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Abstract

A second order accurate (in time) numerical scheme is analyzed for the slope-selection (SS)
equation of the epitaxial thin film growth model, with Fourier pseudo-spectral discretization in
space. To make the numerical scheme linear while preserving the nonlinear energy stability, we
make use of the scalar auxiliary variable (SAV) approach, in which a modified Crank-Nicolson is
applied for the surface di↵usion part. The energy stability could be derived a modified form, in
comparison with the standard Crank-Nicolson approximation to the surface di↵usion term. Such
an energy stability leads to an H2 bound for the numerical solution. In addition, this H2 bound
is not su�cient for the optimal rate convergence analysis, and we establish a uniform-in-time H3

bound for the numerical solution, based on the higher order Sobolev norm estimate, combined
with repeated applications of discrete Hölder inequality and nonlinear embeddings in the Fourier
pseudo-spectral space. This discrete H3 bound for the numerical solution enables us to derive
the optimal rate error estimate for this alternate SAV method. A few numerical experiments
are also presented, which confirm the e�ciency and accuracy of the proposed scheme.

Key words. epitaxial thin film equation, Fourier pseudo-spectral approximation, the scalar
auxiliary variable (SAV) method, Crank-Nicolson temporal discretization, energy stability, optimal
rate convergence analysis
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1 Introduction

In this article we consider a slope-selection (SS) epitaxial thin film growth equation, which corre-
sponds to the L2 gradient flow associated with the following energy functional

E(�) =

Z

⌦

✓
1

4
(|r�|2 � 1)2 +

"2

2
|��|2

◆
dx, (1.1)

where ⌦ = (0, Lx)⇥ (0, Ly), u : ⌦ ! R is a periodic height function, and " is a constant parameter
of transition layer width. In more details, the first nonlinear term represents the Ehrlich-Schwoebel
(ES) e↵ect [22, 37, 38, 39, 53], which results in an uphill atom current in the dynamics and the
steepening of mounds in the film. The second higher order quadratic term represents the isotropic
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surface di↵usion e↵ect [38, 48]. In turn, the chemical potential becomes the following variational
derivative of the energy

µ := ��E = �r ·
�
|r�|2r�

�
���+ "2�2�, (1.2)

and the PDE stands for the L2 gradient flow

@t� = r ·
�
|r�|2r�

�
���� "2�2�. (1.3)

Meanwhile, another epitaxial thin film model has also been extensively studied, with the following
energy functional

E(�) :=

Z

⌦

✓
�
1

2
ln(1 + |r�|2) +

"2

2
|��|2

◆
dx, (1.4)

and the dynamical equation is formulated as

@t� = �r ·

✓
r�

1 + |r�|2

◆
� "2�2�. (1.5)

This model is referred to as the no-slope-selection (NSS) equation. In fact, the slope-selection
energy (1.1) could be viewed an a polynomial approximation to the no-slope-selection energy (1.4),
under a small-slope assumption that |r�|2 ⌧ 1; see the related discussions in [35, 36, 38, 48].
A solution to (1.3) exhibits pyramidal structures, where the faces of the pyramids have slopes
|ru| ⇡ 1; meanwhile, the no-slope-selection equation (1.5) exhibits mound-like structures, and the
slopes of which (on an infinite domain) may grow unbounded [38, 58]. On the other hand, both
solutions have up-down symmetry in the sense that there is no way to distinguish a hill from a
valley. This can be altered by adding adsorption/desorption or other dynamics.

The numerical schemes with energy stability have been of great interests, due to the long
time nature of the gradient flow coarsening process. There have been many e↵orts to devise
and analyze energy stable numerical schemes for both the SS and NSS equations; see the related
references [10, 25, 34, 45, 49, 50, 51, 52, 54, 58, 60, 63], etc. In particular, the linear schemes
have attracted a great amount of attentions among the energy stable numerical approaches, due to
its simplicity of implementation. For the NSS equation (1.5), there have been extensive works of
linear, energy stable numerical schemes [4, 6, 7, 9, 12, 32, 34, 43, 47], with up to the third order
accuracy in time. Such a nonlinear energy stability analysis is based on the following subtle fact:
in spite of its complicated form in the denominator, the nonlinear term in the NSS equation (1.5)
has automatically bounded higher order derivatives in the L1 norm.

However, this approach is not applicable to the nonlinear analysis for the SS equation (1.3),
due to the polynomial pattern of the nonlinear terms, which in turn requires an W 1,1 bound for
the numerical solution at both time steps, tn and tn+1, respectively; see the pioneering work [62] of
the linear numerical scheme for the SS equation, in which an artificial regularization term, in the
form of A�(�n+1

� �n), has to be included for the sake of energy stability. A theoretical analysis
has been provided in [42] for the first order accurate (in time) scheme, to justify the lower bound
of the artificial parameter A. Various estimates have indicated that, the theoretical value of A is
of order O("�2 ln ") for the first order scheme, while such an artificial regularization parameter has
to be of order O("�m0), with m0 � 10, for the temporally second order schemes [40, 41].

It is clear that, such a singular dependence of the theoretical value of artificial regularization
parameter on " comes from the W 1,1 estimate for the numerical solution. To avoid a singular ar-
tificial regularization parameter in a linear numerical scheme, while preserving an energy stability,
the scalar auxiliary variable (SAV) approach for various gradient flows has attracted many atten-
tions in recent years [55, 56, 57, 66]. To overcome the di�culty associated with the nonlinearity,
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the energy functional is split into two parts: a nonlinear energy functional with a uniform lower
bound, combined with a quadratic surface di↵usion energy with constant-coe�cients. In turn,
the elevated nonlinear energy part (which contains a global constant to make its value positive)
is rewritten as a quadratic term, not in terms of the original physical variable, but in terms of
an artificially-introduced auxiliary variable. As a result, linear schemes could be derived for the
gradient flow reformulated in the quadratic nonlinear energy and the surface di↵usion energy, so
that both the unique solvability and modified energy stability could be theoretically justified for
the linear schemes. Also notice that, such an energy estimate is in terms of the reformulated energy
functional, not in terms of the original energy functional.

An application of the SAV method to the SS equation (1.3) has been reported in a recent
article [16], combined with the Fourier pseudo-spectral spatial approximation. The unique solv-
ability, numerical implementation process and a modified energy stability have been presented for
the second order accurate (in time) SAV scheme, with Crank-Nicolson temporal discretization.
However, an optimal rate convergence analysis seems challenging for the proposed scheme in [16].
In particular, a discrete W 1,1 bound for the numerical solution is necessary to pass through the
error estimate. On thr other hand, the discrete energy stability (established in [16]) leads to a
uniform-in-time discrete H2 bound for the numerical solution, while this bound is not su�cient to
ensure a W 1,1 bound for the numerical solution.

In this article, we present an optimal rate convergence analysis and error estimate for the second
order SAV scheme to the SS equation (1.3), with a slight modification of the surface di↵usion
coe�cients. In more details, the standard Crank-Nicolson approximation to the surface di↵usion
term is replaced by an alternate one, with 3/4 and 1/4 coe�cient distribution at time steps tn+1,
tn�1, respectively. Such an alternate Crank-Nicolson approximation has been reported in [15,
18, 19, 29, 30, 31] for the Cahn-Hilliard and other related gradient model, and great success and
advantages over the standard Crank-Nicolson have been observed. With an application of this
approximation to the second order SAV scheme for the SS equation (1.3), a modified energy stability
could also be proved in a careful way, so that a uniform H2 bound for the numerical solution (of
the phase variable) is available. In addition, a higher order H3 estimate could also be derived,
with the help of various discrete Sobolev inequality in the Fourier pseudo-spectral space. With
such an H3 bound at hand, we are able to control the nonlinear chemical potential error function,
in the Fourier pseudo-spectral space. In addition, one nonlinear error inner product could be
cancelled between the error evolutionary equations for the original phase variable and the one for
the introduced auxiliary variable. These preliminary estimates enable one to obtain an optimal
rate (O(�t2 + hm)) convergence analysis for the proposed numerical scheme in the energy norm,
i.e., in the `1(0, T ;H2

N
) \ `2(0, T ;H4

N
) norm. In particular, the aliasing error control techniques

have to be applied in the nonlinear error estimate associated with the 4-Laplacian term.
The outline of the paper is given as follows. In Section 2 we present the numerical scheme.

First we review the Fourier pseudo-spectral approximation in space and recall an aliasing error
control technique. Then we recall the SAV numerical scheme, and prove its energy stability in a
modified way. In addition, a uniform-in-time H3 bound for the numerical solution is established
in Section 3, and an optimal rate convergence analysis is provided in Section 4. Some numerical
results are presented in Section 5. Finally, some concluding remarks are made in Section 6.
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2 The numerical scheme

2.1 Review of Fourier pseudo-spectral approximations

The Fourier pseudo-spectral method is also referred as the Fourier collocation spectral method.
It is closely related to the Fourier spectral method, but complements the basis by an additional
pseudo-spectral basis, which allows to represent functions on a quadrature grid. This simplifies
the evaluation of certain operators, and can considerably speed up the calculation when using fast
algorithms such as the fast Fourier transform (FFT); see the related descriptions in [1, 11, 13, 15,
27, 28, 33, 64, 65], etc.

To simplify the notation in our pseudo-spectral analysis, we assume that the domain is given
by ⌦ = (0, 1)2, Nx = Ny =: N 2 N and N · h = 1. We further assume that N is odd:

N = 2K + 1, for some K 2 N.

The analyses for more general cases are a bit more tedious, but can be carried out without essential
di�culty. The spatial variables are evaluated on the standard 2D numerical grid ⌦N , which is
defined by grid points (xi, yj), with xi = ih, yj = jh, 0  i, j  2K + 1.

We define the grid function space

GN :=
�
f : Z2

! R
�� f is ⌦N -periodic

 
. (2.1)

Given any periodic grid functions f, g 2 GN , the `2 inner product and norm are defined as

hf, gi := h2
N�1X

i,j,k=0

fi,j · gi,j , kfk2 :=
p

hf, fi. (2.2)

The zero-mean grid function subspace is denoted as G̊N :=
�
f 2 GN

�� hf, 1i =: f = 0
 
. For f 2 GN ,

we have the discrete Fourier expansion

fi,j =
KX

`,m=�K

f̂N

`,m
exp (2⇡i(`xi +myj)) , (2.3)

where the discrete Fourier coe�cients are given by

f̂N

`,m
:= h2

N�1X

i,j,=0

fi,j,k exp (�2⇡i (`xi +mxj)) . (2.4)

The collocation Fourier spectral first and second order derivatives of f are defined as

Dxfi,j :=
KX

`,m=�K

(2⇡i`) f̂N

`,m
exp (2⇡i(`xi +myj)) , (2.5)

D
2
xfi,j :=

KX

`,m=�K

�
�4⇡2`2

�
f̂N

`,m
exp (2⇡i(`xi +myj)) . (2.6)

The di↵erentiation operators in the y direction, Dy and D
2
y, can be defined in the same fashion. In

turn, the discrete Laplacian, gradient and divergence operators are given by

�Nf :=
�
D

2
x +D

2
y

�
f, rNf :=

✓
Dxf
Dyf

◆
, rN ·

✓
f1
f2

◆
:= Dxf1 +Dyf2, (2.7)
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at the point-wise level. It is straightforward to verify that

rN ·rNf = �Nf. (2.8)

See the derivations in the related references [1, 2, 26].

Definition 2.1. Suppose that the grid function f 2 GN has the discrete Fourier expansion (2.3).
Its spectral extension into the trigonometric polynomial space PK (the space of trigonometric poly-
nomials of degree at most K) is defined as

fS(x, y) =
KX

`,m=�K

f̂N

`,m
exp (2⇡i(`x+my)) . (2.9)

We write SN (f) = fS and call SN : GN ! PK the spectral interpolation operator. Suppose
g 2 Cper(⌦,R). We define the grid projection QN : Cper(⌦,R) ! GN via

QN (g)i,j := g(xi, yj), (2.10)

The resultant grid function may, of course, be expressed as a discrete Fourier expansion:

QN (g)i,j =
KX

`,m=�K

\QN (g)
N

`,m
exp (2⇡i(`xi +myj)) .

We define the de-aliasing operator RN : Cper(⌦,R) ! PK via RN := SN (QN ). In other words,

RN (g)(x, y) =
KX

`,m=�K

\QN (g)
N

`,m
exp (2⇡i(`x+my)) . (2.11)

Finally, for any g 2 L2(⌦,R), we define the (standard) Fourier projection operator PN : L2(⌦,R) !
PK via

PN (g)(x, y) =
KX

`,m=�K

ĝ`,m exp (2⇡i(`x+my)) ,

where

ĝ`,m =

Z

⌦
g(x, y) exp (�2⇡i (`x+my)) dx,

are the (standard) Fourier coe�cients.

To overcome a key di�culty associated with the Hm bound of the nonlinear term obtained by
collocation interpolation, the following lemma is introduced. The case of r = 0 was proven in an
earlier work [20, 21], and the case of r � 1 was analyzed in a recent article [28].

Lemma 2.2. Suppose that m and K are non-negative integers, and, as before, assume that N =
2K + 1. For any ' 2 PmK in Rd, we have the estimate

kRN (')k
Hr  m

d
2 k'k

Hr , (2.12)

for any non-negative integer r.
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Furthermore, to facilitate the analysis in later sections, we introduce an operator LN as LNf :=

"2�2
N
f , for any f 2 GN . In addition, a fractional operator is similarly introduced as L

1
2
N
f :=

"(��N )f , for any f 2 GN .
The following summation-by-parts formulas are valid (see the related discussions in [4, 9, 27,

28]): for any periodic grid functions f, g 2 GN ,

hf,�Ngi = �hrNf,rNgi ,
⌦
f,�2

Ng
↵
= h�Nf,�Ngi . (2.13)

Similarly, the following identity could be derived in the same manner:

hf, LNgi = hL
1
2
N
f, L

1
2
N
gi, 8f, g 2 GN . (2.14)

In addition to the standard `2 norm, we also introduce the `p, 1  p < 1, and `1 norms for a
grid function f 2 GN :

kfk1 := max
i,j,k

|fi,j |, kfk
p
:=

⇣
h2

N�1X

i,j=0

|fi,j |
p

⌘ 1
p
, 1  p < 1. (2.15)

The discrete H1 and H2 norms are introduced as

kfk2
H

1
N
= kfk22 + krNfk22, kfk2

H
2
N
= kfk2

H
1
N
+ k�Nfk22. (2.16)

For any periodic grid function � 2 GN , the discrete energy is defined as

EN (�) :=
1

4
krN�k44 �

1

2
krN�k22 +

"2

2
k�N�k22 . (2.17)

The following result corresponds to a discrete Sobolev embedding from H2
N

to W 1,6
N

in the
pseudo-spectral space. Similar discrete embedding estimates, in the lower order ones, could be
found in Lemma 2.1 of [15]; also see the related results [23, 24] in the finite di↵erence version. A
direct calculation is not able to derive these inequalities; instead, a discrete Fourier analysis has to
be applied in the derivation; the details of the proof has been provided in a recent work [14]. .

Proposition 2.3. [14] For any periodic grid function f , we have

krNfk6  Ck�Nfk2, (2.18)

for some constant C only dependent on ⌦.

2.2 The fully discrete numerical scheme

The energy (1.1) is decomposed into two parts:

E(�) = E1(�) +
1

2
(�, L�), E1(�) =

Z

⌦

⇢
1

4
|r�|4 �

1

2
|r�|2 +

1

4

�
dx, L� = "2�2�. (2.19)

In particular, due to the point-wise quadratic inequality

1

4
|r�|4 �

1

2
|r�|2 +

1

4
� 0, (2.20)
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we conclude that E1(�) have a well-established lower bound:

E1(�) � |⌦|. (2.21)

In turn, the nonlinear chemical potential becomes

N(�) := ��E1 = �r · (|r�|2r�) +��. (2.22)

Therefore, with an introduction of a scalar auxiliary variable

r :=
p

E1(�), (2.23)

the original SS equation (1.3) could be rewritten as the following system:
8
<

:
�t = �

⇣
rp

E1(�)
N(�) + L�

⌘
,

rt =
1

2
p

E1(�)

R
⌦ N(�)�t dx.

(2.24)

Based on this reformulation, the fully discrete second order SAV scheme is proposed as follows,
with Fourier pseudo-spectral spatial approximation:

8
><

>:

�
n+1��

n

�t
= �

r
n+1/2

q
E1,N (�̂n+1/2)

NN (�̂n+1/2)� LN (34�
n+1 + 1

4�
n�1), (2.25a)

r
n+1�r

n

�t
= 1

2
q

E1,N (�̂n+1/2)
hNN (�̂n+1/2), �

n+1��
n

�t
i, (2.25b)

(2.25)

in which NN (�) := �rN · (|rN�|2rN�) + �N�, LN� = "2�2
N
�, rn+1/2 = 1

2(r
n+1 + rn), and

a second order explicit extrapolation is applied to obtain �̂n+1/2 = 3
2�

n
�

1
2�

n�1. The discrete
nonlinear energy functional is introduced as E1,N (�) := 1

4krN�k44 �
1
2krN�k22 +

1
4 |⌦|, similar to

the notation in (2.17).
Since (2.25) is a two-step numerical method, a “ghost” point extrapolation for ��1 is useful.

To preserve the second order accuracy in time, we apply the following approximation:

��1 = �0 +�tµ0, µ0 := �rN · (|rN�0
|
2
rN�0) +�N�0 + "2�2

N�0. (2.26)

A careful Taylor expansion indicates an O(�t2 + hm) accuracy for such an approximation:

k��1
� ��1

k2  C(�t2 + hm). (2.27)

In turn, we take r0 :=
p

E1,N (�0), r�1 :=
p

E1,N (��1).

2.3 Unique solvability and e�cient numerical solver for the numerical scheme

In this section we analyze the unique solvability of the proposed SAV scheme (2.25). From (2.25a),
one can get

⇣
I +

3

4
�tLN

⌘
�n+1 = ��t

rn+1/2

q
E1,N (�̂n+1/2)

NN (�̂n+1/2)�
1

4
�tLN�n�1 + �n. (2.28)

Define AN = I + 3
4�tLN , so that the following identity is valid:

�n+1 = ��t
rn+1/2

q
E1,N (�̂n+1/2)

A�1
N

NN (�̂n+1/2) +A�1
N

(�n
�

1

4
�tLN�n�1).
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From (2.25b), we see that

rn+1 = rn +
1

2
q

E1,N (�̂n+1/2)
hNN (�̂n+1/2),�n+1

� �n
i. (2.29)

A substitution of (2.29) into (2.28) gives

⇣
I +

3

4
�tLN

⌘
�n+1 +

NN (�̂n+1/2)

4E1,N (�̂n+1/2)
�thNN (�̂n+1/2),�n+1

i

= �
�tNN (�̂n+1/2)q
E1,N (�̂n+1/2)

⇣
rn �

1

4
q

E1,N (�̂n+1/2)
hNN (�̂n+1/2),�n

i

⌘
+ �n

�
1

4
�tLN�n�1.

Let gn
N

denotes the right-hand of the above equation, then it becomes

AN�n+1 +
NN (�̂n+1/2)

4E1,N (�̂n+1/2)
�thNN (�̂n+1/2),�n+1

i = gnN .

Multiplying both sides by A�1
N

implies that

�n+1 +
1

4E1,N (�̂n+1/2)
�thNN (�̂n+1/2),�n+1

i ·A�1
N

NN (�̂n+1/2) = A�1
N

gnN . (2.30)

Denote LHS = hNN (�̂n+1/2),�n+1
i, a scalar value. Taking a discrete inner product with (2.30) by

NN (�̂n+1/2) leads to

hNN (�̂n+1/2),�n+1
i+

�t

4E1,N (�̂n+1/2)
· LHS · hNN (�̂n+1/2), A�1

N
NN (�̂n+1/2)i

= hNN (�̂n+1/2), A�1
N

gnN i.

Then we arrive at
⇣
1 +

�t

4E1,N (�̂n+1/2)
· hNN (�̂n+1/2), A�1

N
NN (�̂n+1/2)i

⌘
· LHS = hNN (�̂n+1/2), A�1

N
gnN i. (2.31)

In addition, we notice that

hNN (�̂n+1/2), A�1
N

NN (�̂n+1/2)) � 0, (2.32)

since all the eigenvalues of the symmetric operator A�1
N

are non-negative. As a direct consequence,
the coe�cient on the left hand side of (2.31) is positive, so that the value of LHS is uniquely
solvable. Going back (2.30), the numerical solution �n+1 is uniquely determined:

�n+1 = �
�t

4E1,N (�̂n+1/2)
· LHS ·A�1

N
NN (�̂n+1/2) +A�1

N
gnN . (2.33)

Furthermore, a substitution of �n+1 into (2.29) gives the numerical value of rn+1.

Theorem 2.4. Given �n,�n�1
2 GN , two scalar values rn, rn�1, with �n = �n�1, there exists a

unique solution �n+1
2 GN for the numerical schemes (2.25). The scheme is mass conservative,

i.e., �k ⌘ �0 := �0, for any k � 0, provided that ��1 = �0 = �0.
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Proof. The unique solvability comes from the derived identities (2.29), (2.31) and (2.33). In ad-
dition, the mass conservation property is a direct consequence of a summation of (2.25a) over ⌦,
which is turn leads to

�n+1 = �n +�t�N

⇣ rn+1/2
q

E1,N (�̂n+1/2)
NN (�̂n+1/2) + LN (

3

4
�n+1 +

1

4
�n�1)

⌘
= �n, (2.34)

with the fact that �Nf = 0, 8f 2 GN , has been applied. An application of induction implies that
�k = �0, for any k � 0, provided that ��1 = �0 = �0. This completes the proof of Theorem 2.4.

2.4 Modified energy stability for the numerical scheme

Theorem 2.5. For k � 1, define the discrete modified energy

EN (�k+1,�k, rk+1) :=
1

2
kL

1
2
N
�k+1

k
2
2 + |rk+1

|
2 +

1

8
kL

1
2
N
(�k+1

� �k)k22. (2.35)

Solution of the numerical scheme (2.25) satisfies the following dissipation properties

EN (�k+1,�k, rk+1)  EN (�k,�k�1, rk). (2.36)

Proof. We begin with a rewritten form of the numerical scheme (2.25):
8
>>>><

>>>>:

�
n+1��

n

�t
= �µn+1/2

N
, (2.37a)

µn+1/2
N

= LN (34�
n+1 + 1

4�
n�1) + r

n+1/2
q

E1,N (�̂n+1/2)
NN (�̂n+1/2), (2.37b)

r
n+1�r

n

�t
= 1

2
q

E1,N (�̂n+1/2)
hNN (�̂n+1/2), �

n+1��
n

�t
i. (2.37c)

(2.37)

Subsequently, taking discrete inner product with (2.37a) by µn+1
N

, with (2.37b) by �(�n+1
��n),

with (2.37c) by 2rn+1/2 = rn+1 + rn, we have

h�n+1
� �n, µn+1/2

N
i = = ��tkµn+1/2

N
k
2
2, (2.38)

�h�n+1
� �n, µn+1/2

N
i = �hLN (

3

4
�n+1 +

1

4
�n�1),�n+1

� �n
i

+
rn+1/2

q
E1,N (�̂n+1/2)

h�NN (�̂n+1/2),�n+1
� �n

i, (2.39)

(rn+1
� rn)(rn+1 + rn) =

rn+1/2

q
E1,N (�̂n+1/2)

hNN (�̂n+1/2),�n+1
� �n

i. (2.40)

In turn, by adding (2.38), (2.39) and (2.40), we obtain

hLN (
3

4
�n+1 +

1

4
�n�1),�n+1

� �n
i+ hrn+1

� rn, 2rn+1
i = ��tkµn+1/2

N
k
2
2. (2.41)

Meanwhile, the derivation of the following two identities are straightforward:

hLN (
3

4
�n+1 +

1

4
�n�1),�n+1

� �n
i = hL

1
2
N
(
3

4
�n+1 +

1

4
�n�1), L

1
2
N
(�n+1

� �n)i

=
1

2
(kL

1
2
N
�n+1

k
2
2 � kL

1
2
N
�n

k
2
2) +

1

8
(kL

1
2
N
(�n+1

� �n)k22 � kL
1
2
N
(�n

� �n�1)k22)

+
1

8
(kL

1
2
N
(�n+1

� 2�n + �n�1)k22, (2.42)

(rn+1
� rn)(rn+1 + rn) = |rn+1

|
2
� |rn|2, (2.43)
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in which identity (2.14) has been applied in the first step of (2.42). Going back (2.41), we arrive at

EN (�n+1,�n, rn+1)� EN (�n,�n�1, rn)

= = �
1

8
kL

1
2
N
(�n+1

� 2�n + �n�1)k22 ��tkµn+1/2
N

k
2
2  0. (2.44)

This completes the proof of Theorem 2.5.

As a direct consequence of the energy stability, a uniform in time H2
N

bound for the numerical
solution is derived as follows.

Corollary 2.6. Suppose that the initial data are su�ciently regular so that

1

2
kL

1
2
N
�0

k
2
2 + |r0|2 +

1

8
kL

1
2
N
(�0

� ��1)k22  C̃0,

for some C̃0 that is independent of h. Then we have the following uniform (in time) H2
N

bound for
the numerical solution:

k�m

S kH2  C̃1, 8m � 1, (2.45)

in which �m

S
stands for the spectral interpolation of the numerical solution �m, as given by for-

mula (2.9). The constant C̃1 > 0 depends on ⌦ and C̃0, but is independent of h, �t and final
time.

Proof. As a result of (2.36), the following energy bound is available:

1

2
kL

1
2
N
�m

k
2
2  EN (�m,�m�1, rm)  EN (�0,��1, r0)

=
1

2
kL

1
2
N
�0

k
2
2 + |r0|2 +

1

8
kL

1
2
N
(�0

� ��1)k22  C̃0, (2.46)

for any m � 1. On the other hand, since L
1
2
N
f = �"�Nf , for any f 2 GN , we see that

"2

2
k�N�m

k
2
2  C̃0, so that k�N�m

k2 
p

2"�2C̃
1
2
0 , 8m � 1. (2.47)

This in turn leads to

k��m

S k = k�N�m
k2 

p

2"�2C̃
1
2
0 , since �m

2 GN . (2.48)

Meanwhile, by the mass conservative property stated in Theorem 2.4, we have
Z

⌦
�m

S dx = �m = �0, 8m � 0, (2.49)

in which the first step is based on the fact that �m
2 GN . In turn, an application of elliptic

regularity implies that

k�m

S kH2  C
⇣���
Z

⌦
�m

S dx
���+ k��m

S k

⌘
 C(|�0|+

p

2"�2C̃
1
2
0 ) := C̃1, 8m � 1. (2.50)

This completes the proof of Corollary 2.6.
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Remark 2.7. It is obvious that the modified energy functional (2.35) is the second order approxi-
mation to the original discrete energy (2.17), under certain regularity assumption for the numerical
solution. Meanwhile, such a modified discrete energy is in terms of a scalar auxiliary variable r,
combined with the linear surface di↵usion energy part, not fully in terms of the original phase vari-
able �, as formulated in (2.17). Although a direct bound of the original energy functional is not
available in terms of the initial data, a uniform in time H2

N
bound for the numerical solution could

be derived, up to a constant multiple, as demonstrated in Corollary 2.6.

Remark 2.8. As a combination of the uniform in time H2
N

bound (2.45) and the discrete Sobolev

embedding inequality (2.18), we arrive at a uniform in time W 1,6
N

estimate for the numerical solu-
tion:

krN�m
k6  CC̃1, 8 m � 1. (2.51)

And also, the modified energy inequality (2.46) indicates that

|rm|
2
 C̃0, so that rm  C̃

1
2
0 , 8m � 1. (2.52)

These estimates will be useful in the higher order stability analysis presented below.

3 A uniform-in-time H
3 estimate for the numerical solution

Theorem 3.1. For the numerical solution (2.25), the following estimate is available:

k�m

S kH3  Q(3), 8m � 1, (3.1)

in which �m

S
stands for the spectral interpolation of the numerical solution �m, as given by for-

mula (2.9). The constant Q(3) only depends on the initial H3 data and the domain, and it is
independent of �t, h and T .

Proof. Taking a discrete inner product with (2.25a) by �2�3
N
�n+1, we obtain

1

�t
h�n+1

� �n,�2�3
N�n+1

i � "2h�3
N�n+1,�2

N (
3

2
�n+1 +

1

2
�n�1)i

= 2
rn+1/2

q
E1,N (�̂n+1/2)

hNN (�̂n+1/2),�3
N�n+1

i. (3.2)

The temporal stencil term could be handled in a straightforward way:

h�n+1
� �n,�2�3

N�n+1
i = 2hrN�N (�n+1

� �n),rN�N�n+1
i

= krN�N�n+1
k
2
2 � krN�N�n

k
2
2 + krN�N (�n+1

� 2�n + �n�1)k22. (3.3)

The surface di↵usion part could be analyzed as follows

�h�3
N�n+1,�2

N (
3

2
�n+1 +

1

2
�n�1)i = hrN�2

N�n+1,rN�2
N (

3

2
�n+1 +

1

2
�n�1)i

�
3

2
krN�2

N�n+1
k
2
2 �

1

4
(krN�2

N�n+1
k
2
2 + krN�2

N�n�1
k
2
2)

�
5

4
krN�2

N�n+1
k
2
2 �

1

4
krN�2

N�n�1
k
2
2. (3.4)
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For the right hand side nonlinear inner product, we begin with the following observations:

E1,N (�̂n+1/2) � |⌦|, |rn+1/2
|  C̃

1
2
0 , (by (2.52)). (3.5)

These two bounds imply that
rn+1/2

q
E1,N (�̂n+1)



⇣ C̃0

|⌦|

⌘ 1
2
. (3.6)

Meanwhile, the following summation by parts formula is applied

2
rn+1/2

q
E1,N (�̂n+1/2)

hNN (�̂n+1/2),�3
N�n+1

i = �2
rn+1/2

q
E1,N (�̂n+1/2)

hrNNN (�̂n+1/2),rN�2
N�n+1

i.(3.7)

For the nonlinear term, the following expansion is recalled

rNNN (�̂n+1) = �rNrN · (|rN �̂n+1
|
2
rN �̂n+1) +rN�N �̂n+1. (3.8)

The linear part could be controlled in a standard fashion:

�2
rn+1/2

q
E1,N (�̂n+1/2)

hrN�N �̂n+1/2,rN�2
N�n+1

i  2
⇣ C̃0

|⌦|

⌘ 1
2
krN�N �̂n+1/2

k2 · krN�2
N�n+1

k2


4C̃0"�2

|⌦|
krN�N �̂n+1/2

k
2
2 +

1

4
"2krN�2

N�n+1
k
2
2. (3.9)

For the nonlinear 4-Laplacian part, the following grid function is introduced:

q̂n+1/2 := |rN �̂n+1/2
|
2
rN �̂n+1/2. (3.10)

This in turn implies that

krNrN · (|rN �̂n+1/2
|
2
rN �̂n+1/2)k2 = kr(r · q̂n+1/2

S
)kL2 , (3.11)

in which q̂n+1/2
S

is the spectral interpolation of q̂n+1/2, given by formula (2.9). Moreover, since
q̂n+1/2 is the point-wise interpolation of the continuous function

'
q̂n+1/2 := |r�̂n+1/2

S
|
2
r�̂n+1/2

S
, with �̂n+1/2

S
=

3

2
�n

S �
1

2
�n�1
S

, (3.12)

we see that q̂n+1/2
S

= RN ('
q̂n+1/2). In turn, by making use of the aliasing error control inequality

stated in Lemma 2.2, we conclude that

kr(r · q̂n+1/2
S

)kL2  kq̂n+1/2
S

kH2 = kRN ('
q̂n+1/2)kH2  3k'

q̂n+1/2kH2 , (3.13)

since '
q̂n+1/2 2 P3K . Meanwhile, for '

q̂n+1/2 given by (3.12), a detailed expansion and repeated
applications of Hölder inequality indicate that

k'
q̂n+1/2kH2  C(k'

q̂n+1/2k+ k�'
q̂n+1/2k)

= C(k|r�̂n+1/2
S

|
2
r�̂n+1/2

S
k+ k�(|r�̂n+1/2

S
|
2
r�̂n+1/2

S
)k)

 C
⇣
kr�̂n+1

S
k
2
L1 · kr�̂n+1

S
kH2 + krr�̂n+1

S
k
2
L6 · kr�̂n+1

S
kL6

⌘
. (3.14)
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Furthermore, the following 2-D Sobolev embedding and interpolation inequalities could be derived:

kr�̂n+1/2
S

kL1  C(k��̂n+1/2
S

k+ k��̂n+1/2
S

k
5
6 · kr�2�̂n+1/2

S
k

1
6 )

 C(C̃1 + C̃
5
6
1 k�

3�̂n+1/2
S

k
1
6 ), (3.15)

kr�̂n+1/2
S

kL6  Ck��̂n+1/2
S

k  CC̃1, (3.16)

krr�̂n+1/2
S

kL6  Ckrr�̂n+1/2
S

kH1  Ck��̂n+1/2
S

k
2
3 · kr�2�̂n+1/2

S
k

1
3

 CC̃
2
3
1 kr�2�̂n+1/2

S
k

1
3 , (3.17)

kr�̂n+1/2
S

kH2  Ck��̂n+1/2
S

k
2
3 · k�3�̂n+1/2

S
k

1
3  CC̃

2
3
1 kr�2�̂n+1/2

S
k

1
3 , (3.18)

in which the uniform in time H2 bound (2.45) of the numerical solution has been extensively used.
In turn, a substitution of the above estimates into (3.14) yields

k'q̂n+1kH3  C(C̃3
1 + C̃

7
3
1 k�

3�̂n+1/2
S

k
2
3 ). (3.19)

Subsequently, its combination with (3.11) and (3.13) reveals that

krNrN · (|rN �̂n+1/2
|
2
rN �̂n+1/2)k2  C(C̃3

1 + C̃
7
3
1 kr�2�̂n+1/2

S
k

2
3 )

 C(C̃3
1 + C̃

7
3
1 krN�2

N �̂n+1/2
k

2
3 ), (3.20)

in which the fact that �̂n+1/2
S

2 PK has been applied in the last step. As a consequence, we arrive
at

�2
rn+1/2

q
E1,N (�̂n+1/2)

hrNrN · (|rN �̂n+1/2
|
2
rN �̂n+1/2),rN�2

N�n+1
i

 2
⇣ C̃0

|⌦|

⌘ 1
2
krNrN · (|rN �̂n+1/2

|
2
rN �̂n+1/2)k2 · krN�2

N�n+1
k2

 C(C̃3
1 + C̃

7
3
1 k�

3
N �̂n+1/2

k
2
3 ) · krN�2

N�n+1
k2

 C"�2(C̃6
1 + C̃

14
3
1 krN�2

N �̂n+1/2
k

4
3 ) +

"2

4
krN�2

N�n+1
k
2
2. (3.21)

A combination of (3.9) and (3.21) leads to

2
rn+1/2

q
E1,N (�̂n+1)

hNN (�̂n+1),�3
N�n+1

i


4C̃0"�2

|⌦|
krN�N �̂n+1/2

k
2
2 + C"�2(C̃6

1 + C̃
14
3
1 krN�2

N �̂n+1/2
k

4
3 ) +

"2

2
krN�2

N�n+1
k
2
2. (3.22)

Finally, a substitution of (3.3), (3.4) and (3.22) into (3.2) results in

1

�t
(krN�N�n+1

k
2
2 � krN�N�n

k
2
2 + krN�N (�n+1

� 2�n + �n�1)k22)

+
3

4
"2krN�2

N�n+1
k
2
2 �

1

4
"2krN�2

N�n�1
k
2
2


4C̃0"�2

|⌦|
krN�N �̂n+1/2

k
2
2 + C"�2(C̃6

1 + C̃
14
3
1 krN�2

N �̂n+1/2
k

4
3 ). (3.23)
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Meanwhile, the following interpolation inequality and Cauchy inequality are available:

krN�N �̂n+1/2
k2  k�N �̂n+1/2

k

2
3
2 · krN�2

N �̂n+1
k

1
3
2  (2C̃1)

2
3 krN�2

N �̂n+1/2
k

1
3
2 , (3.24)

krN�2
N �̂n+1/2

k
2
2 = krN�2

N (
3

2
�n

�
1

2
�n�1)k22  3krN�2

N�n
k
2
2 + krN�2

N�n�1
k
2
2. (3.25)

Then we obtain the following estimates:

4C̃0"�2

|⌦|
krN�N �̂n+1/2

k
2
2 

2
10
3 C̃0C̃

4
3
1 "

�2

|⌦|
krN�2

N �̂n+1/2
k

2
3
2


CC̃

3
2
0 C̃

2
1"

�4

|⌦|
3
2

+
"2

32
krN�2

N �̂n+1/2
k
2
2


CC̃

3
2
0 C̃

2
1"

�4

|⌦|
3
2

+
"2

32
(3krN�2

N�n
k
2
2 + krN�2

N�n�1
k
2
2), (3.26)

CC̃
14
3
1 "�2

krN�2
N �̂n+1/2

k
4
3  CC̃14

1 "�10 +
"2

32
krN�2

N �̂n+1/2
k
2

 CC̃14
1 "�10 +

"2

32
(3krN�2

N�n
k
2
2 + krN�2

N�n�1
k
2
2), (3.27)

in which the Young’s inequality has been applied in the first step of (3.27). Going back (3.23), we
arrive at

1

�t
(krN�N�n+1

k
2
2 � krN�N�n

k
2
2) +

3

4
"2krN�2

N�n+1
k
2
2 �

1

4
"2krN�2

N�n�1
k
2
2


"2

16
(3krN�2

N�n
k
2
2 + krN�2

N�n�1
k
2
2) +

CC̃
3
2
0 C̃

2
1"

�4

|⌦|
3
2

+ C"�10(C̃14
1 + 1). (3.28)

Moreover, the following quantity is introduced:

Gn+1 := krN�N�n+1
k
2
2 +

9"2

16
�tkrN�2

N�n+1
k
2
2 +

5"2

16
�tkrN�2

N�n
k
2
2. (3.29)

By adding 3
8"

2
krN�3

N
�n

k
2
2 on both sides of (3.28), we obtain the following inequality:

Gn+1
�Gn +

3"2

16
�tkrN�2

N�n+1
k
2
2 +

"2

16
�tkrN�2

N�n
k
2
2  M (0)�t, (3.30)

with M (0) =
CC̃

3
2
0 C̃

2
1"

�4

|⌦|
3
2

+ C"�10(C̃14
1 + 1). In addition, the following elliptic regularity estimates

are valid:

C2krN�N�n+1
k
2
2  krN�2

N�n+1
k
2
2, C2krN�N�n

k
2
2  krN�2

N�n
k
2
2, (3.31)

so that we arrive at

1

8
C2G

n+1


3

16
krN�2

N�n+1
k
2
2 +

1

16
krN�2

N�n
k
2
2. (3.32)

Going back (3.30), we get

Gn+1
�Gn +

C2"2

8
�tGn+1

 M (0)�t. (3.33)
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An application of induction argument implies that

Gn+1
 (1 +

C2"2

8
�t)�(n+1)G0 +

8M (0)

C2"2
. (3.34)

Of course, we could introduce a uniform in time quantity B⇤
3 := G0+ 8M(0)

C2"
2 , so that krN�N�m

k
2


Gm
 B⇤

3 for any m � 0. In turn, an application of elliptic regularity shows that

k�m

S kH3  C
⇣
|�m|+ kr��m

k

⌘
 C(|�0|+ (B⇤

3)
1/2) := Q(3), 8m � 0. (3.35)

in which the uniform in time constant Q(3) depends on ⌦ and the initial H3 data. This finishes the
proof of Theorem 3.1.

Remark 3.2. Higher order Hm estimate (beyond the norm given by the physical energy) is available
for many gradient flows, due to the analytic property of the surface di↵usion parabolic operator; see
the related discussions in [3]. There have also been quite a few works of uniform in time H2 estimate
for certain energy stable numerical schemes for the Cahn-Hilliard equation [15, 31, 55], beyond the
H1 bound given by the energy estimate. In fact, similar estimates have also been reported for 2-
D incompressible Navier-Stokes equations, in terms of the first, second and higher order temporal
numerical approximations; see the delated works [13, 27, 61], etc.

Remark 3.3. As can be observed in the analysis (3.4) for the surface di↵usion term, the alternate
temporal stencil structure, which gives 3/4 and 1/4 coe�cient distribution at time steps tn+1, tn�1,
respectively, plays an important role to pass through the nonlinear estimate. Because of the higher
concentration at time step tn+1, the additional di↵usion inner product term is able to control the
corresponding nonlinear growth given by (3.22), which turns out to be an essential point in the
H3 estimate for the numerical solution. Instead, if the standard Crank-Nicolson approximation is
applied, such an additional di↵usion inner product term would not be available in the derivation
in (3.22), so that the nonlinear growth in (3.22) could hardly be controlled. As a result, the stan-
dard Crank-Nicolson method for the surface di↵usion term is able to preserve the modified energy
stability, in a similar way as in Theorem 2.5, while a theoretical justification of the H3 estimate
for the numerical solution would not go through.

4 The optimal rate convergence analysis

Now we proceed into the convergence analysis for the numerical scheme (2.25). Due to the SAV
structure of the algorithm, the error estimate has to be performed in the energy norm, i.e., in the
`1(0, T ;H2

N
) \ `2(0, T ;H4

N
) for the phase variable. Similar techniques have also been applied to

the convergence estimate [44] for the SAV scheme applied to Cahn-Hilliard equation. These ideas
have also been reported for the corresponding analysis for the phase field flow coupled with fluid
motion [5, 8, 17, 18, 46]. With an initial data with su�cient regularity, we could assume that the
exact solution has regularity of class R:

� 2 R := H3(0, T ;C0) \H2(0, T ;H4) \ L1(0, T ;Hm+4). (4.1)

In particular, the following bound is available for the exact solution:

k@m

t �kL1(0,T ;L1)  C⇤, (1  m  3), k�k
kHm+4  C⇤, 8k � 0. (4.2)
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Theorem 4.1. Given initial data �0 2 Hm+4
per (⌦), suppose the exact solution for SS equation (1.3)

is of regularity class R. For �t and h are su�ciently small, we have

max
0nM

k�N (�n
� �n)k2 + (�t

MX

k=1

k�2
N (�k

� �k)k22)
1/2

 C(�t2 + hm), (4.3)

where C > 0 is independent of �t and h, and �t = T/M .

4.1 The consistency analysis

For � 2 R, we construct an approximate scalar value of R as follows

Rn+1 :=
q

E1,N (�n+1) , En+1
1,N (�n+1) =

1

4
krN�n+1

k
4
4 �

1

2
krN�n+1

k
2
2 +

5

4
|⌦|,

Rn+1/2 =
1

2
(Rn+1 +Rn).

(4.4)

A similar extrapolation �̂n+1 := 2�n
� �n�1 is taken. In turn, a careful consistency analysis

indicates the following truncation error estimate:

8
<

:

�n+1��n

�t
= �

⇣
R

n+1/2
p

E1,N (�̂n+1/2)
NN (�̂n+1/2) + LN (34�

n+1 + 1
4�

n�1)
⌘
+ ⌧n+1

�
, (4.5a)

R
n+1�R

n

�t
= 1

2
p

E1,N (�̂n+1/2)
hNN (�̂n+1/2), �

n+1��n

�t
i+ ⌧n+1

r . (4.5b)
(4.5)

with k⌧n+1/2
�

k2, |⌧
n+1/2
r |  C(�t2 + hm). The derivation of (4.5) is accomplished with the help of

the spectral approximation estimate and other related estimates; the details are left to interested
readers.

The numerical error function is defined at a point-wise level:

ek := �k
� �k, êk+1/2 :=

3

2
ek �

1

2
ek�1, Ñk+1/2 := NN (�̂k+1/2)�NN (�̂k+1/2), 8k � 0. (4.6)

And also, the following scalar numerical errors are introduced

r̃k := Rk
� rk, r̃k+1/2 :=

1

2
(r̃k+1 + r̃k), Ẽk+1/2

1 := E1,N (�̂k+1/2)� E1,N (�̂k+1/2), 8k � 0. (4.7)

In turn, subtracting the numerical scheme (2.25) from (4.5) gives

8
>>>>>>>>>><

>>>>>>>>>>:

e
n+1�e

n

�t
= �

⇣
( r̃

n+1/2
q

E1,N (�̂n+1/2)
�Bn+1/2Rn+1/2Ẽn+1/2

1 )NN (�̂n+1/2) + R
n+1/2

p
E1,N (�̂n+1/2)

Ñn+1/2

+LN (34e
n+1 + 1

4e
n�1)

⌘
+ ⌧n+1/2

�
, (4.8a)

r̃
n+1�r̃

n

�t
= 1

2
q

E1,N (�̂n+1/2)
hNN (�̂n+1/2), e

n+1�e
n

�t
i+ 1

2
q

E1,N (�̂n+1/2)
hÑn+1/2, �

n+1��n

�t
i

�
1
2B

n+1/2Ẽn+1/2
1 hNN (�̂n+1/2), �

n+1��n

�t
i+ ⌧n+1/2

r , (4.8b)

with Bn+1/2 = 1
p

E1,N (�̂n+1/2)
q

E1,N (�̂n+1/2)(
p

E1,N (�̂n+1/2)+
q

E1,N (�̂n+1/2))
. (4.8c)

(4.8)
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4.2 A few preliminary estimates

The following estimates are needed in the later analysis.

Lemma 4.2. We have

E1,N (�̂n+1/2) � |⌦|, E1,N (�̂n+1/2) � |⌦|, 0  Bn+1/2


1

2
|⌦|�

3
2 , (4.9)

|Ẽn+1/2
1 |  C̃2krN ên+1/2

k2, (4.10)

kNN (�̂n+1/2)k  C̃3, (4.11)

kÑn+1/2
k  C̃4k�N ên+1/2

k2, (4.12)

k
�n+1

� �n

�t
k2  CC⇤, (4.13)

in which ên+1 := �̂n+1
� �̂n+1 = 2en � en�1, and C̃j are independent of �t and h, j = 2, 3, 4.

Proof. The lower bound for E1,N (�̂n+1/2) and E1,N (�̂n+1/2) comes from their definition, and the

estimate 0  Bn+1/2
 2|⌦|�

3
2 is a direct result of its representation given by (4.8c).

Moreover, a detailed expansion for E1,N (�̂n+1/2) and E1,N (�̂n+1/2) implies that

Ẽn+1/2
1 = E1,N (�̂n+1/2)� E1,N (�̂n+1/2)

=
1

4
(krN �̂n+1/2

k
4
4 � krN �̂n+1/2

k
4
4)� (krN �̂n+1/2

k
2
2 � krN �̂n+1/2

k
2
2)

=
1

4
h|rN �̂n+1/2

|
2 + |rN �̂n+1/2

|
2,rN (�̂n+1/2 + �̂n+1/2) ·rN ên+1/2

i

�hrN (�̂n+1/2 + �̂n+1/2),rN ên+1/2
i. (4.14)

For the first error expansion, an application of discrete Hölder inequality shows that

1

4

���h|rN �̂n+1/2
|
2 + |rN �̂n+1/2

|
2,rN (�̂n+1/2 + �̂n+1/2) ·rN ên+1/2

i

���


1

4
(krN �̂n+1/2

k
2
6 + krN �̂n+1/2

k
2
6) · (krN �̂n+1/2

k6 + krN �̂n+1/2
k6) · krN ên+1/2

k2


1

4
(4(C⇤)2 + CC̃2

1 ) · (2C
⇤ + CC̃1) · krN ên+1/2

k2  C((C⇤)3 + C̃3
1 )krN ên+1/2

k2, (4.15)

in which the regularity assumption (4.2) for the exact solution and the discrete W 1,6 bound (2.51)
for the numerical solution have been applied. The second error expansion term in (4.14) could be
controled in an even simpler way:

���h|rN (�̂n+1/2 + �̂n+1/2),rN ên+1/2
i

���  (krN �̂n+1/2
k2 + krN �̂n+1/2

k2) · krN ên+1/2
k2

 (2C⇤ + CC̃1)krN ên+1/2
k2, (4.16)

with (4.2), (2.51), applied again. This comletes the proof of inequality (4.10), by setting C̃2 :=
C((C⇤)3 + C̃3

1 + C⇤ + C̃1).
To obtain a discrete `2 estimate for NN (�̂n+1/2), we recall the grid function q̂n+1/2 introduced

in (3.10), so that the following identity is valid:

krN · (|rN �̂n+1/2
|
2
rN �̂n+1/2)k2 = kr(r · q̂n+1/2

S
)kL2 , (4.17)
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in which q̂n+1/2
S

is the spectral interpolation of q̂n+1/2. Because of the the fact q̂n+1/2
S

= RN ('
q̂n+1/2),

as indicated by the point-wise interpolation given by (3.12), we make use of the aliasing error control
inequality in Lemma 2.2 and get

kr · q̂n+1/2
S

kL2  kq̂n+1/2
S

kH1 = kRN ('
q̂n+1/2)kH1  3k'

q̂n+1/2kH1 , (4.18)

an inequality similar to (3.13). Moreover, a detailed expansion and repeated applications of Hölder
inequality lead to

k'
q̂n+1/2kH1  C(k'

q̂n+1/2k+ kr'
q̂n+1/2k) (4.19)

 C(k|r�̂n+1/2
S

|
2
r�̂n+1/2

S
k+ kr(|r�̂n+1/2

S
|
2
r�̂n+1/2

S
)k)

 Ckr�̂n+1
S

k
2
L1 · kr�̂n+1

S
kH1  Ck�̂n+1

S
k
3
H3  C(Q(3))3, (4.20)

in which the uniform in time H3 estimate (3.1) (for the numerical solution) has been applied in
the last step. Going back (4.18) and (4.17), we arrive at

krN · (|rN �̂n+1/2
|
2
rN �̂n+1/2)k2  C(Q(3))3. (4.21)

The other expansion term in NN (�̂n+1) could be bounded in a more standard way:

k�N �̂n+1/2
k2  k�̂n+1/2

S
kH3  2Q(3). (4.22)

Therefore, a combination of (4.21) and (4.22) gives the inequality (4.11), by taking C̃3 = C(Q(3))3+
2Q(3).

Inequality (4.12) could be derived in a similar manner. Making a comparison betweenNN (�̂n+1/2)
and NN (�̂n+1/2), we observe that Ñn+1/2 turns out to be the point-wise interpolation of the fol-
lowing continuous function

Ñn+1/2
S

= �r · (RN ('
Ñn+1/2) +�ên+1/2

S
,

'
Ñn+1/2 := |r�̂n+1/2

S
|
2
r�̂n+1/2

S
� |r�̂n+1/2

S
|
2
r�̂n+1/2

S
,

(4.23)

with �̂n+1/2
S

= 3
2�

n

S
�

1
2Phin�1

S
, ên+1/2

S
= 3

2e
n

S
�

1
2e

n�1
S

. A similar expansion is available for '
Ñn+1 :

'
Ñn+1/2 = |r�̂n+1/2

S
|
2
rên+1/2

S
+ (r(�̂n+1/2

S
+ �̂n+1/2

S
) ·rên+1/2

S
)r�̂n+1/2

S
. (4.24)

Again, repeated applications of Hölder inequality gives the following estimate

k'
Ñn+1/2kH1  C(k'

Ñn+1/2k+ kr'
Ñn+1/2k)

 C
⇣
k|r�̂n+1/2

S
|
2
rên+1/2

S
k+ k(r(�̂n+1/2

S
+ �̂n+1/2

S
) ·rên+1/2

S
)r�̂n+1/2

S
k

+kr(|r�̂n+1/2
S

|
2
rên+1/2

S
)k+ kr((r(�̂n+1/2

S
+ �̂n+1/2

S
) ·rên+1/2

S
)r�̂n+1/2

S
)k
⌘

 C(kr�̂n+1/2
S

kH2 + kr�̂n+1/2
S

kH2)2 · krên+1/2
S

kH1

 C((C⇤)2 + (Q(3))2)krên+1/2
S

kH1 , (4.25)

with the uniform in time H3 estimate (3.1) and the regularity assumption (4.2) recalled. Since
'
Ñn+1 2 P3K , we go back (4.23) and arrive at

kÑn+1/2
k2 = kÑn+1/2

S
k = k � r · (RN ('

Ñn+1/2)) +�ên+1/2
S

k

 3k'
Ñn+1/2kH1 + k�ên+1/2

S
k  C((C⇤)2 + (Q(3))2)krên+1/2

S
kH1 + krên+1/2

S
kH1

 C((C⇤)2 + (Q(3))2 + 1)krên+1/2
S

kH1

 C((C⇤)2 + (Q(3))2 + 1)k�ên+1/2
S

k

 C((C⇤)2 + (Q(3))2 + 1)k�N ên+1
k2, (4.26)
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in which the elliptic regularity, krên+1/2
S

kH1  Ck�ên+1/2
S

k, has been applied in the fourth step,

due to the fact that
R
⌦ rên+1/2

S
dx = 0, and the last step comes from the fact that ên+1/2

S
is the

spectral interpolation function of ên+1/2. This completes the proof of inequality (4.12), by setting
C̃4 = C((C⇤)2 + (Q(3))2 + 1).

The last inequality (4.13) is a direct consequence of the following estimates

k
�n+1

� �n

�t
k1  C⇤, by (4.2) , (4.27)

combined with the fact that k · k1 is a norm stronger than k · k2.

4.3 Proof of the convergence theorem

Now we proceed into the proof of Theorem 4.1.

Proof. Taking a discrete inner product of (4.8a) with e
n+1�e

n

�t
, with a repeated application of

summation by parts, we get

1

�t
hen+1

� en, LN (
3

4
en+1 +

1

4
en�1)i+ k

en+1
� en

�t
k
2
2

=� hNLE1 +NLE2 +NLE3 � ⌧n+1/2
�

),
en+1

� en

�t
i, (4.28)

NLE1 =
r̃n+1/2

q
E1,N (�̂n+1/2)

NN (�̂n+1/2),

NLE2 = �Bn+1/2Rn+1/2Ẽn+1/2
1 NN (�̂n+1/2), NLE3 =

Rn+1/2

q
E1,N (�̂n+1/2)

Ñn+1/2.

The temporal stencil term could be analyzed in the same manner as (2.42):

hLN (
3

4
en+1 +

1

4
en�1),�n+1

� �n
i

=
1

2
(kL

1
2
N
en+1

k
2
2 � kL

1
2
N
enk22) +

1

8
(kL

1
2
N
(en+1

� en)k22 � kL
1
2
N
(en � en�1)k22)

+
1

8
(kL

1
2
N
(en+1

� 2en + en�1)k22. (4.29)

A bound for the truncation error inner product term is standard:

h⌧n+1/2
�

,
en+1

� en

�t
i  k⌧n+1

�
k2 · k

en+1
� en

�t
k2  2k⌧n+1/2

�
k
2
2 +

1

8
k
en+1

� en

�t
k
2
2. (4.30)

The first nonlinear inner product term could be rewritten as follows:

�hNLE1,
en+1

� en

�t
)i = �h

r̃n+1

q
E1,N (�̂n+1/2)

NN (�̂n+1/2),
en+1

� en

�t
i. (4.31)
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For the second and third nonlinear inner product terms, we begin with the following estimates:

kNLE2k2 = kBn+1/2Rn+1/2Ẽn+1/2
1 NN (�̂n+1/2)k2

 |Bn+1/2
| · |Rn+1/2

| · |Ẽn+1/2
1 | · kNN (�̂n+1)k2


1

2
|⌦|�

3
2 · (C̃0 + 1)

1
2 · C̃2krN ên+1/2

k2 · C̃3

= C̃5krN ên+1/2
k2, with C̃5 =

1

2
C̃2C̃3(C̃0 + 1)

1
2 |⌦|�

3
2 , (4.32)

kNLE3k2 = kRn+1/2(E1,N (�̂n+1/2))�
1
2 Ñn+1/2

k2  |Rn+1/2
| · |⌦|�

1
2 · kÑn+1

k2

 (C̃0 + 1)
1
2 |⌦|�

1
2 · C̃4k�N ên+1/2

k2

= C̃6k�N ên+1/2
k2, with C̃6 = C̃4(C̃0 + 1)

1
2 |⌦|�

1
2 , (4.33)

in which the preliminary estimates (4.9)-(4.12) in Lemma 4.2 have been extensively applied in

the derivation. We also notice that the inequality |Rn+1
|, |Rn

|  (C̃0 + 1)
1
2 comes from the fact

that E(�(t))  E(�0) = C̃0 + hm, the pseudo-spectral approximation order, combined with the
inequalityE1,N (�k)  EN (�k). And also, the following estimate for kNLE1k2 is derived below,
which will be needed in the later analysis:

kNLE1k2 = kr̃n+1/2(E1,N (�̂n+1/2))�
1
2NN (�̂n+1/2)k2  |r̃n+1/2

| · |⌦|�
1
2 · kNN (�̂n+1/2)k2

 |⌦|�
1
2 · C̃3 · r̃

n+1/2 = C̃7r̃
n+1/2, with C̃7 = C̃3|⌦|

� 1
2 . (4.34)

As a consequence of (4.32), (4.33), the following inequalities are available:

�hNLE2 +NLE3,
en+1

� en

�t
)i

 (kNLE2k2 + kNLE3k2) · k
en+1

� en

�t
k2

 2(kNLE2k
2
2 + kNLE3k

2
2) +

1

4
k
en+1

� en

�t
k
2
2

 2(C̃2
5krN ên+1/2

k
2
2 + C̃2

6k�N ên+1/2
k
2
2) +

1

4
k
en+1

� en

�t
k
2
2

 C̃8k�N ên+1/2
k
2
2 +

1

4
k
en+1

� en

�t
k
2
2, C̃8 = 2(C̃2

5C
2
3 + C̃2

6 ), (4.35)

in which C3 corresponds to the elliptic regularity, krNfk2  C3k�Nfk2, an inequality similar
to (3.31). Therefore, a substitution of (4.29)-(4.31) and (4.35) into (4.28) yields

1

2�t
(kL

1
2
N
en+1

k
2
2 � kL

1
2
N
enk22) +

1

8
(kL

1
2
N
(en+1

� en)k22 � kL
1
2
N
(en � en�1)k22)

+
5

8
k
en+1

� en

�t
k
2
2  �h

r̃n+1/2

q
E1,N (�̂n+1/2)

NN (�̂n+1/2),
en+1

� en

�t
i

+C̃8k�N ên+1/2
k
2
2 + 2k⌧n+1

�
k
2
2. (4.36)

On the other hand, the original error evolutionary equation (4.8a) gives

en+1
� en

�t
= �(LN (

3

4
en+1 +

1

4
en�1) +NLE1 +NLE2 +NLE3 � ⌧n+1

�
). (4.37)
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In turn, an application of quadratic inequality implies that

k
en+1

� en

�t
k
2
2

�
1

2
kLN (

3

4
en+1 +

1

4
en�1)k22 � 2kNLE1 +NLE2 +NLE3 � ⌧n+1

�
k
2
2

�
1

2
kLN (

3

4
en+1 +

1

4
en�1)k22 � 4(kNLE1 +NLE2 +NLE3k

2
2 + k⌧n+1

�
k
2
2)

�
1

2
kLN (

3

4
en+1 +

1

4
en�1)k22 � 12(kNLE1k

2
2 + kNLE2k

2
2 + kNLE3k

2
2)� 4k⌧n+1

�
k
2
2

�
1

2
kLN (

3

4
en+1 +

1

4
en�1)k22 � 12(C̃2

7 (r̃
n+1/2)2 + (C̃2

5C
2
3 + C̃2

6 )k�N ên+1/2
k
2
2)� 4k⌧n+1

�
k
2
2,

(4.38)

with the estimates (4.32)-(4.34) recalled. Going back (4.36), we arrive at

1

2�t
(kL

1
2
N
en+1

k
2
2 � kL

1
2
N
enk22) +

1

8
(kL

1
2
N
(en+1

� en)k22 � kL
1
2
N
(en � en�1)k22)

+
5

16
kLN (

3

4
en+1 +

1

4
en�1)k22 + h

r̃n+1/2

q
E1,N (�̂n+1/2)

NN (�̂n+1/2),
en+1

� en

�t
i

 12C̃2
7 (r̃

n+1/2)2 + 7C̃8k�N ên+1/2
k
2
2 + 6k⌧n+1/2

�
k
2
2. (4.39)

Taking a discrete inner product of (4.8b) with 2r̃n+1/2 = r̃n+1 + r̃n gives

1

�t
(|r̃n+1

|
2
� |r̃n|2) =

r̃n+1/2

q
E1,N (�̂n+1/2)

hNN (�̂n+1/2),
en+1

� en

�t
i

+
r̃n+1/2

q
E1,N (�̂n+1/2)

hÑn+1/2,
�n+1

� �n

�t
i

�Bn+1/2Ẽn+1/2
1 r̃n+1/2

hNN (�̂n+1/2),
�n+1

� �n

�t
i+ 2⌧n+1/2

r · r̃n+1/2. (4.40)

The inner product associated with the truncation error could be controlled via Cauchy inequality:

2⌧n+1/2
r · r̃n+1/2

 |⌧n+1/2
r |

2 + |r̃n+1/2
|
2. (4.41)

The first nonlinear inner product on the right hand side is kept. The second and third nonlinear
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inner product terms could be analyzed as follows
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(4.42)
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(4.43)

with repeated application of the preliminary estimates (4.9)-(4.13) in Lemma 4.2. Subsequently, a
substitution of (4.41)-(4.43) into (4.40) yields
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Finally, a combination of (4.39) and (4.44) results in
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with C̃11 = 12(C̃2
7 + C̃2

9 + C̃2
10) + 1, C̃12 = 7C̃8 +

C̃9+C̃10
2 . In particular, we notice that the first

nonlinear error inner product terms have been cancelled; this subtle fact has played a crucial role
in the analysis. In addition, the following inequality is observed:
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in which we have used the fact that k�Nfk2 = "�1
kL

1
2
N
fk2. Going back (4.45), we arrive at
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with H
n+1 :=

1
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Therefore, with an application of discrete Gronwall inequality, and making use of the fact that
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r |  C(�t2 + hm), we arrive at
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with Ĉ independent on �t and h. Meanwhile, the following summation estimate is available:
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In turn, the desired convergence estimate is available
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1
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in which the equality, kL
1
2
N
en+1

k2 = "k�Nen+1
k2, has been recalled. This completes the proof of

Theorem 4.1.

Remark 4.3. In an earlier error analysis work [44] for the SAV scheme applied to the Cahn-
Hilliard flow, a linear refinement requirement for the time step size, �t  Ch, has to be imposed
for the convergence estimate, since an inverse inequality has to be applied in the error estimate in
the energy norm. In contrast, we have derived a higher order H3 bound for the numerical solution,
which in turn leads to an unconditional convergence estimate (no scaling law constraint between �t
and h) for the SAV scheme applied to the SS equation.

Remark 4.4. As can be seen in the proof of Lemma 4.2, the uniform in time H3 estimate (3.1)
(for the numerical solution) plays an essential role in the derivation of the preliminary inequali-
ties (4.11), (4.12). These two inequalities turn out to be very useful in the optimal rate conver-
gence analysis for the proposed SAV scheme, since the error estimate has to be carried out in the
`1(0, T ;H2

N
)\`2(0, T ;H4

N
) norm. Instead, if the standard Crank-Nicolson approximation is applied

to the surface di↵usion term, such a uniform in time H3 estimate is not theoretically available, as
argued in Remark 3.3. As a result, the convergence analysis and error estimate for the standard
Crank-Nicolson would not be theoretically established.

Remark 4.5. For the NSS equation (1.5) with the physical energy (1.4), the corresponding SAV
scheme could be similar derived and analyzed. For example, the following inequality turns out to be
valid, with an application of elliptic regularity:

Z

⌦
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4
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⌘
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The corresponding SAV scheme could be designed by this energy decomposition, using similar ideas.
The modified energy stability, uniform in time H3 estimate for the numerical solution, and the
optimal rate convergence analysis could be derived in a similar manner. This work will be left to
the future works.

Remark 4.6. Other than the Crank-Nicolson method, some alternate second order temporal ap-
proximation, such as the second order BDF scheme, could be applied to the SAV scheme. In a
recent work [59], a second order accurate SAV-BDF2 scheme has been successfully applied to the
square phase field crystal (SPFC) model, in which the energy stability and optimal rate convergence
analysis have been theoretically established. An application of the BDF2 temporal discretization to
the SAV formulation (2.24) of the SS equation is expected to be feasible, with all the theoretical
results available. The technical details are left to interested readers.

5 Numerical results

In this section we present some numerical simulation results to demonstrate the stability and
accuracy of the proposed scheme (2.25).

5.1 Convergence tests

We test the temporal convergence rate of the numerical scheme (2.25). The exact solution is taken
as

�(x, y, t) =
⇣sin(2x) cos(2y)

4
+ 0.48

⌘⇣
1�

sin2(t)

2

⌘
. (5.1)

The computational domain is given by (0, 2⇡)2, and interface width is set as "2 = 0.1. We use 1282

Fourier modes in space. From Figure 1, the second order temporal convergence order has been
clearly observed for the numerical scheme (2.25).

Figure 1: Convergence rate of SAV scheme (2.25) in time. The numerical error data is parallel to
the curve of �t2.
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Figure 2: The isolines of the numerical solutions of the height function � and its Laplacian �� for
the model with slope selection with random initial data. For each subfigure, the left is � and the
right is ��. Snapshots are taken at t = 0, 2, 20, 40, 60, 100, respectively.

5.2 The coarsening dynamics

In this subsection, we provide the coarsening process numerical simulation results for the MBE
model (1.3) with slope selection. A random initial data is taken, varying from �0.001 to 0.001.
The physical parameters are set as

" = 0.03, M = 1. (5.2)

The computational domain is given by ⌦ = (0, 12.8)2, and we use 1282 Fourier modes so that
the numerical errors from the spatial discretization are negligibly small , in comparison with the
temporal discretization error. The snapshot plots of the physical variable at a sequence of time in-
stants, at t = 0, 20, 40, 60, 100, computed by the numerical scheme (2.25), are displayed in Figure 2.
In addition, the time evolutions of the energy, as well as the roughness growth, are displayed in
Figure 3. A very nice agreement with the scaling laws, as given by t�

1
3 and t

1
3 , respectively [36], is

observed.

6 Concluding remarks

In this article, we have analyzed a scalar auxiliary variable (SAV)-based numerical scheme for slope-
selection (SS) equation of the epitaxial thin film growth model, with Fourier pseudo-spectral spatial
approximation. In particular, the standard Crank-Nicolson approximation to the surface di↵usion
term is replaced by a modified version, with 3/4 and 1/4 coe�cient distribution at time steps tn+1,
tn�1, respectively. With an application of this approximation to the second order SAV scheme for
the SS equation, a modified energy stability is proved, so that a uniformH2 bound for the numerical
solution (of the phase variable) is available. In addition, a higher order H3 estimate has also been
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Figure 3: Dynamics of energy and roughness with respect to time. The energy evolution is parallel
to the t�

1
3 curve, while the roughness evolution is paralle to the t

1
3 curve.

derived, with the help of various discrete Sobolev inequality in the Fourier pseudo-spectral space.
With such an H3 bound at hand, we have derived an optimal rate (O(�t2 + hm)) convergence
analysis for the numerical scheme in the energy norm, i.e., in the `1(0, T ;H2

N
) \ `2(0, T ;H4

N
)

norm. In particular, the aliasing error control techniques have to be applied in the nonlinear error
estimate associated with the 4-Laplacian term. A few numerical experiments are also presented,
which confirm the e�ciency and accuracy of the proposed scheme.
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