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Abstract

Monitoring kinematics of the human body in real-world
environments is beneficial to applications as diverse as
healthcare, sports, human-machine interfaces, and more.
To this end, we recently reported new classes of wearable
textile-based sensors that consist of transmit/receive loops
and operate based on Faraday’s Law to seamlessly monitor
joint flexion angles (e.g., knee, elbow, etc.). However, once
embedded in fabrics, the loops will drift along with fabric
movement and hence will impair the sensor’s operation. In
this work, we report a machine learning approach to model
and remove noise associated with e-textile sensors being
deformed upon the fabric (namely, e-textile noise), with a
focus on kinematics monitoring applications.

1. Introduction

Today’s “gold-standard” for monitoring kinematics entails
the use of on-body retro-reflective markers tracked by
infrared cameras [1]. Expectedly, this technique is limited
to contrived environments. Alternative approaches have
been reported, but they are again restricted to lab
environments (markerless cameras); are obtrusive and
suffer from integration drift (Inertial Measurement Units,
IMUs); require line-of-sight (time-of-flight sensors);
and/or obstruct natural movement (bending sensors) [1].

To overcome these limitations, we have recently reported
new classes of e-textile sensors that can be embroidered
into garments to monitor joint kinematics in the
individual’s natural environment [2-4]. By embroidering
transmit (Tx) and receive (Rx) electrically small resonant
loop antennas right above and below the joint (e.g., knee),
respectively, the sensor can detect the relative angle
between the two loops. However, a major challenge still
persists: fabric deformation “in-the-wild” will deform the
sensor and will add noise on the readings [5]. This noise
will greatly compromise sensor performance, particularly
during in-sport and on-field monitoring of kinematics
(given the inherent fast-paced dynamic motion). As a
result, a reliable method is needed to cancel the noise
generated by fabric deformation, without compromising
the sensor’s seamlessness.

With the above in mind, we herewith model and remove
noise associated with e-textile sensors being deformed

upon the fabric (namely, e-textile noise), with a focus on
kinematics monitoring applications. We remark that, to
date, there are no studies of e-thread functionalized
garments modeling the shift and/or deformation that occurs
when a subject changes posture. Currently, unrealistic
(fully symmetric) crumpling is assumed [6,7], or placement
of the e-textile is suggested upon flat regions of the body
(e.g., top of the shoulder) [8]. However, the latter is not
feasible for e-textile kinematics sensors where loops may
be placed anywhere on the body. Through this work, we fill
these gaps in the literature.

2. Methodology Overview

We employ the wearable flexion sensor reported in [2] that
consists of electrically small resonant loops wrapped
around the limb: one loop is placed above the joint and one
loop is placed below the joint. The operating principle of
this sensor is analyzed in [2]. In brief, Faraday’s law is
leveraged to monitor the flexion angle as the two loops
misalign, such that changes in transmission coefficient
magnitude (|S21]) are mapped into flexion angles.

In this work, we first confirm experimentally that textile
drift error is indeed an issue and attempt to understand the
cause of this error. Next, we report a two-step methodology
to correct this error as based upon an initial condition
calibration followed by a machine-learning aided
calibration. For all cases, our experimental setup is shown
in Figure 1. Specifically, a Styrofoam phantom limb is
employed with cylindrical shape and ability to flex at the
joint [2]. Two loops are wrapped around the limb to serve
as the sensor and are connected to a network analyzer for
|S21] data collection. Finally, ArUco markers and computer
vision are employed for “gold standard” angle collection.
A stretchy sleeve serves as the garment on which the
sensors are embedded. Selection of stretchy sleeve is based
upon our studies reported in [5].

3. Understanding E-Textile Noise

To analyze the pattern of e-textile noise, we used the setup
of Figure 1 and studied two configurations: (a) loops
without sleeve (control), and (b) loops embedded in
stretchy sleeve. We measured |Szi| of the loop pair at
different flexion angles as well as the “gold standard”
angles using a camera and computer vision software.
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Figure 2. Flexion angle vs. transmission coefficient: (a)
without, and (b) with the sleeve. Trials shown in the legend
correspond to different distances between the loops and are
not the same between (a) and (b).

Measurements for the two configurations (i.e., without and
with the sleeve) are shown in Figure 2. As seen, without
the sleeve, |Sa21| curves are predictable and the curvature
pattern remains similar under different conditions (in this
case, different distances between the loops represented by
different trials). In other words, shifting the curves left and
right and taking a weighted average based on their given
initial |Sy| value (i.e., |S2i| value at 0°), one can make a
good |Sz1| curve prediction. This will be critical to the first
step of our calibration process discussed in Section 4. By
contrast, when the sleeve is integrated, |S»i| curves are
unpredictable and curvature changes significantly under

Flexion
Angle

Figure 3. Sleeve stretching model during joint flexion
corresponding to Figure 1. Dotted vertical lines represent
the ideal location of the loops, while solid lines show the
loop displacement under fabric stretch.

different conditions. Note that the Trial 1-6 in Figure 2(a)
and Trial 1-6 in Figure 2(b) are not measured under the
same corresponding initial condition, i.e., distance between
loops. Nevertheless, curves shown in Figure 2(b) still
illustrate the issue of drastic change in curvature or curve
shape under different initial conditions when sleeve
stretching is taken into account.

The difference in shape of the |S»i| curves shown in Figure
2(b) can be explained by the model illustrated in Figure 3.
When flexion occurs from smaller angles to larger angles,
the lower part of the sleeve is stretched more as compared
to the upper part of the sleeve. As loops are attached to the
sleeve, the lower part of the loop will shift more towards
the joint. This causes the relative distance and angle
between loops on both sides of the joint to change. Since
the |Szi| reading relies on the relative distance and angle
between the two loops, noise will be introduced with
increasing flexion angle, but there will be no noise at 0°
flexion angle. Due to this reason, the value of [Szi| at 0°
remains the same, regardless of whether the individual is
wearing a sleeve, as long as the distance between the loops
remains the same. This information is crucial for step 2 of
the calibration process further elucidated in Section 4.

4. Calibrating E-Textile Noise
The proposed calibration process relies on two steps:

Step 1: Initial condition calibration. By measuring |S»;| at a
fixed initial position of 0°, the distance between two loops
can be identified and, hence, calibrated. In turn, this
measurement allows us to determine a model for [Sy| vs.
flexion angle in the absence of uneven fabric stretching per
Figure 2(a). To aid in this calibration, we approximated the
curves of Figure 2(a) using regression to get an equation in
the form of:

Yy=a-logyx+b-x+d. (1
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Figure 4. Experimentally collected data and their
logarithmic fit curves.
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Figure 5. Example of the proposed Step 1 calibration,

where a curve is generated for [Sy|=-35.1 dB at 0° .

Experimentally collected data and their corresponding
fitted curves are shown in Figure 4. Other curves lying
between these curves can then be readily obtained using
equation (1). For example, a curve with |S»;|=-35.1 dB at 0°
would lie between the curves corresponding to a loop
distance of 12 cm and 13 cm, respectively. This curve can
be generated automatically using this Step 1 calibration, as
shown in Figure 5.

Step 2: Machine-learning-aided calibration. Machine
learning can then be used as a non-linear regulator to offset
uneven fabric stretching noise generated during flexion.
Therefore, a calibrated and denoised model of [Sy| vs.
flexion angle can be calculated for any specific setup.

To achieve the above, a 3-layer neural network is
employed, having 48 nodes as hidden layer, as shown in
Figure 6. The input of the network is 10 data points for the
[S21] curve obtained without considering the sleeve
stretches (i.e., [Sz1| values at 0° , 10° ,20° ... 90° from
one of the curves of Figure 2(a)). The output of the network
is 10 data points for the corresponding |Szi| curve that
considers the sleeve stretches.
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Figure 6. Structure diagram of the neural network
employed in this study.
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Figure 7. Test loss after 75 epochs of training.

We applied the dropout technique to avoid overfitting
problems and, hence, to further improve the test loss [9].
The dropout rate is set to 0.33. We also applied the batch
normalization technique after each layer [10] to help re-
center and rescale weights in each layer during the back-
propagation training phase. This can allow for higher
learning rates that boost the training speed.

Overall, 2000 data samples were imported, 1600 of which
were used as training samples, and 400 were used as test
samples. The batch size was set to 40. After 75 epochs of
training, with a learning rate equal to 0.005, and using the
Adam Optimization Algorithm [11], we controlled the test
loss to a small value, as shown in Figure 7.

An example of the system’s performance is summarized in
Figure 8. Here, the blue line of the |Szi| vs. flexion angle
curve without considering sleeve stretches serves as the
input of the trained neural network. The output of the
neural network is the orange curve, showing the predicted
|S21] vs. flexion angle curve that takes sleeve stretches into
account. Referring to the dashed green line that represents
the experimentally measured |S,| curve for the same initial
condition of [Sy| = -36 dB at 0° flexion angle, we see
excellent agreement. That is, our prediction result is very
accurate. The denoised flexion angles can ultimately be
obtained via the |Sy(| readings of this predicted curve. Using
this methodology, we demonstrate that the error of the
predicted curve can be controlled to under 0.3°.
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Figure 8. Output generated by trained neural network
5. Conclusion

In conclusion, the error caused by sleeve stretches can be
detrimental to the accuracy of joint angle measurements
carried out by wearable, textile-based, kinematics sensors.
The proposed 2-step methodology can be used to
effectively cancel out the error introduced by the sleeve
stretches. In the future, we will expand upon this approach
for dynamic motion of the human limb and we will validate
it on human subjects.
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