
Abstract—The accurate characterization of the underlying 

dynamics of neural responses across various neuroimaging 

modalities is pivotal to enhancing the performance of hybrid 

brain-computer interfaces (hBCIs). While unimodal 

electroencephalography (EEG) and functional near-infrared 

spectroscopy (fNIRS) neuroimaging modalities for motor 

imagery (MI) have been successfully decoded for BCI 

applications, to date, conventional feature extraction schemes 

have not yet provided satisfactory performance improvements. 

In this context, a paramount research question is whether the 

conventional EEG spectral features are sufficient to express the 

underlying MI neural dynamics fully, maximizing the synergy 

with fNIRS characteristics. In this study, we explore a graph-

based feature extraction method that integrates the nonlinear 

dynamics of MI-based EEG responses and its contributions to 

hBCIs for amyotrophic lateral sclerosis patients (ALS) who 

need these systems for communication and control. Our results 

demonstrated that while there is a slight performance 

improvement using EEG nonlinear features, there is a 

substantial increase (~15%) in the contribution of EEG features 

to the total number of selected fused features indicating better 

synergy with fNIRS features at a multimodal level, when 

compared with the classical features. The extracted graph-based 

features can add a new informative dimension for an efficient 

integration with MI-based fNIRS responses. 

Keywords—Hybrid brain-computer interface (hBCI), 

multimodal data fusion, nonlinear dynamics, motor imagery (MI), 

graph-based feature extraction, recurrence quantification 

analysis (RQA) 

I. INTRODUCTION  

Improving the performance of brain-computer interface 
(BCI) systems is a challenging research problem. These 
innovative systems need to realize their unfulfilled promise of 
being a practical efficient neural-based means of 
communication that severely disabled patients and their 
caregivers can rely on. Electroencephalography (EEG)-based 
motor imagery (MI)-BCI systems that rely on the 
classification of μ (8–12 Hz) and β (13–25 Hz) frequency 
bands’ sensorimotor oscillatory variations during MI tasks, 
suffer from relatively low performance and are highly 
dependent on individual discrepancies in the MI patterns. 
Particularly for patients suffering from motor impairments 
such as amyotrophic lateral sclerosis (ALS), potential disease-
specific neural alterations affect these patients ‘electrical 
responses which imposes additional challenges on extracting 
discriminative features from their EEG responses [1,2]. 
Hybrid MI-based BCI systems rely on combining 
complementary discriminative features form EEG and other 

portable neuroimaging modalities such as functional near-
infrared spectroscopy (fNIRS) for performance improvement 
[3,4]. However, these systems rely on conventional spectral 
analysis methods to classify the sensorimotor rhythms 
dynamics modulated in EEG during MI tasks and combine 
those features to fNIRS features for performance 
improvement. Considering the high discriminative ability of 
fNIRS features and the promising results for unimodal fNIRS-
based MI-BCIs for ALS patients [5], a research question is 
raised regarding the hybrid performance being dominated by 
fNIRS modality especially for these patients. Novel analysis 
methods are required to exploit the underlying neural 
dynamics embedded in complex EEG signals and decode MI 
neural responses fully, in a way that maximizes the synergy 
between EEG and fNIRS modalities and optimizes the 
performance in a hybrid BCI context.  Recurrence 
quantification analysis (RQA) has been successfully applied 
as a powerful nonlinear analysis tool to measure the 
complexity of numerous biological signals, especially when 
traditional techniques fail [6–9]. Recent evidence from our 
group and others suggested that nonlinear RQA features are 
sensitive to transitions between motor tasks and rest in EEG 
which represents a new information dimension for MI-BCI 
performance improvement [10,11]. However, these features 
have not been yet evaluated for MI-based hBCIs for ALS 
patients, for whom these systems are originally designed. This 
study evaluates a multimodal graph-based data fusion 
framework to decode and represent MI neural responses for 
hybrid BCI performance improvement. The proposed 
framework relies on graph-based recurrence quantification 
analysis (RQA) features to characterize the nonlinear 
dynamics of MI and complement the conventional linear 
spectral EEG features and fNIRS features combined 
traditionally in MI-based hBCIs. Simultaneous EEG-fNIRS 
data were recorded from five participants with ALS while 
performing MI-Rest tasks. Graph-based RQA and complex 
network theory features were extracted to decode the 
nonlinear dynamics within the μ and β frequency bands. The 
graph-based nonlinear features were extracted from the 
recurrence plots (RPs) reconstructed from each μ- and β-
filtered one-dimensional EEG time series measured at each 
channel and its adjacency matrix reinterpretation. Classical 
linear spectral features were extracted using the mean power 
spectral density over the corresponding frequency bands. The 
fNIRS response’s temporal characteristics were captured 
using various features extracted from fNIRS HbO2 and HbR. 
To overcome the challenge of high-dimensional multimodal 
feature vectors, the framework adopts a fused feature selection 
approach based on the least absolute shrinkage and selection 
operator (LASSO) to decode a discriminative holistic 
representation from the high dimensional multimodal 
features. Three types of EEG-fNIRS data fusion were 
evaluated to analyze the effect of characterizing the nonlinear 
dynamics on the performance of hybrid MI-BCI. The 
performance of the unimodal techniques was evaluated further 
for comparison through a 5-fold cross-validation procedure 
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using a linear support vector machine (SVM). We hypothesize 
that the proposed graph-based dynamical characterization of 
MI EEG neural responses will increase the synergy between 
EEG and fNIRS MI responses towards an optimized inference 
performance in MI-based hBCIs for patients with ALS. 

II. METHODS 

A. Data Acquisition, Participants, and Experimental 

Protocol 

EEG and fNIRS signals were recorded simultaneously 
using a single cap mounted with both EEG electrodes and 
fNIRS optodes. EEG was recorded from 13 Ag/AgCl 
electrodes (i.e., channels) referenced to the left earlobe and 
amplified using a g.USBamp amplifier (g.tec medical 
engineering). The signals were digitized at 256 Hz and zero-
phase bandpass filtered (1–45 Hz). The EEG channels covered 
the pre-motor (FC3, FC4), primary motor (C1, C3, Cz, C2, 
C4), sensorimotor (CP1, CP3, CP2, CP4), and parietal (P3, 
P4) areas of the brain according to the 10–5 system. An 
additional electrode was placed at FCz as the ground 
electrode. fNIRS data were recorded using NIRScout (NIRX 
Inc.), with two near-infrared light wavelengths (760 nm and 
850 nm) to acquire HbR and HbO2 responses. The signals 
were digitized at 15.6 Hz, and the optode montage was 
configured using 16 probes, 8 sources, and 8 detectors, with a 
separation distance of ~3 cm to maintain acceptable signal 
quality and sensing depth. The fNIRS probe layout resulted in 
14 fNIRS channels covering the pre/frontal cortex in addition 
to the primary motor cortex. Data acquisition for EEG and 
fNIRS and the design of the MI paradigm were handled by 
BCI2000 software [12] and NIRStar software (NIRX Inc.). 

Five ALS patients, with varying degrees of disability, 
assessed using the ALS functional rating scale-revised on a 
48-point scale [13] attended two MI data recording sessions 
on separate days. The data recording was performed in the 
NeuralPC Lab, University of Rhode Island (URI) with 
Institutional Review Board (IRB) approval. Each session 
contained three runs separated by approximately 5 minutes of 
rest, and each run consisted of 40 trials of MI task or Rest (20 
trials each) based on a visual on-screen queue. The MI task 
involved imagining the left- or right-hand movement, and 
each MI trial was followed by a Rest trial. Each trial lasted for 
10 seconds. None of the participants had previous BCI 
experience. The first session was used to familiarize the 
subjects with the task and the second session was used for data 
analysis. Table I shows the patients’ demographics 
information. 

B. Data Preprocessing 

Eye movement artifacts were removed from EEG data 
using the extended Infomax Independent Component 
Analysis (ICA) algorithm using the EEGLAB toolbox [14]. 
The artifact-free signal was then reconstructed after removing 
the predominant artifactual components identified by visual 
inspection. The data were then zero-phase bandpass filtered 
into the μ (8–12 Hz) and β (13–25 Hz) frequency bands for 
further analysis. EEG data were re-referenced offline using a 
common average reference (CAR). For fNIRS data, the 
modified Beer-Lambert Law was used to calculate changes in 
the concentrations of HbO2 and HbR using recorded 
alterations in the reflected light attenuation [15]. fNIRS data 
were then band-pass filtered at 0.01-0.09 Hz to eliminate 
physiological noise caused by respiration (~0.3 Hz), cardiac 
activities (~1 Hz), and Mayer waves (~0.1 Hz). As fNIRS 

signal quality can be heavily compromised by poor coupling 
of optodes to the head, due to optical interference from dense 
and heavily pigmented hair, the quality of the signal was 
automatically evaluated through the signal-to-noise-ratio 
(SNR) of each channel using NIRScout. Further, an exclusion 
criterion was considered based on a correlation threshold 
between HbO2 and HbR, indicating a high-level physiological 
motion artifact [16]. The data from both modalities (i.e., EEG 
and fNIRS) were segmented into 10-sec trials synchronized 
with the appearance of the visual stimulus cues 
(Rest/LMI/RMI). Individual MI trials that contained artifacts 
were automatically rejected based on subject-specific 
thresholds from both modalities. For MI vs. Rest 
classification, the trials were combined to form two sets with 
60 trials for each condition of MI and Rest representing the 
two classes.  

C. Data Analysis 

1) Linear Data Analysis  
For the classical linear EEG spectral features, the average 

power spectral density (PSD) was calculated using Welch's 
method from the filtered EEG signals giving PSD-μ and PSD-
β extracted from each channel. This resulted in a total of 26 
linear EEG spectral features extracted from each trial from all 
the 13 EEG channels from both frequency bands [17]. The 
characteristics of the MI hemodynamic response were 
captured using seven discriminative features extracted from 
each HbO2 and HbR response, corresponding to MI and Rest 
trials [5]. This resulted in a total of 196 fNIRS features 
extracted from each trial from both HbO2 and HbR (i.e., seven 
features were extracted from each fNIRS concentration 
change from each of the 14 channels). The features were 
extracted from several window sizes as follows: For EEG, [0-
2], [0-5], and [0-10] sec post-stimulus windows were 
considered for each frequency band. For slower hemodynamic 
response in fNIRS, [0-5], [2-7], [4-9], and [0-10] sec post-
stimulus windows were considered for both fNIRS 
concentration variations. The optimized response windows 
were then selected for each modality based on the global peak 
of a nested 5-fold cross-validation classification procedure as 
explained in section II.D. 

2) Graph-based Recurrence Quantification Analysis 

and Complex Network Features 
In order to approximate the nonlinear neural dynamics 

underlying the MI and Rest tasks within each μ and β 
frequency bands separately, the bandpass filtered one-
dimensional EEG signal measured at each frequency band, 
each channel, and each 10-sec MI/Rest trial was projected to 
a multi-dimensional phase space based on Takens’ theorem of 
time-delay embedding [18] using the following equation [19]: 

 𝑋𝑘 = (𝑥𝑘 , 𝑥𝑘+𝜏 , … , 𝑥𝑘+(𝑚−1)𝜏) 

TABLE I. 

PARTICIPANT’S DEMOGRAPHIC INFORMATION 

Participant 

No. 
Age Sex 

ALSFRS-R  

(max 48) 

Disease 

Duration 

(years) 

ALS-1 29 M 0 4 

ALS-2 55 M 4 11 

ALS-3 67 M 7 2 
ALS-4 69 F 23 11 

ALS-5 52 M 22 3 

Mean±SD 54.4±16.0 - 11.2±10.6 6.2±4.4 
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where 𝑋𝑘 is the reconstructed phase space vector based on the 
observation 𝑥𝑘  of the bandpass filtered EEG time series 
(𝑥1, 𝑥2, … , 𝑥𝐿), 𝐿 is the number of samples in the EEG time 
series, 𝜏 is the time delay, and 𝑚 is the embedding dimension. 
The time-delay parameter (𝜏) and the embedding dimension 
(𝑚 ) were estimated using the average mutual information 
(AMI) and the false nearest neighbor (FNN) methods 
respectively [20]. The time delay 𝜏  and the embedding 
dimension 𝑚, were directly calculated for μ and β frequency 
bands using only the training set of each of the 5 cross-
validation folds as explained in section II.D. The phase space 
reconstruction can be represented as an 𝑁 ×  𝑚  trajectory 
matrix 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑁 )𝑇  where 𝑁 =  𝐿 − (𝑚 − 1)  is 
the number of states in time, and 𝐿 is the number of samples 
in the EEG time series. Next, the recurrence plots (RPs) were 
created to visualize and quantify the recurrence patterns of the 
𝑚 -dimensional phase space trajectory 𝑋  corresponding to 
each trial within each frequency band in a 2-dimensional plot 
[20]. RPs were constructed by considering an 𝜀-neighborhood 
of states in phase space as follows: 

 𝑅𝑃𝑖,𝑗(𝜀) = Θ(𝜀 − ‖𝑋𝑖 − 𝑋𝑗‖)     𝑖, 𝑗 = 1, … , 𝑁 

where 𝑅𝑃 is the 𝑁 ×  𝑁 recurrence plot, 𝑁 is the number of 
states in time, Θ is the Heaviside function, 𝜀 is the recurrence 
threshold determining the size of the neighborhood in state 
space, ‖∎‖ is the Euclidean norm, and 𝑋 is the reconstructed 
phase space vector. The recurrence exists when 𝑅𝑃𝑖,𝑗=1, (i.e., 

when the state space vectors at time 𝑖 and 𝑗 are within the 
same 𝜀 -neighborhood). The choice of the 𝜀 -neighborhood 
threshold was based on previous studies’ recommendation and 
should not exceed 10% of the maximum phase space diameter 
[18]. Therefore, the value of 𝜀  was optimized for each 
participant by choosing from four different thresholds, namely 
3%, 5%, 7%, and 10% of the maximum phase space diameter, 
for each frequency band, based on the global peak of a nested 
5-fold cross-validation classification procedure as explained 
in section II.D. Features characterizing the recurrence patterns 
in each trial were extracted using graph-based RQA and 
complex network representations of the recurrence plots were 
reconstructed from each one-dimensional EEG time series 
measured at each channel. As it is common to find small 
distances between points in the reconstructed phase space that 
are close in time, the Theiler window in this study was set to 
a value of (𝑚 − 1)𝜏 so that only points that are farther than 
(𝑚 − 1)𝜏 from the diagonal were taken into account in the 
evaluation of the RQA measures [21]. The recurrence patterns 
were quantified using the vertical and diagonal line structures 
of the RPs using the nonlinear RQA features. twelve RQA 
features were extracted , namely,  recurrence rate (RR), 
determinism (DET), the mean length of a diagonal line 
(LMEAN), the maximum length of a diagonal line (LMAX), 
the maximum vertical length (VMAX), the trapping time (TT), 
the laminarity (LAM), the entropy of diagonal line length 
distribution (ENTR), the entropy of vertical line length 
distribution (ENTRV), the recurrence time entropy (RTE), and 
the recurrence times of first type (RT1) and second type (RT2) 
[18,22,23]. In addition, two features from complex network 
theory, namely the global clustering coefficient (CC) and 
transitivity (T), were extracted from the adjacency matrix 
reinterpretation of the RP to include the topological 
characteristics of the recurrence patterns [24]. The features 
were extracted from the RP corresponding with μ and β 
frequency bands separately. This resulted in a total of 364 
nonlinear graph-based RQA and complex network features 

extracted from each EEG trial from both μ and β frequency 
bands (i.e., 14 features were extracted from 2 frequency bands 
from each of the 13 channels) to quantify the nonlinear 
dynamics underlying the MI-Rest tasks. All RQA related 
computations were performed using custom MATLAB 
(R2016b) code adapted from the CRP Toolbox [23]. The 
features were extracted from several window sizes, similar to 
linear EEG features, and the optimized response window was 
selected within each frequency band based on the global peak 
of a nested 5-fold cross-validation classification procedure as 
explained in section II.D. 

D. Data Analysis Multimodal Feature Fusion and 

Classification Procedure 

Three types of EEG-fNIRS data fusion were evaluated; 
namely, EEG (linear)-fNIRS, EEG (nonlinear)-fNIRS, and 
EEG (linear+nonlinear)-fNIRS. For comparison, the 
performance of each of the three types of extracted features, 
i.e., EEG (linear), EEG (nonlinear) and fNIRS, were 
individually evaluated. Linear SVM was used to evaluate 
performance for each subject using a nested 5-fold cross-
validation procedure to avoid biased estimation of the 
generalization error. Hyper-parameter optimization was 
performed independently for each of the 5 outer-folds based 
on the global peak of the nested 5-fold cross-validation 
procedure (i.e., inner-folds) within each of the 5 outer-folds. 
The nonlinear RQA parameters as well as the classification 
parameters were estimated and simultaneously optimized 
using only the training set of each of the outer-folds within the 
nested 5-fold cross-validation procedure. As the MI response 
dynamics vary across modalities (EEG/fNIRS), feature types 
(linear/nonlinear), frequency bands for EEG (μ/β), and fNIRS 
signal types (HbO2/HbR) for fNIRS, the response windows 
were optimized independently for EEG (linear), EEG 
(nonlinear) and fNIRS features for both the unimodal and 
hybrid classification procedures. Features were extracted from 
various post stimulus windows as previously explained in 
section II C within each modality then concatenated to 
constitute a single unimodal (i.e., EEG (linear)/EEG 
(nonlinear)/fNIRS) or multimodal (i.e., EEG (linear)-
fNIRS/EEG (nonlinear)-fNIRS/EEG (linear+nonlinear)-
fNIRS) feature vector. The constructed feature vectors 
combine all extracted features from all the channels and all the 
combined response windows within the same modality for 
unimodal classification and across modalities for hybrid 
classification respectively. All the possible combinations of 
response windows were considered in the hyper-parameter 
optimization. For EEG (linear)-fNIRS, 24 possible response 
window combinations were considered (i.e., 6 EEG response 
windows ×  4 fNIRS response windows = 24 multimodal 
response windows). For EEG (nonlinear)-fNIRS and EEG 
(linear+nonlinear)-fNIRS, the value of 𝜀  for the nonlinear 
analysis was considered for optimization simultaneously with 
the response window resulting in 384 possible multimodal 
feature vectors corresponding to all possible combinations of 
parameters (i.e., 6 EEG response windows ×  4 fNIRS 
response windows ×  16 possible combinations of ε-
neighborhood threshold for μ and β frequency bands). In 
addition, due to the high dimensionality of the constructed 
feature vectors, we adopted the LASSO feature selection 
scheme for its proven performance efficiency for MI-BCIs 
especially for relatively small datasets [25]. Therefore, an 
optimized fused multimodal EEG-fNIRS representation of the 
MI response was selected to decode the discriminative 
oscillatory and/or nonlinear dynamics from EEG along with 
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the temporal characteristic of the hemodynamic response from 
fNIRS for hybrid classification. Similarly, for unimodal 
classification, the discriminative features were selected using 
LASSO from the constructed unimodal feature vectors to 
optimize the selected features within each unimodal 
technique. The hyper parameters (i.e., response window, 
number of selected features optimized in a range from 5 
features to 23 features in steps of 2, and nonlinear analysis 
parameters if applicable) were optimized based on the global 
peak of the nested 5-fold cross-validation procedure for both 
the unimodal and hybrid classification. Finally, the optimized 
classification results for each subject were averaged over all 
the 5 outer cross-validation folds and reported for all types of 
unimodal and hybrid classifications.  

III.  RESULTS 

Table II shows the optimized classification performance 
for each subject, comparing the fNIRS, EEG (linear), and 
EEG (nonlinear) unimodal classification illustrating the 
averaged 5-fold classification accuracy (outer-folds) for 
optimized unimodal classification performance and the 
median of the optimized number of selected features across 
folds for all feature types. The reported results are based on 
the optimized classification parameters for each fold (i.e., the 
response window, the number of selected features and the 
nonlinear RQA parameters if any) related to each subject’s MI 
neural response in each modality. As shown in Table II, the 
obtained average accuracies were 93.7%±5.6%, 
79.4%±16.9%, and 79.7%±15.8% using fNIRS, EEG (linear) 
and EEG (nonlinear) features respectively. Overall, the 
classification outcomes show that the performance of fNIRS 
features is superior in discriminating the MI neural response 
when compared to EEG (linear/nonlinear) features with ~14% 
average performance improvement over both EEG (linear) 
and EEG (nonlinear) features. This highlights the important 
role of discriminative fNIRS features in classification 
accuracy and MI neural characterization. On average, the 
classification performance of EEG (nonlinear) features did not 
improve the classification performance over classical EEG 
(linear) features for ALS patients, however, it did not degrade 

the performance either. . For ALS-1, and ALS-2, EEG 
(nonlinear) improved the classification accuracy by ~6% and 
2% respectively when compared to EEG (linear) features 
while for ALS-3 and ALS-5 there was no major difference, 
and for ALS-4, EEG (nonlinear) decreased the performance. 
This indicates that the nonlinear features encompass 
discriminative information complementary to the classical 
EEG (linear) features and might complement the fNIRS 
features in a synergistic complementary representation of MI 
responses in a hybrid BCI framework. Table III shows the 
optimized hybrid multimodal classification performance for 
each subject, comparing the EEG (linear)-fNIRS, EEG 
(nonlinear)-fNIRS, and EEG (linear+nonlinear)-fNIRS types 
of hybrid classification. This table illustrates the averaged 5-
fold classification accuracy (outer-folds) for optimized 
multimodal classification performance related to each 
subject’s MI neural response in each type of fusion and the 
median of the optimized number of selected features across 
folds for all feature types.. As shown in Table III, the obtained 
average accuracies were 93.9%±5.9%, 95.3%±6.9%, and 
93.8%±5.0% using EEG (linear)-fNIRS, EEG (nonlinear)-
fNIRS and EEG (linear+nonlinear)-fNIRS fused features 
respectively. Although the discrepancies between the 
multimodal performances were marginal, these results support 
the main hypothesis of this study and highlight the importance 
of decoding a holistic electrical-vascular MI neural response 
representation to achieve the maximum performance in a 
hBCI framework.  Overall, the classification outcomes show 
that the hybrid EEG-fNIRS multimodal classification 
performs better than the unimodal EEG classification. Fusing 
linear EEG features to fNIRS features improved performance 
by ~15% over linear EEG alone, however, it did not improve 
the classification performance over fNIRS. This highlights the 
effect of potential disease-specific abnormalities that affect 
ALS patient’s electrophysiological responses and emphasizes 
on the importance of fNIRS in characterizing MI 
hemodynamic response for an improved MI-BCI for this 
group of patients. This was particularly evident in the 
percentage of contribution of EEG features to the total number 
of selected fused features in EEG (linear)-fNIRS fusion 

TABLE II. 

AVERAGED 5-FOLD CROSS-VALIDATION ACCURACY FOR OPTIMIZED UNIMODAL CLASSIFICATION PERFORMANCE AND MEDIAN OF THE OPTIMIZED 

NUMBER OF SELECTED FEATURES ACROSS FOLDS 

Participant 

No. 

fNIRS 

 

Optimized 

#features 

(median) 

EEG 

(Linear) 

 

Optimized 

#features 

(median) 

EEG 

(Nonlinear) 

 

Optimized#features 

(median) 

ALS-1 84.6 9 53.8 17 60.0 17 
ALS-2 92.3 15 95.4 11 96.9 21 

ALS-3 98.6 7 85.7 13 85.7 17 

ALS-4 97.5 5 71.3 11 66.3 13 
ALS-5 95.3 13 90.6 15 89.4 9 

Mean±SD 93.7±5.6 9.8±4.1 79.4±16.9 13.4±2.6 79.7±15.8 15.4±4.6 

 

TABLE III. 
AVERAGED 5-FOLD CROSS-VALIDATION ACCURACY FOR OPTIMIZED MULTIMODAL EEG-FNIRS FUSION CLASSIFICATION 

PERFORMANCE AND MEDIAN OF THE OPTIMIZED NUMBER OF SELECTED FEATURES ACROSS FOLDS 

Participant 

No. 

EEG (linear)- 

fNIRS 

Fusion 

 

Optimized 

#features 

(median) 

%of EEG 

(linear) 

features 

EEG 

(nonlinear)- 

fNIRS 

Fusion 

Optimized 

#features 

(median) 

%of EEG 

(nonlinear) 

features 

EEG (linear + 

nonlinear)-fNIRS 

Fusion 

Optimized 

#features 

(median) 

%of EEG 

features 

ALS-1 84.6 11 0.0 83.1 17 17.0 86.2 13 13.4 

ALS-2 92.3 9 48.9 96.9 15 70.4 92.3 17 70.8 
ALS-3 98.6 13 46.3 100.0 15 58.1 94.3 13 61.3 

ALS-4 98.8 13 10.8 98.8 15 30.7 97.5 17 32.5 

ALS-5 95.3 11 49.5 97.6 11 55.5 98.8 11 59.8 

Mean±SD 93.9±5.9 11.4±1.7 31.1±23.8 95.3±6.9 14.6±2.2 46.3±21.8 93.8±5.0 14.2±2.7 47.6±23.8 
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(31.1%) which reflects how fNIRS is relatively dominating 
the fused representation of MI response when using 
conventional linear spectral features. Interestingly, fusing the 
nonlinear EEG features to fNIRS improved the performance 
by ~16% over nonlinear EEG features alone and ~2% over 
fNIRS features. This performance improvement was 
accompanied by a substantial increase in the percentage of 
contribution of nonlinear EEG features (46.3%) to the total 
number of selected fused features resulting in ~15% increase 
of EEG features in EEG (nonlinear)-fNIRS fusion when 
compared to the percentage of contribution of EEG features in 
EEG (linear)-fNIRS fusion (31.1%). This suggests that these 
graph-based features are contributing towards discriminative 
synergistic EEG-fNIRS representation of MI response when 
the nonlinear dynamics of MI are considered. This highlights 
the importance of decoding the graph-based EEG features to 
complement the fNIRS features for improved performance of 
MI-based hBCIs. Considering the fusion of linear EEG, 
nonlinear EEG and fNIRS, the classification accuracy did not 
improve over EEG (linear)-fNIRS and EEG (nonlinear)-
fNIRS. This suggests that adding EEG (linear) features did not 
add discriminative information to EEG (nonlinear) features 
for this group of patients and further highlights the importance 
of characterizing the nonlinear dynamics for ALS patients for 
potentially enriching the information dimension extracted 
from their EEG signals and compensating the overall observed 
reduction in their oscillatory responses during MI.  

IV. CONCLUSION 

This paper suggest that graph-based nonlinear RQA and 
complex network features represent a valuable information 
dimension that increases the synergy and complementarity 
between EEG and fNIRS for performance improvement in 
MI-based hBCIs for ALS patients. The performance 
evaluation of hybrid EEG (nonlinear)-fNIRS MI-BCI 
revealed an average performance improvement of ~16% and 
~2% over unimodal EEG and fNIRS features respectively. 
The proposed features increased the hybrid performance of 
~1% over the conventional EEG-fNIRS hybrid classification 
relying on spectral EEG features. However, this improvement 
was accompanied by a substantial increase in the percentage 
of contribution of EEG features to the total amount of selected 
fused features (~15%) which highlights the importance of 
characterizing the nonlinear dynamics of the MI neural 
response in EEG, and suggest that nonlinear graph-based and 
fNIRS features are valuable information dimensions that can 
be exploited to improve hybrid MI-BCI performance. 
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