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Evaluating unsupervised word segmentation in adults: a meta-analysis
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Chestnut Hill, MA 02467 USA
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Abstract
Humans, even from infancy, are capable of unsupervised (“sta-
tistical”) learning of linguistic information. However, it re-
mains unclear which of the myriad algorithms for unsuper-
vised learning captures human abilities. This matters because
unsupervised learning algorithms vary greatly in how much
can be learned how quickly. Thus, which algorithm(s) humans
use may place a strong bound on how much of language can ac-
tually be learned in an unsupervised fashion. As a step towards
more precisely characterizing human unsupervised learning
capabilities, we quantitatively synthesize the literature on adult
unsupervised (“statistical”) word segmentation. Unfortunately,
most confidence intervals were very large, and few moderators
were found to be significant. These findings are consistent with
prior work suggesting low power and precision in the litera-
ture. Constraining theory will require more, higher-powered
studies.
Keywords: statistical learning; unsupervised learning; word
segmentation; meta-analysis

Introduction
Humans, even from infancy, are known to be capable of learn-
ing many behaviors like language without receiving much di-
rect feedback. The foundational work by Saffran, Newport,
& Aslin (1996) provided initial evidence that infants can ex-
tract statistical regularities from auditory speech and leverage
this information to identify words. This finding has precip-
itated the growth of a massive literature demonstrating that
both infants and adults can engage in this behavior, known as
unsupervised or “statistical” learning. Unsupervised learning
is now widely considered to be an underpinning of human
language acquisition. However, a number of important ques-
tions remain unanswered, including the extent to which unsu-
pervised learning actually explains for language learning.

A central difficulty is that there are myriad learning algo-
rithms for unsupervised learning, each with different assump-
tions and distinct implications (M. R. Brent & Cartwright,
1996; Chemla, Mintz, Bernal, & Christophe, 2009; Dupoux,
2018; Frank, Goldwater, Griffiths, & Tenenbaum, 2010; Ku-
rumada, Meylan, & Frank, 2013; Mareschal & French, 2017;
Mintz, 2003; Monaghan & Christiansen, 2010; Perruchet &
Tillmann, 2010; Swingley, 2005; Thiessen, 2017). These in-
clude algorithms that use tabulation of transitional probabil-
ities, clustering algorithms, memory compression, recurrent
neural networks, and inference over generative models —–
each of which can be instantiated in a variety of manners
(Frank et al., 2010, 2010; Newport & Aslin, 2004; Toro, Ne-
spor, Mehler, & Bonatti, 2008).

While most of these algorithms can produce the basic find-
ings — e.g., above-chance recognition of words subsequent
to exposure to speech streams (Jenny R. Saffran et al., 1996;
Jenny R. Saffran, Newport, & Aslin, 1996) — they have
radically different implications. Different algorithms range
widely in terms of how efficiently they learn and thus pro-
vide more or less plausible solutions for language learning
(Batchelder, 2002; Michael R. Brent, 1999; Frank et al.,
2010; Mareschal & French, 2017). They moreover suggest
linguistic representations ranging from highly symbolic to es-
sentially graded and distributed, and learning theories ranging
from strongly empiricist to strongly nativist. Thus, determin-
ing which algorithm(s) humans actually use is not a minor
technical point but rather is at the heart of the matter.

In sum, significantly constraining theory requires not only
demonstrating that unsupervised learning takes place but also
developing a precise quantitative understanding of how hu-
man statistical learning works, including what factors affect
it and to what degree. This would allow precise comparison
of human learning to different proposed algorithms.

Considerable effort has been made in this direction. Even
just considering unsupervised auditory word segmentation in
adults, well over 100 investigations have been published (see
below); the numbers swell when one also considers inves-
tigations of other linguistic phenomena, learning in children,
and visual statistical learning. However, using these results to
constrain theory is not straightforward. There are a number of
recent qualitative reviews of the literature (Armstrong, Frost,
& Christiansen, 2017; Erickson & Thiessen, 2015; Frost,
Armstrong, & Christiansen, 2019; Lidz & Gagliardi, 2015;
Thiessen, 2017). However, qualitative reviews are of limited
use in distinguishing theories that differ primarily quantita-
tively. Moreover, the literature contains a number of data-
clashes, with different studies using slightly different meth-
ods and getting different results, or sometimes even using
the same methods and getting different results (i.e., failures
to replicate) (Bonatti, Pena, Nespor, & Mehler, 2005; e.g.,
Hartshorne et al., 2019; Newport & Aslin, 2004). While au-
thors do try to adjudicate these data disputes, different re-
searchers come to different conclusions (e.g., Bonatti, Pena,
Nespor, & Mehler, 2007; Keidel, Jenison, Kluender, & Sei-
denberg, 2007).
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Table 1: Moderator Variables

Moderators Levels Description

Adjacency Adjacent,
Nonadjacent Syllables,
Nonadjacent Consonants,
Nonadjacent Vowels

Whether the relevant transition probabilities for word segmentation are between adjacent or nonadjacent segments.

Attention No Task,
Distractor Task,
Overt Task

Task performed by the participant during the listening phase.

Average Syllables per Item N/A Avg number of syllables or tones per trained word.
Bilingual Extent N/A Extent participant speaks a second language.
Bilingual Immersion N/A Degree of immersion two languages

Foil Type Nonword, Partword,
TP-Match, Tone Foil

The design of the foils in the test phase.

Lengthening True, False Whether the initial/medial/final syllable of ea. word in the training is lengthened.
Length of Exposure N/A Duration of the training phase.
Musical Training Yes, No Whether the participant has musical training or not.
Native Language English, Spanish, etc. Native language of participants.

Phonotactic Match True, False Whether trained words conform to the phonotactic constraints of the participants’ native language.
Pitch Higher, Lower, False Whether the initial/medial/final syllable of ea. word in the training has a modified pitch or F0.
Response Type 2AFC, Recognition Response paradigm in the test phase.
Stim Type Syllables, Tones Type of stimuli composing the artificial language stream.
Target Trained, Ruleword,

Classword, TP-Match
Correct response in the test phase.

Total Number of Foils N/A Total num foils across all participants.
Number of Foils per

Subject
N/A Num unique foils each subject encountered.

Total Number of Trained
Words

N/A The total number of trained words present across all participants.

Number of Trained
Words per Subject

N/A The number of unique words a single subject encountered during training.

Overview of the Study
The goal of the present paper is to perform a quantitative
summary of the literature — that is, a meta-analysis — to
determine what quantitative constraints the literature places
on unsupervised learning algorithms, if any. Meta-analyses
provide a principled method for synthesizing divergent find-
ings across experiments (Bailar, 1997; Borenstein, Hedges,
Higgins, & Rothstein, 2009; Egger & Smith, 1998; Roth-
stein, Sutton, & Borenstein, 2006). There is one recent meta-
analysis, though its scope was limited to effects of cue con-
flict and stimuli naturalness on unsupervised word segmen-
tation in children ages 4 months to 11 months (Black &
Bergmann, 2017). Morever, while these are theoretically im-
portant issues, they do not do much to distinguish learning
algorithms.

We restricted our meta-analysis to unsupervised word seg-
mentation in adults. We focused on adults because many
more modulators have been tested for adults than for in-
fants, giving us more power to potentially identify robust
effects. With more than one hundred studies already pub-
lished, we are also more likely to have sufficient power and
precision to quantify effects than would be the case for the
much smaller infant literature. While in principle the infant
literature is more directly relevant to typical first-language
acquisition, data to date provide little evidence of any age-
related change in unsupervised word segmentation (Black &
Bergmann, 2017; Raviv & Arnon, 2017; Thiessen, Girard, &
Erickson, 2016).

The goal of the meta-analysis is to determine what mod-

erators of statistical word segmentation are sufficiently well-
evidenced to be strong constraints on theory – and, if possible,
estimate effect sizes with enough precision to allow quantita-
tive comparison to proposed algorithms.

Note that we leave actual comparison to algorithms for fu-
ture work. This is partly because for many of these algo-
rithms, it is not trivial to apply them to the kinds of challenges
presented to humans in experimental settings, and thus deter-
mining their predictions is a significant endeavor in its own
right (Frank et al., 2010). This is also because the results be-
low suggest such comparison is premature.

Limitations
There are a few limitations of meta-analysis that bear men-
tioning. First, they are necessarily limited by the quality of
the studies. Moreover, meta-analyses do not take a stand on
the quality of any particular study, beyond anything captured
by the standard error of measurement. With enough data, a
few lower-quality studies should wash out, though of course
this will not work if most studies have flaws in their methods.

Second and relatedly, meta-analysis necessarily elides dif-
ferences between studies that are not captured by the covari-
ates being considered. For instance, in our case, we did not
note speech rate, which varies across studies and could con-
ceivably affect results. To the extent that all studies used
reasonable speech rates, this is actually beneficial, since the
meta-analysis effectively captures uncertainty in measure-
ment due to random variation in what is essentially a nuisance
parameter. However, if there is theoretically-meaningful vari-
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ation along some dimension that we did not code for, then in
the best case scenario this adds undue noise, and in the worst-
case scenario confounds the measurement of the moderators
that were coded. Unfortunately, absent a perfect understand-
ing of the phenomenon, deciding which moderators to code
and which to ignore is a judgment call, and our judgment may
not be correct.

The third and final limitation we wish to highlight is that
given a fixed amount of data, the more moderators coded for
in a meta-analysis, the less likely anything will be significant.
This is particularly true if one corrects for multiple compar-
isons. Thus, there is always a tension between considering
more moderators and thus avoiding the second problem listed
above, and coding only the ones most likely to matter in order
to preserve statistical power. One concession we made along
these lines was to not consider interactions, with only a few
exceptions. (Note that in some ways, this is a feature not a
bug: the more information we wish to derive from the litera-
ture – that is, the more moderators we wish to measure – the
more data there needs to be in the literature in order to have
sufficient statistical power.)

Method
We based our methods on the Preferred Reporting Items for
Systematic Review and Meta-Analysis Protocols (PRISMA-
P) 2015 checklist (Moher et al., 2015). Where our scientific
priorities necessitated diverging from these criteria, we de-
scribe the differences and rationale below.

Eligibility Criteria
We created an inclusion/exclusion guide based on a prelim-
inary survey of the literature. However, the sheer size and
complexity of the statistical word segmentation literature are
such that coders periodically found studies that did not clearly
fit the criteria or which involved significant methodologi-
cal variation that forced reevaluation of coding procedures.
In these cases, the issue was resolved through discussion,
the guide was updated, and the already-coded studies were
double-checked for consistency. The final, exhaustive guide
is available online (see OSF supplement). Ultimately, we se-
lected studies meeting the following criteria:

Study designs The meta-analysis focused on auditory
statistical word segmentation in adults. Participants must
be familiarized with a continuous, artificial, auditory lan-
guage stream and subsequently tested on their ability to
explicitly discriminate between the words of this language
and foils. In order to keep scope manageable and maxi-
mize comparability across effects, we excluded studies in
non-auditory modalities; studies involving sentence-level
phenomena such as artificial grammars or long-distance
dependencies; and findings that did not involve binary choice
or which involved implicit measures (e.g., neural responses
or reaction times). The explicit measures of interest are
most commonly instantiated in the form of a 2-alternative
forced-choice paradigm or a yes/no recognition paradigm,

where chance performance is at 50%. We make our exhaus-
tive guide to inclusion criteria along with documentation of
excluded studies available in our supplementary materials:
osf.io/jmbdq/?view only=5a9c63c532474a40b057abfeead1f119.

Participants Our sample is limited to empirical studies in-
vestigating healthy, adult humans in the general population
(including college students ages 17 and older). Thus, studies
conducted on younger populations or neurodivergent partici-
pants (e.g. those with dyslexia, ASD, brain lesions, etc.) were
excluded. Studies comprising a mix of eligible and ineligible
participants were only considered if the data from participants
meeting our criteria were reported separately.

Information Sources
Due to resource limitations, we only included articles re-
ported in the English language. Otherwise, our search pro-
tocol prioritized being exhaustive. This has the advantage of
both including as much data as possible while simultaneously
avoiding bias (since nearly everything is included). We be-
gan with a list of several hundred statistical learning studies
that had been previously compiled, which we supplemented
with suggestions from academic consultants, community list-
servs, and papers cited in two recent literature reviews (Frost
et al., 2019; Jenny R. Saffran & Kirkham, 2018). As papers
were marked for inclusion in the meta-analysis, we conducted
targeted searches using key words suggested by the included
papers, papers cited by included papers, and papers citing in-
cluded papers. For instance, in July 2019, we used a Google
Scholar search to find all papers published between 2015 and
2020 that cite Saffran et al. (-Jenny R. Saffran et al. (1996))
and contain the keywords “word segmentation,” and then in
December 2020 we performed a backward reference search
of all included eligible reports that were published between
2015-2020. We continued this process until it stopped pro-
ducing meaningful numbers of additional papers. This pro-
cess yielded more than 700 unique articles that passed initial
screening (the process described above does not easily yield
itself to counting the total number of papers considered). In
late 2021, we again used listservs and direct outreach to ex-
perts to identify any papers not already on our list; No new
papers were included as a result.

Data management, selection, and collection
Each study identified from searching was screened indepen-
dently by two or more members of the team. Data from eligi-
ble studies were manually extracted and entered into a plain-
text spreadsheet in accordance with guidelines outlined in an
instruction manual (available on OSF). The data recorded for
each eligible study were verified by at least two members of
the team, not counting periodic spot-checking and double-
checking. Disagreements were addressed by discussion, of-
ten with additional members of the team, with all decisions
documented. In order to promote consistency across review-
ers, a small subset of eligible studies was used for training
exercises prior to the start of the data entry process.
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Figure 1: Results of meta-analysis including all moderators except native language and manipulations of lexical stress. *
indicates significant after Šidák correction for multiple comparisons. † indicates significant without correction.

Exclusions were documented separately and consisted of
(1) ineligible studies, including non-auditory statistical learn-
ing studies (N=933), and (2) studies with errors or which
failed to report number of subjects, number of trials, or sub-
ject accuracy (N=17). Note that in some cases of studies with
errors or missing information, we were able to obtain the crit-
ical information from the original authors; these studies are
not included in the aforementioned counts.

Data Items

We coded single-sample effect sizes as the primary outcome
measure. Ideally, these effect sizes would be extracted from
mixed effects models that take into account both subject and
item variability (Bates, Mächler, Bolker, & Walker, 2014).
Unfortunately, the vast majority of published studies do not
report such estimates, and many do not even report standard
errors. Thus, we followed (Mahowald, James, Futrell, & Gib-
son, 2016) in terms of log odds assuming each data point is
independent – a calculation that requires only knowing the
mean response, the number of subjects, and the number of
test items. (Note that this is possible since we are only includ-
ing studies with dichotomous outcome variables.) While the
assumption of independence is incorrect, (Mahowald et al.,

2016) found that this estimate compared well to effect sizes
extracted from mixed effects models (the gold standard). In
situations where numerical data for participant accuracy was
not provided in an experimental write-up, we used WebPlot-
Digitizer to manually extract this information from any avail-
able data visualizations (Rohatgi, 2021). The effect size and
the variance for each experiment were then obtained via a
generalized linear model in R.

Many studies report the same data analyzed different ways
with different cell means. In a substantial portion of cases,
more than one of these “slices” through the data are theoret-
ically interesting (that is why the authors reported the data
multiple ways). Rather than choosing one slice, we coded
all of them (unless a particular slice ran afoul of exclusion
criteria).

Selection of Modulators We compiled an initial list of
modulators based on our preliminary survey of the literature,
with a focus on modulators that appeared in at least 10 ex-
periments. As the project continued, this list was revised as
needed. A comprehensive guide was maintained and updated
through (documented) discussion. Any changes prompted a
review of already-coded studies. Table 1 contains a complete
list of the modulators, along with the possible levels for each
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(if applicable). For a more detailed description of each covari-
ate, please refer to the coding manual in our supplementary
materials.

Note that restricting the meta-analysis to modulators that
are measured in a number of experiments excludes many that
are highly theoretically-relevant. We view this as a limitation
of the literature, not the meta-analysis. The goal was to iden-
tify well-evidenced modulators, the effects of which could be
measured with some precision. By definition, this excludes
effects that have only been investigated in a handful of exper-
iments.

We ultimately excluded mean age from primary analyses
both because it often could not be determined (21%) and be-
cause of the low variation (the vast majority of studies fo-
cused on college-age subjects). Other than native language
(discussed below), other predictors had a maximum of 12%
missingness with a median of 0%. In a very small number of
cases where a level of a categorical variable was extremely
rare (e.g., the “classwords” target type), those records were
eliminated during analysis to prevent proliferation of covari-
ates.

Data Synthesis and Analysis
Within a given experiment, the same data was often reported
in multiple different ways reflecting different modulators of
interest: for instance, comparing results for two conditions
and also comparing results for bilinguals and monolinguals,
collapsing across conditions. In order to capture both sets of
results without double-counting data, we distributed the sub-
jects across the slices: if an experiment had 50 subjects and
5 slices, we assigned 10 subjects to each slice. Note that in
some cases where authors reported analyses that are not of
theoretical interest, diluting the “key” analyses. Since reason-
able people frequently disagree about which analyses are key
– and because this estimation frequently changes over time –
we did not adjudicate.

We conducted a two-stage meta-analysis using linear meta-
regression as implemented in the metafor package in R (R
Core Team, 2021; Viechtbauer, 2010). The first stage used
all the predictors listed in Table 1 except for Native Lan-
guage and two manipulations of lexical stress: Lengthening
and Pitch, which were addressed in phase 2. We addressed in-
complete records with multiple imputation as implemented in
the mice package in R (van Buuren & Groothuis-Oudshoorn,
2011), averaging across 10 imputations and using a maxi-
mum of 50 iterations for convergence. After averaging across
the imputations, we conducted the meta-regression with each
moderator as a main effect and two theoretically-interesting
interactions: between length of training and number of dis-
tinct words each subject must learn, and musical ability and
whether the stimuli were pure tones.

In the second phase, we meta-regressed the residuals from
the first phase against Native Language, the manipulations of
lexical stress, and their interactions (Fig. 2). By addressing
this analysis in a second phase, we avoided losing the 20% of
records for which the subjects were bilingual or their native

language was either unknown or variable across subjects – is-
sues that were not correctable through multiple imputation.
We considered the manipulations of lexical stress in this sec-
ond phase because these manipulations are only interpretable
in the context of the subjects’ native languages.

All analyses were embedded in a reproducible manuscript
using RMarkdown (Xie, 2018), which will be made available
along with the other supplementary online material.

Results & Discussion
Our final sample comprised 367,821 unique observa-
tions from approximately 11,000 participants across
130 studies (note that many studies contain mul-
tiple experiments). Following APA guidelines for
large meta-analyses, they are listed in online sup-
plementary materials at https://osf.io/qp68h/
?view only=5a9c63c532474a40b057abfeead1f119.
Results for the first stage are shown in Fig. 1. The intercept
reaches significance, reflecting overall above-chance word
segmentation under our baseline conditions. That is, partici-
pants perform above chance when the words of the language
are defined by high TPs between adjacent syllables, and
when the foils presented in the test phase are “non-words”
(i.e. strings that did not appear in the training). Three effects
were found to significantly weaken performance: Subjects
had more trouble learning when the “words” were defined
by high TPs between non-adjacent syllables; when they
were not tested on words observed during training but on
“rule words” based on some pattern (typically same first and
last syllable with a variable medial syllable); and when the
trained words were pitted against “part-word” foils (which
appeared in training) rather than “non-word” foils.

Results for the second stage – manipulations of lexical
stress – are shown in Fig. 2. Only two effects were signif-
icant, with English-speaking subjects faring better when the
last syllable of trained words dropped in pitch (relative to a
monotone baseline) and French-speaking subjects faring bet-
ter when the last syllable rose in pitch.

With the possible exception of the French finding, none
of these results are unexpected. More unexpected was that
not only were many moderators not significant, but this
was rarely due to effects being estimated very close to
zero. Rather, in most cases, the confidence intervals were
very large, indicating a high degree of uncertainty (the non-
effects of bilingualism and word-length being among the few
counter-examples). The lack of statistical power across stud-
ies and the issue of multiple comparisons hinder the ability to
investigate more complex interactions.

Conclusion
Despite well over 100 published papers on unsupervised word
segmentation in adults, meta-analysis revealed few robust ef-
fects. In most cases, confidence intervals were quite large,
suggesting a great deal of uncertainty about effect size. This
is not entirely surprising, given prior evidence that unsu-
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Figure 2: Meta-analysis of lexical stress effects, controlling for the moderators in Fig. 1. * indicates significant after Šidák
correction for multiple comparisons. † indicates significant without correction.

pervised learning studies – like many literatures in the cog-
nitive sciences – are substantially underpowered (Black &
Bergmann, 2017; Collaboration et al., 2015; Hartshorne et
al., 2019). In order to test theoretical proposals about what
types of unsupervised learning humans are capable of, it will
be necessary to conduct higher-powered studies.
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