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Abstract

In settings where an outcome, a decision, or a statement is made based on a single option among
alternatives, it is popular to cherry-pick the data to generate an outcome that is supported by the cherry-
picked data but not in general. In this paper, we use perturbation as a technique to design a support
measure to detect, and resolve, cherry-picking across different contexts. In particular, to demonstrate
the general scope of our proposal, we study cherry picking in two very different domains: (a) political
statements based on trend-lines and (b) linear rankings. We also discuss sampling-based estimation as an
effective and efficient approximation approach for detecting and resolving cherry-picking at scale.

1 Introduction

Often, an analysis, a decision, or a statement is made or justified based on a possible selection among a collection
of valid alternatives. The selection can be a specific piece of data or choice of parameters. Let us consider two
very different examples to understand the issues: trendline statements and multi-criteria rankings. Statements
made by politicians are often justified based on evidences from data. For example, a politician may compare
the unemployment rate on two dates to highlight the success of their policies or to criticize the other parties. As
another example, rankings are also used to compare different entities such as universities. Rankings are often
generated, using a weight vector that combines a set of criteria into a score, which is then used to sort the entities.

This enables (purposefully or not) cherry-picking to obtain an outcome that is supported by the cherry-picked
data but perhaps not in general. In the political statements example, there are plenty of examples cherry-picking
factual basis for making misleading conclusions [1]. For example, in his tweet [2] comparing his approval rate
with President Obama’s, President Trump cherry-picked a single poll source and a specific date which shows the
highest approval for him. In such situations, the outcome based on selected data is valid, but the choice of data or
parameters can be questioned. In other words, one can ask whether other alternatives support the final outcome.
Likewise, rankings are both sensitive and have been highly criticized for cherry-picking. College rankings, for
example, have a huge presence in Academia but have often been considered harmful [3, 4]. As M. Vardi nicely
explains, each ranking is based on a specific “methodology” while the choice of methodology is completely
arbitrary [4]. A similar concern has been cast by M. Gladwell [3], given that rankings depend on weights chosen
for variables.

Our focus in this paper is on how cherry-picking in different settings can be detected, measured, and resolved.
In particular, since data/parameters are carefully selected when cherry-picking, we note that the outcome should
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change by perturbing around them. For example, in President Trump’s tweet [2], by slightly changing the dates
chosen for comparison, the statement that President Trump has a higher approval rate is not longer valid. To
this end, we ask what other alternatives could have been chosen for a similar analysis. We can then look at the
outcome from all such alternative options. If the outcome is not based on cherry-picking, it should not differ by
much from the reported outcome; i.e., it is stable. In contrast, a outcome is presumed to be cherry-picked, if it
differs greatly from most alternatives considered. Even if it is not intentionally chosen to mislead, there is no
question that it does mislead its consumers about the observed trend.

Of course, this begs the question of what alternatives are valid to consider. In the simplest case, valid options
are a set of data/parameters to select from. In other cases, a set of constraints may have to hold for an option to be
valid. For instance, for a statement comparing the unemployment rate between two US presidents, a pair of dates
form a valid trend if each fall in the range of date each president has been in office. We abstract the universe of
valid alternatives for generating an outcome as a “region of interest”.

Following the above argument, we define a notion of “support” to measure cherry-picking. That is, given an
output O and a region of interest U , we compute its support as the ratio of the valid alternatives in the region of
interest that generate the same outcome. Formally,

ωU (O) =

∣∣{ui ∈ U|O(ui) ∼ O}
∣∣

|U|
(1)

where O(ui) is the outcome acquired using the option ui and O(ui) ∼ O indicates that O(ui) falls in the
“acceptance range” of O. The support of a statement shows what portion of the data “agree” with the outcome O.
If an outcome has a small support, it has been generated (whether intentionally or not) by cherry-picking. For
example, the low support measure for the statement comparing the approval rate of two presidents verifies that it
has been cherry-picked, not supported by the rest of the data.

Using the notion of support, our first mission is to detect if an outcome has been cherry-picked. Formally, we
define the cherry-picking problem as follows:

Problem 1 (Cherry-picking Detection): Given an output O and a region of interest U , compute ωU (O).

Besides detection, the support measure enables to mine data in order to find the most reliable outcome with
the maximum support. Formally we define the cherry-picking resolution problem as following:

Problem 2 (Cherry-picking Resolution): Given a region of interest U , find most supported outcome. That is

argmax
O∈{O(u)|u∈U}

wU (O) (2)

Cherry-picking and our notion of support for detecting and resolving it are general, not being limited to a
specific domain. Still, following the examples provided in this section, we provide a summary of our research
findings for Problems 1 and 2 for (i) political statements base on trendlines [5] and (ii) linear rankings [6].
Paper Organization: First, in § 2, we elaborate on the notion of trendlines and carefully provide the formal
definitions. We then discuss the design of exact algorithms both for detecting and resolving cherry-picking
trendlines. Next, in § 3, we study cherry-picking in our other application domain, linear ranking, and provide
exact algorithmic solutions to address Problems 1 and 2 for such rankings. In § 4, we discuss efficient and
effective sampling-based approximation techniques for detecting and resolving cherry-picking. Finally, we
conclude with brief sections on related work and future work, respectively.
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2 Cherry-picked Trendlines

A trendline is a common form of statement that appears in many domains, comparing two windows of points in
a timestamped data series. Cherry-picked trendlines are prevalent, for example, in politics, among many other
different forms of cherry-picking [1]. The partisans on one side of an argument look for statements they can make
about trends that support their position [7]. They would like not to be caught blatantly lying, so they cherry-pick
the factual basis for their conclusion. That is, the points based on which a statement is made may be carefully
selected to show a misleading trendline that is not a “reasonable” representation of the situation. Comparing with
other forms of statements, the simplicity of a trendline may have also contributed to it being a popular form of
cherry-picking. In this section, we focus on trendlines derived by comparing a pair of points in data to make a
statement. Formally, such a trendline is defined as follows:

Definition 1 (Trendline): For a dataset D, a trendline θ is a defined as a pair of trend points b (the beginning)
and e (the end) and their target values in the form of θ = 〈(b, y(b)), (e, y(e))〉.

For example, in a trendline comparing the unemployment rate in two dates d1 and d2 is defined as θ =
〈(d1, uemp(d1)), (d2, uemp(d2))〉 where uemp(di) is the unemployment rate at date di. We note that trendlines
can be defined over based on the aggregate over a window of points, which as explained in [5] can be transform
into the standard trendline form after linear preprocessing. Following the definition of trendline, a trendline
statement, or simply a statement, is a claim that is made based on the choice of a trendline. Formally,

Definition 2 (Statement): Given a trendline θ = 〈(b, y(b)), (e, y(e))〉, a statement is made by proposing a
condition that is satisfied by the target values y(b)) and y(e). In this paper, we consider the conditions that are
made based on the absolute difference between y(b) and y(e). Formally, given the trendline θ, the statement Sθ is
a range (⊥,>) such that y(e)− y(b) ∈ (⊥,>).

For instance, the statement “Unemployment decreased” is made by proposing a condition: (⊥ = −∞,> = 0),
which is satisfied by the selected trendline.

Given a statement S, a support region for S, RS = (R(b), R(e)), is defined as a pair of disjoint regions,
where every trendline θi with the beginning and end points bi and ei should satisfy the conditions bi ∈ R(b) and
ei ∈ R(e) to be considered for computing the support of S. A support region may naturally be defined by the
statement. For instance, for the statement comparing the approval rate of President Trump with President Obama,
R(b) (resp. R(a)) is any date when President Trump (resp. President Obama) has been in office.

Not all possible trendlines drawn in the support region may be valid or sensible. For example, for a statement
comparing the temperature of location/dates, a trendline that compares the temperature of two different locations
on different days may not be valid. Depending on the constraints the choice of one trend point enforces on the
other, valid trendlines may categorize into unconstrained trendlines and constrained trendlines. In the rest of this
section, we show-case our findings for unconstrained trendlines.

2.1 Cherry-picking Detection

Applying Equation 1 on trendlines, given a data set D, a statement S = (>,⊥), and a support region RS =
(R(b), R(e)), the support for S can be computed as

ωRS
(S,D) = vol({valid 〈p ∈ R(b), p′ ∈ R(e)〉 | y(p′)− y(p) ∈ (⊥,>)})

vol({valid 〈p, p′〉 | p ∈ R(b), p′ ∈ R(e)})
(3)

The denominator this equation is the universe of possible valid trendlines from R(b) and R(e). For unconstrained
trendlines, this is the product of the “volume” of R(b) and that of R(e). Similarly, the numerator can be rewritten
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Figure 1: Illustration of a point dxb
and the set of points in R(e) for which
y(dxe)− y(dxb) ≥ α.

Figure 2: Illustration of weights for
three points dx[i], dx[j], and dx[k] in
the example of Figure 1.

Figure 3: Illustration of the sliding win-
dow in R(b) for constrained trendlines.

as a conditional integral as follows:

v = vol({〈p ∈ R(b), p′ ∈ R(e)〉 | y(p′)− y(p) ∈ (⊥,>)}) =
∫
R(b)

(∫
{dx∈R(e) | y(dxe)−y(dxb)∈(⊥,>)}

dxe

)
dxb

(4)

Consider the partitioning of the space into the Riemann pieces (the data records in the dataset D). For a trend
point dxb, let Rdxb(e) be the points in R(e) where y(dxe)− y(dxb) ∈ (⊥,>). Then, Equation 4 can be rewritten
as the sum

v =
∑

∀dxb∈R(b)

dxb(
∑

∀dxe∈Rdxb
(e)

dxe) (5)

Consider the example in Figure 1. The horizontal axis shows the trend attribute x while the vertical axis shows
y. The trendline of interest is specified by the vertical dashed lines; the left green region identifies R(b) while
the one in the right shows R(e), and the curve shows the y values. In this example, the range of the statement S
is (α,∞). A point dxb in R(b) is highlighted in red in the left of the figure. For dxb, all points dxe ∈ R(e) for
which y(dxe)− y(dxb) > α support S, forming Rdxb(e) (highlighted in red in the right-hand side of the figure),
and therefore, are counted for dxb. The summation of these counts for all points in R(b) computes the numerator
of Equation 5. Following this, the baseline solution sweeps a vertical line from left to right through R(b) and
counts the acceptable points in R(e) for each dxb (similar to highlighted dxb and Rdxb in Figure 1). For each
point in R(b), the baseline algorithm makes a pass over R(e) and, therefore, is quadratic: assuming that |R(e)|
and |R(b)| are O(n), its run time is O(n2). In the following, we present an algorithm that pre-processes R(e) in
O(n log n) time, iterates over points in R(b), and utilizes the pre-processed R(e) to compute relevant component
of result for each b in O(log n) time. The overall time complexity is improved significantly to O(n log n).

Consider Equation 5 once again. For a point dx[i] in R(b), let w[i] be the number of points in R(e) where
y(dxe) − y(dx[i]) ∈ (⊥,>) , i.e.

∑
∀dxe∈Rdx[i](e)

dxe. Then, Equation 5 can be rewritten as
v =

∑
∀dx[i]∈R(b)w[i]. For example, in Figure 1, the weight of the point dxb is the width of the red rect-

angle Rdxb(e). In the following, we show how the construction of a cumulative function for R(e) enables
efficiently finding the corresponding weights for the points in R(b).

In Figure 1, let dx[1] to dx[n′] be the set of points inR(b), from left to right. Figure 2 shows three points dx[i],
dx[j], and dx[k] where y(dx[i]) < y(dx[j]) < y(dx[k]). It also highlights Rdx[i](e), Rdx[j](e), and Rdx[k](e)
in the right. Note that Rdx[i](e) consists of two disjoint rectangles. Looking at the figure, one can confirm that
Rdx[k](e) is a subset of Rdx[j](e) and Rdx[j](e) is a subset of Rdx[i](e). Since all points in Rdx[k](e) belong to
Rdx[j](e) and Rdx[i](e), we do not need to recount those points three time for dx[i], dx[j], and dx[k]. Instead, we
could start from dx[k], compute its width, move to dx[j], only consider the parts of Rdx[j](e) that is not covered
by Rdx[k](e), i.e. Rdx[k](e)\Rdx[k](e), and set w[j] as w[i] plus the width of the uncovered regions by Rdx[k](e).
Similarly, in an incremental manner, we could compute w[i], as we sweep over R(e).
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Let dx[1] to dx[n′] be the set of points in R(b), from left to right. Figure 2 shows three points dx[i], dx[j],
and dx[k] where y(dx[i]) < y(dx[j]) < y(dx[k]). It also highlights Rdx[i](e), Rdx[j](e), and Rdx[k](e) in the
right. Note that Rdx[i](e) consists of two disjoint rectangles. Looking at the figure, one can confirm that Rdx[k](e)
is a subset of Rdx[j](e) and Rdx[j](e) is a subset of Rdx[i](e). Since all points in Rdx[k](e) belong to Rdx[j](e)
and Rdx[i](e), we do not need to recount those points three time for dx[i], dx[j], and dx[k]. Instead, we could
start from dx[k], compute its width, move to dx[j], only consider the parts of Rdx[j](e) that is not covered by
Rdx[k](e), i.e. Rdx[k](e)\Rdx[k](e), and set w[j] as w[i] plus the width of the uncovered regions by Rdx[k](e).
Similarly, in an incremental manner, we could compute w[i], as we sweep over R(e).

Following the above discussion, if we could design a “cumulative” function F : R→ R, that for every value
y, returns the number of points dx in R(e) where y(dx) < y, we could use it to directly compute the weights for
the points in R(b). Formally, we seek to design the following function F = |{dx ∈ R(e) | y(dx) < y}|. Given
such a function F , the weight of the point dx[i] ∈ R(b) can be computed as following:

w[i] = F
(
y(dx[i]) +>

)
− F

(
y(dx[i]) +⊥

)
(6)

We use a sorted list F as the implementation of F . F contains the target values in R(e) such that the i-th
element in F shows the y value for the i-th largest point in R(e). Having the target values sorted in F, in order to
find F (y), it is enough to find index i for which F[i] < y and F[i+ 1] ≥ y. Then, F (y) = i. That is because, for
all j ≤ i: F[j] < y, while for all j > i: F[j] ≥ y. Therefore, the number of points for which y(x) < y is equal to
i. Also, since the values in F are sorted, we can use binary search for finding the index i.

Having the sorted list F constructed, the weight of a point dx ∈ R(b) can be computed using Equation 6 by
applying two binary searches over F. Then making a pass overR(b), we can compute the nominator of Equation 3
as v =

∑
∀dx[i]∈R(b)w[i]. The sum is then is used to calculate ω(S,RS). Considering O(n) points in each region,

the algorithm conducts O(log n) for each point in R(b) for binary searches, and hence takes O(n log n) time.

2.2 Cherry-picking Resolution

An immediate question after detecting an statement based on cherry-picked trendlines is if not this, what is the
right statement supported by the data? For instance, consider a fantastical statement that, cherry-picking a summer
day and a winter day, claims in 2012 Summer was colder than winter in Northern Hemisphere. Apparently, using
the 2012 weather data, this statement has very low support. Then, a natural question would be: what is the fair
statement supported the most by data? For example, considering a 5 degrees Celsius range for the statement, is
summer typically warmer than winter by 20-25 degrees Celsius, is it 15-20 degrees, or is it something else? How
representative can it be if we would like to make such a statement with a 5 degree difference?

Formally speaking, adjusting Problem 2 for trendlines, given a dataset D, a value d, and a support region RS ,
we want to find the statement S = (⊥,⊥+ d) with the maximum support. Finding most supported statements
(MSS) is challenging. That is because a brute force solution needs to generate all possible statements and check
the support for each using the techniques provided in the previous sections. Let ymin and ymax be min( y(R(e)))
and max(y(R(e))) respectively. For MSS, (ymax−ymin) provides a lower bound for⊥ and (ymax−ymin−d) is
an upper bound for it. The brute-force algorithm can start from the lower bound, check the support of S(⊥,⊥+d),
increase the value of ⊥ by a small value ε, check the support of the new statement, repeat this process until
⊥ reaches the upper bound, and return the statement with the maximum support. Note that in addition to the
efficiency issue, this algorithm cannot guarantee the discovery of the optimal solution, no matter how small ε is.

Instead, we first create the “sorted distribution of trendlines.” That is, we create a sorted list ` (from smallest
to largest) where every value is the difference between the target values of a valid trendline. Constructing `
requires passing over the pairs of trendlines and then sorting them. Given that the number of pairs is O(n2),
constructing the ordered list takes O(n2 log n) time.

Having ` constructed, finding the MSS requires a single pass. Recall that every value in ` represents the
target-value difference of a valid trendline. For a fixed statement range, the support window should contain all

56



trendlines that their target-value differences belong to the statement range; hence, the window size is variable.
The algorithm for finding MSS starts from the beginning of ` the algorithm sweeps a window over `. At every
step i, it increases the value of j until it finds the index where (`[j] − `[i]) ≤ d while (`[j + 1] − `[i]) > d.
The support of the statement identified by the current window is (j − i)/|`|. In the end, the window with the
maximum size (therefore maximum support) is returned. Note the values of i and j only get increased during the
algorithm until they reach to the end of the list `. As a result, after constructing the sorted list `, the algorithm
requires O(n2) to find the MSS.

3 Cherry-picked Rankings

Compared with trendlines, ranking is commonplace yet challenging, especially when there are multiple criteria to
consider. When there is more than one attribute to be considered for ranking, it is common to use a weight vector
to linearly combine the criteria into a score that is used for sorting the items. While complex function can also be
used for scoring, in this section we will focus on linear ranking functions that are often used in human-designed
rankers such as U.S. News and World Report, Times Higher Education, the National Research Council, etc.

Rankings are important as they may have a significant impact on individuals and society, when it comes
to, for example, college admissions, employment, university ranking, sports teams/players ranking, etc. Many
sports use ranking schemes. An example is the FIFA World Ranking of national soccer teams based on recent
performance. FIFA uses these rankings as “a reliable measure for comparing national A-teams” [8]. Despite the
trust placed by FIFA in these rankings, many critics have questioned their validity. University rankings is another
example that is both prominent and often contested [3]: various entities, such as U.S. News and World Report,
Times Higher Education, and QS, produce such rankings. Similarly, many funding agencies compute a score for
a research proposal as a weighted sum of scores of its attributes. These rankings are, once again, impactful, yet
heavily criticized.

Example 1: Consider a real estate company with 5 agents that would like to rank them (for promotion) based
on two criteria, x1 : customer satisfaction and x2 : sales. Figure 4 shows the candidates as well as their
(normalized) values for x1 and x2. Claiming that the company values sales slightly more than customer
satisfaction, they use the weight vector ~w = 〈1.1, 1.3〉, computed as f(t) = 1.1x1 + 1.3x2 for ranking the
agents. The scores generated for each agent is shown in the last column of Figure 1.

The ranking generated in Example 1 has been generated using the weights selected in an ad-hoc manner,
while the outcome heavily depend in the selection of weights [3]. In other words, unstable outcomes can be
generated by cherry picking the weights. In particular, as we shall evaluate it next, it turns out the selected ranking
has a low support value, indicating that it (whether intentionally or not) has been cherry-picked.

Following Example 1, in the rest of this section we limit our scope to the 2D ranking functions. First, in the
following, we provide some background about the geometry of rankings. Next, adjusting the notions of support
and region of interest for linear rankings, we propose two algorithms for detecting and resolving cherry-picking.
Later in § 4, we will provide a sampling-based approximation approach for MD cases where there are more that
than two criteria for ranking.

3.1 Geometry of Rankings

In the popular geometric model for studying data, each attribute is modeled as a dimension and items are
interpreted as points in a multi-dimensional space (Figure 4b). This is called the primal space where a scoring
function is modeled as an origin starting ray and the ranking of items based on it is determined by their projection
on the line, as shown in Figure 4b. We transform this primal space into a dual space [9], in order to identify regions
that help detecting cherry-picking. In the dual space, in R2, every item t is a line given by d(t) : t[1]x1+t[2]x2 = 1

57



D f

id x1 x2 1.1x1 + 1.3x2

t1 0.63 0.71 1.34
t2 0.83 0.65 1.48
t3 0.58 0.78 1.36
t4 0.7 0.68 1.38
t5 0.53 0.82 1.35

(a) A sample database, D, of items with
scoring attributes x1 and x2; and the
result of scoring function f = 1.1x1 +
1.3x2.
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(b) Original space: each item is a point. A
scoring function is a ray which induces a
ranking of the items by their projection.
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(c) Dual space: items are the lines. Within a re-
gion bounded by the intersections of dual lines, all
functions induce the same ranking.

Figure 4: A sample database and its geometric interpretation in the original space and dual space.

(Figure 4c). In the dual space, a scoring function f based on the vector ~w translates to an origin starting ray that
passes through the point ~w. For example, the function f with the weight vector ~w = 〈1.1, 1.3〉 in Example 1 is
drawn in Figure 4c as the origin-starting ray that passes through the point [1.1, 1.3].

Every scoring function can then be identified by the angle θ it makes with the x-axis. For example, the
function f in Figure 4c is identified by the angle θ = arctan(1.31.1). In other words, there is a one-to-one mapping
between possible values for angle θ and the set of possible scoring functions in 2D. This observation enables
extending the notion of support for rankings.

The ordering of the items based on a function f is determined by the ordering of the intersection of the
hyperplanes with the vector of f . The closer an intersection is to the origin, the higher its rank. For example, in
Figure 4c, the intersection of the line t2 with the ray of f = 1.1x1 + 1.3x2 is closest to the origin, and t2 has the
highest rank for f .

One observation from the dual space is that the intersections between the dual lines of the items partition the
space of possible scoring functions (different values of θ) into discrete regions, called ranking regions, where (a)
all scoring functions in each region generate the same ranking and (b) no two regions generate the same ranking.
In order words, there is a one-to-one mapping between possible rankings and the ranking regions. Formally, let
RD be the set of rankings over the items in D that are generated by at least one choice of weight vector. For a
ranking r ∈ RD, we define its region, RD(r), as the set of functions that generate r:

RD(r) = {f | ∇f (D) = r} (7)

Figure 4b shows the boundaries (as dotted lines) of the regions for our sample database, one for each of the 11
feasible rankings. We use the ranking regions in order to extend the notion of support for rankings. Looking
at the figure, one can observe that the weight vector ~w = 〈1.1, 1.3〉 in Example 1 belongs to a narrow ranking
region (R8) and by slightly changing it, the ranking changes. In other words, it is evident from the figure that the
ranking has been cherry-picked.

Every ranking region in 2D can be identified by the two angles in its boundary. Let θb(R) and θe(R) be the
beginning and the end angles for the region R. We define the volume of the region, vol(R) = θe(R)− θb(R) to
measure the bulk of the region. Similarly, a region of interest in 2D, U , is identified by two angles demarcating
the edges of the pie-slice, i.e., U = 〈θb, θe〉. For example, let a region of interest be defined by the set of
constraints {w1 ≤ w2,

√
3w1 ≥ w2}. This defines the set of functions above the line w1 = w2 and below the

line
√
3w1 = w2, limiting the region of interest to the angles in the range [π/4, π/3]. Similarly, a region defined
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around f = x1 + x2 with the maximum angle π/10◦ corresponds to the angles in the range [3π/20, 7π/20]. The
volume of the region of interest can be computed as vol(U) = θe − θb.

Following Equation 1, the support of a ranking r can be measured as the ratio of the volume of its region to
the volume of the region of interest: (Equation 1) as following:

ωU (r,D) =
vol(RD(r))

vol(U)
=
θe(RD(r))− θb(RD(r))

θe − θb
(8)

We note that sometimes in practice not all parts of a ranking are important for studying the support. For
example, if the end goal of a ranking is done to select the top-k items, the support value shall be defined on
possible (unordered) top-k sets, not the rankings. Similarly, a partial ranking may only look into the top-k (or
bottom-k) items. As a generalization of both examples above, inversions at different positions of a ranking may
be of different levels of interest/importance (e.g., inverting 10th and 11th items still matters, but not as much as
inverting the 1st and the 2nd), and a ranking can be considered as supporting another if the cumulative importance
of their inversions is within an acceptable range. [6] elaborates on how to extend the notions of ranking region
and support, as well as the detection and resolution algorithms for some of these cases.

3.2 Cherry-picking Detection

The intersections between the lines of items in the dual space, called ordering exchanges, are the key in identifying
the ranking regions. Consider a ranking r. For a value of i ∈ [1, n), let t and t′ be the i-th and (i+ 1)-th items in
r. If t dominates t′ (i.e., t[1] > t′[1] and t[2] > t′[2]) the dual lines d(t) and d(t′) will not intersect. Otherwise,
using the equations of dual lines, the ordering exchange between t and t′ can be computed as:

θt,t′ = arctan
t′[1]− t[1]
t[2]− t′[2]

(9)

If t[1] < t′[1] (resp. t[1] > t′[1]), all functions with angles θ < θt,t′ (resp. θ > θt,t′) rank t higher than t′.
The reason is that if t[1] > t′[1], t[2] should be smaller than t′[2], otherwise t dominates t′. Hence t[1]

t[2] >
t′[1]
t′[2] , i.e.

the dual line d(t) has a larger slope than d(t′), and intersects the rays in range [0, θt,t′) closer to the origin.
We use this idea for computing the support (and the region) of a given ranking r. The cherry-picking detection

algorithm uses the angle range (θ1, θ2), where 0 ≤ θ1 < θ2 ≤ π/2, for specifying the region of r. For each value
of i in range [1, n), the algorithm considers the items t and t′ to be the i-th and (i+ 1)-th items in r, respectively.
If t′ dominates t, the ranking is not valid. Otherwise, if t does not dominate t′, the algorithm computes the
ordering exchange θt,t′ and, based on the values of t[1] and t′[1], decides to use it for setting the upper bound or
the lower bound of the ranking region. After traversing the ranked list r, the algorithm returns (θmin, θmax) as
the region of r, and θmax−θmin

θ2−θ1 as the support of r. Since the algorithm scans the ranked list only once, computing
the support of a ranking in 2D takes O(n) time.

3.3 Cherry-picking Resolution

Similar to other cherry-picking problems such as cherry-picked trendlines, a natural question followed by the
detection problem is to find the most supported ranking. This should help the producers of rankings to reveal the
ranking that is not just supported by a single function, but the one that has the most support among all possible
rankings generated by the functions in the region of interest. Formally, for a dataset D with n items over d (here
d = 2) scoring attributes, a region of interest U (in 2D, U = (θb, θe)), find the ranking r with maximum support.

Following the notion of ranking regions, we propose a ray sweeping algorithm for finding the most supported
ranking, that is, the ranking with the largest region. Let U = (θb, θe) be the region of interest. The algorithm starts
from the angle θb and, while sweeping a ray toward θe, uses the dual representation of the items for computing
the ordering exchanges and finding the ranking regions.
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To do so, the algorithm starts by ranking rθb the items based on θb. It uses the fact that at any moment, an
adjacent pair in the ordered list of items exchange ordering, and, therefore, computes the ordering exchanges
between the adjacent items in the ordered list. The intersections that fall into the region of interest are added to a
min-heap data structure that serve as the sweeper.

Next, it removes the ordering exchange with the minimum angle θt,t′ from the heap, which together with θb
for the first ranking region R(rθb). The support of the first region is ωU (r,D) = (θt,t′ − θb)/(θe − θb), which
is the maximum support discovered so far. That is ωmax = ωU (r,D). After identifying the first region, the
algorithm updates its ranking by changing the order between t and t′ in it list. The new ranking adds two new
ordering exchanges between t and t′ and their new neighbors in the ranking, which are added to the sweeper’s
heap. The algorithm then pops the next ordering exchange from the heap to identify the next ranking region;
computes its support; and updates ωmax if the new region has a higher support than the best known solution. The
algorithm stops when the heap is empty and returns the corresponding ranking with ωmax as the output. It also
returns the region of the ranking, along with a scoring function that generates the ranking.

The maximum number of ranking regions is O(n2), since there are at most
(
n
2

)
ordering exchanges between

the items. Adding or removing an item from the sweeper’s list takes O(log n), hence the complexity of the
cherry-picking resolution algorithm is O(n2 log n).

4 Sampling-based Approximation

In large-scale settings where perturbation space, i.e. U , is sizable, it is challenging to either detect or resolve
cherry-picking at interactive speed. That is because in such cases even a linear scan over the region of interest
to consider all possible cases is time consuming. Consider cherry-picking trendlines as an example. In very
large settings where the number of points in R(b) and R(e) is significant, or in the absence of explicit target
values where acquiring the data is costly, exact algorithms may not be efficient. The situation is even worse
for ranking. So far in this paper, we only considered 2D scoring functions that use two criteria for ranking. In
practice, however, there often are more than two criteria for ranking. FIFA rankings, for example uses 4 criteria
to rank the national soccer teams [8]. In such cases, due to the curse of dimensionality, the size of the region of
interest exponentially grows with d (the number of criteria) and exact algorithms are no longer efficient (please
refer to [6] for more details).

On the other hand, approximate estimations of support may often be enough to give the user a good idea about
cherry-picking. Hence, a user may prefer to quickly find such estimates, rather than spending a significant amount
of time for finding out the exact values. Sampling-based approached, in particular Monte-Carlo methods [10, 11]
turn out to be both efficient and accurate for such approximations.

Monte-Carlo methods use repeated sampling and the central limit theorem [12] for solving deterministic
problems. Based on the law of large numbers [12], the mean of independent random variables can serve for
approximating integrals. That is because the expected number of occurrence of each observation is proportional
to its probability. At a high level, the Monte-Carlo methods work as follows: first, they generate a large enough
set of random inputs based on a probability distribution over a domain; then they use these inputs to estimate
aggregate results.

An important observation is that uniform sampling from a region of interest U allows sampling output O
based on its support value. This enables both detection and resolution of cherry-picking by observing different
outputs based on the samples and estimating their supports. As a specific topic for the explanation, let us
once again consider cherry-picking trendlines. Consider a statement S = (⊥,>) with the region of interest
RS = 〈R(b), R(e)〉. The universe of possible trendlines from R(b) to R(e) is the set of valid pairs 〈p, p′〉 where
p ∈ R(b) and p′ ∈ R(e). Let ω be the support of S in the region RS , i.e., ω(S,RS). For each uniformly sampled
pair 〈p, p′〉, let the random Bernoulli variable x〈p,p′〉 be 1 if y(p′)− y(p) ∈ (⊥,>), 0 otherwise. The probability
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distribution function (pdf) of the Bernoulli variable x is:

p(x) =

{
ω x = 1

1− ω x = 0
(10)

The mean of a Bernoulli variable with the success probability of x is µ = ω and the variance is σ2 = ω (1− ω).
For every set ξ of N iid (independent and identically distributed) samples taken from the above binary variable x,
let mξ be the random variable showing the average of ξ. Using the central limit theorem, mξ follows the Normal
distributionN

(
µ, σ√

N

)
– with the mean µ and standard deviation σ√

N
. Given a confidence level α, the confidence

error e identifies the range [mξ − e,mξ + e] where

p(mξ − e ≤ µ ≤ mξ + e) = 1− α

Using the Z-table,
e = Z(1− α

2
)
σ√
N

For a large enough value of N , we can estimate σ as
√
mξ (1−mξ). Hence, the confidence error can be

computed as:

e = Z(1− α

2
)

√
mξ (1−mξ)

N
(11)

Following the above discussion, the algorithm to estimate the support ω(S,RS) uses a budget of N sample
trendlines from RS . The algorithm computes mξ by ratio of samples that support S. It then computes the
confidence error e, using Equation 11 and returns mξ and e. It is easy to see that, since the algorithm linearly
scans over N samples, its running time is O(N).

Similarly, the samples can be used to identify the most supported outcome. To see a different application,
let us now consider cherry-picking in ranking. In MD where there are d > 2 criteria for ranking, every item
is represented with a hyperplane d(t) :

∑d
i=1 t[i]xi = 1. A scoring function remains as a origin-anchored ray

in Rd, identified by d − 1 angles. In such cases, a region of interest can be described as an origin-anchored
hyper-spherical cone, identified by a cosine similarity around an original scoring function. Taking unbiased
samples from such an environment becomes challenging, in particular when the region of interest is narrow.
Such a sampler is provided in [6, 13]. Having the sampler designed, we can design a Monte-carlo method for
identifying the most supported ranking. The algorithm uses a hash data structure that contains the aggregates of
the rankings it has observed so far. Upon calling the algorithm, it first draws N sample functions from the region
of interest U . For each sampled scoring function, the algorithm finds the corresponding ranking and checks if
it has previously been discovered. If not, it adds the ranking to the hash and sets its count as 1; otherwise, it
increments the count of the ranking. The algorithm then chooses the ranking that has the maximum count. It
computes the support and confidence error of the ranking (using Equation 11) and returns it. Note that following
the Monte-carlo method, the algorithm approximately estimates the support of each region and, hence, may miss
to return the actual ranking with the maximum support, especially when the number of ranking regions is not
small and their supports are close to each other. Still, following the bounds provided by the confidence error, the
algorithm guarantees a (user-controllable) upper bound on the difference between the actual maximum support
and the algorithm’s selection. Considering a budget of N samples while finding the ranking for each sample, the
algorithm runs in O(Nn log n) time. This method has been used in our demo system [14] for responsible ranking
design.
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5 Related Work

Cherry-picking detection and resolution is closely related to, but not limited to computational fact checking, which
originated in journalism, with an aim to detect fake news by comparing of claims extracted from the news content
against the existing facts [15–22]. The initial fact checking efforts included manual methods based on the domain
knowledge of human expert and crowdsourcing [18, 20]. Manual fact checking efforts, however, are not scalable
and may not make full use of relevant data. As a result, computational approaches have emerged, with the “Holy
Grail” being a platform that can automatically “evaluate” a claim in real-time [17]. Computational fact checking
harnesses on techniques from various areas of research such as natural language processing [23, 24], information
retrieval [25, 26], and graph theory [15], and spurred novel research including but not limited to multi-source
knowledge extraction [27–29], data cleaning and integration [30–32], and credibility evaluation [33, 34]. Existing
work also includes style-based [35–38], propagation-based [39–41], and credibility-based [40, 42–45] study of
fake news. Further information about fake news and the detection mechanisms can be found in a comprehensive
literature survey by Zhou and Zafarani [46].

Using perturbations for studying uncertainty has been studied in different context in data management [47–49].
Perturbation is an effective technique for studying the robustness of query outputs. For example, [6, 14, 50] use
function perturbation for verifying the stability of ranking queries, as well as discovering fair and stable rankings.
Query perturbation has also been used for retrieving more relevant query results [51–54].

The idea of query perturbation has also seen its applications in the context of the computational journalism,
in both fact-checking [21] and lead-finding [55]. Compared with [21], whose focus is more on the modeling of a
generic framework for perturbation-based fact-checking, we drill down on two common types of statements—
trendlines and linear rankings. On the mining aspect, while [55] studied the representative points to capture the
high-value regions of a complex surface, we have treated all points in the support region indifferently, proposed
and studied the notion of “support,” which is a natural measure that can be defined within the framework and
complementary to those defined in [21].

6 Final Remarks and Future Work

In this article, we proposed a measure of support, based on perturbation, to detect and resolve cherry-picking in
different contexts. We have demonstrated cherry-picking detection and resolution in two representative types of
statements, namely trendlines and linear rankings, with applications in various domains, including but not limited
to politics, environment, education, sports, and business intelligence. Besides the exact algorithms, we proposed
sampling-based and Monte-Carlo methods as effective approximations for detecting and resolving cherry-picking
at scale.

We only focused on the algorithmic aspect of cherry-picking in this paper, which simplifies the problem by
assuming the existence of data and a query. Any successful attempt as a real-world system for detection and
resolution of cherry-picking needs to address the challenges associated with such assumptions. In the context of
trendlines, for example, the first challenge is to translate the (informal) human-language statements to formal
trendline statement queries. This requires efficient interaction with human experts for statement formation or
(semi-)automatic methods. The next major challenge is to discover the relevant data for evaluating the support of
the statement. Discovering relevant data or unbiased samples that can be used for studying cherry-picking is often
challenging for real-world scenarios. Fortunately, there have been extensive efforts in the database community,
both in designing interactive query systems [56–58] as well as data discovery [59–62], which can be extended for
the context of cherry-picking.

Acknowledgments

This research is supported in part by NSF 2107290, 1741022, 1934565, and the Google Research Scholar Award.

62



References

[1] L. Jacobson. The age of cherry-picking. PolitiFact, Feb. 5, 2018.

[2] L. Jacobson. Donald trump tweet on 50% approval cherry-picks polling data. PolitiFact, June 19, 2017.

[3] M. Gladwell. The order of things: What college rankings really tell us. The New Yorker Magazine, Feb. 14, 2011.

[4] M. Y. Vardi. Academic rankings considered harmful! Communications of the ACM, 59(9), 2016.

[5] A. Asudeh, H. V. Jagadish, Y. Wu, and C. Yu. On detecting cherry-picked trendlines. PVLDB, 13(6):939–952, 2020.

[6] A. Asudeh, H. Jagadish, G. Miklau, and J. Stoyanovich. On obtaining stable rankings. PVLDB, 12(3), 2019.

[7] C. Wardle. Fake news. it’s complicated. First Draft News, Feb. 16, 2017.

[8] Fifa/coca-cola world ranking procedure. The Fédération Internationale de Football Association, 28 March 2008.

[9] H. Edelsbrunner. Algorithms in combinatorial geometry, volume 10. Springer Science & Business Media, 2012.

[10] C. P. Robert. Monte carlo methods. Wiley Online Library, 2004.

[11] F. J. Hickernell, L. Jiang, Y. Liu, and A. B. Owen. Guaranteed conservative fixed width confidence intervals via monte
carlo sampling. In Monte Carlo and Quasi-Monte Carlo Methods 2012, pages 105–128. Springer, 2013.

[12] R. Durrett. Probability: theory and examples. Cambridge university press, 2010.

[13] A. Asudeh and H. Jagadish. Responsible scoring mechanisms through function sampling. CoRR, abs/1911.10073,
2019.

[14] Y. Guan, A. Asudeh, P. Mayuram, H. Jagadish, J. Stoyanovich, G. Miklau, and G. Das. Mithraranking: A system for
responsible ranking design. In SIGMOD, pages 1913–1916. ACM, 2019.

[15] S. Cohen, J. T. Hamilton, and F. Turner. Computational journalism. CACM, 54(10):66–71, 2011.

[16] Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu. Toward computational fact-checking. PVLDB, 7(7):589–600, 2014.

[17] N. Hassan, B. Adair, J. T. Hamilton, C. Li, M. Tremayne, J. Yang, and C. Yu. The quest to automate fact-checking. In
Computation+Journalism Symposium, 2015.

[18] N. Hassan, F. Arslan, C. Li, and M. Tremayne. Toward automated fact-checking: Detecting check-worthy factual
claims by claimbuster. In SIGKDD, pages 1803–1812. ACM, 2017.

[19] N. Hassan, G. Zhang, F. Arslan, J. Caraballo, D. Jimenez, S. Gawsane, S. Hasan, M. Joseph, A. Kulkarni, A. K. Nayak,
et al. Claimbuster: the first-ever end-to-end fact-checking system. PVLDB, 10(12):1945–1948, 2017.

[20] N. Hassan, C. Li, and M. Tremayne. Detecting check-worthy factual claims in presidential debates. In CIKM, 2015.

[21] Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu. Computational fact checking through query perturbations. TODS,
42(1):4, 2017.

[22] N. Hassan, A. Sultana, Y. Wu, G. Zhang, C. Li, J. Yang, and C. Yu. Data in, fact out: automated monitoring of facts
by factwatcher. PVLDB, 7(13):1557–1560, 2014.

[23] Y. Li, I. Chaudhuri, H. Yang, S. Singh, and H. Jagadish. Danalix: a domain-adaptive natural language interface for
querying xml. In SIGMOD, pages 1165–1168. ACM, 2007.

[24] Y. Li, H. Yang, and H. Jagadish. Constructing a generic natural language interface for an xml database. In ICDT,
pages 737–754. Springer, 2006.

[25] P. A. Bernstein and L. M. Haas. Information integration in the enterprise. CACM, 51(9):72–79, 2008.

[26] A. Doan, A. Halevy, and Z. Ives. Principles of data integration. Elsevier, 2012.

[27] S. Pawar, G. K. Palshikar, and P. Bhattacharyya. Relation extraction: A survey. CoRR, abs/1712.05191, 2017.

[28] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun, and W. Zhang. Knowledge
vault: A web-scale approach to probabilistic knowledge fusion. In SIGKDD, pages 601–610. ACM, 2014.

63



[29] R. Grishman. Information extraction. IEEE Intelligent Systems, 30(5):8–15, 2015.

[30] R. C. Steorts, R. Hall, and S. E. Fienberg. A bayesian approach to graphical record linkage and deduplication. Journal
of the American Statistical Association, 111(516):1660–1672, 2016.

[31] A. Magdy and N. Wanas. Web-based statistical fact checking of textual documents. In SMUC. ACM, 2010.

[32] Y. Altowim, D. V. Kalashnikov, and S. Mehrotra. Progressive approach to relational entity resolution. PVLDB,
7(11):999–1010, 2014.

[33] D. Esteves, A. J. Reddy, P. Chawla, and J. Lehmann. Belittling the source: Trustworthiness indicators to obfuscate
fake news on the web. CoRR, abs/1809.00494, 2018.

[34] X. L. Dong, E. Gabrilovich, K. Murphy, V. Dang, W. Horn, C. Lugaresi, S. Sun, and W. Zhang. Knowledge-based
trust: Estimating the trustworthiness of web sources. PVLDB, 8(9):938–949, 2015.

[35] G. D. Bond, R. D. Holman, J.-A. L. Eggert, L. F. Speller, O. N. Garcia, S. C. Mejia, K. W. Mcinnes, E. C. Ceniceros,
and R. Rustige. ‘lyin’ted’,‘crooked hillary’, and ‘deceptive donald’: Language of lies in the 2016 us presidential
debates. Applied Cognitive Psychology, 31(6):668–677, 2017.

[36] S. Volkova, K. Shaffer, J. Y. Jang, and N. Hodas. Separating facts from fiction: Linguistic models to classify suspicious
and trusted news posts on twitter. In ACL-IJCNLP (Volume 2: Short Papers), pages 647–653, 2017.

[37] M. Potthast, J. Kiesel, K. Reinartz, J. Bevendorff, and B. Stein. A stylometric inquiry into hyperpartisan and fake
news. CoRR, abs/1702.05638, 2017.

[38] D. Pisarevskaya. Deception detection in news reports in the russian language: Lexics and discourse. In EMNLP
Workshop, pages 74–79, 2017.

[39] J. Ma, W. Gao, and K.-F. Wong. Rumor detection on twitter with tree-structured recursive neural networks. In
ACL-IJCNLP (Volume 1: Long Papers), pages 1980–1989, 2018.

[40] K. Wu, S. Yang, and K. Q. Zhu. False rumors detection on sina weibo by propagation structures. In ICDE, 2015.

[41] S. Vosoughi, D. Roy, and S. Aral. The spread of true and false news online. Science, 359(6380):1146–1151, 2018.

[42] Z. Jin, J. Cao, Y. Zhang, and J. Luo. News verification by exploiting conflicting social viewpoints in microblogs. In
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[43] M. Gupta, P. Zhao, and J. Han. Evaluating event credibility on twitter. In ICDM, pages 153–164. SIAM, 2012.

[44] J. Zhang, L. Cui, Y. Fu, and F. B. Gouza. Fake news detection with deep diffusive network model. CoRR,
abs/1805.08751, 2018.

[45] K. Shu, S. Wang, and H. Liu. Exploiting tri-relationship for fake news detection. CoRR, abs/1712.07709, 2017.

[46] X. Zhou and R. Zafarani. Fake news: A survey of research, detection methods, and opportunities. CoRR,
abs/1812.00315, 2018.

[47] C. C. Aggarwal. Managing and mining uncertain data, volume 35. Springer Science & Business Media, 2010.

[48] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, and P. J. Haas. The monte carlo database system: Stochastic analysis
close to the data. TODS, 36(3):18, 2011.

[49] N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt. Commun. ACM, 52(7):86–94, 2009.

[50] A. Asudeh, H. Jagadish, J. Stoyanovich, and G. Das. Designing fair ranking schemes. In SIGMOD, 2019.

[51] S. Chaudhuri. Generalization and a framework for query modification. In ICDE, pages 138–145. IEEE, 1990.

[52] J.-L. Koh, K.-T. Chiang, and I.-C. Chiu. The strategies for supporting query specialization and query generalization in
social tagging systems. In DASFAA, pages 164–178. Springer, 2013.

[53] S.-Y. Huh, K.-H. Moon, and H. Lee. A data abstraction approach for query relaxation. IST, 42(6):407–418, 2000.

[54] C. S. Jensen and R. Snodgrass. Temporal specialization and generalization. TKDE, 6(6):954–974, 1994.

[55] Y. Wu, J. Gao, P. K. Agarwal, and J. Yang. Finding diverse, high-value representatives on a surface of answers.
PVLDB, 10(7):793–804, 2017.

64



[56] C. Mishra and N. Koudas. Interactive query refinement. In ICDT, 2009.

[57] C. Wang, A. Cheung, and R. Bodik. Interactive query synthesis from input-output examples. In SIGMOD, 2017.

[58] K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Explore-by-example: An automatic query steering framework for
interactive data exploration. In SIGMOD, pages 517–528, 2014.

[59] R. Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and M. Stonebraker. Aurum: A data discovery system. In
ICDE, pages 1001–1012. IEEE, 2018.

[60] R. Fernandez, E. Mansour, A. Qahtan, A. Elmagarmid, I. Ilyas, S. Madden, M. Ouzzani, M. Stonebraker, and N. Tang.
Seeping semantics: Linking datasets using word embeddings for data discovery. In ICDE, 2018.

[61] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik. Discovering queries based on example tuples. In
SIGMOD, pages 493–504, 2014.

[62] W.-C. Tan. Deep data integration. In SIGMOD, 2021.

65


