
3rd URSI AT-AP-RASC, Gran Canaria, 29 May – 3 June 2022 

 
 

Denoising Textile Kinematics Sensors: A Machine Learning Approach 
 

Yuxuan Han, Vigyanshu Mishra, and Asimina Kiourti 

ElectroScience Laboratory, Dept. of Electrical and Computer Engineering, The Ohio State University, USA 

 

 

 

Abstract 
 

Monitoring kinematics of the human body in real-world 

environments is beneficial to applications as diverse as 

healthcare, sports, human-machine interfaces, and more. 

To this end, we recently reported new classes of wearable 

textile-based sensors that consist of transmit/receive loops 

and operate based on Faraday’s Law to seamlessly monitor 

joint flexion angles (e.g., knee, elbow, etc.). However, once 

embedded in fabrics, the loops will drift along with fabric 

movement and hence will impair the sensor’s operation. In 

this work, we report a machine learning approach to model 

and remove noise associated with e-textile sensors being 

deformed upon the fabric (namely, e-textile noise), with a 

focus on kinematics monitoring applications.  

 

1. Introduction 
 

Today’s “gold-standard” for monitoring kinematics entails 

the use of on-body retro-reflective markers tracked by 

infrared cameras [1]. Expectedly, this technique is limited 

to contrived environments. Alternative approaches have 

been reported, but they are again restricted to lab 

environments (markerless cameras); are obtrusive and 

suffer from integration drift (Inertial Measurement Units, 

IMUs); require line-of-sight (time-of-flight sensors); 

and/or obstruct natural movement (bending sensors) [1]. 

 

To overcome these limitations, we have recently reported 

new classes of e-textile sensors that can be embroidered 

into garments to monitor joint kinematics in the 

individual’s natural environment [2-4]. By embroidering 

transmit (Tx) and receive (Rx) electrically small resonant 

loop antennas right above and below the joint (e.g., knee), 

respectively, the sensor can detect the relative angle 

between the two loops. However, a major challenge still 

persists: fabric deformation “in-the-wild” will deform the 

sensor and will add noise on the readings [5]. This noise 

will greatly compromise sensor performance, particularly 

during in-sport and on-field monitoring of kinematics 

(given the inherent fast-paced dynamic motion). As a 

result, a reliable method is needed to cancel the noise 

generated by fabric deformation, without compromising 

the sensor’s seamlessness.  

 

With the above in mind, we herewith model and remove 

noise associated with e-textile sensors being deformed 

upon the fabric (namely, e-textile noise), with a focus on 

kinematics monitoring applications. We remark that, to 

date, there are no studies of e-thread functionalized 

garments modeling the shift and/or deformation that occurs 

when a subject changes posture. Currently, unrealistic 

(fully symmetric) crumpling is assumed [6,7], or placement 

of the e-textile is suggested upon flat regions of the body 

(e.g., top of the shoulder) [8]. However, the latter is not 

feasible for e-textile kinematics sensors where loops may 

be placed anywhere on the body. Through this work, we fill 

these gaps in the literature. 

 

2. Methodology Overview  
 

We employ the wearable flexion sensor reported in [2] that 

consists of electrically small resonant loops wrapped 

around the limb: one loop is placed above the joint and one 

loop is placed below the joint. The operating principle of 

this sensor is analyzed in [2]. In brief, Faraday’s law is 

leveraged to monitor the flexion angle as the two loops 

misalign, such that changes in transmission coefficient 

magnitude (|S21|) are mapped into flexion angles.  

 

In this work, we first confirm experimentally that textile 

drift error is indeed an issue and attempt to understand the 

cause of this error. Next, we report a two-step methodology 

to correct this error as based upon an initial condition 

calibration followed by a machine-learning aided 

calibration. For all cases, our experimental setup is shown 

in Figure 1. Specifically, a Styrofoam phantom limb is 

employed with cylindrical shape and ability to flex at the 

joint [2]. Two loops are wrapped around the limb to serve 

as the sensor and are connected to a network analyzer for 

|S21| data collection. Finally, ArUco markers and computer 

vision are employed for “gold standard” angle collection. 

A stretchy sleeve serves as the garment on which the 

sensors are embedded. Selection of stretchy sleeve is based 

upon our studies reported in [5]. 

 

3. Understanding E-Textile Noise 
 

To analyze the pattern of e-textile noise, we used the setup 

of Figure 1 and studied two configurations: (a) loops 

without sleeve (control), and (b) loops embedded in  

stretchy sleeve. We measured |S21| of the loop pair at 

different flexion angles as well as the “gold standard” 

angles using a camera and computer vision software.  



 

Figure 1. Experimental setup employed in this study.  

 

 
(a) 

 
(b) 

Figure 2. Flexion angle vs. transmission coefficient: (a) 

without, and (b) with the sleeve. Trials shown in the legend 

correspond to different distances between the loops and are 

not the same between (a) and (b). 

 

Measurements for the two configurations (i.e., without and 

with the sleeve) are shown in Figure 2. As seen, without 

the sleeve, |S21| curves are predictable and the curvature 

pattern remains similar under different conditions (in this 

case, different distances between the loops represented by 

different trials). In other words, shifting the curves left and 

right and taking a weighted average based on their given 

initial |S21| value (i.e., |S21| value at 0o), one can make a 

good |S21| curve prediction. This will be critical to the first 

step of our calibration process discussed in Section 4. By 

contrast, when the sleeve is integrated, |S21| curves are 

unpredictable and curvature changes significantly under  

 
Figure 3. Sleeve stretching model during joint flexion 

corresponding to Figure 1. Dotted vertical lines represent 

the ideal location of the loops, while solid lines show the 

loop displacement under fabric stretch. 

 

different conditions. Note that the Trial 1-6 in Figure 2(a) 

and Trial 1-6 in Figure 2(b) are not measured under the 

same corresponding initial condition, i.e., distance between 

loops. Nevertheless, curves shown in Figure 2(b) still 

illustrate the issue of drastic change in curvature or curve 

shape under different initial conditions when sleeve 

stretching is taken into account. 

 

The difference in shape of the |S21| curves shown in Figure 

2(b) can be explained by the model illustrated in Figure 3. 

When flexion occurs from smaller angles to larger angles, 

the lower part of the sleeve is stretched more as compared 

to the upper part of the sleeve. As loops are attached to the 

sleeve, the lower part of the loop will shift more towards 

the joint. This causes the relative distance and angle 

between loops on both sides of the joint to change. Since 

the |S21| reading relies on the relative distance and angle 

between the two loops, noise will be introduced with 

increasing flexion angle, but there will be no noise at 0° 

flexion angle. Due to this reason, the value of |S21| at 0° 

remains the same, regardless of whether the individual is 

wearing a sleeve, as long as the distance between the loops 

remains the same. This information is crucial for step 2 of 

the calibration process further elucidated in Section 4. 

 

4. Calibrating E-Textile Noise 
 

The proposed calibration process relies on two steps: 

 

Step 1: Initial condition calibration. By measuring |S21| at a 

fixed initial position of 0o, the distance between two loops 

can be identified and, hence, calibrated. In turn, this 

measurement allows us to determine a model for |S21| vs. 

flexion angle in the absence of uneven fabric stretching per 

Figure 2(a). To aid in this calibration, we approximated the 

curves of Figure 2(a) using regression to get an equation in 

the form of: 
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Figure 4. Experimentally collected data and their 

logarithmic fit curves. 

 

 
Figure 5. Example of the proposed Step 1 calibration, 

where a curve is generated for |S21|=-35.1 dB at 0°. 

 
Experimentally collected data and their corresponding 

fitted curves are shown in Figure 4. Other curves lying 

between these curves can then be readily obtained using 

equation (1). For example, a curve with |S21|=-35.1 dB at 0o 

would lie between the curves corresponding to a loop 

distance of 12 cm and 13 cm, respectively. This curve can 

be generated automatically using this Step 1 calibration, as 

shown in Figure 5. 

 

Step 2: Machine-learning-aided calibration. Machine 

learning can then be used as a non-linear regulator to offset 

uneven fabric stretching noise generated during flexion. 

Therefore, a calibrated and denoised model of |S21| vs. 

flexion angle can be calculated for any specific setup.  

 

To achieve the above, a 3-layer neural network is 

employed, having 48 nodes as hidden layer, as shown in 

Figure 6. The input of the network is 10 data points for the 

|S21| curve obtained without considering the sleeve 

stretches (i.e., |S21| values at 0°, 10°, 20°… 90° from 

one of the curves of Figure 2(a)). The output of the network 

is 10 data points for the corresponding |S21| curve that 

considers the sleeve stretches.  

 

 
Figure 6. Structure diagram of the neural network 

employed in this study. 

 

 
Figure 7. Test loss after 75 epochs of training. 

 

We applied the dropout technique to avoid overfitting 

problems and, hence, to further improve the test loss [9]. 

The dropout rate is set to 0.33. We also applied the batch 

normalization technique after each layer [10] to help re-

center and rescale weights in each layer during the back-

propagation training phase. This can allow for higher 

learning rates that boost the training speed.  

 

Overall, 2000 data samples were imported, 1600 of which 

were used as training samples, and 400 were used as test 

samples. The batch size was set to 40. After 75 epochs of  

training, with a learning rate equal to 0.005, and using the 

Adam Optimization Algorithm [11], we controlled the test 

loss to a small value, as shown in Figure 7. 

 

An example of the system’s performance is summarized in 

Figure 8. Here, the blue line of the |S21| vs. flexion angle 

curve without considering sleeve stretches serves as the 

input of the trained neural network. The output of the 

neural network is the orange curve, showing the predicted 

|S21| vs. flexion angle curve that takes sleeve stretches into 

account. Referring to the dashed green line that represents 

the experimentally measured |S21| curve for the same initial 

condition of |S21| = -36 dB at 0o flexion angle, we see 

excellent agreement. That is, our prediction result is very 

accurate. The denoised flexion angles can ultimately be 

obtained via the |S21| readings of this predicted curve. Using 

this methodology, we demonstrate that the error of the 

predicted curve can be controlled to under 0.3o. 



 
Figure 8. Output generated by trained neural network 

 

5. Conclusion 
 

In conclusion, the error caused by sleeve stretches can be 

detrimental to the accuracy of joint angle measurements 

carried out by wearable, textile-based, kinematics sensors. 

The proposed 2-step methodology can be used to 

effectively cancel out the error introduced by the sleeve 

stretches. In the future, we will expand upon this approach 

for dynamic motion of the human limb and we will validate 

it on human subjects. 
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