Boundary Conditions

	13.2 The Term-Based Input Format
	13.2.1 The Variables and their Domain
	13.2.2 The Size of the Problem
	13.2.3 The ODE
	13.2.4 The PDE
	13.2.5 The Boundary Conditions

	13.3 Initializing your PDE

	14 Library of PDE Example Problems
	15 Analysis, Control, and Estimation of PDEs
	15.1 Defining the PDE object
	15.2 Converting to a PIE
	15.3 Choosing an Executive Mode
	15.4 Specifying Settings and SDP Solver
	15.5 Solving the problem, interpreting the output, and implementing the controller


	V Delayed Systems: Representation, Analysis and Control
	16 Constructing and Representing Systems with Delay
	16.1 The Delay Differential Equation (DDE) Format
	16.1.1 Initializing a DDE Data structure

	16.2 Input of Neutral Type Systems
	16.2.1 Initializing a NDS Data structure

	16.3 The Differential Difference Equation (DDF) Format
	16.3.1 Initializing a DDF Data structure


	17 Converting between DDEs, NDSs, DDFs, and PIEs
	17.1 DDF to PIE
	17.1.1 Minimal DDF Realization of a DDF
	17.1.2 Converting a DDF to a PIE

	17.2 DDE to DDF or PIE
	17.2.1 Minimal DDF and PIE Realizations of DDEs
	17.2.2 DDE direct to PIE [NOT RECOMMENDED!]

	17.3 NDS to DDF or PIE
	17.3.1 Converting NDS to DDF


	18 DDE, NDS, and DDF: Library of Examples
	18.1 DDE Examples
	18.2 NDS and DDF Examples

	19 DDEs, NDSs, DDFs: Stability Analysis and Controller Synthesis
	19.1 Input DDE or DDF Representation
	19.2 Convert to a PIE
	19.3 Choose Executive Mode
	19.4 Specify Settings and SDP Solver
	19.5 Solving the problem, interpreting the output, and implementing the controller


	VI PIESIM
	20 Simulation of PDEs/DDEs/PIEs
	20.1 PIE simulation using PIETOOLS
	20.1.1 Using solver_PIESIM script
	20.1.2 Using PIESIM function

	20.2 Plotting the solution
	20.3 PIESIM Demonstration: PDE example
	20.4 PIESIM Demonstration: DDE example
	20.5 PIESIM Demonstration: PIE example


	VII List of Files, Functions and Scripts
	21 PIETOOLS Scripts: Initialize Systems, Convert To PIEs And More
	21.1 converters
	21.1.1 initialize_PIETOOLS_DDE(DDE)
	21.1.2 initialize_PIETOOLS_DDF(DDF)
	21.1.3 initialize_PIETOOLS_NDS(NDS)
	21.1.4 initialize_PIETOOLS_PDE_batch(PDE)
	21.1.5 initialize_PIETOOLS_PDE_terms(PDE)
	21.1.6 convert_PIETOOLS_DDE(DDE)
	21.1.7 convert_PIETOOLS_DDF(DDF)
	21.1.8 convert_PIETOOLS_NDS2DDF(NDS)
	21.1.9 convert_PIETOOLS_PDE_batch(PDE)
	21.1.10 convert_PIETOOLS_PDE_terms(PDE)
	21.1.11 convert_PIETOOLS_PDE_batch2terms(PDE)

	21.2 executives
	21.2.1 [prog,P]=PIETOOLS_stability(PIE, settings)
	21.2.2 [prog,P]=PIETOOLS_stability_dual(PIE, settings)
	21.2.3 [prog,P,gam]=PIETOOLS_Hinf_gain(PIE, settings)
	21.2.4 [prog,P,gam]= PIETOOLS_Hinf_gain_dual(PIE, settings)
	21.2.5 [prog,L,gam,P,Z]=PIETOOLS_Hinf_estimator(PIE, settings)
	21.2.6 [prog,K,gam,P,Z]=PIETOOLS_Hinf_control(PIE, settings)

	21.3 settings

	22 Troubleshooting
	22.1 Troubleshooting: Installation
	22.2 Troubleshooting: Solving LPIs
	22.3 Contact Details



