
Behavior-Tree Embeddings for Robot Task-Level Knowledge

Yue Cao and C.S. George Lee

Abstract— Recently, the behavior tree is gaining popularity
as a robotic task-level knowledge representation. Manual design
of behavior trees from scratch is tedious and cumbersome.
Motivated by the need for an efficient way to reuse or
transfer robot task-level knowledge, we propose a vector-space
embedding approach that encodes a symbolic task into a nu-
merical form. This approach, called behavior-tree embedding,
takes a behavior tree that produces a single task as input
and generates a corresponding vector. By exploiting the pre-
trained language-embedding model and the node-aggregation
mechanism, the produced embedding is capable of preserving
both semantic information of task description and structural
information of the hierarchical task organization. We evaluated
the effectiveness and versatility of our proposed vector-space
embedding approach in three different tasks.

I. INTRODUCTION

Programming robots to perform complex tasks is a time-
consuming task for robotic engineers/scientists. In an in-
dustrial deployment, it is common to re-program an entire
task from scratch when new products are introduced [1].
According to the report on industrial robots from McKinsey
& Company [2], robot programming accounts for about 25%
of the total market of robot service. Since robot programming
is laborious and costly, it is crucial to improve the efficiency
of robot programming. In addition, the lack of homoge-
neous programming interfaces is ranked as the second major
challenge for customers [2]. This suggests a potential cost
saving can be realized by improving task-level programming
efficiency in reusing or transferring task-level knowledge
from previous usages.

Task-level programming plays an important role in robot
programming. It coordinates complex abstract tasks into a
sequential and/or hierarchical structure. In the past, various
frameworks have been proposed for robot task-level pro-
gramming, including state machines [3], Petri Nets [4], and
SysML [5]. In recent years, Behavior Trees (BTs) have been
gaining attention from the robotics community for task-level
programming [6]–[8].

Behavior trees were initially developed by the video-
gaming industry to coordinate the behavior of non-player
characters in games. It has since achieved much success
and become a common framework adopted by many game
designers. In the past decade, behavior trees have also been
extended and utilized as a tool for task representation in

Yue Cao and C.S. George Lee are with the Elmore Family School of
Electrical and Computer Engineering, Purdue University, West Lafayette,
IN 47907, U.S.A. Email: {yuecao, csglee}@purdue.edu.

†This work was supported in part by the National Science Foundation
under Grant IIS-1813935. Any opinion, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

many robotic applications, such as CoSTAR [9] for manip-
ulation tasks and Navigation2 [10] for navigation tasks. The
modularity, reusability, flexibility, reactivity and expressive-
ness of behavior trees make them an alternative solution
to the finite-state machine (FSM) and other frameworks.
Different from the FSM that uses dense transitions among
states, behavior trees represent transitions in a tree structure.
Each subtree of a behavior tree is also a behavior tree,
which makes it convenient to add, remove or modify subtrees
without considering extra state transitions. Such modularity
feature of behavior trees allows end-users to reuse or transfer
task-level knowledge of robotic tasks.

To improve the task-level programming efficiency, one of
the major challenges is to utilize or reuse vast task-level
knowledge stored in a knowledge base and represented in
behavior trees. This involves recognizing similar tasks and
transferring them to new tasks. We propose to use the vector-
space embedding technique for behavior trees as an efficient
solution to model the task-level knowledge of robotic tasks
for ease of re-usage and transfer of knowledge to new tasks
with similar operations, as shown in Fig. 1.

Fig. 1: Vector-space embedding for robot task-level knowl-
edge. Given a knowledge base storing a collection of robot
tasks, we seek to encode each task to a unique embedding
in the vector space.

Vector-space embedding reduces a complex model to
a low-dimensional vector while preserving its characteris-
tics/features. Vectorial representation [11] was first proposed
to overcome the limitations of the one-hot representation in
document retrieval. In Natural Language Processing (NLP),
vector-space models have been playing an important role
since the last decade. The terminology “word embedding”
was proposed to associate every word in the vocabulary with
a real-valued vector [12]. Since the Word2Vec [13] technique
has been developed to enable unsupervised learning on a
large corpus of texts, the research on word embeddings in
NLP has been growing dramatically. Since then the idea of
vector-space embedding has been extended to other research
areas to handle various types of entities, such as sen-

tences [14], graphs [15], and even trajectories of robots [16],
[17]. These entities are difficult for machine-learning algo-
rithms to cope with because they are not numerical. Hence,
it is necessary to encode them into a vector space such that
they can be integrated with machine-learning algorithms.

Inspired by the embedding technique in these areas, we
propose a behavior-tree embedding approach that aims to
encode robot tasks represented by behavior trees into com-
pact vectors such that similar tasks can be placed closely
in the vector space while distinct tasks stay far from each
other. With our proposed behavior-tree embedding approach,
the task-level knowledge of robot tasks can be reused or
transferred in a more efficient way. In order to achieve
this objective, we propose a 2-stage word-embedding-based
approach with two major contributions:

(1) Both semantic and structural characteristics of
behavior-tree-based robot tasks are preserved in the
vector space, allowing more efficient usage and transfer
of robot task-level knowledge.

(2) The behavior-tree embedding enables machine learning
algorithms to be applied to symbolic task representa-
tion.

II. BACKGROUND

A. Behavior-Tree Fundamentals

Formally, a behavior tree is defined as a directed rooted
tree T = (N,E), with a node set N and an edge set E [8].
A behavior tree consists of a Root, branch nodes called
control-flow nodes, and leaf nodes called execution nodes. In
general, there are four types of control-flow nodes (Fallback
?, Sequence→, Parallel⇒, and Decorator ⋄) and two types
of execution nodes (Action and Condition). Here we list four
commonly used node types with their characteristics [18] in
Table I. For Parallel and Decorator nodes, we refer their
details to [8], [18]. Note that all node names are written in
italics for distinction.

TABLE I: Behavior-tree node types

Node Success Failure
Fallback If one child succeeds If all children fail
Sequence If all children succeed If one child fails

Action When completed Fails to complete
Condition If true If false

To execute a behavior tree, activation signals called “ticks”
are generated from the Root node in a certain frequency
and propagated through the whole tree. Once a leaf node
is ticked, it executes the Action or verifies the Condition and
returns its status – Success, Failure or Running – to its
parent node. Eventually, the final status will be propagated
all the way back to the Root node.

B. GloVe and USE Embeddings

Two specific language-embedding models are useful in
the proposed behavior-tree embedding approach. Word em-
bedding maps words into a low-dimensional vector space.

GloVe [19] is a widely-used model for obtaining pre-
trained word embeddings. It exploits the count-based ma-
trix factorization and the context-based skip-gram model
together. Global word-word co-occurrence matrix is added
into the unsupervised training in order to capture global
statistics of corpus. Several pre-trained GloVe embeddings
are publicly accessible on https://nlp.stanford.
edu/projects/glove/. They are trained on enormous
corpora, such as 2 billion tweets from Twitter. With word-
embedding techniques, words that have similar semantics are
mapped closely together in the vector space.

Universal sentence encoder (USE) [20] is a general-
purpose, sentence-embedding model that processes sentences
to fixed-sized vectors. Two architectures are available for
USE and we use the Transformer-based architecture only,
which applies several transformer layers [21] in the encoding.
Since the positional-encoding technique is applied during the
training of the transformer, the ordering of words in one
sentence is considered, which makes the output embeddings
context-aware.

III. PROPOSED APPROACH

In this paper, we propose a behavior-tree embedding
approach that aims to encode robot tasks represented by
behavior trees into compact vectors such that similar tasks
can be placed closely in the vector space while distinct tasks
stay far from each other.

The proposed two-stage word-embedding approach mod-
els the task-level knowledge of robot tasks for ease of re-
usage and transfer of knowledge to new tasks with similar
task operations. We present a baseline approach based on the
sentence embeddings.

A. Problem Setting

We focus on the behavior tree that produces a single task.
In other words, behavior trees structured by Sequence nodes
and Action nodes will be taken into consideration, while be-
havior trees containing other node types including Condition,
Fallback, Parallel, and Decorator nodes are excluded.

The principle of vector-space embeddings ensures that
similar entities are nearby while distinct entities are far away
in the vector space. Thereby, it is important to define the
similarity for a certain entity. Considering the behavior-tree
formalism, two characteristics are used to define the simi-
larity for vector-space embeddings – structural and semantic
characteristics. For the structural characteristic, we aim to
preserve the feature of hierarchical organization of behavior
trees in the vector space since it is associated with the
modularity of behavior trees. For the semantic characteris-
tic, we aim to keep the tasks that have similar linguistic
semantics to be close in the vector space. In behavior trees,
the textual descriptions of Action nodes contain linguistic
semantic information and specify the primitive tasks to be
executed. An example is shown in Fig. 2 to explain our
problem setting.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

Fig. 2: Given a behavior tree consisting of Sequence nodes
and Action nodes, our objective is to encode it into a vector
while preserving both structural and semantic characteristics.

B. Word-Embedding-Based Approach

Our proposed approach for behavior-tree embedding is
based on word embeddings and consists of two stages –
word-embedding stage and node-aggregation stage.

Stage 1: Word-embedding stage
In this stage, we utilize the word-embedding technique

to capture the rich semantic information of Action nodes.
The pre-trained word-embedding model is applied to obtain
the word vector for each constituent word in the Action
node. Then we simply average the word embeddings of all
constituent words in an Action node and obtain the node
embedding,

vn =
1

|n|
∑
w∈n

Enc(w) (1)

where w ∈ n is the constituent word of the Action node n,
|n| is the number of words in n, Enc is the word-embedding
model, and vn is the final node embedding of node n. For
example, the node embedding for a “grasp ball” Action node
is calculated by (Enc(grasp) + Enc(ball))/2. Averaging
word vectors of text has demonstrated its effectiveness in
representing phrases [22] and sentences [14] before.

Stage 2: Node-aggregation stage
Once the Action-node embeddings are computed, we carry

out the node aggregation over the behavior tree. The node
aggregation is conducted from the bottom to the top of the
tree,

hl
n ← AGG({hl+1

u , ∀u ∈ Ch(n)}) (2)

where AGG is a node-aggregation function, hl
n denotes the

nth node embedding in the lth layer, Ch(n) returns a set of
indexes of child nodes. This process sums up the embeddings
layer by layer. The final embedding at the root node serves
as the embedding of the entire behavior tree.

The idea of node aggregation over the tree originates
from [23], where an aggregation operation is performed in
the field of medical ontology. This mechanism is similar to
the message passing in a graph neural network [24], in which
each node aggregates embeddings of its neighbors to update
its new embedding. It allows a node to capture the structural
information within its k-hop neighbors after the kth mes-
sage passing. Our node-aggregation operations propagate all
structural information of the behavior tree to the root. The
semantics of all primitive tasks are also concentrated into the

final embedding vector. The aggregation function AGG can
be either learnable or pre-fixed.

Given a behavior tree shown in Fig. 3, the overall algo-
rithm is outlined in Algorithm 1 and illustrated in Fig. 4. In
Stage 1, the text describing 4 primitive tasks is fed into a
word-embedding model separately and turns into 4 vectors,
v1, v2, v3, and v4. The acquired 4 vectors are used to assign

Fig. 3: A behavior tree with 3 layers.

values of the corresponding nodes in tree. Based on the tree
structure, the embeddings of the nodes in the lowest layer,
h3
1 and h3

2, are first sent to the aggregation function. The
aggregated result h2

1 is used as the embedding for their parent
Sequence node. Afterwards, all 3 embeddings in layer 2 are
passed through the aggregation function and output a final
embedding h1

1 for the root node.

Algorithm 1 Word-embedding-based approach

Input: A behavior tree T with L layers, pre-trained word
embeddings Enc, a node-aggregation function AGG

Output: A behavior-tree embedding hT

Stage 1:
for each Action node n in T do
vn ← 1

|n|
∑

w∈n Enc(w)
end for
Stage 2:
Denote the embedding of the ith node in the jth layer in
T as hj

i

Initialize all Action node embeddings using vn in Stage 1
for layer l = L− 1, L− 2, · · · , 1 do

for nth node in layer l do
hl
n ← AGG({hl+1

u , ∀u ∈ Ch(n)})
end for

end for
hT ← h1

1

The compositionality of our embeddings is well-suited for
the modularity of a behavior tree. For example, consider we
have two complete behavior trees T1 and T2, along with their
embeddings hT1

and hT2
, respectively. When merging these

two behavior trees into a new one, the embedding for the new
behavior tree T3 can be simply calculated by the aggregation
function, that is, hT3 = AGG(hT1 , hT2).

C. Sentence-Embedding-Based Approach

We also present a sentence-embedding-based approach
as a baseline measurement for the semantics of behavior
trees. Given a behavior tree, we use tick signals to execute

Fig. 4: Procedures for the word-embedding-based approach.

the behavior tree. Once the tree traversal is completed, an
ordered sequence of Action nodes is acquired. Then we
combine the text in the order sequence of Action nodes
into one single sentence s. A sentence-level encoder Enc
is applied to generate a sentence embedding Enc(s). The
process is described in Algorithm 2 and an example is
illustrated in Fig. 5. This 3-layer behavior tree consisting
of 4 Action nodes is “flattened” to one sentence with 4
phrases and 8 words – “pick knife”, “cut cucumber”, “grasp
cup”, and “fill water.” This method has incorporated no tree
structure information and will only be used to compare with
the semantics of the word-embedding-based approach.

Algorithm 2 Sentence-embedding-based approach

Input: A behavior tree T , pre-trained sentence embedding
Enc

Output: A behavior-tree embedding hT

Run the behavior tree T
Store all executed Action nodes n1, . . . , nN in a traversal
order
for each Action node ni in T do

Obtain its phrase-description from its constituent words
w: pi ← {w1, w2, ...}

end for
Combine the phrase-description of sequenced Action
nodes into a single sentence: s← {p1, p2, ..., pN}
hT ← Enc(s)

Fig. 5: Procedures for the sentence-embedding-based ap-
proach.

IV. EXPERIMENTAL EVALUATIONS & RESULTS

In order to assess the performance of our behavior-tree
embedding method, we conducted three types of evaluation.
First, we carried out a similarity measure to distinguish
pairs of behavior trees semantically and structurally. Next,
we applied the behavior-tree embeddings to a relatedness
prediction task to showcase the bridge between symbolic
tasks and downstream machine learning applications. Finally,
we presented a case study on robot task knowledge transfer
using the behavior-tree embeddings to reveal the connection
with cognitive process.

A. Experimental Setting

We chose the pre-trained GloVe-twitter-200 as our word
embeddings in the experiment. The GloVe-twitter-200 is
a GloVe model trained on a corpus of 2 billion tweets.
Each word in the GloVe-twitter-200 is represented as a 200-
dimensional vector. We selected the pre-trained Universal
sentence encoder based on Transformer architecture as our
sentence-embedding model. It takes a sentence as input and
outputs a 512-dimensional embedding. The embedding from
the Universal sentence encoder is normalized in the output.

Due to the limit of training data in this work, we adopted
a pre-designed node-aggregation function instead of a learn-
able function. Our aggregation function is defined as:

AGG({hi, hi+1, · · · , hj}) =
1

j − i+ 1

j∑
n=i

p(n−i)hn, (3)

where {hi, hi+1, · · · , hj} is a set of child-node embeddings.
These embeddings are sorted by their position from left to
right. We also introduced a decay function p(i) = e−

i
5 .

The decay function is added to distinguish the cases, where
child nodes are arranged in different orders. This differs from
the permutation-invariant principle when defining message-
passing functions in graph neural networks.

We also formalized the taxonomy for primitive tasks of
robots. The Action nodes in the behavior tree represent prim-
itive tasks and they contain rich semantics. We investigated
3 categories of generic robot tasks – welding, cooking, and
packaging tasks. We used standard for welding process [25]
to describe welding primitive tasks. We followed the atomic
action taxonomy in [26] and designed the primitive cooking
tasks. We utilized the task description from an industry
report [27] and created the primitive tasks for packaging.
Some of our synthesized primitive tasks are listed in Table II.
Note that the task specification is not necessarily identical to
our nomenclature. End-users have the flexibility to define
their own set of primitive tasks as long as they share similar
semantics. For instance, end-users can use the verb “chop”
instead of “cut” to describe the same action. End-users can
also alter primitive task “pick apple” to “grasp orange” since
these two phrases stay close in the semantics space. We
also generated 10 behavior-tree structures and placed the
primitive tasks into them. We produced 30 behavior trees
for these robot tasks in total, 10 for each task category.

TABLE II: A list of sample primitive tasks

Welding task Cooking task Packaging task
butt weld pick knife pick package
fillet weld stir container attach label
plug weld slice salmon pack product
spot weld fill water wrap film
seam weld grasp plate place board

...
...

...

B. Similarity Measure

We first started with visualizing the behavior-tree em-
beddings using the principal component analysis (PCA)
for dimensionality reduction. The 200-dimensional embed-
dings from the word-embeddings-based approach and 512-
dimensional embeddings from the sentence-embeddings-
based approach are each projected into a 2-dimensional
space. As shown in Fig. 6, the 30 behavior trees are separated
in 3 clusters using PCA. The embedding for each behavior
tree is located in the correct cluster.

(a) (b)

Fig. 6: PCA visualization of the behavior-tree embeddings
of 30 tasks. We pre-designed 10 behavior trees for each
robotic welding, cooking, and packaging task category. (a)
The word-embedding-based approach. (b) The sentence-
embedding-based approach.

Next, we studied the similarity between the behavior trees.
Given the embeddings u, v of a pair of behavior trees, we
then compute the angular cosine as the similarity measure
between them:

Sim(u, v) = 1− 2 arccos (
u · v
∥u∥∥v∥

)/π. (4)

The similarity measure ranges from 0 to 1, and the more
similar pair gets a higher value. We illustrated some results
of similarity computation in Fig. 7 as similarity matrices.
We selected 4 behavior trees from each task category (i.e.,
welding, cooking and packaging tasks). We observed that the
intra-category behavior trees have a high similarity value,
mostly over 0.6, while similarity values of the majority of
inter-category trees are below 0.4. The sentence-embedding-
based method achieves better performance when comparing
the cooking-task category and packaging-task category.

Because of the node-aggregation mechanism implemented
in the process, the word-embeddings-based approach is ca-
pable of distinguishing behavior trees that are semantically
similar but structurally different. The structural information
of the behavior tree is mainly reflected by the magnitude of
the embedding. For the sentence-based-embedding approach,

(a) (b)

Fig. 7: Similarity matrix for comparing different behavior
trees, where W, C, and P stand for welding, cooking,
and packaging tasks, respectively. (a) The word-embedding-
based approach. (b) The sentence-embedding-based ap-
proach.

Fig. 8: Similarity matrix for comparison of behavior trees in
different sizes.

each output of the Universal sentence encoder is normalized
to 1, thus it does not include any information about sentence
length. In other words, the sentence-embedding-based ap-
proach can only distinguish trees arranged in different orders
(e.g., T1 → T2 versus T2 → T1), but not for trees in
different sizes (e.g., T1 → T1 versus T1). We constructed
a set of behavior trees that were semantically identical (e.g.,
using the same Action nodes) but in different structures. The
similarity value calculated using Eq. (4) between them was
over 0.99, thus we applied a new criterion to evaluate their
structural similarity based on vector magnitudes:

Sim(u, v) = 1− |∥u∥ − ∥v∥|
max(∥u∥, ∥v∥)

. (5)

Figure 8 shows the similarity matrix computed by Eq. (5).
Behavior trees with similar size share a high similarity
value. By focusing on the magnitude of the embedding, the
word-embedding-based method distinguishes behavior tress
in different structures.

The results of similarity measure suggest that our proposed
behavior-tree embeddings are capable of persevering the
semantic and structural information of the behavior trees.

C. Relatedness Prediction

We also showed how the behavior-tree embeddings can
be utilized in some downstream machine-learning tasks. We
considered the relatedness prediction for pairs of behavior
trees, which is a common supervised-learning task used

in NLP [28], [29]. Given a pair of behavior trees with
embeddings u and v, we would like to predict a real-valued
similarity score. In general, this similarity score is rated
by a human judge. Since our main goal here is to show
the adaptiveness of our embeddings rather than pursuing
prediction accuracy, we simply assigned labels to different
pairs instead of asking for human annotation.

We took the embeddings of 30 behavior trees (from the
word-embedding-based approach) and performed the pair-
by-pair computation between them. Specifically, given a pair
of behavior-tree embeddings u and v, we calculated the
element-wise product u ⊙ v and distance ||u − v|| between
them. We assigned 4 different labels to each pair based on
their category as shown in Table III. Hence, we obtained a
total of 435 instances and split them into the training and
validation sets as 348 and 87, respectively. We created 30
new behavior trees whose Action nodes are different from
previous ones and processed them using the same operations.
We also generated 435 instances and used them as the testing
set.

TABLE III: Dataset overview

Pairs similarity score number of instances
C-W 1 100
W-P 2 100
C-P 3 100

W-W, C-C, P-P 4 135

Notation: C-W stands for cooking-welding task pair and W-P stands
for welding-packaging task pair, etc.

We used the neural-network architecture shown in Fig. 9
for training. The inputs of the neural network are u⊙ v and
||u − v||, which are 400-dimensional vectors. We expected
to predicate a similarity score ranged in {1, 2, 3, 4} for each
pair. We used a multi-layer perceptron with 2 hidden layers
as the classifier. The numbers of neurons in the hidden layers
1 and 2 and the output layer are 100, 25, and 4, respectively.
The training was carried out by using a cross-entropy loss as
the objective function and the SGD optimizer. We reported
that the test-set accuracy was 0.961.

Fig. 9: Neural-network architecture for relatedness prediction
of behavior trees.

In this experiment, our trained model took a pair of
behavior-tree embeddings as input, and successfully gen-
erated a similarity score between them. The example of

relatedness prediction exhibits the capability of behavior-tree
embeddings to be applied in downstream machine-learning
tasks.

D. Task Knowledge Transfer

We also carried out a case study to demonstrate that our
proposed behavior-tree embeddings can support simple robot
task knowledge transfer by vector arithmetic.

Consider a case of knowledge transfer of a behavior tree
by modifying its sub-task. We built a source behavior tree
shown in Fig. 10(a). We sought to transfer it to a target
behavior tree shown in Fig. 10(b). Because of the modularity
of behavior trees, the subtree replacement can be easily
achieved without accounting for any transition change. This
transfer operation can be considered as a knowledge transfer
process in human analogy-making. In the example studied in
cognitive science [30], children have the capability to transfer
knowledge from “stack tires and stand on them” to “stack
bales of hay and stand on them.” We expected to simulate
such human-like knowledge transfer, where our behavior-tree
embedding serves as an abstract knowledge structure in the
schema-based transfer process [31].

Fig. 10: A case study of task knowledge transfer. The red
portion in the source behavior tree (a) is replaced by the blue
portion in the target behavior tree (b).

We denoted the embeddings of the source and the target
behavior trees as hsrc and htgt, respectively. We assumed
the embeddings of the red and blue subtree are hsrc_sub and
htgt_sub, respectively. The task knowledge transfer process
can be represented by htgt ≈ hsrc−hsrc_sub/6+htgt_sub/6
in the vector space. For the given subtree, there are 1
sibling node in layer 3 and 2 in layer 1, which means
that the subtree embedding is averaged by 2 firstly, then
averaged by 3. We examined this relation by comparing the
vector htgt with the vector hsrc − hsrc_sub/6 + htgt_sub/6.
After the similarity computation using Eq. (4), we obtained
Sim(htgt, hsrc − hsrc_sub/6 + htgt_sub/6) = 0.975 while
Sim(htgt, hsrc) = 0.887. Hence, we argued that the relation
htgt ≈ hsrc − hsrc_sub/6 + htgt_sub/6 holds.

This source-target embedding relationship indicates that
symbolic task knowledge transfer can be possibly achieved
in the vector space. Given a source task, a source sub-
task and a target sub-task in the knowledge base, we can
obtain their embeddings in the vector space and estimate
the target task embedding using vector arithmetic. Once the
approximate embedding of the target task is computed, we
can perform similarity sorting and find the most relevant task
in the knowledge base.

In this case study, we have verified that the task knowledge
transfer can be represented by simple vector arithmetic. In
fact, any manipulation including combination, removal, or
modification of a behavior tree can be approximately rep-
resented by certain arithmetic expression of the embedding.
Thus, it provides great flexibility for task knowledge transfer.
Our case study also implies a connection between behavior-
tree embeddings and knowledge abstraction in cognition.

V. SUMMARY AND CONCLUSIONS

This paper presented a novel vector-space-embedding ap-
proach for behavior trees. By leveraging the pre-trained
GloVe word-embedding model and the node-aggregation
mechanism, our proposed approach successfully mapped
robotic tasks into a vector space while preserving their
semantic and structural characteristics. This approach allows
end-users to retrieve, reuse and transfer robot task-level
knowledge. Moreover, the behavior-tree embedding bridges
the gaps between the symbolic-task representation and ma-
chine learning.

Currently, our behavior-tree embedding approach is only
limited to behavior trees consisting of Sequence and Action
nodes. For further research, we plan to extend to behavior
trees consisting of more node types. We will combine
sentence-embedding-based approach with structural infor-
mation of heterogeneous trees. Empirically, the context-
aware sentence-embedding-based approach using the Univer-
sal sentence encoder outperforms the word-embedding-based
approach in preserving semantic information. We plan to
carry out a learning-based method to acquire an embedding
for heterogeneous tree structure and concatenate it to the
original sentence embedding.

REFERENCES

[1] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh,
V. Krüger, and O. Madsen, “Robot skills for manufacturing: From
concept to industrial deployment,” Robotics and Computer-Integrated
Manufacturing, vol. 37, pp. 282–291, 2016.

[2] M. Teulieres, J. Tilley, L. Bolz, P. Ludwig-Dehm, and S. Wägner,
“Industrial robotics: Insights into the sector’s future growth dynamics,”
McKinsey & Company, 2019.

[3] J. Bohren and S. Cousins, “The SMACH high-level executive [ROS
News],” IEEE Robotics Autom. Mag., vol. 17, no. 4, pp. 18–20, 2010.

[4] J. López, D. Pérez, and E. Zalama, “A framework for building
mobile single and multi-robot applications,” Robotics and Autonomous
Systems, vol. 59, no. 3-4, pp. 151–162, 2011.

[5] J. Huckaby and H. Christensen, “Modeling robot assembly tasks
in manufacturing using SysML,” in Proc. ISR/Robotik 2014; 41st
International Symposium on Robotics, 2014, pp. 1–7.

[6] R. Ghzouli, T. Berger, E. B. Johnsen, S. Dragule, and A. Wąsowski,
“Behavior trees in action: a study of robotics applications,” in Proc.
ACM SIGPLAN Int. Conf. Software Language Engineering, 2020, pp.
196–209.

[7] M. Colledanchise and L. Natale, “On the implementation of behavior
trees in robotics,” IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp. 5929–5936, 2021.

[8] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A survey of
behavior trees in robotics and AI,” Robotics and Autonomous Systems,
vol. 154, p. 104096, 2022.

[9] K. R. Guerin, C. Lea, C. Paxton, and G. D. Hager, “A framework for
end-user instruction of a robot assistant for manufacturing,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), 2015, pp. 6167–6174.

[10] S. Macenski, F. Martín, R. White, and J. G. Clavero, “The marathon
2: A navigation system,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots.
Syst. (IROS), 2020, pp. 2718–2725.

[11] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11,
pp. 613–620, 1975.

[12] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” J. Machine Learning Research, vol. 3,
pp. 1137–1155, 2003.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[14] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-beat baseline for
sentence embeddings,” in Proc. Int. Conf. Learning Representations
(ICLR), 2017.

[15] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[16] S. James, M. Bloesch, and A. J. Davison, “Task-embedded control
networks for few-shot imitation learning,” in Proc. Conf. Robot
Learning (CoRL), 2018, pp. 783–795.

[17] C. Devin, D. Geng, P. Abbeel, T. Darrell, and S. Levine, “Com-
positional plan vectors,” in Proc. Advances in Neural Information
Processing Systems (NeurIPS), 2019, pp. 14 963–14 974.

[18] D. Faconti and M. Colledanchise. (2018) BehaviorTree.CPP
documentation. [Online]. Available: https://www.behaviortree.dev/

[19] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors
for word representation,” in Proc. Conf. Empirical Methods in Natural
Language Processing (EMNLP), 2014, pp. 1532–1543.

[20] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John,
N. Constant, M. Guajardo-Céspedes, S. Yuan, C. Tar, et al., “Universal
sentence encoder,” arXiv preprint arXiv:1803.11175, 2018.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Proc. Advances in Neural Information Processing Systems (NeurIPS),
2017, pp. 5998–6008.

[22] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with
neural tensor networks for knowledge base completion,” in Proc.
Advances in Neural Information Processing Systems (NeurIPS), 2013,
pp. 926–934.

[23] E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun, “GRAM:
graph-based attention model for healthcare representation learning,”
in Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, 2017, pp. 787–795.

[24] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. Int. Conf.
Machine Learning, 2017, pp. 1263–1272.

[25] Welding and allied processes - Symbolic representation on drawings
- Welded joints, International Organization for Standardization Std.
2553:2019, 2019.

[26] M. J. Aein, E. E. Aksoy, and F. Wörgötter, “Library of actions: Imple-
menting a generic robot execution framework by using manipulation
action semantics,” Int. J. Robotics Research, vol. 38, no. 8, pp. 910–
934, 2019.

[27] ABB Robotics, “Robots for packaging industry, robot-based packaging
automation,” ABB Robotics, Tech. Rep., 2012.

[28] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic rep-
resentations from tree-structured long short-term memory networks,”
arXiv preprint arXiv:1503.00075, 2015.

[29] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for
learning sentence similarity,” in Proc. AAAI Conf. Artificial Intelli-
gence, 2016, pp. 2786–2792.

[30] A. L. Brown and M. J. Kane, “Preschool children can learn to transfer:
Learning to learn and learning from example,” Cognitive Psychology,
vol. 20, no. 4, pp. 493–523, 1988.

[31] M. L. Gick and K. J. Holyoak, “Schema induction and analogical
transfer,” Cognitive Psychology, vol. 15, no. 1, pp. 1–38, 1983.

https://www.behaviortree.dev/

	INTRODUCTION
	BACKGROUND
	Behavior-Tree Fundamentals
	GloVe and USE Embeddings

	PROPOSED APPROACH
	Problem Setting
	Word-Embedding-Based Approach
	Sentence-Embedding-Based Approach

	EXPERIMENTAL EVALUATIONS & RESULTS
	Experimental Setting
	Similarity Measure
	Relatedness Prediction
	Task Knowledge Transfer

	SUMMARY and CONCLUSIONS
	References

