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We study the effects of interfacial kinetics on the electro-hydrodynamics of ion transport
near an ion-selective surface using a combination of linear stability analysis and numerical
simulation. The finite kinetics of the electrolyte—electrode interface affects the ion transfer
and electroconvection in many ways. On a surface of fixed topography, such as a metal
surface of slow and stable ion deposition or covered by a polymer membrane, the finite
kinetics reduces the current in one-dimensional ion diffusion/migration, increases the
critical voltage for the onset of the electroconvective instability, changes the dynamics of
the electroconvection and the overlimiting current, and enhances the lateral ion diffusion
within the interfacial layer. The first three effects are indirectly caused by the reaction
kinetics and can be characterized by an effective voltage difference across the liquid
electrolyte. In comparison, the last effect is controlled by a direct interplay between
kinetics and nonlinear electroconvection. Scaling laws for ion transport and features of
electroconvection are proposed. We also analyse the linear stability of a surface which
evolves under ion deposition and find that the finite kinetics decreases the growth rate
of both electroconvective and morphological instabilities and therefore modifies the
wavenumber of the most unstable mode.

Key words: electrokinetic flows

1. Introduction

Electroconvection near an ion-selective surface is important in electrodialysis, desalination
and rechargeable batteries with liquid electrolytes (Fleury, Chazalviel & Rosso 1993;
Rubinstein, Zaltzman & Kedem 1997; Kim et al. 2010). This phenomenon is governed
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by strong couplings between electrostatic effects, fluid flow in the bulk region and the
selective ion transport/reaction at the surface (Mani & Wang 2020). So far, all previous
studies on electroconvection have assumed infinitely fast ion transport across the surface
so that the ions in solution are always in equilibrium with the adjacent electrode surface
(Zaltzman & Rubinstein 2007; Demekhin, Nikitin & Shelistov 2013; Druzgalski, Andersen
& Mani 2013). However, experiments of electrodeposition on a metal surface in a dilute
electrolyte shows that the current—voltage relation is strongly affected by the surface
kinetics. Indeed, the reaction kinetics plays a key role in many flows of coupled transport
and reaction, such as combustion (Williams 1971) and CO; dissolution into a porous
medium (Andres & Cardoso 2011). To have a full understanding of electroconvection in
real electrohydrodynamic systems, it is important to study the interaction between surface
kinetics and electroconvection.

Caused by an electrohydrodynamic instability in a strong electric field (Rubinstein &
Zaltzman 2001; Rubinstein, Zaltzman & Lerman 2005), electroconvection enhances the
mixing of the salt solution in the bulk region and generates the so-called ‘overlimiting
current’. This phenomenon has been widely observed in various experimental settings,
such as in microchambers connected by nanochannels (Kim et al. 2007; Yossifon & Chang
2008; Abu-Rjal et al. 2019) and near an ion-selective membrane (Rubinstein et al. 2008;
de Valencga et al. 2015) or a metal electrode surface (Fleury et al. 1993; Rubinstein
et al. 2008; Zhang et al. 2020). In all these examples, the surfaces are ion selective
and only allow cations, for instance, to pass through or deposit, while blocking the
anions because of the overlapping anion double layers inside the nanochannel or the
interfacial chemistry of the metal electrode. In a strong electric field, the ions are fully
depleted near the ion-selective surfaces generating a thin space charge layer outside
the usual equilibrium double layer. Above a critical voltage, small perturbations of
the ion concentration and electric field in the space charge layer grow and cause the
electroconvective instability (Rubinstein & Zaltzman 2000). This effect is very different
from many other electrokinetic flows which may also be named as electroconvection.
For example, the electrohydrodynamic instability may occur in an insulating fluid with
unipolar charge injection (Lacroix, Atten & Hopfinger 1975), the deformation and
instability of the interface between two weakly conducting and dielectric fluids are caused
by the surface charge (Taylor 1966) and the conductance gradient (Lin et al. 2004; Oddy
& Santiago 2005), and the electrohydrodynamic flow which generates colloidal assembly
is directly related to the local change of ion conductance due to the colloids’ deposition on
the electrode surface (Trau, Saville & Aksay 1997).

Through a linear stability analysis, Rubinstein and coworkers studied the instability of
the quasi-electroneutral bulk region on a surface with no kinetic limitations (Rubinstein
& Zaltzman 2000, 2001; Rubinstein et al. 2005). In this bulk analysis, they found that
the second-kind electroosmotic slip velocity at the edge of the space charge layer is the
key effect that causes the instability above a critical voltage. It predicts that the critical
voltage for the onset of electroconvection is inversely proportional to the square root of the
Péclet number. The other two effects, i.e. the first-kind slip velocity outside the equilibrium
double layer as well as the bulk electroconvection due to charge density perturbations in
the bulk region, do not generate instabilities by themselves in most realistic electrolytes
(Zholkovskij, Vorotyntsev & Staude 1996; Lerman, Rubinstein & Zaltzman 2005). They
marginally influence the critical voltage but do not qualitatively change the instability
(Rubinstein et al. 2005). However, the bulk analysis underestimates the critical voltage
for the onset of the electroconvection and it incorrectly predicts an infinite growth rate at
infinite wavenumber. To overcome these issues, Zaltzman & Rubinstein (2007) performed
a full analysis on the linear stability of the entire system, including the electroneutral bulk
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region, space charge layer and double layer. They found that the critical voltage predicted
by the bulk analysis is lower than that predicted by the full analysis by approximately
41n 6, where § is the dimensionless double layer thickness normalized by the interelectrode
distance. However, the source of this discrepancy was unclear. In this work, we will show
that the difference results from a combination of the potential differences across the double
layer and space charge layer. On a surface with finite reaction rate, the potential difference
across the double layer increases and delays the onset of the electroconvective instability.

The nonlinear dynamics of electroconvective flows at high voltages has been
studied through direct numerical simulations solving the Poisson—Nernst—Planck—Stokes
equations. In a two-dimensional simulation, Pham et al. (2012) showed that the electric
current exhibits hysteresis when changing the voltage. Demekhin and coworkers studied
the time evolution of the electroconvection (Demekhin, Shelistov & Polyanskikh 2011)
and the dynamical transitions from limiting current to overlimiting current (Demekhin
et al. 2013). They showed that the onset of electroconvection is supercritical at small
Péclet number and subcritical at high Péclet number. As one increases the voltage,
the ion transport exhibits four regimes: one-dimensional (1-D) steady diffusion, steady
electroconvection, periodic convection and chaotic motion. Druzgalski et al. (2013)
analysed the statistics and the spatial/temporal spectra of electroconvection in these
different regimes. Their simulations show that at a high voltage, the vortices strongly
interact with the space charge layer and randomly generate short-time hot spots of
high current density on the surface and therefore increase the mean current density.
The three-dimensional simulations show similar results to the two-dimensional cases,
with differences being quantitative rather than qualitative (Druzgalski & Mani 2016).
More numerical simulations further investigated the influences of different effects on the
electroconvection and ion transport, including an imposed flow (Kwak et al. 2013; Pham
et al. 2016), the buoyancy force (Karatay et al. 2016), a patterned ion-selective surface
(Davidson, Wessling & Mani 2016), confinement by sidewalls (Andersen et al. 2017) and
viscoelasticity due to polymer additives (Li, Archer & Koch 2019).

All previous studies so far have used the equilibrium boundary condition for ion
concentration at the electrode—electrolyte interface. In reality, the reaction or passing
rate of the ions on a surface is finite and interfacial kinetics is important. For instance,
the exchange current density is 0.2-40 mA cm~2 for lithium depending on electrolyte
(Munichandraiah et al. 1994; Lopez et al. 2018) and 1-3 mA c¢cm~? for zinc and copper
(Milora, Henrickson & Hahn 1973; Guerra et al. 2004), and the typical current density
in experiments ranges from 0.1 to 10 mA cm 2. Therefore, the Damkohler number Da,
which characterizes the ratio between the ion reaction and transport rates, ranges from
0.01 to 10. In Rubinstein et al. (2008) and Zhang et al. (2020), electroconvection in
dilute electrolytes is studied using copper and Nafion-covered zinc metal as the anode
surface, respectively. The experiment of Rubinstein ez al. (2008) is performed at a higher
current density and observes smaller slopes in the current—voltage curves in both under-
and overlimiting regimes and a delayed onset of overlimiting current than Zhang et al.
(2020). This result strongly suggests that in practical electrohydrodynamic cells, the
surface kinetics has non-negligible influences on the electroconvective instability. Despite
the strong experimental evidence of the effect of surface kinetics on electroconvection,
this effect and the related flow field have not been studied in previous theoretical and
simulation studies.

The Butler—Volmer (B-V) equation has been widely used to describe the
non-equilibrium ion deposition on a metal surface (Bard ef al. 1980). The B—V equation is
developed based on transition state theory considering both cathodic and anodic reactions,
and it describes the dependence of the current flux on the electric potential drop across
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the interface (Bazant 2013). Although more sophisticated models, such as the electron
transfer theory (Marcus 1956), have been developed to include more physical processes,
the B—V condition is most commonly used for its simplicity and reasonable agreement
with experiments. In steady electrodeposition on a metal surface, the linear stability
analysis shows that B—V kinetics significantly affect the morphological instability in
both underlimiting (Sundstrom & Bark 1995) and limiting (Nielsen & Bruus 2015a)
current regimes. At the same wavenumber, the growth rate of an unstable mode increases
with increasing Damkohler number. Through a phase-field simulation, Cogswell (2015)
showed that the morphology of the long-time electrodeposition on a metal surface is
directly controlled by the B—V kinetics at the interface. Depending whether the ion flux is
reaction- or transport-limited, either smooth or dendritic electrodeposition can be observed
in experiments for copper electrodeposition (Bai et al. 2016). So far, there has been no
study to consider the effects of finite kinetic rates of the surface on electroconvection. The
present study focuses primarily on the influence of surface kinetics on the instability of
1-D ion transport to a fixed surface, which is important for electrodialysis, desalination
and planar electrodeposition in a liquid electrolyte. Additionally, we perform a linear
stability analysis of a non-fixed surface to provide physical insight into the effects of
electroconvective modes on the initial morphological evolution of an ion-depositing
surface.

It is important to note that the B—V condition is applied at the edge of the bulk region
and therefore is incompatible with the traditional equilibrium conditions of prescribed
ion concentration or potential at the electrode—electrolyte interface. Since the exact
microstructure of the interface is not fully understood, different boundary conditions
derived from the B—V condition have been used in previous studies. Bazant, Chu & Bayly
(2005) specified the electric potential drop by considering the capacitance of the Stern
layer inside the diffusive double layer. In this method, the B—V condition is applied at the
inner edge of the double layer instead of at the outer edge as in most studies. Chazalviel
(1990) and Nielsen & Bruus (2015a) used a different boundary condition that assumes
the depositing ion has zero gradient on the surface. This condition gives the same results
for the 1-D ion transport as Bazant et al. (2005) with a specific Stern layer thickness and
is more efficient in simulations since it avoids resolving the extremely thin double layer
whose thickness is typically 0.1-1 nm. In some model experiments with extremely dilute
salt concentration (~1-10 mM), the double layer thickness can reach to approximately
3—10 nm. In this work, we extend the condition of Chazalviel (1990) and Nielsen & Bruus
(2015a) to a more general case which is applicable for both underlimiting and overlimiting
currents. As we will show later, neglecting the double layer does not qualitatively affect
the linear instability or the nonlinear dynamics of the electroconvection. Nielsen & Bruus
(2015a) studied the linear morphological instability of a surface with finite reaction rate
by focusing on the electroneutral region.

On many metal surfaces, electroconvection tends to enhance the variation of the surface
topography by causing spatially and temporally varying ion fluxes and enhances the
morphological instability (Fleury e al. 1993; Huth et al. 1995). This effect can be removed
either by using a membrane to cover the surface or using a metal, such as zinc, whose
planar electrodeposition is stable. As mentioned above, this work will mainly consider the
pure electroconvection case without surface evolution. For the coupled electroconvective
and morphological instabilities, most studies to date have only considered the early stage
of surface evolution by conducting a linear stability analysis. The influence of B-V
condition on the linear morphological variation of the metal surface has been studied by
Nielsen & Bruus (2015a). To understand the nonlinear surface development in a liquid
electrolyte, full simulations with boundary-tracking techniques are required to capture the
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surface growth. Possible choices for such techniques include the phase-field method
(Takaki 2014; Cogswell 2015), level-set method (Gibou et al. 2003), immersed boundary
method (Griebel, Merz & Neunhoeffer 1999) and the sharp interface model with a
deforming grid (Nielsen & Bruus 2015b). In particular, Nielsen & Bruus (20155) studied
the ramified growth of electrodeposition on a surface with the nonlinear B—V reaction
model in the absence of electroconvection. They found that the dominant length scale of
the deposition structures depends linearly on the most unstable wavelength obtained from
a linear stability analysis.

In this work, we study the electroconvection in a liquid electrolyte near an interface
with a finite reaction rate. The main goal is to understand the effects of finite kinetics on
the hydrodynamics of pure electroconvection without dendritic growth. In addition, the
morphological consequences of the electroconvection are studied using a linear stability
analysis. In § 2, we describe the governing equations of the problem and the boundary
conditions. The kinetics of the interface is described using the B—V condition. Section 3
shows the effects of the B—V condition on 1-D ion transport. The results are compared with
the ones with traditional equilibrium conditions. In § 4, we study the linear instability of
the 1-D transport using a spectral method. Both the purely electroconvective instability and
its interaction with the morphological instability are considered. Theoretical analysis of the
bulk region is also made and compared with the full analysis. In § 5, we perform a direct
numerical simulation of the electroconvection near a fixed surface to study the effects of
the interfacial kinetics on the nonlinear dynamics. Section 6 presents the summary and
conclusion.

2. Governing equations and boundary conditions

As shown in figure 1, we consider a binary liquid electrolyte (valence +z) between an
ion-selective surface and a stationary reservoir. At high voltage, three regions are formed
in the electrolyte, of which we resolve the space charge layer (micrometre thickness) and
the electroneutral bulk region (millimetre thickness), but not the double layer (nanometre
thickness). The governing equations are the Nernst—Planck equation for ion transport, the
Poisson equation for the electric potential and the Stokes equation for the incompressible
fluid. In dimensionless form, they are

dct 1
—— +Peu-Vet = ——— [Vt + V. (cTV )], 2.1
Py + Peu - Ve 0= lc)[ c"+V-(c )] (2.1a)
ac™ _ 1 2 _ —
— 4+ Peu-Ve = —[VecT = V. (c"VP)], (2.1b)
ot 2t,
—28°V2p =t — ¢, (2.1¢)
—Vp+Viu+f,=0, (2.1d)
V-u=0, (2.1e)
where ¢* are the concentrations of cation and anion, @ the electric potential, u the

fluid velocity in a frame moving with the average speed of the evolving surface (on
a fixed ion-selective surface, the frame is stationary), p the pressure, f, = VoV
the electric body force. Here t. = DT /(Dt + D7) = 0.5 is the cation transference
number, D and D~ are the diffusivities of cation and anion, § = \/e,£0RT/(222F2C)/L
is the dimensionless thickness of the electrical double layer, L is the gap distance,
Cp is the bulk average ion concentration, &, &9, R, T,z and F are the dielectric
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Electroneutral bulk

y T _________ Space charge layer

1=2Da(ct e%® — e %®), I-=0, (dc*/dy) = (dc/dy)

Figure 1. Schematic of the different regions (not drawn to scale) formed in an electrolyte near a fixed
ion-selective surface of finite kinetics under an applied voltage V. The double layer of nanometre thickness
is not resolved. At high voltage, the electrolyte undergoes an electroconvective instability governed by the
potential difference V — @, where @; is the interfacial potential at the inner edge of the space charge layer.
For a non-fixed depositing surface such as metal electrode, the bottom boundary is subjected to a morphological
perturbation.

constant, vacuum permittivity, gas constant, temperature, valence of the ion and Faraday
constant, respectively. The valence of the ion is set as z = 1. The above equations
are non-dimensionalized as follows: lengths by the gap distance L; velocity by Uy =
£,0(RT)?/(z2F?nL); time by L?/Dy; ion concentration by Cp; and potential by RT/zF,
where 7 is the fluid viscosity and Dy =2D*TD~ /(D" + D™) is the average ‘salt’
diffusivity. The inertia term in the momentum equation is neglected because the Schmidt
number Sc = 1/(poDy) for ions in aqueous solutions is typically O(103), where pg is
the fluid density. The Péclet number Pe = UgL/Dy is independent of the electrolyte
concentration. In this study, we set Pe = 0.5 as in typical aqueous solutions unless
otherwise specified. Linear stability analysis predicts that near an equilibrium ion-selective
surface, the critical voltage for the onset of the electroconvection scales as V. ~ Pe—1/2
(Rubinstein et al. 2005).

Although the governing equations (2.1) for ion transport in a bulk fluid are
well-understood, the appropriate boundary conditions are less clear and comprise
substantial approximations. Here, we describe the boundary conditions at the boundary
between the double layer and the bulk electrolyte or space charge layer. The adsorption of
anions on the cation-selective surface (y = 0) is neglected and the first boundary condition
is zero anion flux,

n-(Vem —c V@) =0, (2.2)
where #n is the unit normal vector to the surface pointing into the electrolyte. The second
condition at y = 0 is the Butler-Volmer equation for the electrodeposition kinetics

I = 2Da(ctal e @=Ca) _ g, e0a(®=Ca)y (2.3)

where I = |Iy+ (y = 0)| is the dimensionless current density on the electrode surface, Iy+ =

dct/dy + ct9d/dy is the cation flux in y-direction, ¢™ is the cation concentration at the
outer edge of the double layer which varies with the applied voltage, a, and a,, are the
activities of the electron and metal. Here we set a, = a,, = 1 and the valence of the ions
z = 1. The Damkd&hler number

Da = iy/(2zFD* Cy/L), (2.4)
930 A26-6
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is the ratio between the exchange current density ig and the limiting current. Here o
and o, = 1 — «a, are the transfer coefficients for the cathodic and anodic reactions.
Here « is the dimensionless curvature of the electrode surface, Ca = y v, /(LRT) is
the capillary number of the depositing cation, x Ca represents the energy required to
form a new surface. For lithium metal, the molar volume of the lithium is v =
13.3 cm® mol™!, y=17161] m~2 and Ca = 9.15 x 107°. In (2.3), we have assumed
the reference cation concentration is the same as the bulk average concentration Cy,
and the standard electrode potential is zero since their specific values are not important
in this study. The B-V condition is based on transition state theory for a one-step,
one-electron process and includes both the cathodic and anodic reactions on the same
electrode surface (Bard er al. 1980). Recent studies show that the empirical B—V
condition can be derived from more fundamental theories based on electron transfer
(Rubi & Kjelstrup 2003) and non-equilibrium thermodynamics (Dickinson & Wain 2020).
Experimental measurements of the exchange current density and the transfer coefficients
in the B-V equation have been conducted for different ions using various electrochemical
techniques (Holze 2007). Since the thickness of the double layer is very thin, the
electrochemical reaction of the cations can be assumed to occur at the outer edge of
the double layer instead of the metal or membrane surface. Both the potential @ and
the cation concentration ¢* vary with the applied voltage. As Da — oo, (2.3) reduces
to the equilibrium condition Inc™ + @ — Cax = 0, which is also consistent with the
traditional boundary conditions ¢t =1 and @ = 0 at y = 0 if one neglects the surface
tension. Other constant values of ¢t at y =0 used in previous studies can also be
recovered by choosing different values of the reference concentrations and potentials
in (2.3).

If one only considers the quasi-electroneutral bulk region of ¢ = ¢~ = ¢, the boundary
conditions (2.2) and (2.3) are sufficient to solve the reduced Nernst—Planck—Poisson
equations dc/dt + Peu - Ve = V2¢ and (1 — 21,)VZ%c = V(cV®). However, to consider
the non-electroneutral space charge layer, a third boundary condition is required. Here, we
assume the cation and anion have the same gradient at the surface,

n-Vet =n.Ve, (2.5)

which is similar to the condition in Chazalviel (1990) and Nielsen & Bruus (2015a)
but here it is applied for both the under- and over-limiting current regimes. The above
condition also gives the same base state solution as Bazant et al. (2005) for a specific
Stern layer thickness. It is more efficient in simulations since it avoids resolving the
extremely thin double layer. At a small current, (2.5) applies at the edge of the bulk
region and recovers the quasi-electroneutrality condition. At a high enough current,
when the anion is fully depleted near the surface, condition (2.5) leads to a zero cation
gradient at the inner edge of the space charge layer. This condition enables us to precisely
define the cation concentration and the electric potential at the edge of the double
layer. Note that the concentration yielding a thin double layer (~3 nm at 10 mM) is
much lower than the concentration having strong effects of finite ion size and ion—ion
interactions (100-1000 M). These effects are typically important in ionic liquids and are
better described by the modified Nernst—Planck—Poisson models (Bockris & Reddy 1998;
Bazant, Storey & Kornyshev 2011; Wang et al. 2017). In a relatively dilute electrolyte, the
effects of a non-ideal solution are negligible, meanwhile the condition of a thin double
layer is still valid.
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For the fluid, we use the no-penetration and no-slip boundary condition at y = 0,

Vm 1 0h Vm . .
u=20 VG, 2.6
oo T e ar T ape(l — gyl D) (2.6a)
(I—nn) -u=0, (2.6b)

where 4 is the perturbation of the interface height, i is the local current, i1p is the 1-D
base state current, and / is the identity matrix. On a fixed surface, 34/t = 0 and the fluid
normal velocity is zero. Note that the above conditions only keep the leading-order terms
in the Taylor expansion of the velocity at the anode surface. The Péclet number appears
here due to the non-dimensionalization, v,, = v;; Co and v, = v} Cy are the dimensionless
partial molar volumes of the metal atom and the cation in the electrolyte solution. Here,
the expression is based on the volume average velocity and has a different prefactor than
that derived for the mass average velocity in Sundstrom & Bark (1995). We choose to
use the volume average velocity because it is divergence-free for a solution with additive
partial molar volumes (Brenner 2005a) even though the mass density changes with ion
concentration. Brenner (2005b) has also suggested that the velocity appearing in the
deviatoric stress tensor should be the volume average velocity. The exact partial molar
volume of the cation is difficult to measure in experiments because the cation and anion
are added simultaneously to the solution. Marcus & Hefter (2004) studied sequences of
salts with the same anion and different cations and assumed the partial molar volume of
the largest cation was the same as its van der Waals volume. It was then inferred that
small ions such as lithium have very small partial molar volumes, because the change of
volume of the solvent nearly cancels the volume of the cation itself. Thus, we assume
ve = 0 in this study. Nevertheless, the exact value of v, has a small effect on the final
results for the morphological instability. Equations (2.2)—(2.6) form the full boundary
conditions at y = 0. In comparison, the traditional equilibrium boundary conditions at
y=0arect =1,® =0, and (2.2), (2.6).

On the other side, at y = 1, we assume the liquid electrolyte is under equilibrium
conditions. The boundary conditions include fixed cation/anion concentration, fixed
electric potential

cF=c"=1, &=V, (2.7a,b)
and the no-slip condition # = 0. Compared with the no-slip condition, Druzgalski et al.
(2013) also used the stress-free condition at y = 1 assuming it is at the boundary
of the fully mixed electrolyte. This difference has minor effects on the results since
electroconvection mainly occurs near the bottom surface.

In typical experiments with aqueous electrolytes, the half-interelectrode distance
is around 1 mm, the double layer thickness ranges from 0.1-10 nm, the dynamic
viscosity n = 1073 Pas, the dielectric constant of water ¢ = 80, the ion diffusivity
107 m? s~!, the ion concentration Cyp = 0.01-1 M, the exchange current density
ip = 1072=10 mA cm~2 and the applied voltage up to 4 Volts. Based on these parameters,
we choose Pe = 0.5, 8 = 107°-1073, V = 20-100 and Da = 10~3~o0 for this study.

3. 1-D ion transport
To compare the BV condition with the traditional boundary condition, we first consider
the 1-D version of (2.1) for steady diffusion and migration

dct Rl
AN Sy § (.1a)
dy dy
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g~ 9

— — ¢ — =0, 3.1b

ay ¢ ay ( )
32

28— =t —¢7, (3.1¢)
0y?

with boundary conditions (2.2)—(2.5) and (2.7a,b).
In the limit of zero space charge layer thickness, the current is

[ =2Dafe®" (1 — 1/2)1F% — =%V (1 — [/2)7%]. (3.2)

As Da — o0, (3.2) recovers the classical relation I = Ij;,, (1 — e~"/?) with the limiting
current density Ij;,, = 2 at zero space charge layer thickness (Rubinstein & Zaltzman
2000).

For the electroneutral bulk region with ¢t = ¢~ = ¢, the ion concentration and potential
are

I
ci:c=§(y—1)+1, @ =Inc+V. (3.3a,b)

At the interface y = 0, the ion concentration is ¢y = 1 — /2 and the electric potential
jump is @3 = Inc; + V. Using (3.3a,b), the current can be written in a form which only
depends on the potential drop across the electrolyte

[=2(1 —e V=%)), (3.4)

This expression is derived from the zero-flux condition of anion (or constant
electrochemical potential of anion) and the electroneutral condition, and removes the
effects of the interfacial kinetics. Equations (3.2) and (3.4) give the current at leading
order for small §. More discussion on the high-order corrections on the current can be
found in Rubinstein & Zaltzman (2001), Ben & Chang (2002) and Yariv (2009).

Figure 2(a) shows the current—potential curves at different Damkohler numbers for § =
1073, The current monotonically increases with the applied voltage and it has two regimes,
the underlimiting current regime at low voltage, and the limiting current regime with a
smaller slope at high current. Although this is not shown in the figure, the slope of the
limiting current decreases with decreasing 6 and it approaches the asymptotic solution
(3.2) as 6 — 0. At the same voltage, the influence of the B—V kinetics on the current also
has two regimes. In the underlimiting regime, the current is strongly affected by Da, while
at the limiting current, the influence is much weaker. As Da — oo, the B—V condition
agrees well with the traditional equilibrium condition, the difference further decreases at
smaller double layer thickness. Figure 2(b) shows that the current only depends on the
potential drop V — & across the bulk electrolyte.

Figure 3 shows the profiles of the ion concentrations and potential at V = 2 and 20
obtained using the two boundary conditions. The results for the traditional equilibrium
condition have been shown in many previous studies. At small voltage, the electrolyte has
two regions, the electroneutral bulk and the thin double layer. At high voltage, the space
charge layer is formed outside the double layer. In the bulk region, the ion concentration
and potential have linear and logarithmic profiles, respectively. With the new boundary
condition (2.3) and (2.5), the double layer is replaced by a jump condition at y = 0, while
the space charge layer and the bulk region remain similar to the ones obtained using the
equilibrium condition. The differences between the two results would be further reduced
by decreasing §.
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Figure 2. The current for steady 1-D ion transport as a function of (a) the applied total voltage V and (b) the
voltage across the electrolyte V — &, at § = 1073, The results for the B-V conditions (coloured lines) overlay
with each other.
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Figure 3. (a) The ion concentrations (red, ¢*; blue, ¢~) and (b) potential @ profiles for the 1-D steady ion
transport, § = 1073,

The interfacial properties at y = 0 are important since they directly control the ion
transport through the B—V condition. For underlimiting currents, the ion concentrations
¢ = ¢, and the potential jump @ are directly determined by (3.3a,b) at y = 0,

s =

cs=1— Da(e““vc;“‘“ — e_“"vcs_““), (3.5a)

¢ —e® = Da(e!ITe)Ps — gV =oaPs) (3.5b)

which satisfies @; = In ¢y + V. At the limiting current, the above equation predicts ¢y — 0
and @, — V//2. However, in reality a space charge layer will be formed near the electrode
where the anion is fully depleted at y = O while the cation retains a small but non-zero
concentration. Assuming that ion migration dominates over diffusion inside the space
charge layer, the thickness of the space charge layer &5, the cation concentrations ¢, ¢
and the potential @; at the interface are

207 — p )2\ /3
(SS — (M) , (3.6a)
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25 gs2 \'/°
cf=c¢ = V2 = , ¢, =0, (3.6D)
V8 3(V — @) ‘
1
coe®s — o e%a®Ps — 1, (3.6¢)

The above results are similar to those of Chazalviel (1990), except that here we use V —
@, instead of V for the potential drop. For Da — oo, the potential jump recovers the
equilibrium condition for the chemical potential of the cation @; + Incy = 0. At a high
voltage, the right-hand side of (3.6¢) is negligible and @3 ~ — In(Dacy)/a,. In the next
section, (3.6a) is needed to consider the morphological instability of a surface with B-V
kinetics at the limiting current.

Figures 4(a) and 4(b) compare the numerical and asymptotic results for csjE and &g as
functions of V. For the simulations with (2.3) and (2.5), they can be directly determined at
y = 0, and for simulations with equilibrium boundary conditions, we take the minimum ¢*
as ¢, and the corresponding potential as @; (see figure 3). The asymptotic solutions (3.5a)
and (3.6a) agree with the numerical results in both underlimiting and limiting current
regimes. At smaller Da, the slower interfacial kinetics delay the transition between the two
regimes. Nevertheless, once the space charge layer is formed, the cation concentration ¢y at
the inner boundary of the space charge layer becomes independent of Da. The equilibrium
condition predicts similar results for ¢, while it greatly overestimates @y in the limiting
current regime due to the rapid variation of the potential inside the space charge layer. In
figures 4(c) and 4(d), we compare the thickness of the space charge layer §; obtained
using different boundary conditions. For the calculations shown, 8y is defined as the
position of the local maximum space charge density p = ¢™ — ¢~. We also calculated
85 by extending the linear bulk concentration and determining its intercept with the x-axis.
The difference between the two results is around 1 %. The two numerical results and
the asymptotic solution (3.6a) agree with each other, particularly at small double layer
thickness.

4. Linear instability

In this section, we discuss the linear instability of the 1-D ion transport described in the
last section. Depending on whether the surface is fixed or allowed to evolve with ion
deposition, the instability can either be purely electroconvective or include morphological
instability. We use two methods to solve the instability problem. In the full analysis,
which considers both the quasi-electroneutral bulk region and the space charge layer, we
numerically solve the eigenvalue problem using the ultraspherical spectral method (Olver
& Townsend 2013). In the bulk analysis, we only consider the instability in the bulk region
and the space charge layer is replaced by an electroosmotic slip velocity proposed by
Rubinstein and coworkers (Rubinstein et al. 2005; Zaltzman & Rubinstein 2007). In the
next subsection, we will first study the purely electroconvective instability using these two
methods.

4.1. Purely electroconvective instability
For the purely electroconvective instability, the electrolyte—electrode interface is fixed, h =
x = 0. The ion concentration, electric potential and velocity are perturbed as ¢* = ca_L +

cfc(y) et @ = @y + d1(y) e® ! and u = uy(y) e¥H07, Here c(:)t, ¢o are the base
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Figure 4. The effects of the boundary condition, double layer thickness § and Damkdhler number on the
variations of (a) the ion concentrations csi, (b) potential @y at the interface and (c, d) the thickness of the space
charge layer 8, with the applied voltage V for 1-D transport.

state solution obtained from (3.1a), cf, @1 and u; are the perturbed variables governed by

1
ac?’ + Pe vlca'/ = ﬁ[cfﬂ — kch — kzca'(Dl + (cS’@i + CT(P(/))/], (4.1a)
-l
1
oc] + Pevicy,’ = g[cf” — kZCf + kzcaq§1 —(cog @1 +c; D], (4.1b)
X
284(@] — k2 Py) = ¢ — ], (4.1¢)
v 2P Ky = (@] — KR D) DY — D1 D). (4.1d)

The governing equations above are the same as those studied by Rubinstein et al. (2005)
and Zaltzman & Rubinstein (2007). The perturbed boundary conditions are, at y = 0,

¢ —cg P —c Py =0, (4.2a)
'+ @] +cf ®) = 2Dal(c] + cfacPr) e® P + a, By e %], (4.2b)
CT/ — cl_/ =0, (4.2¢)
vy =v; =0, (4.2d)
andaty =1,
=0, ¢f=0, & =0 v =v]=0. (4.3a—d)
930 A26-12


https://doi.org/10.1017/jfm.2021.907

https://doi.org/10.1017/jfm.2021.907 Published online by Cambridge University Press

Electroconvection with Butler—Volmer kinetics

(@) 507 (b) 307

40 25
14 V—o |
30 20
20 i i i i 1 i i i i 1 i i i i 1 i i i i 15 i i i i 1 i i i i 1 i i i i 1 i i i i
0 5 10 15 20 0 5 10 15 20
k k

Figure 5. The neutral stability curves plotted in terms of (@) V and (b) V — & versus the wavenumber k for
the electroconvective instability at different Da predicted by the full analysis, § = 1073.

In the limit Da — oo, the perturbed B—V kinetic boundary condition reduces to cl+ +
c(')'“cbl = 0 by applying In c(')|r +®Py=0aty=0.

Both the base state (3.1a) and the perturbed (4.1) are solved using the ultraspherical
spectral method (Olver & Townsend 2013). Unlike the classical Chebyshev collocation
method, this method constructs the matrices in the coefficient space and uses banded
operators to generate a well-conditioned generalized eigenvalue problem. Therefore, it is
capable of solving eigenvalue problems with thin boundary layers. The electroconvective
instability in an electrolyte bounded by surfaces with two different boundary conditions,
the B-V kinetic condition with Da — oo and the traditional equilibrium condition, are
also compared. The neutral stability curves show that resolving the thin double layer
decreases the critical voltage by a constant value independent of wavenumber. Detailed
comparisons are given in the Appendix.

Figure 5(a) shows the neutral stability curves in the k — V space at different Da
predicted by the full analysis. The double layer thickness is § = 1073, As Da — oo, the
critical voltage is V., = 22.02 and the corresponding wavenumber is k. = 4.78. With
decreasing Da, the critical voltage monotonically increases, while k., is not affected.
In figure 5(b), all the neutral stability curves collapse well when plotted with V., — &y,
showing that the electroconvective instability is insensitive to the potential drop across
the double layer. As we will see in the following, this is because the electroosmotic
slip velocity which causes the instability is driven by the potential drop across the bulk
electrolyte.

To further understand the effects of interfacial kinetics on the electroconvective
instability, we consider the linear instability of the quasi-electroneutral bulk region where
¢t = ¢~ = c. In most realistic electrolytes, the electroconvective instability occurs only
at the limiting current and is caused by the second-kind electroosmotic slip velocity at
the edge of the space charge layer. Following Rubinstein et al. (2005), we introduce the
electrochemical potential of the anion u = Inc — @ to simplify the equations. The details
of the linear stability analysis in the bulk region can be found in Rubinstein ef al. (2005).
Here we only summarize the main results. The base state solutions (3.3a,b) are

1
o = I+ E(y - 1)5 Ho = _V’ (44(,1,[9)
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where / = 2 in the limiting current regime. Noticing u; = c1/co — @1, the perturbed
equations can be written as

ocy + Pe cé)vl = c/l/ — kzcl, (4.5a)
1
o+ Pecouy = -[(cop)) = Kol (4.5b)
C
v — 2020 + Koy = 0, (4.5¢)

which are exactly the same as the corresponding equations in Rubinstein et al. (2005). At
y = 0, the perturbed boundary conditions (2.2), (2.3) and (2.6) become

c1=0, w;=0 v =0, (4.6a)
c 1 c,
v = V2 <M1 - —}) — vl (4.6b)
Co 8 I
Aty = 1, the boundary conditions are
c1 =0, a_ n1 =0, vy=v]=0. (4.7a—c)
0

Note that in (4.6a), the condition ¢; =0 at y =0 is due to the full depletion of the
ions at the edge of the bulk region at the limiting current. In the condition (4.6b), V* =
V- o+ % In § where @; is the potential jump across the double layer. The term % Iné is
the characteristic potential difference across the space charge layer, whose thickness scales
as 82/3 and wherein the potential roughly follows the same logarithmic profile as the bulk
region. Rubinstein & Zaltzman (2001) also derived this term for the slip velocity (their
(2.102)) but later neglected it by assuming V > | In§| although this limit is not typically
achieved in practice. Here, we use the simple estimation of the potential difference in the
space charge layer to improve the quantitative prediction of the bulk analysis. The slip
velocity (4.6b) has the same expression as Rubinstein e al.’s (2005) (203), it includes
the contributions from both the first-kind (~V*) and the second-kind slip velocities
(~V*2). The second-kind slip velocity is caused by the tangential variation of the normal
ion concentration gradient and it is the dominant effect that causes the electroconvective
instability. The first-kind slip velocity is caused by the tangential variation of the voltage
and it slightly increases the critical voltage for the onset of the electroconvective instability.
More systematic discussion on the structures and the potential drops in the equilibrium
and non-equilibrium double layers as well as the unified asymptotic description of the thin
layers can be found in Zaltzman & Rubinstein (2007).

In the bulk analysis, the linear instability is affected by the B—V kinetics only through
the slip velocity (4.6b), and the results are the same as those in Rubinstein et al. (2005)
except that V is replaced by V*. The critical voltage for the onset of the electroconvective
instability is determined by the modes with large wavenumbers (k > 1),

Ver = Vi + &5 — 3108, (4.8)

§ 2 (8, 2 8t
Vo=4lptlz —1) +5 1] 4.9)

is the same as Rubinstein er al. (2005) (207). Without the first-kind slip velocity, it
reduces to the well known expression V. = 4./2/Pe (Rubinstein & Zaltzman 2000).
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The Damkohler number Da is embedded in @ ., by solving (3.6a) with V = V,,. at the
limiting current. The above result agrees with the full analysis prediction that the onset of
the electroconvective instability occurs at a value of V — @, that is independent of Da.

At small Da, @3 ~ — In(Dacy) /o, and (4.8) can be simplified as

1 1 21 1
wf—;—muyzv;—-—mpa—iéiﬁﬁmS—3

o o 3, o

8
In, 4.10
ns (4.10)

showing that the critical voltage increases logarithmically with decreasing Da. As Da —
00, the critical voltage
Voo —3InVe = Vi — 3Ins — 11§, (4.11)

C

in which the term (4/3) In §, representing the potential differences across the double layer
and the space charge layer, was also derived by Zaltzman & Rubinstein (2007) for the
microscopic non-equilibrium space charge layer.

Figure 6(a) shows the dependence of the critical voltage V., on the Damkohler number
Da predicted by the full and bulk analyses. The bulk analysis underestimates the critical
voltage but, in general, it agrees well with the full analysis. At large Da, the critical
voltage reaches a constant and the electroconvective instability is only controlled by
the ion transport. At small Da, the kinetics becomes important and the critical voltage
increases with decreasing Da following V., ~ —(1/a) In Da. The transition between the
two regimes occurs at Da; ~ §2%/3 where ay = 1 — ae. At ap = 0.5, Da, ~ 10 for
8§ =103, and Da; ~ 10% for § = 107°, showing that the effects of the B—V kinetics on
the electroconvective instability become even more important in real electrohydrodynamic
systems. For a typical aqueous electrolyte of concentration 0.1M and § = 107°, the onset

voltage for the electroconvective instability almost doubles from ~0.7V for Da = 10°

to ~1.3V for Da = 10~2. This result can potentially be verified in experiments using
electrodes with different ion exchange current density. For instance, in typical salt
solutions, the exchange current density is O(1) A cm™?2 for copper and O(1073) A cm ™2
for Cobalt (Bockris & Reddy 1998). A noticeable difference in the critical voltage for the
onset of electroconvection can be expected for these systems. In figure 6(b), the critical
voltage V,, increases with decreasing Péclet number Pe and it scales as V., ~ Pe~!/?
for Pe < 1072, In a typical aqueous electrolyte, for which Pe ~ 0.1, the effect of the
first-kind slip velocity is important and the critical voltage is higher than the ~Pe~!/?
scaling. It is worth noting that although the modified slip velocity (4.6b) improves the
bulk analysis results for the critical voltage, it still predicts an unstable mode at infinitely
large wavenumber, which is intrinsically different from the full analysis.

Figure 7 compares the eigenfunctions of the perturbations with k = 10 at different Da
for V. =25,8 = 107> and Pe = 0.5. The plots are normalized such that the perturbed ion
concentrations have the same peak value. The perturbations are stable for Da = 0.01, 0.1
and 1 and unstable at larger Da. At Da = 10 and oo, the ion concentration has a large
perturbation near the surface and it generates a large disturbance to the potential field and
a large slip velocity, thereby causing the electroconvective instability. With decreasing Da,
the concentration disturbance moves away from the surface, leading to a weaker potential
field and a smaller slip velocity, and therefore the perturbation decays.

4.2. Combined electroconvective and morphological instability

To consider the interaction between the electroconvective and morphological
instabilities, we derive the eigenfunctions and eigenvalue with i = h; et being an
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Figure 6. (a) The dependence of the critical voltage V., on the Damkdohler number Da at Pe = 0.5. (b) The
dependence of the critical voltage V., on the Péclet number Pe for § = 107>,
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Figure 7. Eigenfunctions for perturbed (a, b) ion concentration, (c¢) potential and (d) velocities for the
electroconvective instability predicted by the full analysis for V = 25, k = 10 and § = 1073,

unknown variable. In the full analysis, the perturbed equations for cli, @7 and u; and the
boundary conditions at y = 1 are the same as (4.1) and (4.3a—d). The boundary conditions
at y = 0 become

¢ —cg P —c Py =0, (4.12a)
Ftefol+cf o) = 2Da[(cl+ +cf'ht + cfacG) e%® + a,Ge %), (4.12b)
ohy = ——— (" +cf | + D)), (4.12¢)
2(1 — 1)
=+ (cf" = cgHh =0, (4.12d)
ohy
v = v) =0, (4.12¢)

where G = @ + @6/11 — Cak*hy. In the limit Da — oo, the perturbed B-V Kkinetic
boundary condition reduces to c;r + car "'hy + C(J)r G =0 by applying In Co + @9 =0 at
y=0.
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Figure 8. The growth rate for the full analysis of the combined electroconvective (EC) and morphological
instability (lines) and the bulk analysis of the purely morphological instability for £ >> 1 (circles) at different
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For the bulk analysis, the growth rate of the purely morphological instability (v; = 0)
for large wavenumbers (k > 1) is

I (2 —ba, )
—| ———A.+bA, | — csCa(A. + Ak
vk 2

_ c
1= 2—>b ’
-t S A+ ok
o Da

(4.13)

where A, = csae €% ®s and A, = o, e %Ps. The constant b is 1 and 2 for underlimiting and
limiting currents, respectively. The difference is due to the different dominant mechanisms
of ion flux near the surface, ambipolar diffusion and migration, in the two current regimes.
The current / and the interfacial ion concentration and potential c;, @, are solved by (3.2),
(3.5a) and (3.6a) for any given voltage. The above equation is very similar to the result
of Nielsen & Bruus (2015a), except the second term in the numerator that arises from a
small difference in the form of the B—V condition used in two studies. If one neglects
the surface tension (Ca = 0), (4.13) recovers the classical result o = (1/2(1 — t.)) v, 1k
for Da — oo, while at a finite Da, the growth rate approaches a constant value o =
(vmIDa/2(1 — t:)cg) (2 — bay) /o)A + DA,) at large k.

Figure 8 shows the dependence of the growth rate on the wavenumber at different
Damkohler numbers and two voltages, V=2 and 25. The growth rate of the
morphological instability increases with increasing wavenumber k until it reaches a
peak value and eventually is stabilized by the surface tension. The growth rate of the
morphological instability decreases with decreasing Da. For k <« 1, the growth rate
reaches a constant value o = v, //[2(1 —#.)]. At an underlimiting current, the bulk
analysis in general agrees well with the full analysis at large wavenumbers. At an
overlimiting current, the bulk analysis overpredicts the wavenumber ko at which the
perturbation becomes stable, showing that the non-electroneutrality of the electrolyte in
the space charge layer becomes important at high wavenumbers. The wavenumber &, y
for the fastest growing morphological mode is of order 10>—103, representing ramified
dendrite growth of the electrodeposition. At a high voltage V = 25, the onset of the
electroconvective instability generates a second peak at k,, rc ~ O(10), corresponding to
mossy electrodeposition. Different from our recent work (Li et al. 2021), where an imposed
shear flow only suppresses the electroconvective instability while not the morphological
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Figure 9. (a) The dependence of the characteristic wavenumbers of the unstable modes on the applied voltage
for (red) Da — oo and (green) Da =1, § = 103 obtained from the full analysis. The wavenumbers &, £c
and ky, s correspond to the most unstable electroconvective and morphological modes, and kg is the critical
wavenumber above which the modes decay. The circles show the voltages at which the growth rate of the most
unstable electroconvective mode exceeds that of the morphological mode. (b) Dependence of k;, »s on Da at
V = 25. The thick dashed line is an empirical fit.

instability, here decreasing the reaction rate of the surface stabilizes both instabilities. The
two peaks of growth rate suggest that the electrodeposition can show very different length
scales with and without electroconvection, consistent with previous experiments (Tu et al.
2008; Wei et al. 2018). In the presence of the electroconvection, zinc deposition at the
microscopic scale displays an orderly alignment of grain flakes (1 x 2 x 0.1 pm) with a
preferred orientation, which involves two length scales, the small wavelength (~ 1 pm)
determined by an individual grain and the large wavelength (~ 10? jum) set by the groups
of arrayed grains with the same orientation. When the electroconvection is suppressed by
adding agar gel into the electrolyte, the zinc deposition has a morphology of randomly
oriented grains which only has the small wavelength (Tu er al. 2008). More recently,
Wei et al. (2018) showed that sodium deposition on a planar metal electrode surface
transitions from mossy mushroom structures (large wavelength) to needle-like structures
(small wavelength) as electroconvection is suppressed by adding high-molecular-weight
molecules into the electrolyte. Our results predict that similar effects can be achieved by
decreasing the reaction rate of the surface.

Figure 9(a) shows the characteristic dependence of the wavenumbers of the unstable
modes on the applied voltage. The wavenumbers k,, yr, ki, ECc represent the most unstable
electroconvective and morphological modes, and ko is the critical wavenumber below
which the growth rate is positive. The two wavenumbers for the morphological instability
increase with increasing V. The slope of the increment becomes smaller at the limiting
current due to the formation of the space charge layer. Above a critical voltage, the
electroconvective instability incorporating the growth of the electrode surface starts to
emerge and k,, gc has a non-monotonic dependence on V. Both the electroconvective
and morphological modes become more unstable at higher voltage. Yet the growth
rate of the most unstable electroconvective mode increases much faster than the most
unstable morphological mode, so that the electroconvective mode quickly dominates the
electrodeposition with increasing V. When plotted as a function of V — @, k;,, gc and kg
are nearly independent of Da, while &, 5 is strongly affected by Da. Figure 9(b) shows
the dependence of the wavenumber of the most unstable morphological mode on Da at
V = 25. Furthermore, ky p = ko/ V/3 at large Da and it decreases with decreasing Da.
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At the limiting current, k,, 5y ~ 8~1/3 since the stabilizing effect of the surface tension

is directly influenced by the cation concentration at the electrode—electrolyte interface.
Below the limiting current, k,, » becomes independent of 6 and roughly follows a power
law scaling with the reaction rate corresponding to k,,; p ~ Da®# for this specific case
of V = 25. At small enough Damkd&hler number, Da <« e~V the current [ >~ 2Dae%"V
and ky, p = Da*3 e2VI3(1 4+ a)*32a.Ca)~1/3. At small and large Da, the analytical
result agrees with the full analysis although it always overestimates k&, »s at large Da.
At intermediate Da, where the interaction between the kinetics and transport becomes
important, the analysis which assumes a strong effect of the perturbed electric field
(Nielsen & Bruus 2015a) predicts a constant k,, 57 and is inaccurate.

5. Nonlinear dynamics of electroconvection

To study the nonlinear dynamics of electroconvection near a surface with B—V kinetics,
we numerically solve (2.1) in a two-dimensional rectangular domain using a hybrid
spectral-finite-volume method (Druzgalski et al. 2013; Li et al. 2019). The domain is
periodic in the x-direction, and the electric field is applied along the y-direction. The
Stokes equation is solved in Fourier space along the x-direction and in physical space in
the y-direction. Following the numerical strategy of Druzgalski (2016), we take advantage
of the linearity of the velocity and pressure fields and use an unconventional method
to impose the incompressibility condition. Along each line of constant x, the Fourier
transformation of the pressure p is decomposed into three terms

D = po + c1p1 + c2p2, (5.1

where po satisfies the Poisson equation (d2/dy? — k*)po = ikfur + (d/dy)f‘ey with
homogeneous boundary conditions pgp = 0 at y = 0 and 1, p; and p; satisfy the Laplace
equation (d”/dy* — k?)p1.2 = 0 with inhomogeneous boundary condition on one side,
Pily=0 = p2ly=1 = 1 and p1|y=1 = paly=o = 0. The coefficients c; and c; are determined
by enforcing the incompressible condition at the two boundaries. The full coupling
equations (2.1) are solved using Newton’s iteration method (Karatay, Druzgalski & Mani
2015). In our simulations, five iterations per time step are usually enough to ensure
convergence with relative difference less than 107>. The computational domain is a
rectangular domain of aspect ratio 6, the grid is uniform along the x-direction and

stretched in the y-direction, the grid size is Ax = 5.8 x 103, AYmin = 10~* and AYVnax =

3.6 x 1072, the time step is Az = 1075, The steady state solution for 1-D ion transport is
used as the initial state for the simulations.

To validate our numerical simulations, in figures 10 and 11 we compare the average
current (I), and the average profiles of cation (¢*) and the kinetic energy (E;) of the
electroconvective flows with previous simulations (Druzgalski et al. 2013; Pimenta &
Alves 2018). The angle brackets and overbar represent the averages over the x-direction
and time, respectively. At V =20, the traditional equilibrium condition predicts an
overlimiting current, while the B—V condition as Da — oo does not. This result is
consistent with linear stability analysis which predicts that the critical voltages for the
onset of the electroconvective instability with these boundary conditions are V. = 18.53
and 22.01, respectively (see Appendix for details). The B-V condition predicts slightly
weaker electroconvection than the traditional boundary condition because it generates
a smaller electroosmotic slip velocity due to the neglect of the double layer. The
simulation results for the equilibrium boundary condition agree well with the previous
study (Druzgalski et al. 2013) at Da — oo.
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Figure 10. Comparison the simulation and experiment results of the time- and x-averaged current density (1)
at different voltages and Damkdohler numbers.

(a) () @5x10%
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Solid: Equilibrium
Dash—dot: Druzgalski et al.

Figure 11. Distribution of () time and x-averaged cation concentration (c*) and (b) mean kinetic energy (E)
versus wall-normal coordinate y at different voltages V = 20 (red), V = 40 (green), V = 60 (blue) and V = 80

(black) for § = 1073, The inset in (a) is a closer view near y=0.

At a given applied voltage, the interfacial kinetics strongly affects the ion flux on the
ion-selective surface. To quantify this effect, we compare the simulation results with the
available experimental data in figure 10. Zhang et al. (2020) used 50 mM zinc sulphate
solution as electrolyte, zinc metal covered by a Nafion membrane as anode, zinc metal
as cathode, the interelectrode distance is 1 cm, and the limiting current density is around
2 mA cm~2. Rubinstein ef al. (2008) used 10 mM copper sulphate solution as electrolyte,
copper metal as anode, Neosepta CMX membrane as cathode, and the interelectrode
distance is 0.5 mm. The limiting current density is not reported, but it is probably higher
than the one in Zhang et al. (2020) due to a smaller interelectrode distance. In their
sulphate solutions, zinc and copper have similar exchange current densities, 1-3 mA cm ™2
for zinc and copper (Milora et al. 1973; Guerra et al. 2004). In two experiments, the
deposition of zinc and copper ions is stable and uniform so the growth of the anode
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Figure 12. (a) Time history of the x-average current (/) at V = 40 and § = 1073. Circles show the time instants
for the flow fields in figure 13. (b) The dependence of average current (/) and average interfacial potential (®y)
on Da. The red triangles represent the interfacial potential for the 1-D ion transport. The bars show the standard
deviations.

surface is negligible. The result in Zhang et al. (2020) indicates relatively weak kinetic
effects, the estimated Da ~ 0.1-1 is consistent with the measurements of the exchange
current density. In comparison, the result of Rubinstein et al. (2008) indicates a smaller
Da (~ 0.01-0.1), the slopes of ohmic and overlimiting currents are smaller, and the onset
of overlimiting current occurs at a higher voltage. This difference is highly likely due to
the surface kinetics. Indeed, decrease Da in simulation improves the comparison with the
result of Rubinstein ef al. (2008).

Figure 12(a) shows the time histories of (/) at different Da and V = 40. Decreasing
Da delays the onset of electroconvection and drastically changes the time history of the
current, which successively shows high-frequency oscillation, low-frequency oscillation
and a steady state. As expected, the current (/), averaged over time and x, in general
decreases with decreasing Da, while its variation strongly depends on Da (figure 120).
For Da > 102, the overlimiting current is almost independent of Da since the interfacial
kinetics are fast. From Da = 10% to Da = 10, (I) drops significantly from 5.25 to 3.79
because the kinetics limit episodes of high local current density, which can greatly
exceed the median current density. For 0.1 < Da < 10, the average current has a weak
dependence on Da and a non-monotonic behaviour occurs at Da ~ 0.1 due to the change

of the pattern of the electroconvection. For Da < 0.1, (I) continues to decrease with
decreasing Da and it eventually reaches the limiting current for Da < 1073, It is worth
noting that the domain size of the numerical simulation affects the overlimiting current
and electroconvection. However, its effect becomes less important in the chaotic regime
of electroconvection at high voltages and the general trend of current with respect to Da
is similar for different domain sizes. Perhaps surprisingly, the average interfacial potential
(Ds) 1s the same as the potential for 1-D ion transport and monotonically increases with
decreasing Da.

The effect of Da on the current is directly related to the variation of the flow field.
Figure 13 shows the typical ion concentration and normal velocity fields at different Da.
The white contour lines show the regions of high cation flux Iy+ =21 —t.)Pectv —
(3¢t /3y + ¢t (3¢ /dy)) = —6 for figure 13(a—d) and I;" = —3 for figure 13(e). The black
lines are the streamlines. For all the cases, the electroconvective vortices inside the gap
generate local regions of strong downward flows, which bring more ions from the top to
bottom surface and increase the local ion flux (white contour lines). As Da — o0, the
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Figure 13. The typical concentration and velocity fields (left — cation concentration ¢™; right — normal velocity
v) at V =40 and different Da. The white contour lines show high flux regions of (a—d) Ij = —6 and
(e) I;' = —3. The black lines are the streamlines. Movies are available in the supplementary movies are
available at https://doi.org/10.1017/jfm.2021.907.

flow is composed of large and small vortices, whose sizes correspond to the gap distance
(~1) and the space charge layer thickness (&5 ~ (3V8/4)?3 ~0.1), respectively. The
small vortices evolve much faster than the large vortices and generate the high frequency
oscillations in the current. At Da = 1, the distinction between the large and small vortices
becomes less obvious and the strong interaction between the vortices generates the high
frequency fluctuations in the current. Note that the magnitude of the fluid velocity at
Da =1 is slightly larger than the field for Da — oo, meaning that the ion transport is
more influenced by the pattern of the electroconvection than by its strength. At Da = 0.1,
the flow field has fewer vortices and their interactions become milder. Occasionally, the
vortices become very long and induce a weak downward flow and therefore generate a low
current (see figure 13d). At Da = 2.5 x 1073, the electroconvection has a small velocity
and becomes steady. These results are similar to the different flow regimes observed in
previous studies with equilibrium boundary conditions by changing the applied voltage
(Demekhin et al. 2013; Druzgalski 2016). Here, we show that the transitions can also occur
by changing the interfacial kinetics. B

Since the average interfacial potential (@) for electroconvection is close to the
potential for the 1-D transport problem, it is convenient to characterize the properties

of electroconvection as a function of V — (@), and the results are summarized in
figure 14. Despite there being scattering, the general trend of the data is clear. The

average current increases with increasing potential and it roughly scales as AI ~ AV!/2,
where AI = (I) — Ij;;, is the current increment above the limiting current [j;, >~ 2 and
AV =V — (Dg) — (Ver — (Py.cr)) 18 the potential increment above the critical voltage
difference V., — (CISS,C,) =~ 17 (see figure 5b and 14a). This scaling can be understood in
the following manner. The strength of the electroconvection linearly increases with the

voltage difference as confirmed in figure 14(b), meaning that the Péclet number defined
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Figure 14. The dependence of (a) the average current (I), (b) the peak values uqy and vy,4y of the root mean
square (r.m.s.) of velocities u” and v/, (c) the corresponding positions 8, and 8, for the peaks of wqx and vynqx
and (d) the average interfacial cation concentration (c) on V — (@) for simulations with different choices
of applied voltage V and domain length W. Fitting curves are plotted to guide the eye. The bars in (a) and
(d) show the standard deviations. The inset in (a) shows the scaling of the overlimiting current increment

Al = (I) — Ijj, versus the voltage difference AV =V — (®;) — (Vo — (@S,C,)). The inset in (b) shows the
definitions of unqyx, Umax and 8y, 8y and the distribution of r.m.s. of velocities u’ and v" at V = 40 and Da = 1.

by the characteristic fluid velocity Pe, = u.L/D linearly increases with V — (®,). The
classical theory for mass transport due to convection and diffusion with Pe, > 1 and

Re < 1 predicts that the flux scales as ~ Pe,l/

near a fluid—fluid interface, and ~ Pe,i/ 3 when v ~ y2 such as near a no-slip surface (Leal
2007). Inside the space charge layer, the cation flux is dominated by the migration so the
classical theory for the transport near a no-slip surface is not valid. Instead, we should
consider the cation flux at the outer edge of the space charge layer, where the combined
contribution of the convective and diffusive fluxes equals the migration flux and accounts
for half of the total cation transport. Since the normal velocity grows linearly with the
distance away from the edge of the space charge layer and its magnitude increases linearly
with the voltage, the increment of ion flux scales as Al ~ AV'/2. Figure 14(c) shows
the y-positions of the peak r.m.s. velocities. The peak position for u,,s, which we denote
as Jy, can be considered as the thickness of the space charge layer. It roughly remains a
constant §, =~ 0.04 at all voltages. This value is also close to the position of the maximum
value of the average charge density §;. The thickness of the space charge layer in an
electroconvective flow is much smaller than in the 1-D transport problem because the
electroconvection mixes the ions and attenuates the ion polarization. The peak position
of vy, denoted as dy, increases with increasing potential difference, showing that the
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Figure 15. The instantaneous distribution of different variables across the electrolyte along the x-axis for
(a) Da =200 (b) Da =20 and (¢) Da =2 at t = 1.6, V = 40. The grey regions show the normal velocity
v of the fluid. The alternating regions of positive and negative v show the upward and downward flows
at this particular time instant. The red solid and green dash—dotted lines show the fluctuations of the

interfacial potential @ — (d_?;) and the interfacial cation concentration ¢y — (cs), the average potentials are
(Py) = 5.19, 6.69, 10.5 and concentration (¢;) = 8.7 x 1073,7.8 x 1073,7.9 x 1073, respectively. The thick
black and blue dotted lines show the two components of the cation flux /]~ and Iy+ at the bottom surface.

downward and upward flows have longer penetration length into the bulk region at higher
voltage. In figure 14(d), the interfacial cation concentration (¢*) becomes higher than the
one in 1-D transport for V — (®;) = 17 because the onset of electroconvection brings more
ions to the bottom surface. It increases with the voltage difference and quickly reaches a
plateau after V — (&) ~ 24, meaning that convection-induced ion accumulation close to
the surface is saturated.

So far we have shown that the Damkohler number Da affects electroconvection mainly
by changing the average interfacial potential (@), which is close to the potential for
1-D transport. The potential difference V — (@) across the electrolyte can well describe
the properties of electroconvection averaged in time and spanwise direction. To capture
the entire picture of the effects of interfacial kinetics, however, we also look into the
non-averaged properties. Figure 15 compares the instantaneous distributions of several
different variables across the electrolyte along the x-axis for Da = 200,20 and2 att = 1.6
and V = 40. In all three cases, the downward flow increases the local interfacial cation
concentration (green lines) and enhances the local cation transport (blue lines). However,
the distributions of the electric potential are different. The downward flow decreases the
local interfacial potential @ at Da = 200, while it increases @ at Da = 20 and 2 (red
lines). At large Da, ®@; decreases in the region of downward flow because the local cation
concentration increases while retaining a constant chemical potential In ¢y + @ = 0 at the
electrode—electrolyte interface. However, the cations brought by the flow are not consumed
rapidly at small Da and their accumulation at the interface increases the local potential.
This effect is directly related to Da instead of V — (@) and significantly affects the
cation transport inside the electrolyte—electrode interface (thick black lines). At Da = 200,
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the migration of cations counteracts the diffusion and the flux inside the interface I
is negligible. In comparison, at Da = 20 and 2, both migration and diffusion drive the
cations away from the local influx region and have a stabilizing effect on the ion deposition
on the interface. Since the morphological stability of the ion-depositing surface is largely
influenced by the cation distribution on the surface, this effect can potentially be utilized
to achieve uniform ion deposition.

6. Conclusion

To summarize, we investigate the effects of the interfacial kinetics on the linear
instability and nonlinear electrohydrodynamics of ion transport in a liquid electrolyte.
In the linear stability analysis, we consider both the electroconvective instability near
a fixed ion-selective surface and the morphological instability of electrodeposition.
For the nonlinear dynamics, the electroconvection near the ion-selective surface is
simulated in a two-dimensional domain using a hybrid spectral-finite-volume method.
The ion transport, the electric field and the fluid flow are modelled by solving
the Nernst—Planck—Poisson—Stokes equations. The kinetics of the cations on the
electrode—electrolyte interface are modelled using the B—V equation with the key
dimensionless parameter, the Damkohler number Da, and a gradient condition for the
cation concentration is used to describe the boundary condition at the inner edge of
the space charge layer. This treatment avoids resolving the double layer and predicts
very similar results as the traditional equilibrium condition for the 1-D ion transport as
Da — oo.

Our study shows that finite reaction rates significantly affect the ion transport in many
ways. Decreasing Da reduces the 1-D transport, increases the critical voltage for the
onset of the electroconvective instability, decreases the growth rate of the morphological
instability, and changes the patterns of the electroconvective flows and the overlimiting
current. For the electroconvective instability, we derive an analytical prediction for the
critical voltage using the bulk analysis in (4.8). It extends Rubinstein’s results for the
critical voltage of infinite interfacial kinetics rate (Rubinstein et al. 2005) to arbitrary
Da and agrees well with the result of the full analysis. We find that the critical voltage
for the onset of the electroconvective instability is V., >~ V. — %ln(S for Da > §—2%a/3,
where the bulk analysis prediction V. only depends on the Péclet number Pe and the
transference number of the cation, and %lné is the voltage difference across the double
layer and the space charge layer. This result is consistent with the previous analysis of
Da — oo (Zaltzman & Rubinstein 2007). At smaller Da, the critical voltage increases
with decreasing Da and scales as V., >~ V. — (1/a,) In Da. By introducing the interfacial
potential @, we find that the 1-D transport and the electroconvective instability are simply
determined by the effective voltage V, = V — @, across the liquid electrolyte regardless of
the total voltage. These results are helpful to understand the electroconvection near a metal
surface with stable electrodeposition. Future experiments can directly test our prediction
by measuring the voltage difference across the liquid electrolyte. For the morphological
instability, our results show that the bulk analysis (Nielsen & Bruus 2015a) agrees
reasonably well with the full analysis result for Da < 1 and Da >> 1, whereas for Da ~ 1
which is more common in real applications, it largely overestimates the wavenumber of
the most unstable mode. The growth rate approaches a constant value o ~ Da at finite
Da whereas 0 ~ k for Da — oo. At large k, the morphological instability is suppressed
by the surface tension above a wavenumber that is solely determined by V.. In contrast,
the wavenumber for the most unstable morphological mode depends on Da and V,.
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These results can be applied to guide the design of electrochemical cells. For example,
one can modify the exchange current density by coating a polymer layer on the electrode
to reduce the morphological instability (Lopez et al. 2018).

Above the critical voltage for the onset of the electroconvective instability, numerical
simulation shows that decreasing Da attenuates the strength of electroconvection. The
average interfacial potential (®;) in the presence of nonlinear electroconvection is the
same as the potential @, in 1-D transport. The voltage across the liquid electrolyte V, =
V — (@) largely determines the transitions between different modes of electroconvection
as well as the key properties of the flows. With increasing V,, the electroconvection transits
from steady vortices to unsteady flow composed of large vortices with relatively weak
interactions, and eventually becomes a chaotic flow with vortices of different sizes that
interact strongly. The common feature of the vortices is that they generate downward flow
which increases the local cation concentration and generates local high-current hot spots.
The strength of the electroconvection roughly follows a linear relation with V,. The average
overlimiting current scales as (i Y — Liim ~ (Ve — Ve,cr)l/ 2 due to the existence of the space
charge layer. This result is similar to the mass transport near a fluid interface for Re < 1
and Pe > 1.

The interfacial kinetics have a strong influence on the ion diffusion inside the
electrolyte—electrode interface. While the local hot spots always increase the local
interfacial cation concentration ¢, their effects on the interfacial potential ®; depend
on the Damkdohler number. At large Da, @, is lower in the hot spot regions than
the surroundings. At small Da, the result is the opposite, meaning that both diffusion
and migration drive the cations away from the hot spots and therefore weaken the
morphological instability. This effect can only be observed near an interface with
finite kinetic rates. Although in the current study the lateral transport of ions inside
the interface is two orders of magnitude smaller than the transport in the normal
direction, we expect that this effect may be more dramatic in a highly conducting
interfacial layer, such as the sodium bromide interphase layer (Choudhury et al. 2017),
so that is may help to mitigate the dendritic electrodeposition. Finally, it would be of
interest to determine how the insights obtained in the present study into the effects of
surface kinetics on electroconvection influence the unstable electrodeposition on a metal
surface, without accounting for the nonlinear evolution of electrode surface. The coupling
between deposition and convection near an electrode surface with nonlinear morphological
evolution has important implications in diverse applications and should be rigorously
investigated in future studies.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.907.
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Appendix. Electroconvective instability with different boundary conditions

We compare the electroconvective instability using two different boundary conditions, the
traditional equilibrium boundary condition applied inside a resolved double layer, and the
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Figure 16. Comparison of the neutral curves for the electroconvective instability derived by two different
boundary conditions. In (b), the lines for the traditional boundary conditions which resolve the double layer are

shifted upward by a constant voltage dV = 3.63, 3.75 and 3.89 for § = 1073, 10* and 103, respectively.
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Figure 17. Comparison of the eigenfunctions for the electroconvective instability using two different
boundary conditions for V = 40, k = 10 and § = 107>,

new condition (2.2)—(2.6) at Da — oo applied without resoling the double layer. Figure 16
shows the neutral stability curves for the two conditions at different double layer thickness.
The new condition predicts a higher critical voltage for the onset of electroconvection
than the traditional condition by a constant voltage. The comparison of the eigenfunctions
in figure 17 shows that the difference between the two results is mainly caused by the
perturbed electric potential field. The new condition predicts a smaller potential inside the
space charge layer and therefore leads to a weaker electroosmotic flow.
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