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Abstract

We present a unified framework for estimation and analysis of generalized additive models
in high dimensions. The framework defines a large class of penalized regression estimators,
encompassing many existing methods. An efficient computational algorithm for this class
is presented that easily scales to thousands of observations and features. We prove mini-
max optimal convergence bounds for this class under a weak compatibility condition. In
addition, we characterize the rate of convergence when this compatibility condition is not
met. Finally, we also show that the optimal penalty parameters for structure and sparsity
penalties in our framework are linked, allowing cross-validation to be conducted over only
a single tuning parameter. We complement our theoretical results with empirical studies
comparing some existing methods within this framework.

Keywords: Generalized Additive Models, Sparsity, Minimax, High-Dimensional, Penal-
ized Regression

1. Introduction

In this paper, we model a response variable as an additive function of a potentially large
number of covariates. The problem can be formulated as follows: we are given n observations

with response y; € R and covariates x; € RP for i = 1,...,n. The goal is to fit the model
P
9(E(yilz:) =B+ fizy), i=1,...,n,
j=1

for a prespecified link function g, unknown intercept 8 and, unknown component functions

fi,---, fp- The link function, g, is generally based on the outcome data-type, for exam-
ple, g(x) = x or g(x) = log(x) for continuous or count response data, respectively. The
estimands, fi,..., fp, give the conditional relationships between each feature x;; and the

outcome y; for all i and j. For identifiability, we assume > ;| fj(z;;) =0forallj =1,...,p.
This model is known as a generalized additive model (GAM) (Hastie and Tibshirani, 1990).
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It extends the generalized linear model (GLM) where each f; is linear, and is a popular
choice for modeling different types of response variables as a function of covariates. GAMs
are popular because they extend GLMs to model non-linear conditional relationships while
retaining some interpretability (we can examine the effect of each covariate x;; individually
on y; while holding all other variables fixed); they also do not suffer from the curse of
dimensionality.

While there are a number of proposals for estimating GAMSs, a popular approach is to
encode the estimation in the following convex optimization problem:

n p p
B fi,-- fp argmin  —n7! Zﬁ(yz,ﬂ +Y 1 <xz»j>) + A > Palfy). (1)
BER, f1,....fpEF i1 =1 =1

Here F is some suitable function class; £(y;, ) is the log-likelihood of y; under parameter
0; P is a structure-inducing penalty to control the wildness of the estimated functions, ]?j;
and Ag > 0 is a penalty parameter which modulates the trade-off between goodness-of-fit
and structure/smoothness of estimates. The class F is a general convex space, for example,
F = L?[0,1]. Functions —£(y;,0) and Pg(f;) are convex in @ and f;, respectively. The
objective function in (1) is convex and for small dimension, p, can be solved via a general-
purpose convex solver. However, many modern data sets are high-dimensional, often with
more features than observations, that is, p > n. Fitting even GLMs is challenging in such
settings as conventional methods are known to overfit the data. A common assumption
in the high-dimensional setting is sparsity, which states that, only a small (but unknown)
subset of features is informative for the outcome. In this case, it is desirable to apply feature
selection: to build a model for which only a small subset of E Z 0.

A number of estimators have been proposed for fitting GAMs with sparsity. These
estimators are generally solutions to a convex optimization problem. Though they differ in
details, we show that most of these optimization problems can be written as:

n P p p
B, f1,.. ., fp < argmin —n-lze(y“m}jfj(xij))+A5tZPst<fj>+A5p§j||fj\|n, (2)
i=1 Jj=1 j=1 j=1

BER, f1,.. . fpE€F

where ||f;[|2 = n~t >0 {fj(xij)}? is a group lasso-type penalty (Yuan and Lin, 2006) for
feature-wise sparsity, and A, a sparsity-related tuning parameter (Ravikumar et al., 2009;
Meier et al., 2009; Koltchinskii and Yuan, 2010; Raskutti et al., 2012; Yuan and Zhou, 2016;
Lou et al., 2016; Petersen et al., 2016; Sadhanala and Tibshirani, 2019; Tan and Zhang,
2019). However, previous proposals consists of gaps around efficient computation (Koltchin-
skii and Yuan, 2010; Raskutti et al., 2012; Yuan and Zhou, 2016; Tan and Zhang, 2019)
and/or optimal statistical convergence properties (Ravikumar et al., 2009; Lou et al., 2016;
Petersen et al., 2016; Sadhanala and Tibshirani, 2019). General-purpose convex solvers
have also been suggested (Koltchinskii and Yuan, 2010; Raskutti et al., 2012; Yuan and
Zhou, 2016) as an alternative for solving problem (2), but they roughly scale as O(n3p?)
and are hence inefficient. This manuscript aims to bridge these gaps.

We present a general framework for sparse GAMs with two major contributions, a gen-
eral algorithm for computing (2) and a theorem for establishing convergence rates. Briefly,
our algorithm is based on accelerated proximal gradient descent. This reduces (2) to repeat-
edly solving a univariate penalized least squares problem. In many cases, this algorithm
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has a per-iteration complexity of O(np)—precisely that of state-of-the-art algorithms for the
lasso (Friedman et al., 2010; Beck and Teboulle, 2009b). Our main theorem establishes fast
convergence rates of the form max(slogp/n, s&,), where s is the number of signal variables
and &, is the minimax rate of the univariate regression problem, that is, problem (1) with
p = 1. Nonparametric rates are established for a wide class of structural penalties Ps; with
& = n~=2m/2m+1) " popular choices of Py include m-th order Sobolev and Hélder norms, to-
tal variation norm of the m-th derivative and, norms of Reproducing Kernel Hilbert Spaces
(RKHS). Parametric rates are also established with &, = T, /n via a truncation-penalty;
the number of parameters, T;,, can be fixed or allowed to grow with sample size.

The highlight of this paper is the generality of the proposed framework: not only does
it encompass many existing estimators for high-dimensional GAMs, but also estimators for
low-dimensional fully nonparametric models and, parametric models in low or high dimen-
sions. Brief examples of our framework’s generalizability include: establishing minimax con-
vergence rates (under well-studied assumptions) where only sub-optimal rates existed (Lou
et al., 2016; Ravikumar et al., 2009; Meier et al., 2009; van de Geer, 2010); recovering min-
imax rates for a general class of loss functions as opposed to only least squares (Raskutti
et al., 2012; Yuan and Zhou, 2016; Tan and Zhang, 2019); establishing consistency (al-
beit at a slower rate) while relaxing strong assumptions on the design matrix and function
class (Raskutti et al., 2012; Yuan and Zhou, 2016; Tan and Zhang, 2019).

Extending GAMs (1), to GSAMs (2), appears to simply be a matter of adding a sparsity
penalty. However, our manuscript proves a surprising result: sparsity in GAMs can only
be achieved if P is a semi-norm penalty, as opposed to a squared semi-norm. Thus,
the originally proposed GAMs (Hastie and Tibshirani, 1990) cannot be extended to high-
dimensions by simply adding a sparsity penalty. Finally, as a byproduct of our general
theorem, we also determine that Ay = )\gp in (2), results in optimal convergence rates,
reducing the problem to a single tuning parameter. Empirical studies showed a single
tuning parameter to yield comparable or better performance compared to finding two tuning
parameters over a grid.

The rest of the paper is organized as follows. In Section 2, we detail our framework
and discuss various choices of structural penalties, Py, illustrating that our framework
encompasses many existing proposals. In Section 3 we present an algorithm for solving the
optimization problem (2) for a broad class of Py penalties, and establish their theoretical
convergence rates in Section 4. We explore the empirical performance of various choices of
P, in simulation in Section 5, and in an application to the Boston housing data set and
gene expression data sets in Section 6. Concluding remarks are in Section 7.

2. General Framework for Additive Models

In this section, we present our general framework for estimating sparse GAMs, discuss its
salient features, and review some existing methods as special cases. Before presenting our
framework, we introduce some notation. For any function f and response/covariate pair,
(y,x), let —0(f) = —L(y, f(x)) denote a loss function; given data (y1, 1), ..., (Yn, Tn), let
P.l(f) = n 30 Uy, f(x;)) denote an empirical average; and [|f[|2 = n=t Y0, f(=;)?
denote the empirical norm. With some abuse of notation, we will use the shorthand f; to

denote the function fj o m; where 7;(x) = z; for x € RP.
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Our general framework for obtaining a Generalized Sparse Additive Model (GSAM) en-
compasses estimators that can be obtained by solving the following problem:

p p p
Bofiyo o fp argmin Pl B+ f | + A2 Pu(fi)+ A NflL - 3

BER, f1,.... fpEF j=1 j=1 j=1

Goodness-of-fit structure-inducing  sparsity-inducing

This optimization problem balances three terms. The first is a loss function based on
goodness-of-fit to the observed data; the least squares loss, —((f) = (y — f(x))?, is com-
monly used for continuous response. Our general framework requires only convexity and
differentiability of —¢(y, #), with respect to . Later we consider loss functions given by the
negative log-likelihood of exponential family distributions. The second piece is a penalty to
induce smoothness/structure of the function estimates. Our framework requires Py to be
a semi-norm on F. This choice is motivated by both statistical theory and computational
efficiency; we discuss this along with possible choices of Py in the following sub-sections.
The final piece is a sparsity penalty || - ||, which encourages models with f; = 0 for many j.
For some choices of Py, the smoothness and sparsity pattern of f; are intrinsically linked (for
example, Ravikumar et al., 2009; Lou et al., 2016); for other structure-inducing penalties
the formulation (3) appears to decouple structure and sparsity. However, this manuscript
highlights the surprising role of Py in obtaining an appropriate sparsity pattern. Briefly,
if Py is a squared norm then either all f; = 0 or all f; # 0. We detail this result and
its extension to semi-norms in Section 2.2. Throughout this manuscript, we require the
function class F to be a convex cone, for example, L?(R). Later for some specific results,
we will additionally require F to be a linear space.

As noted before, the tuning parameters for structure (A?) and sparsity (\) are coupled
in our framework. The theoretical consequence of this is that, for properly chosen A, we get
rate-optimal estimates, up to a constant (details in Section 4). The practical consequence
is that we have a single tuning parameter. While fine tuning an estimator with two tun-
ing parameters can lead to improved prediction performance, a single tuning parameter is
adequate for most choices of P, as seen in our empirical experiments of Section 5.

Furthermore, our framework relaxes the usual distributional requirements of i.i.d. re-
sponse from an exponential family; we require only y; independent and E{y; — E(y;)} to be
sub-Gaussian (or sub-Exponential). This demonstrates the generality of our framework and
highlights our main innovation: the efficient algorithm of Section 3 and theoretical results
of Section 4 apply to a very broad class of estimators, fill in the gaps of existing work and,
can easily be applied for the development of future estimators.

2.1 Structure Inducing Penalties

We now present some possible choices of the structural penalty Ps; followed by a discussion
of the conditions on Py that lead to desirable estimation and computation. The main
requirement is that P is a semi-norm: a functional that obeys all the rules of a norm
except one—for nonzero f we may have Py (f) = 0. Some potential choices for smoothing
semi-norms are:

1. k-th order Sobolev Py < Pyoporen(fF)) = \/fw {r® (x)}2 dx;
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2. k-th order total variation Py < TV(f(k));
3. k-th order Holder Py Pholder(f(k)) = sup, }f(k) (1')‘,
4. k-th order monotonicity Pyt < Pron(f0) 1 (f; {f: fEHD > 0});
5. M-th dimensional linear subspace Py < PM(f) =1(f; span{gi,...,g9m});

here TV (-) is the total variation norm, TV (f) = sup{d>_ 7, |f(zi+1) — f(z)] : 21 < ... <
%o 1s a partition of [0,1]}, and I is a convex indicator function defined as I(f;.A) = 0 if
feAand I(f; A) = o if f &€ A. As implied by the name, Py imposes smoothness or
structure on individual components f] For instance, Psoporer(f”) is a common measure of
smoothness; small A values leads to wiggly fitted functions J?j; on the other hand, sufficiently
large A values would lead to each component being a linear function. The convex indicator
function, I(-), can impose specific structural properties on f;; for example, Pon(f) fits a
model with each f/; a non-decreasing function.

The semi-norm requirement for Py is important because: (a) it implies convexity leading
to a convex objective function, (b) the first order absolute homogeneity, Py (af) = |a|Psi(f),
is needed for the algorithm of Section 3 and, (c¢) the triangle inequality is used throughout the
proof of our theoretical results of Section 4. For our context, we consider convex indicators
of cones as a semi-norm because, the first order homogeneity condition can be relaxed. For
our algorithm, we only require Py (o f) = aPg(f) for a > 0; for our theoretical results we
treat convex indicators of cones as a special case and discuss them at the end of Section 4.2.
For non-sparse GAMs of the form (1), the existing literature does not necessarily use a
semi-norm penalty; a common choice of smoothing penalty is Ps(f) = P2,,,.,(f"). In the
following subsection, we discuss the issues with using squared semi-norm penalties in high
dimensions, particularly their impact on the sparsity of estimated component functions.

2.2 Using a Squared Smoothness Penalty

Given a semi-norm Psep,;, using Py = Pfemi in (3) may give poor theoretical performance (as
noted in Meier et al., 2009, for Psepmi = Psopoler) and, can also be computationally expensive
(as disscussed in Section 3). In this subsection, we show a surprising result: using a squared
semi-norm penalty results in fitting models that are either not sparse (all f; # 0) or not
flexible (all f; belong to some restrictive parametric class). In other words, the original
GAMs (Hastie and Tibshirani, 1990) cannot be extended to high dimensions/sparsity by
simply adding a sparsity penalty. This highlights a key contribution of this manuscript: not
only do we present a framework for fitting GSAM but also, prove that naive GAM extensions
are not feasible.

In greater detail, using Py = Pgorm where P,orm 1S a norm, leads to an active set,
S={j: E # 0}, for which either |S| =0 or |S| = p. If Py = P2 .. for a semi-norm P,
we can get 0 < |S| < p; however, now all f; € Fo, where Fy is a finite-dimensional function
class. In contrast, using Py = Psenm; can give active sets such that 0 < |S| < p and each fj
can be modeled nonparametrically.

Before presenting our main results, we note that throughout this section we deal with
finite valued semi-norms, this excludes convex indicator penalties. It should be noted that

many convex indicator penalties impose a parametric structure, thus excluding them from
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the discussion of this section. Other convex indicator penalties are challenging to deal with
in this context and other settings (see for example, Remark 18). We now present our result
in Lemma 1 for a squared norm penalty followed by the extension to squared semi-norms
in Corollary 2 (proofs in Appendix D).

Lemma 1 Let F be a nonparametric function class in the following sense: for any covariate-
response pair (y,x) € R"*2 there exists some f € F such that f(x;) = y; for alli. Consider
the optimization problem

2
n p

V4
P Byt anmin D3 (5= S0 fita) |+ D0 DwPR () F A lfil) (@)
=1

frofp€F T i=1 j=1

for a norm Py on F. Then, for any sy, either ]?J =0 for all j or ]?J #£ 0 for all j.

Corollary 2 For a semi-norm Py in (4), we define its null set as Fo C F such that
Psi(fo) = 0 for all fo € Fo (note that Fy contains the zero function). Consider an arbztmry,
non-empty, index subset I C {1,...,p}. Iff]/ =0 for all j' € I, then for all j € I¢ fj e Fo.

The above results imply that using a squared semi-norm means sacrificing either sparsity
or flexibility in our modeling approach. In most cases the set JFy is parametric, e.g, a
commonly used penalty Ps; = Psoporen (f”), leads to Fy as the set of linear functions. Thus
we can either fit sparse, parametric models or non-sparse, nonparametric models but not
both. In other words, for parametric regression we can simply add a sparsity-inducing
penalty; for example, the elastic net (Zou and Hastie, 2005), which adds a sparsity penalty
to ridge regression, leading to sparse linear models. In contrast, simply adding a sparsity
penalty to traditional GAMs (Hastie and Tibshirani, 1990) is not sufficient because, fitted
models will not be sparse GAMs.

2.3 Relationship of Existing Methods to GSAM

We now discuss some of the existing methods for sparse additive models in greater detail,
and demonstrate that many existing proposals are special cases of our GSAM framework.
One of the first proposals for sparse additive models, SpAM (Ravikumar et al., 2009), uses
a basis expansion and solves

w33 [ 03] 3 ]

B1,-...0; ERM

where ¥, = [m(215), . .., Ym(2n;)] T € R" for basis functions 1, ..., 4. This is a GSAM
with Py = I(f;span{¢1,...,¥n}). The SpAM proposal is extended to partially linear
models in SPLAM (Lou et al., 2016). There, a similar basis expansion is used, though with
the particular choice 9;(x) = x. The SPLAM estimator solves

p M 2 p M p M
5D SR S ) SFRPON p SP
j=1m=1 j=1 m=1 j=1 m=2

argmin
B1,...,8; ERM
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and is also a GSAM with

)
n

p
Py=1 (fa span {¢17 ERRR) ¢M}) + Z H Projspan(wg,...,wM) (f)
j=1

where Proj 4 is the projection operator onto the set A. The recently proposed extensions
of trend filtering to additive models are other examples (Petersen et al., 2016; Sadhanala
and Tibshirani, 2019); these methods can be written in our GSAM framework with Py (f) =
TV(f).

Meier et al. (2009) give two proposals: the first solves the optimization problem

argmln Hy ijH + Z)\sp\/Hf]H + A\t P2 (f),

and is not a GSAM; they note that this proposal gives a suboptimal rate of convergence. The
second is a GSAM of the form (3) with Ps:(f) = Psoboteu(f”). At the time, Meier et al. (2009)
focused on the first proposal as no computationally efficient method for solving the second
one was known to them. In a follow-up paper, van de Geer (2010) studied the theoretical
properties of a GSAM with an alternative, diagonalized smoothness structural penalty. The
diagnolized smoothness penalty for a function with basis expansion fg(x) = 2?21 Y;(x)B;,
is defined as

Pa(fg) = (Z 32m52>1/2

for a smoothness parameter m.

Koltchinskii and Yuan (2010), Raskutti et al. (2012) and Yuan and Zhou (2016) discuss
a similar framework to GSAMs; however, they only consider structural penalties Py, which
are norms of Reproducing Kernel Hilbert Spaces (RKHS). Furthermore, they do not discuss
efficient algorithms for solving the convex optimization problem. Using properties of RKHS,
they note that their estimator is the minimum of a d = np dimensional second order cone
program (SOCP). The computation for general-purpose SOCP solvers scales roughly as d°.
Thus for even moderate p and n, these problems quickly become intractable. Recently, Tan
and Zhang (2019) studied GSAMs beyond the RKHS framework similar to this manuscript,
however, there are important differences. Firstly, Tan and Zhang (2019) consider only
the least squares loss. Secondly, the authors do not present an algorithm for estimation;
instead they prove that under a least squares loss and special smoothness penalties the
solution to the optimization problem is finite dimensional. Thirdly, their results (like the
minimax rates proved by Yuan and Zhou, 2016) include the more general notion of weak
sparsity (van de Geer, 2016); however, extending this notion beyond the least squares loss
is left for future research. All of the above mentioned proposals either fail to provide an
efficient computational algorithm or have sub-optimal convergence rates. There are also a
number of other proposals that do not quite fall in the GSAM framework (Chouldechova and
Hastie, 2015; Fan et al., 2012; Yin et al., 2012).
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3. General-Purpose Algorithm

Here we give a general algorithm for fitting GSAMs based on proximal gradient descent (Parikh

and Boyd, 2014). We begin with some notation. We denote by £(y,0) and #(y,6) the

first and second derivatives of ¢ with respect to 6. For fupctions f,g : RP — R, let

(F,0(9)n = n™" 0y f(@){yis 9(:))}, Pal(g) = n™ 300, £(yi g(2i)) and, | f+E(g)|I7 =
_1 Zz l{f(wl) + g(yh (wl))}2

We begin with a second order Taylor expansion of the loss at some arbitrary point
B0 + Z§:1 fJQ. For this, we first apply Taylor’s theorem to ¢(y;, 3 + 6;1 + ...+ 0;) as a

(p + 1) variate function of (3,60;1,...,0;). Note that for |{(y,6)| < L, the Hessian matrix,
Hyi1, of £(y;, B+ 04 + ...+ 0;) obeys the inequality a” Hyy1a < (p + 1)L|lal|} for all
a € RPT! (Zhan, 2005). This gives us the following bound:

P+ zp:fj) < —Poe(8 + Zp:fgo)
i=1 =
(8 _50)Pné(ﬂ0 +§:f]°> - i <fj - fj(')7é</30 + Zp:fﬂo>>n

J=1 Jj=1

+1 b +1L

which leads to the following majorizing inequality

R TS S P e PR L (ﬂ°+ng>}]
3 g o+ ()(60+Zf°)}H o

where W is not a function of 3 or f; for any j. Instead of minimizing the original problem (3),
we minimize the majorizing surrogate

Lo e ( SN 0 - (i (2 o))
j=1 Jj=1 Jj=1

p p
D" P () + A Il (6)

j=1 j=1

()

where t = {(p + 1)L}~!. Minimizing (6) and re-centering our Taylor series at the current
iteration, is precisely the proximal gradient recipe. Updating the intercept 3, is simply
B B0+ t]P’J(BO + Z§:1 fjo). Components f1,..., fp, can be updated in parallel by

solving the univariate problems:

fie argmin %H{ff + i (8 +]Zp;fj°)} - in + Py () + NI, - (7)
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At first, this problem still appears difficult due to the combination of structure and sparsity
penalties. However, the following Lemma shows that things greatly simplify.

Lemma 3 Suppose Py is a semi-norm, and r is an n-vector. Consider the optimization
problems

1
argmin 5Hr—fH%+)\1Pst (f) + X2l fllns (8)
feF
1
argmin §|]r—fH3L+)\1Pst (f)- )
feF

If f is a solution to (9); then f is a solution to (8) where f is defined as
F=(1=X/flln) f. 10
F=(1=2/1f1) F (10)
with ()4 = max(z,0). Additionally, if Ao > ||7||n, then f = 0.

The proof is given in Appendix E. Using Lemma 3, we can get the solution to (7) by
solving a problem in the form of (9), a classical univariate smoothing problem, and then
applying (10), the simple soft-scaling operator. Putting this together, leads to Algorithm 1
below for solving (3). The general recipe used to derive Algorithm 1, is the well known prox-
imal gradient descent algorithm. Thus, well established convergence results in the literature
can be used (see for example, Beck and Teboulle, 2009b), under mild conditions: we require
a convex ¢ with Lipschitz first derivative. These conditions hold for many loss functions
particularly the negative log-likelihood of exponential family distributions. Convergence of
the infinite-dimensional optimization over F follows from the finite-dimensional analog of
problem (3); we prove this in Appendix E.

Algorithm 1 is simple and can be quite fast: the time complexity is largely determined
by the difficulty of solving the univariate smoothing problem of step 5. In many cases this
takes O(n) operations, allowing an iteration of proximal gradient descent to run in O(np)
operations. Complexity order O(np) is the per-iteration time complexity of state-of-the-art
algorithms for the lasso (Friedman et al., 2010; Beck and Teboulle, 2009a).

Any step-size t can be used in Algorithm 1 so long as inequality (5) holds for fj0 = ff‘l
and f; = f]’-‘; when (p + 1)L is replaced by ¢~!. Note that if ¢ < {L(p + 1)}~! this will
always hold. While a fixed step size ¢ ensures theoretical convergence, in practice we can
achieve a substantial speedup by adaptively selecting ¢ for each iteration. We could use
te = {L(p*4ipe + 1)} 7L, where pF . is the number of j for which either of ff‘l or f]’?
is non-zero. Since we are interested in sparse models, generally p’;Ctive < p, leading to a
substantial efficiency gain. If we do not have a suitable bound for L, we could use a data-
dependent scheme such as the backtracking line search (Beck and Teboulle, 2009b). The
algorithm can also take advantage of Nesterov-style acceleration (Nesterov, 2007), which
improves the worst-case convergence rate after k steps from O (k_l) to O (k:_z).

An important special case is the least squares loss —£(y,0) = (y — 0)2. In this case, we
can use a block coordinate descent algorithm which can be more efficient than Algorithm 1,
and does not require a step-size calculation. We present the full details of the algorithm in
Appendix A.
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Algorithm 1 General Proximal Gradient Algorithm for (3)
1: Initialize fY,... fg +0,8% < 0, k «+ 1; choose a step-size t
2: while £ < mazx_iter and not converged do
3: Foreachi=1,...,n, set

p
0; ,Bkil + Z ff_l (QZU) , ri < —4 (yi, 91) .

j=1
4: Update gk < pF=1 —¢3°0 r;.
5: for j=1,...,pdo
6: Set

inter 1 k—1 2 2
I <—arfgn]1r1n2H<fj —tr) —anth)\ Py (f). (11)
€
7: Update
£ (= ) £

8: end for
9: end while
10: return 3%, fF ... ,flf

Algorithm 1 is developed for a given A\ value. Alternatively, we recommend using a
decreasing sequence of A values, linear on the log scale starting at Aymax = ||y||n. Another
computational consideration is the method of tuning parameter selection: our numerical
experiments suggest K-fold cross validation as a suitable choice; however, we note that
other tuning parameter selection techniques such as generalized cross validation, AIC and
BIC can be used. Finding a theoretically optimal tuning parameter method, or proving the
estimator selected by cross validation obtains the same fast convergence rate, is a challenging
problem which we defer to future work.

As noted above, the main computational hurdle in Algorithm 1 is solving the univariate
problem (9). In the following subsection, we discuss this step in greater detail for various
smoothness penalties.

3.1 Solving the Univariate Subproblem

For many semi-norm smoothers there are already efficient solvers for solving (9): with the
k-th order total variation penalty, (9) can be solved exactly in 2n operations for k = 0
(Johnson, 2013), or iteratively in roughly O((k + 1)n) operations for £ > 1 (Ramdas and
Tibshirani, 2015); with the convex indicator of an M-dimensional linear subspace, (9) can
be solved in O(M?n) operations using linear regression; using a monotonicity indicator, (9)
can be solved with the pool adjacent violators algorithm in O(n) operations (Ayer et al.,
1955).

10
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For many other choices of Py, we do not have efficient algorithms for solving (9); how-
ever, we might have fast algorithms for the slightly different optimization problem:

~ 1 N pT
f5 « argmin 3 HT—in‘i‘)\Pst (f), (12)
feF

for 7 > 1. For example, the k-th order Sobolev penalty (Wahba, 1990) can be solved exactly
in O(kn) operations for 7 = 2. In the following Lemma, we show that the solution to (12)
can be leveraged to solve the harder problem (9).

Lemma 4 Given an n-vector r, a convez linear space F over the field R, and real T > 1,
consider the optimization problems:

~ . 1
Ia al"fggrm B lm — £1I2 + APst (f);
~ . 1 .
fr = axgmin 3 [Ir = fll + APG (F);
o1
.mmea§@n5W—fﬁ+ﬂﬁef:a¢ﬂ=m;
(S

finterp < argmin P; (f) +1I (Ti = f(.%l) for all Z) R
feF

where Py (-) is a semi-norm on F. Assume that the directional derivative

e—0 15

exists for all h € F. If Pst(f,\) #0 and TXP;A(]?X) =\, then f)\ = f}

To determine if Pst(]?) =0, let F = F1 & Fa, where @ is such that, for all f € F we have
f = fo+ fL where (fo,f1L)n = 0 and Ps(f) = Pu(fL). Furthermore, let P2 be the dual
norm over Fa, given by

Po(f) =sup {I{fe. fdal s Pulf)) S 1.1 € Faf. (13)

Then finterp — frun € F2 and ]/C;\ = fouu tf A 2> Ps*t(finterp - fnull)'

The proof is given in Appendix E. This lemma allows us to first check if we should shrink

~

entirely to a null fit with Ps(f) = 0 (usually a finite dimensional function), based on the
dual semi-norm of the interpolating function finterp. If we do not shrink to Py (f) = 0,
then there is an equivalence between ]?and f, and the problem is reduced to finding \ with
TXPSTt_l(fX) = ) for the originally specified A\. This can be done in a number of ways; most
simply by a combination of grid search and then local bisection noting that a) we need

not try any A-values above A\paz = || finterplln (by Lemma 3), and b) XPst( f5) is a smooth

function of A. In fact, the grid search will often be unnecessary as we will generally have a
good guess from the previous iterate of the proximal gradient algorithm, and can leverage the
fact that Py(f5) and Py (f)) are both smooth functions of r. To assess the computational

11
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impact of an added grid search, we looked at the run-time for the proximal problem with
Py = Pyoporer (Which requires a grid search) and with Py, € {TV (f©), TV (fO), TV (f@)}
(which does not use Lemma 4). For 100 replications of the proximal problem on a quad-
core Intel®)Core™, i7-10510U CPU @1.80GHz, the median run-time with n = 500 for
Pyt = Pisopoler was 693.20 ps. In contrast, the median run-time for Py (f) = TV(f(k))
for Kk =0,1,2 was 514.15, 2968.30, 4884.90 us, respectively. These median run-times were
calculated via a small simulation study; details of this experiment along with detailed timing
results are presented in Appendix B.

To complete the discussion, we give the explicit form of the dual norm (13) for the case
where Py (f) = || Df], for a matrix D € RM*"a vector f = [f(x1),..., f(zn)]T € R, and
g > 1. Such penalties are common in the literature, for example, when Py is the Sobolev
semi-norm, total variation norm, or any RKHS norm. For Py (f) = \|Dﬂ|q, the dual norm
is given by

() = DD D)~ flla.

where (D' D)~ is the Moore-Penrose pseudo inverse of D D and ¢ satisfies 1/¢ +1/q = 1.

4. Theoretical Results

Here we prove rates of convergence for GSAMs, estimators that fall within our framework (3).
We first present the so-called slow rates, which require few assumptions, followed by fast
rates, which require compatibility and margin conditions (defined and discussed below). Our
fast rates match the minimax rates under Gaussian data with a least squares loss (Raskutti
et al., 2009) and, our slow rates can be seen as an additive generalization of the lasso slow
rates (Dalalyan et al., 2017). For both slow and fast rates, we first present a deterministic
result; this result simply states that if we are within a special set, 7, then the convergence
rates hold. We then show that under suitable conditions (stated and discussed below) on the
loss function, smoothness penalty, and data, we lie in 7 with high probability. Throughout,
we also allow for mean model misspecification with an additional approximation error term
in the convergence rates; if the true mean model is additive, then this term disappears.

To the best of our knowledge, the closest results to our work were established by
Koltchinskii and Yuan (2010). However, they consider a more restrictive setting of Re-
producing Kernel Hilbert Spaces (RKHS); where each additive component f; belongs to
a RKHS H;, and Py is the norm on H;. Our work gives these rates for all semi-norm
penalties and function classes F, associated with certain non-restrictive entropy conditions.
Before presenting the main results, we present some notation and definitions which will be
used throughout the section.

4.1 Definitions and Notation

We consider here properties of the solution to

-~

p p
Bhidye ammin —Bu(54+ 30 )+ A UG, AP (R}, (14)

BERA S} €F j=1 j=1

12



GENERALIZED SPARSE ADDITIVE MODELS

where R C R and F is some univariate function class. Note that in (14) we optimize
over R; this is because we need R to be a bounded for proving the slow rates, the stronger
compatibility condition allows us to take R = R for proving fast rates.
For a function f(x) = 8+ >77_, fj(x;) we use the shorthand notation

1)) =) il + AP (£}

J=1

which defines a semi-norm on the function f. Furthermore, for any index set S C {1,...,p}
we define Is(f) as Is(f) = > ;e {llfjlln + APst(fj)}. We denote the target function by 1o
where

fY < argmin — P/ (f),
ferFo

for some function class 70 and, where P4(f) =n~' 3" | E{l(y;, f(x;))}. We say the target
function belongs to some class F to signify that f does not need to belong to F. We
require no assumptions on the class F° for the slow-rates of Theorem 7; we can take F°
to be the class of all measurable functions. For the fast rates we will require the margin
condition on a subset of FV.

We define the exzcess risk for a function f as (f) = P {¢(f°) — ¢(f)}, and we denote
by v, (+) the empirical process term, which is defined as

() = (B = B) (=47} = = >~ s F(@0) ~ Bl f(@0))

Define the d-covering number, N(6,F,| - ||q), as the size of the smallest §-cover of F
with respect to the norm || - || induced by measure (). We denote the d-entropy of F by
H(,F,| - llg) =log N(6, F,| -|lg). Given fixed covariates x,...,x, € RP, we denote the
empirical measure by @, where Q,, = n~! > i da,, and for covariate j; we denote by Q;n
the empirical measure of (21 ;,...,2y,). We define two different types of entropy bounds
for a function class F.

Definition 5 (Logarithmic Entropy) A univariate function class, F, is said to have a
logarithmic entropy bound if, for all j = 1,...,p, and v > 0, we have

HOAf5 € F:lfilln +7Pa(fi) <131 ll@sn) < AoTnlog (1/6+1), (15)

for some constant Ag, and parameter T,.

Definition 6 (Polynomial Entropy with Smoothness) A univariate function class, F,
is said to have a polynomial entropy bound with smoothness if, forallj =1,...,p and~y > 0,
we have

H(6,{fj € F: filln +vPst(f) <13, M- llQsn) < Ao(67)7%, (16)

for some constant Ay, parameter o € (0,2).

13
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The concept of entropy is commonly used in the literature, particularly in nonparametric
statistics and empirical processes, to quantify the size of function classes. The logarith-
mic entropy bound (15) holds for most finite dimensional classes of dimension T,. For
instance, it holds for F = L?(R) with Py(f;) = I(f;;span{x,2?,...,27}). The bound
(16) commonly holds for broader function classes, for example, for F = L2([0,1]) with

Pat(f;) = Psopoten(f¥)) and o = 1/k.
To simplify our presentation of bounds on the convergence rate, we use A 3 B to denote

A < ¢B for some constant ¢ > 0. We write A < Bif A 3 B and B 3 A.

4.2 Main Results

We now present our main results: upper bounds for the excess risk of GSAMSs, : specifically,
bounds for £(6 + >7%_,; f;j). The following theorem shows that £(8 + >5_; f;) < A over
a special set 7. In the corollary that follows, we show that for appropriate A values, and
certain type of loss functions, we are within 7" with high probability.

Theorem 7 (Slow Rates for GSAM) Let F=B+ Z§:1 f] be as defined in (14), and let
=0+ Z§:1 f; be an arbitrary additive function with Y77, f7(xi;) = 0 and B* € R.
Assume that —{(-) and Py are convex and that supger |B| < R. Define M* such that

pM™ = E(f") +2M(f") + 2Rp,
where A\ > 4p. Furthermore, define the set T as follows

T ={Zp < p(M*+2R)}, where Zy- = sup  |vp(f) —va(f7)].
I(f=fr)<M*

Then, on the set T,
E(F) + M(f — f*) < pM* + p(2R) + 2)\I(f*) + E(f*).

Corollary 8 Let f, f* and R be as defined in Theorem 7. Assume that for any function
f the loss ((+) is such that

—U(f) = Uy, f(=i)) = ayif (@) + ([ (2),
for some a € R\{0} and function b: R — R. Further assume that fori=1,...,n, y;—E(y;)

are independent, uniformly sub-Gaussian:

max K? [Eexp{y; — E(y))}*/K> — 1] < a3,
1= ’

1,...,n

Finally, suppose E(f*) = O(N) and I(f*) = O(1). Then, with probability at-least 1 —
2 exp (—Clan) — Cexp (—C’gnp2), we have the following cases:

1. If F has a logarithmic entropy bound, then for A < p < Kk max <\/7;f, \/ 1°§p> ,

~ ~ . T, [logp
E() + MI(T - 1) 3 max (\/:,\/ : ) ,

with constants k = k(a, K, 09, Ag), C1 = C1(K, 00), C = C(K, 09) and Cy = Co(C, k).
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2. If F has a polynomial entropy with smoothness, then for

1
- N
)\xpxmmax(n Tt Og”),
1

EF) + M (F - f*) 3 max <n k’gp) ,

n

with constants k = k(a, K, 00, Ag, ), C1 = C1(K,00), C = C(K,00) and Cy =
Cy(CL k).

In the above corollary, the assumption I(f*) = O(1) is often reasonable in high-dimensions;
if omitted, with the same high probability, the above rates will be multiplied by the term

?:1 | f7lln-  Now for high-dimensions, we commonly assume sparsity, f* = > . ¢ f7,
where |S]| is small. The dependence of the rate on sparsity can be directly expressed by
the inequality > cq [ f/lln < |S|maxjes | f/[ln. Another possible assumption for high
dimensions is weak sparsity, which states that, the effect size of most component functions
is very small. In this case, the preceding inequality would not be tight but we essentially
have 32, |1 £l = O(1).

We now proceed to show the fast rates of convergence. To establish these rates, we
require the compatibility and margin conditions. The compatibility condition, is based on
the idea that I(f) and | f|| are somehow compatible for some norm || - ||. This condition
is common in the high-dimensional literature for proving fast rates (see van de Geer and
Bithlmann, 2009, for a discussion of compatibility and related conditions for the lasso).
The margin condition, is based the idea that if £(f) is small then | f — f°|| should also be
small. This is another common condition in the literature for handling general convex loss
functions (see for example, Negahban et al., 2011; van de Geer, 2008).

Definition 9 (Compatibility Condition) The compatibility condition is said to hold for
an index set S C {1,2,...,p}, with compatibility constant ¢(S) > 0, if for all v > 0 and all

functions f of the form f(x) = B+3"0_, fj(x;) that satisfy 3 e ge | filln+v 25y Pa(fi) <
18] + 3> e5 1 fillns it holds that

181/2+ > 1 filln < I1£1V/1S1/¢(S),
jes
for some norm || - ||.

Definition 10 (Margin Condition) The margin condition holds if there is strictly con-
vex function G such that G(0) =0 and for all f € .7-"10 cal C FO we have

0

E(f) = GUf = £,

for some norm || - || on F°; here Fp,..; is a neighborhood of f° (for example, F ... = {f :
If — fOlleo < n}). In typical cases, the margin condition holds with G(u) = cu?, for a
positive constant c. We refer to this special case as the quadratic margin condition.
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The norm || - || used in the definitions above is most often the empirical norm, || - ||,.
Our proof is the same for any norm || - ||, as long as the same norm is used for both
conditions. Note that the margin condition is strictly a condition on the loss function £(-),
implying that it is not dependent on the class, F, or dimension, p. While the margin
condition is established for well-known choices of £(-) (see for example, van de Geer, 2016),
in Appendix H, we present a framework for verifying the quadratic margin condition for
loss functions of the form: —¢(f) = ay; f(x;) + b(f(x;)). While the compatibility condition
is difficult to prove, the theoretical compatibility condition (defined below) can be verified
under suitable conditions. In Appendix H, we prove that (under mild conditions), the
theoretical compatibility condition implies the original compatibility condition with high
probability.

Definition 11 (Theoretical Compatibility Condition) The theoretical compatibility con-
dition is said to hold for an index set S C {1,2,...,p}, for a compatibility constant ¢(S),
if for some n € (0,1/5), all A > 0, and all functions of the form f(x) = B + Z§:1 fi(xj)

that satisfy jcge | Fll + 20 S0y APu(fy) < 18]+ 222 55, o 1l it holds that

S
81+ 3 1) < YIS

JeES ( )

where || f||?> = [[f(x)]?dQ(z) is the population level Lo norm.

The theoretical compatibility condition holds trivially when we have independent co-
variates. In general, establishing verifying it depends on the smoothness penalty Py:; for
example, for the Sobolev norm, Meier et al. (2009) established sufficient conditions for the
compatibility condition to hold. An important special case, is when Py /(f) projects com-
ponent functions to a finite dimensional space (for example, Ravikumar et al., 2009; Lou
et al., 2016). In this case, our condition reduces to the well-known, group lasso compatibility
condition, for which sufficient conditions are well established in the literature (for example,
Biithlmann and van de Geer, 2011).

We now present our second theorem which establishes the bound & (B + Z§:1 f]) = sA2,
where A is the slow rate of Theorem 7, and s is the number of non-zero components of
ff=p+ Z§:1 ¥, a sparse additive approximation of f°. As in Theorem 7, the bound
holds over a set T; Corollary 13 following the theorem shows that we lie in 7 with high
probability.

Theorem 12 (Fast Rates for GSAM) Suppose —{(-) and Pst are convex functions and
with f and f* as defined in Theorem 7. Assume that f* is sparse with |Si| = s where Sy, =
{j: I3 # 0}, and that the compatibility condition holds for Si. Further assume the quadratic
margin condition holds with constant ¢, and that for a function f(x) = f + Z?:l fi(xj),
f e R if and only if | — B*| + I(f — f*) < M*. The constant M* is defined as

. . 168)\
pM* = E(f*) + (5 +202 ) Pu(f
]65'*
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and p is such that A > 8p. Furthermore, define the set T as

T ={Zp < pM*}, where Zp+« = sup lun(f) — vn(f5)]-
|B=B*|+I(f—f*)<M*

Then, on the set T,

N N * * * 643A2 2 *
Ef)+M(f = f7) < 4pM™ = 4E(f )+c¢27(5')+8)\ > Pulf)).

JESk

Corollary 13 Let f and f* be as defined in Theorem 7 and assume the conditions of
Theorem 12. Furthermore, for any function f assume the loss ¢(-) is such that

—U(f) = —lyi, f(®i)) = ayif(zi) + b(f (1)),

for some a € R\{0} and function b : R — R. Further assume that fori=1,...,n, y; — Ey;
are independent, uniformly sub-Gaussian:

max K? [Eexp {(y; —Eyi)Q/KZ} —-1] < o3

i=1,...,n

Finally suppose E(f*) = O(s\?/¢*(S,)) and s+ >jes. Pst(f) = O(1). Then, with proba-

bility at-least 1 — 2exp (fClnpz) — Cexp (fC'anQ), we have the following cases:

- . - o [T, /1
1. If F has a logarithmic entropy bound, for A < p < Kk max < T, Ofi”),

n n

E(F) + M(F = £) < max (T slogp) ,

with constants k = k(a, K, 09, Ag), C1 = C1(K, 00), C = C(K,09) and Cy = Co(C, k).

2. If F has a polynomial entropy bound with smoothness, then for

1
Axpxmmax(n 2+a,\/k’ff’>,

E(f) + )\I(ff f*) 2 max <sn_2ia,5105p> , (17)

with constants k = k(a, K, 09, Ag, ), C1 = Ci1(K,0p), C = C(K,00) and Cy =
CQ(C,/{).

We will discuss the significance of our theoretical results in the next subsection by
specializing them to some well-studied special cases. Before discussing these specializations,
we conclude this section by further generalizing Theorem 12. We will now assume a more
general margin condition, for which we need to define the additional notion of a convex
conjugate.
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Definition 14 (Convex Conjugate) Let G be a strictly convez function on [0,00) with
G(0) = 0. The convex conjugate of G, denoted by H, is defined as

H(v) =sup{uv —G(u)}, v >0.
u
For the special case of G(u) = cu?, one has H(v) = v?/(4c).

Theorem 15 (Fast Rates) Assume the conditions of Theorem 12 and define M* as

)

pM* = E(f )+ H < + 222 Z Pst(f]),

JES«
where H(-) is the convexr conjugate of G. Then, on the set T,
E(F)+ M(f - f) < 4pM™.

Remark 16 (Additional tuning parameters) Note that our convergence rates include
the term Z]ES* Pst(f;), or constants which depend on it. For some choices of Ps this
can lead to poor finite sample performance. In such cases, prediction performance can be
improved by solving instead

p P

p
B, frs..., fp ¢ argmin Pn£<ﬂ+2fj>+<1oAZPst(fchfojnn, (18)

BER,f1,....fpEF

j=1 j=1 j=1

where ¢ € [0,1] is an additional tuning parameter. In theory, using two tuning parameters
should lead to improved prediction, however in practice, tuning parameter selection over a
discrete grid can become computationally cumbersome. A moderately-sized search grid might
not yield a lower MSE and in fact, can lead to substantially higher MSE, particularly for
large n. We illustrate this phenomenon via a small simulation study in Appendix C: to the
simulation study of Section 5, specifically Scenarios 8 and 4, we additionally fit GSAMs by
solving (18). Using a grid of ten ¢ values, we observe improved prediction in some cases
however, a ten-grid is too coarse to exhibit uniformly lower MSE.

Remark 17 (Constants in convergence rates) Our convergence rates are presented up
to constants. To illustrate this fact, we consider the problem

BER, f1,..., fr€F

P P P
B, fis..., fp < argmin  — P,/ (B—FZ]Z—) +@)\22Pst (f5) +)\Z\|fj||n, (19)

Jj=1 Jj=1 Jj=1

for a constant © that does not depend onn or p. While (19) will have a different convergence
rate than those presented in Theorems 7—15, the two rates will only differ by a constant
that depends on ©. Optimizing these constants is an interesting open problem that is beyond
the scope of this manuscript.

Remark 18 (Convex indicator penalties) The above results do not directly extend to
some conver indicator penalties. For some convez indicator penalties, such as Pg(f) =
I(f;{f: f' = 0}), we require a third type of entropy condition:
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Definition 19 (Polynomial Entropy without Smoothness) The univariate function
class, F, is said to have a polynomial entropy without smoothness bound if forallj =1,...,p
we have

HOA{fj € F: I filln+7Pse(f5) <13, 11 ll@y.) < Aod™,

for some constant Ay, parameter o € (0,2) and all vy > 0.

Our results do not extend to convex indicator penalties because our proof relies on the fact
that fj—f7 € F for f;, [T € F; function classes with polynomial entropy without smoothness
do not usually have this property. We defer the extension to convex indicator structural
penalties to future work.

Remark 20 (Sub-Exponential residuals) In Corollaries 8 and 13 we can replace the
requirement of uniformly sub-Gaussian residuals by the weaker condition of uniformly sub-
Exponential residuals. To be precise, we would require

max K [Eexp {y: — E())*/K” — 1~ lys — E(y:)|/K] < o,
However, sub-Exponential residuals would firstly require bounds for the -entropy with brack-
eting. The d-entropy with bracketing is a stronger notion than d-entropy without bracketing
(the §-entropy with bracketing is always larger than the d-entropy without bracketing). Sec-
ondly, we would also require uniform bounds for each univariate function, specifically, we
need

max_sup|f;(z)/|| fjlln| < R.

J=4L.P

Remark 21 (Comparison of rates to existing work) Here, we highlight the key dif-
ferences between our theoretical result and existing work. Koltchinskii and Yuan (2010) and
Raskutti et al. (2012) establish same rates of convergence as those in Corollaries 8 and 13.
However, their work requires stronger assumptions. Both papers are restricted to the setting
reproducing of kernel hilbert spaces (RKHS) and only allow an RKHS norm as the choice
of smoothness penalty. They also assume known bounds on the additive functions or indi-
vidual components. Additionally, Raskutti et al. (2012) assumes independence of covariates
as opposed to a more general compatibility condition. The work of Yuan and Zhou (2016),
extends the RKHS framework with results capturing the notion of weak sparsity; assuming
bounds on the term Z§:1 ||f]*H% for 0 < q < 1 they present rates (up to a constant) of the

form
1—q/2
oot (1) )

n

Similarly, Tan and Zhang (2019) present rates of the form

logp)
1
(n_ Tra(l—q) 4 ng) . (21)

n

Both (20) and (21) match our established rates for the limiting case of ¢ = 0. While Tan
and Zhang (2019) relax some of the strong assumptions of Yuan and Zhou (2016), both
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papers deal exclusively with the least squares loss function. It is not clear if results like (20)
and (21) can be established for general loss functions.

Tan and Zhang (2019) also present convergence rates in greater generality, namely, in
terms of the integral of the entropy number. However the only special case they consider
are function classes with polynomial entropy with smoothness. For this special case, their
convergence rates match ours under a least squares loss; it is not clear if their results extend
to GAMs nor is it clear what their rates are for other commonly used function classes.

4.3 Special Cases of GSAM

In this subsection, we illustrate the main strength of our framework, namely its generaliz-
ability. We specialize our theoretical results to, various existing GSAMs, fully non-parametric
regression, and also to (sparse-)GLMs. As per a reviewer’s suggestion, in Table A.1 in
Appendix A, we summarize existing GSAMs and their limitations which our framework over-
comes.

Firstly, the proposals of Ravikumar et al. (2009) and Lou et al. (2016), established
convergence rates substantially slower than the minimax rates and only for the least squares
loss. Our general framework, establishes the following convergence rates for both methods:
E(f) T max (sM/n,slogp/n) + E(f*), where M is the order of the basis expansion used
for each f;. For an additive f9, £(f*) is decreasing in M; and we require a value of M
which balances the two terms in the rate. For function classes with polynomial entropy with
smoothness, we recover rates (17) with M =< n+a. As noted in Section 4.2, the margin
condition holds for a large class of loss functions; for both methods, the compatibility
condition reduces to the well-studied, group lasso compatibility condition.

Next we consider the proposal of Meier et al. (2009) (see also Biihlmann and van de Geer,
2011; van de Geer, 2010); their theoretical results were limited to the least squares loss and
the resulting convergence rate takes the form & (f) = (slog p/n)z/ (2+) This rate is sub-
optimal compared to our fast rate (17). Established rates for the diagnolized smoothness
penalty of van de Geer (2010), were also sub-optimal and of the order s(logp)n~%/(+e),
Our work bridges the following gaps in the theoretical work of Meier et al. (2009) and van de
Geer (2010): (a) we establish minimax rates under identical compatibility conditions, (b) we
extend their result beyond least squares loss functions and, (c) we establish slow rates under
virtually no assumptions. As another example, we consider our own previous work (Haris
et al., 2018), a GSAM which uses wavelet basis functions. Once the univariate problem (p = 1)
was solved for the wavelet bases, extending it to GSAM was trivially achieved using the results
of this manuscript. The above examples demonstrate that not only do our theoretical results
and proximal gradient descent algorithm improve existing results in the literature, but also,
can be applied to fully develop any GSAM as long as we can solve the uni-variate problem of
the form (12).

Next we show how some seemingly unrelated problems can also be treated as special
cases of our framework. Firstly, we recover the special case of univariate nonparametric
regression, that is, with p = 1: the compatibility condition trivially holds leading to the
usual rates £(f) <X n~2/(2+®) Next, we recover the multivariate nonparametric regression
problem: suppose we have a single (but multivariate) component function f; : R? — R. For
various choices of Py, the bound (16) holds with a = p/m for some smoothness parameter
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Figure 1: Plot of the 4 signal functions for each of the five simulation settings.

m. Again, the compatibility condition holds trivially, leading to the usual nonparametric
rate n—2m/(@mtp), Finally, parametric regression models are also special cases of GSAM.
Using a convex indicator for Py, we can constrain each f; to be a linear function leading
to GLMs. For low-dimensional GLMs, Corollary 13 gives the usual parametric rate, p/n.
For high-dimensional GLMs, not only does our theorem recover the lasso rate, but our
compatibility condition also matches that of lasso (Biihlmann and van de Geer, 2011).

5. Simulation Study

In this section, to complement our theoretical results, we conduct a simulation study to
study the finite sample performance of various GSAMs as a function of n. The GSAMs we
study are existing techniques in the literature obtained by various choices of the smoothness
penalty, Ps(-). Our aim is to study the convergence of various methods with increasing
n. For a more detailed simulation study we refer the reader to the original papers for each
method (cited below). We consider the following choices for Py (-):

1. SpAM (Ravikumar et al., 2009). Py(f) = I(f;span{¢,...,¥p}) for M €
{3,6,10,20,30,50,80}. We use the SAM R-package (Zhao et al., 2014).

2. SSP (Meier et al., 2009). Py(f) = /[ (f?(x))?dz, the Sobolev smoothness
penalty (SSP). Given the lack of efficient software for this method, we implemented
it using the algorithm and results of Section 3.

3. TF (Sadhanala and Tibshirani, 2019). Py(f) = [ |f**Y(z)|dz for k € {0, 1,2},
trend filtering for additive models. We implemented this method using the algorithm
of Section 3 where the univariate sub-problem (11) was solved using the R package
glmgen (Arnold et al., 2014).
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Figure 2: Plot of MSEs versus sample size for each of five scenarios for p = 6, averaged

over 500 replications. The dashed lines correspond to SpAM with small ( ),
moderate (- e-e -) and high (- 4-a -) number of basis functions. The solid lines
correspond to trend filtering of order k = 0 (—=—=—), 1 ( ) and 2 ( ).

SSP is represented by the dotted line (--u-a-- ).

We simulate data for each of five simulation scenarios as follows: Given a sample size
n and a number of covariates p, we draw 50 different n x p training design matrices X
where each element is drawn from U (—2.5,2.5). We replicate each of the 50 design matrices
10 times leading to a total of 500 design matrices. The response is generated as y; =
fi(za) + fa(wi2) + f3(xi3) + fa(xia) + &; where ; ~ N(0,1). The remaining covariates are
noise variables. We also generate an independent test set for each replicate with sample size
n/2. We vary the sample size, n € {100, 200,...,800} and consider both, a low-dimensional
(p = 6) and high-dimensional (p = 100) settings. We consider five different choices of the
signal functions as shown in Figure 1.

We fit each method over a sequence of 50 A\ values on the training set, and select the
tuning parameter A* which minimizes the test error (||yses: — 3|7 ). For the estimated model
fre, we report the mean square error (MSE; Hf,\* — fY|?) as a function of n.

In Figures 2 and 3, we plot the MSE as a function of n for the low and high-dimensional
setting, respectively. For each simulation scenario, we plot the performance of SpAM for
three different choices of M: low, moderate and high number of basis functions, M. The
exact value of M presented varies by scenario, for example, in Scenario 4, low, moderate
and high values of M correspond to M = 3,10 and 30, respectively. In both low- and high-
dimensional settings, we observe similar relative performances between the methods, with
more variability in results for the high-dimensional setting. While there is no uniformly
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Figure 3: Plots of MSE versus sample size for each of five scenarios for p = 100, averaged
over 500 replications. The line types and colors are the same as in Figure 2.

superior method, for all, except Scenario 1, the Sobolev smoothness penalty and trend
filtering of orders 1 and 2 had comparably good performances. Unsurprisingly, trend filtering
of order 0 exhibits superior performance in Scenario 1, where each component is piecewise
constant. In each scenario, the bias-variance trade-off of SpAM depends on the choice of
M: too small or large values of M lead to high prediction error compared to other methods.

In Appendix A, we plot examples of fitted functions for the various methods. The
dependence on M for SpAM, is further illustrated in Figure A.1, where we plot functions
estimated by SpAM for high-dimensional Scenario 4 with n = 500. We observe large bias
for M = 3 (especially for the piecewise constant and linear functions) and high variance for
M = 30. In the same figure, we also plot functions estimated by the SSP; SSP estimates
exhibit a similar bias to that of SpAM with M = 10, but with a substantially smaller
variance. Figure A.2 similarly plots fitted example functions for trend filtering. Trend
filtering with & = 0 estimates the piecewise constant function well, but estimating the other
fj’s by piecewise constant functions incurs additional variance. Trend filtering with k = 1
and 2 estimates all other signal functions well.

6. Data Analysis

6.1 Boston Housing Data

We use the methods of Section 5 to predict the value of owner-occupied homes in the suburbs
of Boston using census data from 1970. The data consists of n = 506 measurements and 10
covariates, and has been studied in the additive models literature (Ravikumar et al., 2009;
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Figure 4: Box-plot of test errors for 100 different train/test splits of the data for each
method. The average TPR and FPR was calculated using the original 10 covari-
ates as ‘signal’ variables and remaining 20 as noise variables.

Lin and Zhang, 2006). As done in the data analysis by Ravikumar et al. (2009), we add 10
noise covariates uniformly generated on the unit interval and 10 additional noise covariates
obtained by randomly permuting the original covariates.

We fit SSP, SpAM with M = 2 and 3 basis functions, and TF with orders &k = 0,1, 2;
we also fit the lasso (Tibshirani, 1996). Approximately 75% of the observations are used
as training set, and the mean square prediction error on the test set is reported. The final
model is selected using 5-fold cross validation using the ‘1 standard error rule’. Results are
presented for 100 splits of the data into training and test sets.

The box-plots of test error in the test set are shown in Figure 4. Since we added noise
variables for the purpose of this analysis, we also state the average true positive rate (TPR)
and false positive rate (FPR) in Figure 4. The box-plots demonstrate superior performance
of TF of order k£ = 0 over other methods in terms of lowest prediction error and highest
TPR. The FPR of TF with £ = 0 is also low (under 10%). In Figure A.3 of Appendix A,
we plot fitted functions for one split of the data for lasso, SpAM with M = 3, SSP and,
TF with k& = 0 for the 10 covariates of the original data set. A striking feature of TF fits is
that many component functions are constant for extreme values of the covariates.

6.2 Gene Expression Data

We now fit GSAMs for classification of gene expression data. We used the Curated Microarray
Database (CuMiDa) (Feltes et al., 2019): a repository of gene-expression data sets curated
from the Gene Expression Omnibus (GEO). Using gene expression measurements, we aimed
to classify observations as either cancer cells or normal cells. We consider the following data
sets/cancer types:

1. Lung: 54,675 gene expression measurements from 114 lung tissue samples from non-
smoking women with non-small cell lung carcinoma; data set consists of 56 tumor, and
58 normal tissue samples. Available on CuMiDa with accession number GSE19804.
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Cancer type

Method Lung Prostate Breast Oral cavity

n=114;p= 54,675 n=124;p=12,620 n =289%;p=35,980 n =103;p = 54,675
Lasso 0.985 (3.46) 0.713 (14.07) 0.951 (3.93) 0.930 (10.43)
SpAM, M =2 0.982 (3.49) 0.726 (13.56) 0.948 (3.89) 0.923 (14.14)
SpAM, M =3 0.984 (3.29) 0.763 (12.94) 0.955 (3.50) 0.918 (13.06)
SpAM, M =10 0.970 (5.48) 0.727 (13.46) 0.946 (4.08) 0.940 (8.17)
SSP 0.987 (2.72) 0.765 (11.71) 0.934 (4.69) 0.950 (7.08)
TF, k=0 0.980 (4.07) 0.761 (13.04) 0.935 (4.66) 0.953 (7.32)
TF, k=1 0.988 (2.65) 0.771 (12.50) 0.936 (4.22) 0.947 (9.14)

Table 1: Table results for the analysis of gene expression data. For 100 different splits of
the data into a training, testing and validation set, we report mean AUC along
with 103x mean SE, on the validation set. The method with the highest mean
AUC is highlighted for each cancer type.

2. Prostate: 12,620 gene expression measurements from 124 prostate tissue samples; data
set consists of 64 primary prostate tumor, and 60 normal tissue samples. Available
on CuMiDa with accession number GSE6919_U95B.

3. Breast: 35,980 gene expression measurements from 289 breast tissue samples; data
set consists of 143 breast adenocarcinoma, and 143 normal tissue samples. Available
on CuMiDa with accession number GSE70947.

4. Oral cavity: 54,675 gene expression measurements from 103 mucosa cell samples;
data set consists of 74 samples with oral cavity cancer, and 29 normal cell samples.
Available on CuMiDa with accession number GSE42743.

Our goal is to correctly classify samples as either normal or cancer samples. We split
the data as follows: 60% as training, 20% as validation and 20% as test data. On the
training data we fit the lasso, SpAM with M € {2,3,10}, SSP and, TF with k& € {0,1}.
TF with k = 2 was excluded due to numerical instability of the current implementation of
the algorithm in glmgen; SpAM with other values of M yielded similar performance and
thus the results are omitted here. All methods were fit for a sequence of A\ values, using
(Asps Ast) = (X, A2) for GSAMs. The A value with the smallest area under the curve (AUC)
for the ROC curve on the validation set was selected, and the corresponding model was
used to classify samples in the test set. The experiment was repeated for 50 splits of the
data into training, validation and testing.

In Table 1, we report the mean AUC on the test set and the estimated standard error
based on 50 replications of the experiment. For the lung and breast cancer data sets, we
observe similar performance between the lasso and other additive models; this suggests a
low signal in the data to detect non-linearities. However, for prostate and oral cavity cancer,
we observe a substantial gain (mean AUC beyond one SE) when using a GSAM instead of a
linear model. In summary, this data analysis validates our intuition and theoretical results:
using a GSAM will lead to comparable or better performance than using a linear model.
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7. Conclusion

In this paper, we introduced a general framework for non-parametric high-dimensional
sparse additive models. We show that many existing proposals, such as SpAM (Ravikumar
et al., 2009), SPLAM (Lou et al., 2016), Sobolev smoothness (Meier et al., 2009), and trend
filtering additive models (Sadhanala and Tibshirani, 2019; Petersen et al., 2016), fall within
our framework.

We established a proximal gradient descent algorithm which has a lasso-like per-iteration
complexity for certain choices of the structural penalty. The computational framework
presented in this paper, effectively reduce the problem of fitting high-dimensional GSAMs to
fitting a univariate regression model with the relevant smoothness penalty. While algorithms
and theoretical results for specific GSAMs, as well as some theoretical results for certain
types of general GSAMs, exists, to the best of our knowledge, the general algorithm for
GSAMs is a key novel contribution in this paper. Our theoretical analyses in Section 4
showed both fast rates, which match minimax rates under Gaussian noise, as well as slow
rates, which only require a few weak assumptions.

The R package GSAM, available on https://github.com/asadharis/GSAM, implements
the methods described in this paper.
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Appendix A. Additional Figures, Table and Algorithm

Algorithm A.1 is the block coordinate descent algorithm that can be used to estimate GSAMs.

Figure A.1 shows estimated functions for SpAM with 3,10 and 30 basis functions, and for
SSP.

Figure A.2 shows estimated functions for trend filtering of orders k = 0,1, 2.

Figure A.3 shows estimated functions for the various methods for the analysis of Boston
housing data.

Table A.1 summary of existing GSAMs in the literature and their shortcomings (lack of
efficient algorithms and/or limited theoretical results).
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Algorithm A.1 Block Coordinate Descent for Least Squares Loss

1: Initialize fP,... f) = 0,8° <0, 7+ y, k« 1
2: while k£ < mazx_iter and not converged do

3: Update
n
BF nflzri, r+«r— 1.
i=1
4: forj=1,...,pdo
5: Set r_; as
roji=ri+ [ (i),
6: Update
I e (L= M) £
where ) )
f;”te” + argmin er,j — fH +t\2Py (f).
fer 2 n
7 Update r to
i Tr—ji+ ff(l’w)
8: end for
9: end while
10: return 8*, flk, . ,ff

(A1)
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Figure A.1: Examples of estimated signal functions by SpAM (Ravikumar et al., 2009) and
Sobolev Smoothness Penalty (Meier et al., 2009) for Scenario 4.
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TF, k=0
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Figure A.2: Examples of estimated signal functions by Trend Filtering (Sadhanala and
Tibshirani, 2019) for Scenario 4.
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Figure A.3: Plots of fitted functions for the original 10 covariates for a single split of the
data into training and test sets for lasso (—), SpAM (—) with M = 3 basis
functions, SSP (—) and, TF (—) of order k£ = 0.
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Method Function class Loss/link? Smoothness Penalty
il () Py ()
Ravikumar Least squares )
et al. (2009) Sobolev space and logistic’ T(fsspan{en, . ¥nr})
General class I(f;span{e1,..., ¥} +

Lou et al. (2016)

of functions

Convex loss’

?:1 H Projspan(wg,...,wM) (f) Hn

Petersen et al.

General class

Koltchinskii and
Yuan (2010)

RKHS

Convex loss

Norm of
RKHS space

o
3 f
é (2016) of functions Convex loss ™)
= Sadhanala and Functions with
X | Tibshirani finite k-th order | Least squares TV(f*)
S| (2019) total variation
& | Meier et al. General class of | Least squares
< 9 2
g : (2009) smooth functions | and logistic \/fx {/P(2)} da
T | | Raskutti et al. Norm of
gl =
S|z (2012) RKHS Least squares RKHS space
= | =~ [ Yuan and Zhou Quasi-norm of
§ (2016) RKHS Least squares RKHS space
&UE Tan and Zhang General class Least sauares General smoothness
&S (2019) of functions d semi-norms
S
=

t: Theoretical results only available for least squares loss/identity link function.

1: The link function is generally incorporated into the loss function, for example, least squares loss

corresponds to the identity link and logistic loss to the logit link.

Table A.1: Summary of methods generalized by our GSAM framework. The various methods
in the literature are grouped according to (a) limited theoretical results (only
for least squares or sub-optimal rates) and (b) absence of an efficient algorithm.
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Figure B.1: Timing results for 100 implementations of the proximal problem for SSP and
trend filtering.

Appendix B. Numerical Experiments for Comparing Run-Times

In this appendix, we present a detailed comparison of the run-times for solving the univariate
proximal problem for various choices of the smoothness penalty, Ps. In greater detail, we
study the proximal problem:

1 2 2
min = [|r — Al flln + A2 Pt (£).
min Sllr = Flla + Al flln + APl )

We generated data as z; ~ Unif[—1,1] and r; = sin(1.57z;)/2 + ; where &; ~ N(0,0.5?)
for i =1,...,n. We considered sample sizes n = 100, 500, 1000 and 5000.

In Table B.1 we present the timing results for repeatedly implementing the proximal
solver 100 times for n = 500. Unsurprisingly, SpAM is the fastest method as it can be
viewed as a standardized group lasso problem (Simon and Tibshirani, 2012) where each
proximal problem has a closed-form solution. The SSP penalty is slightly slower than trend
filtering for order k£ = 0 but still orders of magnitude faster than trend filtering for & = 1, 2.

In Figure B.1, we present violin plots for the timing results comparing SSP to trend
filtering. This figure validates our previous observations: despite the added grid search,
SSP is still much faster than trend filtering of order & = 1,2. Another interesting feature is
that SSP is the fastest method for n = 5000.

While it is encouraging to see competitive computation time despite an added grid
search, we must highlight one limitation of this experiment: each method was implemented
based on existing code in R packages, and other publicly available sources. Therefore,
there are bound to be differences in the efficacy of the code written including the choice
of programming language used. For instance the SSP proximal problem is solved using
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Time (ps)

. Lower . Upper

Min Quantile Mean - Median Quantile
SpAM, M =3 23.70 26.10 36.61 30.30 42.95 138.20
SpAM, M =5 25.30 28.90 40.15 32.90 42.20 143.60
SpAM, M =10 31.80 35.05 44.20 39.15 49.25 102.60
SpAM, M =15 38.00 42.95 55.48 46.85 56.90 202.00
SpAM, M = 20 42.50 47.55 57.31 51.60 61.75 163.70
SpAM, M = 30 55.00 61.00 75.79 69.25 77.10 248.20

SpAM, M =50 77.00 85.10  100.75 92.35 102.60 225.50

Max

SSP 633.00 670.20  733.72  693.20 761.10  1107.80
TF, k=0 452.80 489.80  571.64 514.15 579.05  1390.20
TF, k=1 2681.40  2815.95 3495.12 2968.30  3134.55 50508.80
TF, k=2 4436.40  4710.05 4921.01 4884.90 5008.40  5759.70

Table B.1: Summary of timing results for 100 implementations of proximal solver for n =
500.

FORTRAN, whereas others use C++; additionally, speed is impacted by other functions which
might be written in R, for example, using for loops to construct the matrix of basis functions.

Appendix C. Numerical Experiments for Additional Tuning Parameters

In this appendix, we empirically investigate the impact of decoulping the tuning parameters
for sparsity and smoothness. Recall our decoupled GSAM:

BER, f1,....fpE€F

j=1 j=1

B, fiy. ..\ fp + argmin _Pne(5+2fj)+(1-g)x2pst(fj)+@z”fj”, (C.1)

j=1

for a second tuning parameter ¢ € [0,1]. To demonstrate the performance of decoupling
tuning parameters, we implemented (C.1) using some of the data from our simulation study
in Section 5. In greater detail, we consider Scenario 3 (all smooth functions) and Scenario
4 (mixture of functions) from the simulation study in Section 5. We generated data with
n € {100, 300,500, 700,900, 1000} and p € {6,100}. We implement both versions of GSAM,
with the smoothness penalties, SSP and TF with k = 0,1,2. For the originally proposed
GSAM (with coupled tuning parameters), we use a sequence of fifty A values and, for (C.1),
we additionally used a sequence of ten ¢ € [1073,1 — 107°] values (resulting in a 10 x 50
grid of tuning parameters). We report the oracle mean square error (MSE):

MSEcoupled = m)%n Hf)\ - fOH%a

MSEdecoupled = I?l)\n ”fc,)\ - fOHi
All results were averaged over 100 replications of the data.
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Figure C.1: Plot of oracle MSEs versus sample size for each of scenarios 3 and 4 for p =6
and 100, averaged over 100 replications. The lines correspond to GSAM with

coupled ( ) and decoupled (-4-+-) tuning parameters. For Scenario 3 with
p = 100, we also consider a finer grid of ¢ values for decoupled tuning parame-
ters (-—--+-+-).

In Figure C.1 we plot the oracle MSE as a function of the sample size. For low-
dimensional data we observe that decoupling the tuning parameters can lead to a lower
MSE in some cases. For example, in Scenario 3, with p = 6 we observe the decoupled GSAM
to have lower MSE for all methods for almost all sample sizes. However, even with p = 6
we note decoupled tuning parameters lead to a high MSE for large n whereas coupled tun-
ing parameters have a monotone decreasing MSE curve. This phenomenon is exacerbated
for p = 100, where we observe the coupled tuning parameters GSAM to uniformly beat the
decoupled version in terms of oracle MSE. This behavior is likely due to the precision of
our tuning parameters’ grid: using a finer grid of ¢ values could lead to a lower MSE but
at a high computational cost. We study the use of a finer grid for Scenario 3 with p = 100:
the third line in the panel is MSEgecoupled for a sequence of thirty ¢ € [0.700,0.999] values.
We clearly observe a substantial reduction of oracle MSE from the original decoupled GSAN;
additionally, for most methods, for some n, the decoupled GSAM outperforms the coupled

GSAM.
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Appendix D. Proof of Results in Section 2.2

Proof [Proof of Lemma 1] For brevity, we write our optimization problem as

fi, .. fp argmin L(f1,...,fp),
fiyeees pr]:

where L£(-) is the objective function. The proof follows by contradiction: we assume some
fj = 0 while others are non-zero, and looking at the sub-gradient conditions we arrive at a
contradiction. R R
In greater detail, assume without loss of generality, that for some k <p, f1,..., fr #0
and fgt1,...,fp = 0. Define the paths f;.. = f; + €;h; for any direction h; € F for
j = 1,...,p. The sub-gradient conditions state, that for any direction h; € F, we must
have
0€0,L(frers s fpep) ,
e1=...=ep=0
for all j € {1,...,p}, where 0. , denotes the sub-gradient set with respect to €;. For the
non-zero functions, j € {1,...,k}, the sub-gradient conditions are:
S NN
Sy = Frm B o= Fohibn 4 MO PR(Frey) 200 5
£l
where (a,b), =n~"1 3" | a(z;)b(x;). Since the sub-gradient conditions must be met for all
h; € F, we set hj = f;. This implies that

O, Pi(fie,)| _ = 05, PR+ ) f5}

Ej= 5=
= 8Ej(1 + Ej)2}5j:0 Pzt{f]}
= 2P5(f)),
where the second equality follows from properties of a norm. Thus, for j € {1,...,k}, we
must have
~(y—Fi—Fa— = Fo Fidn + 20 P2 + NallFilln = 0,
—A—A—...—AA'n 2\ P2(f;
<:><y fl f2 = fkaf]> — 14+ )\1 A(f])' (Dl)
A2l flln A2l flln
On the other hand for j' € {k+1,...,p},
0, P%(fe, ) " Oe, Pa(ej0hy) L

J J

PZ(hy) = 0.

e’;‘j/:O

2
- agj,sj/

—~
asj/ ||fj’,€j/ ||n

o = Oepllegrhylln

€j/:0

= Oy lerl|,_, Tl

€j/:
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By definition of a sub-gradient we know that 9. ,[e| .= [—1,1]. Therefore, the sub-

£.=

gradient conditions for j' € {k +1,...,p} imply that
7<y7}1\17f\277ﬁ€ah]’>n+)\2Uj’Hh]/Hn:Oa (DQ)

for some Uj € [—1,1]. Now with (D.1) and (D.2), and a clever choice of hj we arrive at a
contradiction: setting hjs = h; = f; # 0 for any j < k,

<y_ﬁ_f.2_"'_ﬁ€afj>n
U, = — by (D.2
: WIAR v (B2
20 P2(f;)
2| filln
> 1,

because f] = 0, which leads to a contradiction.
|

Proof [Proof of Corollary 2] The proof is essentially identical to that of Lemma 1. Assume
without loss of generality that I = {k + 1,...,p}. Assume for contradiction that, there is
some j € {1,...,k} such that ]/”; € F\Fo. Then as in the proof of Lemma 1, we can arrive
at a contradiction showing U; > 1 for all j' € I. [ |

Appendix E. Proof of Results in Section 3

Proof [Proof of Lemma 3] If f = 0, then f = 0 is trivially the solution to (8). Thus,
throughout this proof, we consider f # 0.

Case 1: Hf||n > Xo. In this case ¢f = f where ¢ = (1— /\Q/HfH )~L. Let fr € F be some
arbitrary function and define the function h = fr — f We will show that along the path
f +¢eh for all € € [0, 1], the objective

% ‘T_ (f“h)Hi*AlPst (f+ Eh) + Xo|| f + hlln (E.1)

is minimized at € = 0. We begin by noting that

2 ~
5 Hr —(F —|—sch)H + A\ Py (f —i—ech) ,

is minimized at € = 0 because
f+ ech = ]7+ ecfp — scf: (1-— 5)]?4— ecfr € F,
for all € € [0, 1] since F is a convex cone. By the sub-gradient condition, we have

—(r — J?, ch)p + M9 =0,
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for some 91 € 0 Py <f+ sch)

, or equivalently
e=0

c [—(r — cf, h)n + A2 =0,

for some Yo € 0 Py (f—i— 5h) .
~ EZ
At f + €h, one possible sub-gradient of the objective (E.1) is
(F\ )
11l

By the definition of ¢, we have that As/|[f]ln = cXo/||flln = ¢(1 — 1/¢) = ¢ — 1, and thus
the above sub-gradient is

—(r — ﬁh>n + AMU2 + A2

—(r = F R + M2 4 (¢ = D){f, R)n = —(r — cf, B)n + A2 = 0.

Thus we have shown that the objective function (E.1) is minimized at € = 0. Since fr was
an arbitrary function, we conclude that f is the solution of (8).

Case 2: Han < A2. In this case we will show that fz 0. For this, we consider the path
efr for € € [0,1] for an arbitrary fr € F. We will show that the function

1
5 Ir = efrlls + AP (fr) + Aallefrln, (E2)

is minimized at € = 0 and since fr is arbitrary that will complete the proof. B
As in the previous case, we begin by looking at the sub-gradient conditions for f. The
expression

% HT —(f+ EfT)Hi + A1 Pyt (J}VJF EfT> 7

is minimized at € = 0 by definition of ]7 This leads us to the sub-gradient condition

<7" — le, fT>n
A1 '

Now we describe the the sub-gradient conditions for (E.2). All sub-gradients of (E.2) at
€ = 0 are given by

—(r = fr)n 4 A =0 & 9 =

—<7’, fT>n+V1A1P5t(fT)+V2)\2HfT||n7 (Eg)

for real values (v1, v3) € [—1,1]2. To complete the proof we need to find 11 and vy such
that (E.3) is 0 and, (v1,1s) € [~1,1]%. Setting v1 = 1/ Py (fr) and v2 = (f, fr)/ (X2l frlln)
clearly makes (E.3) 0 and so we need only prove that our choice of 11 and vs lie within the
interval [—1,1].

Showing || < 1 is equivalent to |¢1| < Ps(fr). 91 is a member of the sub-gradient set

0 Pu (F+efr)

0={UZOrPst(ernfT)—P(f)Zuxn VUZO}~

=

37



HARIS, SIMON AND SHOJAIE

Thus ¥1 must satisfy the inequality
19177 < Pst(f"i_ nfT) - Pst(f)

< Pu(f) + nPst(fr) — Pu(f) = nPa(fr),
where the second inequality holds because Py is a semi-norm. This proves that [¢;] <

P, st(f T)-
Showing |v2| < 1 is easier and follows by definition:

CWE ) Ul e 1Dl
el = e = Relfrhe — R

which is less than 1 since || f]ln < Aa.

Sufficient conditions for fj = 0: for the second part of this Lemma, we proceed from

the sub-gradient condition (E.3). If we set v; = 0, then fE 0 if for every direction fr there
exists vy € [—1,1] such that

voXal frlln = (7, fr)n.
Which is equivalent to

o foon| 5, (E.4)
1f7lln
If A2 > ||7||n, then (E.4) is satisfied for all fr because by the Cauchy-Schwarz inequality
<’I", fT>n < ||r||n||fTHn _ HTHTL < o
/7l /7 [l
|

Proof [Prof of Lemma 4] Consider an arbitrary direction f,\ + €h for some function h and
¢ in an open interval. We first consider the case Py (fy) # 0. In this case if the directional

~

derivative V;, P4 (f) exists then so does the directional derivative of Py (f) and is given by
VP (fx)

vPy ()

This follows from standard arguments for derivative of power functions. Here we present
the simple case of integer valued v > 1.

Pu(fr +eh) — Pa(fy)

thst(J?)\) =

Vi Ps(f) = lim

e—0 e
i Pst(]?,\ +e¢eh) — Pst(]?,\) « E;/:l{Pst(Ji:\ + 5h)}ufl{Pst(Ji:\)}lfl
e=0 € Sl Pst(fa +eh) = H P (fr) 11
iy Dt teh) = Pa(h) g _ 1 _
e=0 € e=0 S APt (fa +eh) Py ()} !
1 VP

= Vi PY(f> - = LN
W) X S P vP ()
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Now, by the gradient condition, for f. = J?)\ + ¢eh,

~

Vi Pgi(f2)

o[l = £ AP (8] === B a TR o (s
Oc 12 =0 vy (1)
Similarly, for the path fz = f;\ + €h, by the gradient condition,
o0 [1 9 v ~ ~ L=
gz o Ir el AR ()| = == Sy b+ AV Py (fx> =0.
e=!

This is exactly the optimality condition (E.5) with A = A(vP% 1 (f1)) L. Thus, if vAP% 7 (f5) =
X then f) = f5.

Now to show the case Ps(f) = 0, we need to find conditions for which the objective

1
§\|fz‘nterp — flI2 + AP (f)

is minimized by f: Jnuir- We consider the functions fj, . = (1 — ¢€) fpuu + €h for € € [0, 1]
and show that for all h € F, the objective

1
inmterp - fh78||721 + /\Pst(fh,a) (EG)

is minimized at € = 0, if and only if A > P} ( finterp — fruil)-
To see this, note that all subgradients of (E.6) at ¢ = 0, are of the form

<finterp - fnulla fnull - h>n + AHPSt(h’)a

for k € [-1,1]. For 0 to be a sub-gradient of (E.6) we need to have

)\Kpst(h) = <finterp - fnulla h — fnull>n-

Consequently, (E.6) is minimized at € = 0 if and only if for all h € F

<finterp - fnulla h — fnull>n < )\Pst(h)
Using the decomposition h = hg + hy € F; & Fa, the above condition becomes

<finterp - fnulh hO - fnull>n + <finterp - fnulla hJ_>n S A\
Pst(hj_) Pst(hJ_)

Now if finterp — fnun € F2, then the first part of the LHS is 0 and the second part is bounded
above by P (finterp — frnui). To complete the proof we show that finterp — fnuu is, infact,
a member of F». For this, it suffices to show that (finterp — fruils frutt — Pnuir)n = 0 for all
hnwt € F1. We know that f,,;; is the solution to the problem

L1 2
ml?elr]{_lllze 5 | finterp — fllin;
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in other words, for all h,,; € F1, the expression

1
§||finterp - (1 - 5)fnull - 5hnullH2m
is minimized by € = 0. Equivalently (by the gradient condition), for all h,,; € Fi,

<finterp - fnulla fnull - hnull>n =0.

Proof [Proof of Convergence of Infinite-dimensional problem| We begin by re-writing our
optimization problem as follows:

p p p
B, ip+ argmin  —Pul | B+ mi | £ A2 Pu(m) + 2> Imjll,, (B
BERM,...,npER™ j=1 j=1 j=1

Po(n;) = g}gg Py (f) +1(n;; = f(xj;) for all 7),

in which case, the term Py (n;), in (E.7), is a semi-norm over R™. We recover our estimate
by

f} + argmin Py (f) + H(ﬁji = f(z;i) for all z) (E.8)

feF
Thus a proximal gradient descent algorithm will solve the finite-dimensional problem
(E.7) by standard convergence guarantees. We then just need to solve (E.8) for a given 7);.
Our Algorithm 1, does exactly that. To see this, re-write our main proximal problem, (11):

inter 1 k—1 2 2
n;"" + argmin_ H <77j - tr) —n| +tA\*Ps(n), (E.9)
neRrm n
f]’-'"ter — argmin Py (f) + ]I(n;?ter = f(xj;) for all 7). (E.10)
fer

Thus, we see that (E.9) generates a proximal gradient descent algorithm which solves (E.7)
and (E.10) is exactly the problem (E.8). This completes the proof.
]

Appendix F. Proofs of Results in Section 4.2

In this section we present the proof Theorem 7 and 15 for the sake of completeness. The
arguments presented here are only a slight modification to those of Biithlmann and van de
Geer (2011) for proving LASSO rates. One notable difference is that we explicitly handle
an unpenalized intercept term; another is our handling of the structural penalty, Ps(-).
Throughout the proofs, we will use the so-called basic inequalities. Hence, for the sake of
convenience, we state and prove these basic inequalities as a separate lemma.
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Lemma F.1 (Basic Inequality) Let f(z) = 3 + Z?:l J/";(x]) be as defined in (14), and
let f*(x) = p* + 25:1 fi(z;) be an arbitrary additive function with 3* € R and f; € F.
Then we have the following basic inequality

ECF) + M(F) < = [ F) = wal£9)] + M) + €.

If we further assume that —L(-) and Py(-) are convez, then for all t € (0,1) and f =
tf 4+ (1 —t)f* we have the following basic inequality

EC) + MI(F) < = [vnlf) = vl f9)] + ML) + E(F).

Proof For the first inequality, note that

~Pul (F) + M(F) < =Pul (/) + M(f),

which is equivalent to

(

UF*)) —BU(F) + M (f) < Pyt (f) —P(U()) — Bal (F*) +BU(F*)) + AI(f7)

UF)) = BU(F) + M(F) < — [(Pn —P)(—U(f)) — (Pn — P)(—af*»} +AI(fY)
F)) + A(

For the second inequality we have by convexity
<Pl (F) + M) < t|[<Put (F) + AL(D] + (1 = ) [-Pal (/) + M (f)]
< =Pl (f7) + M(f7),
after which we simply need to repeat the arguments for the previous basic inequality with
f replaced by f. |
Proof [Proof of Theorem 7] Define

t= M
M*+I(f — )

(F.1)

and f: tf+ (1 —t)f*. Then (F.1) implies I(f— f*) < M* and by Lemma F.1, we obtain

E(f) +M(f) < Zn=+ M(f7) + E(f7).
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By applying the triangle inequality I(f — f* + ) > I(f - f*)—1I(f*), to the left hand side
we obtain on the set 7 (where Zy+ < pM™ + 2Rp)

E(f) + AI(f = ) < pM™ + 2Rp + 2M(f7) + E(f7).
Recall the definition of M™*, given by
pM™ = E(f*) + 2M(f7) + 2Rp,

from which we obtain

E)+ (T — 1) < 2pM* <20M" = I(F— 1) <

Now by the definition of fwe have

I(f; f) —1(F— )

LG - f*)] M I )

which implies that (f— f*) < M*. Now we can repeat the above arguments with freplaced
by f which gives us

E(F) + M(f — f*) < pM* + p(2R) + 2X\I(f*) + E(f*).

Proof [Proof of Theorem 15] As in the proof of Theorem 7, we begin by defining ¢ as
M* 4|8 = B+ I(f = )

and f =tf + (1 —t)f* which gives us 15— B*| + I(f— f*) < M* implying that, fe TP al-
Lemma F.1 implies that on the set T (where Zy« < pM*) we have

E(F) + M(f) € Zup + E + M(f*) < pM* + E(f*) + M(f7). (F.2)

Be definition of S, and I(-), we have by the triangle inequality

]ES* jeS*

and by the reverse triangle inequality we have

M) =23 {1+ APalF) |+ 2 X {1751+ AP}

JES« jESS

> A {1l + APalFs = 1) = APulf) } + 23 {1+ APu(F) }
JES, jese

A B+ AP = 1) = APl } + A S LIF = £+ APl = 1)}
JESK JESS
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where the last equality follows from the fact that f7 = 0 for all j € S;. With the above two
inequalities combined with (F.2) we get

EPAN Y LT+ XPalFs = £ = APulF)) } + A D {1 ln + AP ()}

JES jeSe

N5 = Bl 1l + APl Y+ oM™ + (%),

jES.

which simplifies to

GEEONIE HnHZAPst ~ ) < (F.3)
jeSe
A TN = Filln+222 Y Pa fj )+ pM* + E(f*).
JES JES

Now we add A|f — B*[ + A Y

ies. [1fi = f1ln to both sides of (F.3) to obtain

)+ M{IB -8+ 1(F - f*)} <223 Nf5 = Filla + AB - B+

JES.

pM* + E(f*) +2)2 Z Pu(f)-
JES«

Case I. If

NS = Filla + B = B < pM* + E(F) + 202 3 Pulf)),

JESx JESK
then (F.4) simplifies to
EF) +MIB =B+ I(F = £} < 20M" +26(£) + 402 3 Pulf)
JES«
< 4pM* < 4%1\4* — AM* /2,

which indicates that |§—3*|+1(f— f*) < M*/2 which implies that |5—8*|+I(f— f*) < M*
and hence we can redo the above arguments and replace f by f.

Case II. If instead

A = Filln+ AB = 87 = pM* + E(f*) + 20 Y Pulf])

JESx JESk

then we have

EN+MB-B1+1F =M} <A N = Fln+22- 8. (F5)

JES«
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This is equivalent to
~ ~ p ~ ~ ~
ED+M Y = I+ 2D PalFi = £} <30 D 15 = Filla+ N = B,
jese j=1 JES.
which means we have that
P
YoM =l AY D Palfy = £5) <330 1fF = filla+ 18 = 57,
jese j=1 JES

and hence by the compatibility condition (F.5) reduces to

)+ MIB =B+ I(F = 1)} <IF = 1 IV/5a/6(5.).
Since fand f* are in F_;, we invoke the inequality uv < H(v) + G(u) to obtain

WEIF - 1) _ 80

(I A i
8\y/5+ IF=ro1, I =1
(55 e (V515 )

By the convexity of G and the margin condition we obtain

NEIT- £ _ o (SWEY | ED) |, EW)
&(S,) =A < o(S.) > - " '

2 2

Hence we have

ED) 15— g 1T SAWEN L EUT) e e
—_— — I(f — <H < oM™ < \M
D afi5-sr+nG- < m (505) + 58 < omrr <,
which implies that |3—8*|+I(f—f*) < M*/2 which in turn implies 1B—B*|+I(f—f*) < M*
and hence we can redo the above arguments and replace f by f.
Thus we have shown that

o~

EF) +MIB =81+ 1(F = 1)} < apM™ (F.6)

Appendix G. The Set T

Theorems 7 and 12 show inequalities holding over the set 7. In this section we will show
that T occurs with high probability. This will be shown for the two different types of entropy
bounds considered in Section 4. We consider the special case of loss functions linear in Y;
as in Corollaries 8 and 13 and bound the term v, (f) — v, (f*) in the following theorem.
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Theorem G.1 Let x; € RP and Y; € R denote the fixed covariates and response, respec-
tively, for i =1,...,n. Assume that for any function f the loss {(-) is such that

—U(f) = —L(f,zi,Yi) = aYif(zi) + b(f(z:)),
for some a € R\{0} and function b : R — R. Further assume that Y; — EY; = Y; — u; are

uniformly sub-Gaussian:

‘max K> (IEe(Yi_W)Z/K2 — 1) < o2, (G.1)

i=1,...,n

then with probability at-least 1 — 2 exp [—anCl] — Cexp [—n,oQC'g] the following inequality
holds

p
va(f) = va(f) < p |18 =B 1+ D IF5 = fi I+ APslf5 = 1) - (G.2)

Jj=1

for variables p, A and positive constants C, C1, Co which we specify in the following 3 cases.
Case 1. If F has a logarithmic entropy bound, then the inequality (G.2) holds with p =

K max (y/%,\/bfi”) and A = 1 for constants k = k(a, K, 09, Ag), C1 = C1(K,0yp),

C =C(K, og) and Cy = Cy(C, k).
Case 2. If F has a polynomial entropy bound with smoothness, then the inequality (G.2)

1
holds with p = k max <n_2+a, bfj”) for constants k = k(a, K, 0g, Ao, ), C1 = C1(K, 09),

C =C(K, 0o) and Cy = Co(C, k). The parameter satisfies A < p and A > 8p.

In light of the above theorem, for the case of Theorem 7 where

Zyx = sup [vn(f) — vn(f5)],
I(f—f*)<M*

and 8, 8* € R where R is uniformly bounded by R then we have with probability at-least
1—2exp [—anCl] — Cexp [_anCQ],

Zy < p(M*+2R).
In the case of Theorem 15 where

Iy = sup |Vn(f)_yn(f*)’7
|B=B*|+I(f—f*)<M*

we have with probability at-least 1 — 2exp [—anCl] — Cexp [—anC’z],
Zyx < pM™.

To prove Theorem G.1, we use a few technical lemmas from van de Geer (2000) namely
Lemma 8.2 and Corollary 8.3; for the sake of completeness we state these lemmas in Ap-
pendix 1.
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Proof [Proof of Theorem G.1] We begin by noting that for any arbitrary function we have

n n

() = (B~ BY(~(F)) = -3 [aVif (i) + b(f ()] B | - D aVif (i) + b7 ()
i=1 =1
Since we assume the covariates x1, ..., x, are fixed we obtain
vall) = -3 al¥i ) ) = alY — g f)a,

i=1
where u; = EY;. Thus for additive functions f and f* we obtain

n p

va(f) = vn(f) =a(Y —p, f = [ == aYi—m) |B= B+ filwy) — f7 (i)
i=1 j=1
a1l 1 .
=a(Bf—B );Z(Yz‘—Mi)JrZE a(Yi — pi) (fj(ziz) — f5 (@i5))
i=1 j=1 = i=1

= a(B - 8)(¥ ~ )+ )

J

P
CL<Y —ij - f]*>n
=1
From now on we will assume, without loss of generality, that |a| = 1 since this constant is
absorbed into a constant x which we define later.
To control the first term, (3 — 8*)(Y — &), we simply apply Lemma I.1. For the second
part, we consider 2 cases.
Case 1: Logarithmic Entropy. We first note that if the entropy bound holds, then the
same bound holds (upto a constant) for the class

fi— 1 o
{”fj—ff!n—i-)\Pst(fj — ) oy E}—},

for some fr € F for all j =1,...,p. Now we apply Lemma 1.2 to the above class by first
noting that R < 1 and then using the bound for Dudley’s integral

1 o~
Ay%ﬁ@/ﬁbgm<l+l>du§Aﬂﬂ%
0 u

5zzcﬁm/§2
n

where the constant C' depends only on K and oy, we have

we have for all § that satisfy

b =3 (Vi — i) (fj(ﬂfz'j)—ff(ﬂfz’j)> o5 < [ 71(52]
P B 7y IS V- M 7 2 B Bl B WP ToC)
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We can now take 6 = p > 20110 max{\/j;”, \/loflp} > 2C/~10 % which holds for all

K > 20110. Applying the above result with a union bound gives us

) S
‘max sup " n =P
j=Lewp feF ”fj - fj Hn + APst(fj B f])

np? np?
< pCexp {—482} = Cexp [—452 + logp}
1 lo
= Cexp [np2 (402 — nif)} < Cexp [fnp2C'2] )

for a constant Co > 0 that depends on C' and AV(). To see this, note that

1 logp 1 1 1 1

= — > _Z
4C2  np?2 4C? T 1} —4C? K
log p’

I‘&m&X{

which is positive if K > 4C2. Thus we can take the constant x such that
K > max {402, 2CA0}. Hence k depends on C(K, o) and Ag(Ap).

Case 2: Polynomial Entropy with Smoothness. Now we note that same entropy
bound holds for the class

~ fi— 15
F = cfieF
“ﬁ—ﬁh+ﬂwﬁ—ﬁ)ﬂe }

and we can now apply Lemma 1.2 by noting that

1 ~ ~
/ H1/2 (U, ]:7 Qn) du < AO)\_Q/27
0

for some constant Ay = EO(AO). For some C = C(K, 0p) and all
§ > 20 Ao\~*/?n"1/2 we have

O = f5 = 1)
P | sup

>0 <Cexp [— néw . (G.3)
[i€F 1f5 _fan"‘)‘Pst(fj _f;) B -

402
Since A > p we note that 2C AgA—/2n1/2 < QC/TOp_O‘ﬂn_l/Q and that
~ N2 )
2CApp~ "2 <pep> <QCA0> e T aa,

1 1
Which holds by definition since p = k max <\ / lo%, n_2+a> > kn 2te and k is sufficiently
2

large (any x > <2C’/T0)2Ta would suffice). Therefore, we can take § = p in (G.3) along
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with a union bound to obtain

Y~ fj— fhn
P | max sup

]:l,...,pfje]: Hf] _f;Hn‘i‘)\Pst(fj _f;«) E

1 log p
ccoofo (-2

< Cexp [—anCQ] ,

2
>p | <pCexp [—np ]

for some positive constant Cy = Co(C, Zlg) exactly as in Case 1.

Appendix H. On the Margin and Compatibility Coniditions

In this appendix, we present a detailed discussion of the margin and compatibility condi-
tions. These conditions are the main assumptions made for our theoretical results and in
this appendix we discuss suitable conditions under which the conditions hold.

H.1 Margin Condition

We now present a general framework for proving the quadratic margin condition for loss
functions given by the negative log-likelihood of exponential family distributions. Specifi-
cally, for loss functions of the type

—U(f) = —llyi; f(®i)) = ayif(xi) + b(f (21))- (H.1)
The excess risk is
E(f) =P{e(f%) — (£)}
= % zn;{—aE(yz’)}{fo(wi) — flai)} = b{f (@)} — b{f ()}

= S WP @ @) — F@)) — B @) — b ()]
=1

where the last equality holds because the expectation of the score function is zero. Now by
Taylor’s theorem for b(-) and the mean value theorem for '(-), the above simplifies to

2 0"(C2)

E(f) = n”! Z b”(@u){fo(wi) — fi(wi)} T{fo(wi) - f(fl?i)}2
i=1

> min {o () - S5 10 - 112,

C
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where (15, o; lie between f(x;), fO(;). Thus for loss functions of the type (H.1), we only
need to find a constant C' in a neighborhood of f°. As an example, consider the least
squares loss where

b(O) =6%/2, V' (@O)=1=C=1/2.

Similarly, for logistic regression we have

b(0) = log {exp(0) + 1}, V'(0) = m.

Now on the set F ., = {f : | f — f°llsc <n}, we need only look at the interval (f%(z;) —

O

n, fO(x;) +n). As a simple case, say f°(z;) = 0, then

_ V(&) o expin} exp{0}

(Gi) = —5— = [1+exp{n}2  2[1+ exp{0}]

S >0,

for n < log(3 + 2v/2). While tedious, for any f°(a;), we can find an 7 such that b”((y;) —
b"(C2:)/2 > 0 for all (1;,(2;. The above examples indicate that the margin condition is
satisfied in most of the relevant problems.

H.2 Compatibility Condition

We now show that under suitable conditions, the theoretical compatibility condition implies
the compatibility condition. Recall first our notation, ||f||*> = [[f(z)]?dQ(x) where Q is
the probability measure of our observed data. We denote by @,, the empirical measure
associated with @, and ||f|2 =n"1 30, f2(x).

Lemma H.1 On the set

171 = 151
sup
rer S I+ AP

) <ng¢, (H.2)

with n € (0,1/5), suppose we have

Cl:n{2(2+n)+3(1+n)}\/@<1 (i1.3)

1-n 1—57n 5(5) ’

if the theoretical compatibility condition holds with n as in (H.2). Then, the empirical
compatibility condition holds with constant

L—c1)o(S)

Remark H.2 The event S, ensures that our empirical norm is relatively close to the the-
oretical norm; existing literature shows that S holds with high probability under suitable
entropy conditions for small n (see for example, Section 5 of Tan and Zhang, 2019). The
condition (H.3), simply forces our index set S to not be too large; thus, highlighting the role
of sparsity in high dimensions.

(68" = {(1 g 200 ”)} : !

1-5n
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To prove Lemma H.1, we will state and prove a sequence of smaller lemmas, the proof
will then follow immediately.

For ease of exposition/reference, we restate our theoretical and (empirical) compatibility
conditions. For simplicity, we do not include the intercept term; explicitly including an
intercept term does not change the proof.

Definition H.3 (Empirical Compatibility Condition) The compatibility condition is
said to hold for an index set S C {1,2,...,p} with s = |S|, and with compatibility constant
d(S) > 0, if for all X > 0 and all functions f of the form f(x) = Z?:l fi(z;) that satisfy

> il + Z APa(f7) <33 1 £illns (Empirical-A)
JeSe jES
it holds that
Sl < UFInv/s/6(S). (Empirical-B)
jes

Definition H.4 (Theoretical Compatibility Condition) The theoretical compatibility
condition is said to hold for an index set S C {1,2,...,p} with s =|S|, and for a compat-
ibility constant gg(S) > 0, if for some n € (0,1/5), all X > 0, and all functions of the form
f(x) =375, fix;) that satisfy

p

+ .
Z II.f5]] ‘|‘ Z Py(f;) < (/) Z I fill (Theoretical-A)
jese J=1 jeSs
it holds that
Z 15l < 11F1Vs/9(S). (Theoretical-B)
jES

Proof [Proof of Lemma H.1] We will show that on the set S given in (H.2), we have the
following sequence of implications.

(Empirical-A) = (Theoretical-A) 2 (Theoretical-B) T8 (Empirical-B)
1. The result of Lemma H.5.
2. By assuming the theoretical compatility condition.

3. Follows immediately from Lemmas H.6 and H.7.

Lemma H.5 On the set S, (Empirical-A) = (Theoretical-A).
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Proof We have
£l = A5 1] < 0 (Lf5 I+ AP(S5))

which is equivalent to

(L =mf5ll = nAP(f) < [ filln < ) f5]] + nAP(S5)- (H.4)

Thus we have the following:

> ||fJH+ZAP )

jese
Z 1filln + Z AP(f;) +ZAP fi) by (H.4)
J‘ESC ]eSC
— Z Hfj|\n+— > AP(f5) +ZAP £i)
" jese " jese jes
Z ||fj||n+ZAP £i) +—ZAP £)
jeSe ]65’
§ Z 1 £51ln + — Z AP(f;) by (Empirical-A)
]65’ ]eS
3
<X _Hnlfil+uAPf) ¢+ ZAP £i) by (H.4)
n JeSs ]ES
I+ ZAP 13).
JjES ]ES

Taking the smoothness norm term to the left hand side completes the proof.

Lemma H.6 On the set S, assuming the theoretical compatibility condition, if

2(2 1
01_77{ k) +”)} Vi,
1—n 1=5n ) ¢(9)
then
1
< .
171 < 5 —c1”f”"
Proof On the set S we have
P
LFIL< U Flln 14 D F 1+ AP(S) by definition
j=1
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For terms inside the brackets we have:

Z L1 =D 150+ D 1]

J€ES jeSse
3(1 +77 .
< Z £l + Z I £l by (Theoretical-A)
JeS jES
2 +77
> Ul
jeSs

and

p
1
Z (i) < *” DS I5 by (Theoretical-A).

jES
So now we have:
A< W lln+m H+ ZHng
JeSs jes
2(2 3(1
< | flln+ 7]{ Chl) + 3+ 77)} \[”fH by (Theoretical-B)
1—n 1-5n #(9)

By definition of ¢; we get

(T =c)IlfI < [l
which completes the proof. |

Lemma H.7 Under the conditions of Lemma H.6, (Theoretical-B) = (Empirical-B) with

iy 3n(1+mn) 1
{o(9)} {<1+n>+ L= 57 }a_q)%(S)'

Proof We have that
Dolfille < C+m D Nfl+nd AP(f;) by (H4)

jES JjeSs JjES
<@ I+ LS5 by (Theoretical-)
JES JES
< {(1 +n) + 32(1_—;7) } \g(L];H by (Theoretical-B)
< {(1 +n) + 32(1_—;777) } QNS\(/SE) 1’{‘;, by Lemma H.6
= [IfInv/5/8(S).
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Appendix I. Some Results from van de Geer (2000)

Lemma I.1 (Lemma 8.2 of van de Geer (2000)) Suppose that Y1—p1, ..., Y, —puy are
mean zero sub-Gaussian random variables, satisfying (G.1). Then for ally € R™ and p > 0,

2
0
P >p| <2exp [— } ,
( ) 8(K2 +08) > i1}

in particular if v; = 1/n then we have

1 n
P(‘HZS@—M

i=1

n

> (¥ — )i

=1

2
np
- p) = 2o [_8<K2 +a§>]

Lemma 1.2 (Corollary 8.3 of van de Geer (2000)) Suppose that supy cx |/ fjlln < R
for a univariate function class F and that Y1 — 1, ..., Yo — pn are mean zero sub-Gaussian
random variables, satisfying (G.1). Then for some constant C = C(K, o0y), and for all
0 > 0 satisfying

R
Vné > 2C </ HY2(u, F,Qn) du v R) ,
0

we have
n

LS )

i=1

nd?
4C2R?

P | sup >0 gC’exp[—
ijJ:
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