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ABSTRACT

In this paper, we show that the process of continually learning new tasks and memorizing previous
tasks introduces unknown privacy risks and challenges to bound the privacy loss. Based upon this,
we introduce a formal definition of Lifelong DP, in which the participation of any data tuples in the
training set of any tasks is protected, under a consistently bounded DP protection, given a growing
stream of tasks. A consistently bounded DP means having only one fixed value of the DP privacy
budget, regardless of the number of tasks. To preserve Lifelong DP, we propose a scalable and
heterogeneous algorithm, called L2ZDP-ML with a streaming batch training, to efficiently train and
continue releasing new versions of an L2M model, given the heterogeneity in terms of data sizes and
the training order of tasks, without affecting DP protection of the private training set. An end-to-end
theoretical analysis and thorough evaluations show that our mechanism is significantly better than
baseline approaches in preserving Lifelong DP. The implementation of L2DP-ML is available at:
https://github.com/haiphanNJIT/PrivateDeeplLearning.

1 INTRODUCTION

Lifelong learning (L2M) is crucial for machine learning (ML) to acquire new skills through continual learning, pushing
ML toward a more human learning in reality. Given a stream of different tasks and data, a deep neural network (DNN)
can quickly learn a new task, by leveraging the acquired knowledge after learning previous tasks, under constraints in
terms of the amount of computing and memory required (Chaudhry et al., 2019). As a result, it is quite challenging
to train an L2M model with a high utility. Orthogonal to this, L2M models are vulnerable to adversarial attacks, i.e.,
privacy model attacks (Shokri et al., 2017; Fredrikson et al., 2015; Wang et al., 2015; Papernot et al., 2016), when
DNNs are trained on highly sensitive data, e.g., clinical records (Choi et al., 2017; Miotto et al., 2016), user profiles
(Roumia & Steinhubl, 2014; Wu et al., 2010), and medical images (Plis et al., 2014; Helmstaedter et al., 2013).

In practice, the privacy risk will be more significant since an adversary can observe multiple versions of an L2M model
released after training on each task. Different versions of the model parameters can be considered as an additional
information leakage, compared with a model trained on a single task (Theorem 1). Memorizing previous tasks while
learning new tasks further exposes private information in the training set, by continuously accessing the data from the
previously learned tasks (i.e., data stored in an episodic memory (Chaudhry et al., 2019; Riemer et al., 2019; Tao et al.,
2020)); or accessing adversarial examples produced from generative memories to imitate real examples of past tasks
(Shin et al., 2017; Wu et al., 2018; Ostapenko et al., 2019). Unfortunately, there is a lack of study offering privacy
protection to the training data in L2M.

Our Contributions. To address this problem, we propose to preserve differential privacy (DP) (Dwork et al., 2006),
a rigorous formulation of privacy in probabilistic terms, in L2M. We introduce a new definition of lifelong differential
privacy (Lifelong DP), in which the participation of any data tuple in any tasks is protected under a consistently
bounded DP guarantee, given the released parameters in both learning new tasks and memorizing previous tasks
(Definition 3). This is significant by allowing us to train and release new versions of an L2M model, given a stream of
tasks and data, under DP protection.
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Based upon this, we propose a novel L2ZDP-ML algorithm to preserve Lifelong DP. In L2DP-ML, privacy-preserving
noise is injected into inputs and hidden layers to achieve DP in learning private model parameters in each task (Alg.
1). Then, we configure the episodic memory as a stream of fixed and disjoint batches of data, to efficiently achieve
Lifelong DP (Theorem 2). The previous task memorizing constraint is solved, by inheriting the recipe of the well-
known A-gem algorithm (Chaudhry et al., 2019), under Lifelong DP. To our knowledge, our study establishes a formal
connection between DP preservation and L2M given a growing number of learning tasks compared with existing works
(Farquhar & Gal, 2018; Phan et al., 2019a). Rigorous experiments, conducted on permuted MNIST (Kirkpatrick et al.,
2017), permuted CIFAR-10 datasets, and an L2M task on our collected dataset for human activity recognition in the
wild show promising results in preserving DP in L2M.

2 BACKGROUND

Let us first revisit L2M with A-gem and DP. In L2M, we learn a sequence of tasks T = {#1, ..., ,, } one by one, such
that the learning of each new task will not forget the models learned for the previous tasks. Let D; be the dataset of
the i-th task. Each tuple contains data € [—1,1]¢ and a ground-truth label y € Zg, which is a one-hot vector of
K categorical outcomes y = {y1,...,yx . A single true class label y, € y given z is assigned to only one of the
K categories. All the training sets D, are non-overlapping; that is, an arbitrary input (x, y) belongs to only one D;,
ie, 3l € [1,m]: (z,y) € D; (x € D; for simplicity). On input = and parameters 6, a model outputs class scores
f : R4 — RE that map inputs « to a vector of scores f(z) = {f1(),..., fx(z)} st. Vk € [I, K] : fx(x) € [0,1]
and Zkl,(zl fr(z) = 1. The class with the highest score is selected as the predicted label for z, denoted as y(z) =
maxger fr(2). A loss function L(f(6,x),y) presents the penalty for mismatching between the predicted values
f(6, z) and original values y.

Lifelong Learning. Given the current task 7 (< m), let us denote T, = {¢1,...,t,_1} is a set of tasks that have been
learnt. Although there are different L2M settings, i.e., episodic memory (Rebuffi et al., 2017; Lopez-Paz & Ranzato,
2017; Riemer et al., 2019; Abati et al., 2020; Tao et al., 2020; Rajasegaran et al., 2020; Ebrahimi et al., 2020) and
generative memory (Shin et al., 2017; Wu et al., 2018; Ostapenko et al., 2019), we leverage one of the state-of-the-art
algorithms, i.e., A-gem (Chaudhry et al., 2019), to demonstrate our privacy-preserving mechanism, without loss of
the generality of our study. A-gem avoids catastrophic forgetting by storing an episodic memory M; for each task
t; € T,. When minimizing the loss on the current task 7, a typical approach is to treat the losses on the episodic
memories of tasks ¢ < T, given by L(f(0, M;)) = Wll > wenr, L(f(0,7),y), as inequality constraints. In A-gem,
the L2M objective function is:

0" = argmainL(f(a,DT)) st. L(f(07,M,)) < L(f(67 ', M,)) (1)

where 71 are the values of model parameters 6 learned after training the task ¢, _1, M, = U;,M; is the episodic
memory with M; = 0, L(f(07*,M,)) = Z:;ll L(f(07*,M;))/(r —1). Eq. 1 indicates that learning 67
given the task 7 will not forget previously learned tasks {t1,...,t,_1} enforced by the memory replaying constraint

L(f(67,M,)) < L(f(67~1,M,)).

At each training step, A-gem (Chaudhry et al., 2019) has access to only D, and M- to compute the projected gradient
g (i.e., by addressing the constraint in Eq. 1), as follows:

g=9-— 5 Yref 2
where g is the updated gradient computed on a batch sampled from D, g,y is an episodic gradient computed on a
batch sampled from M, and g is used to update the model parameters 6 in Eq. 1.
Differential Privacy (DP). DP guarantees that the released statistical results, computed from the underlying sensitive
data, is insensitive to the presence or absence of one tuple in a dataset. Let us briefly revisit the definition of DP, as:
Definition 1 (¢,6)-DP (Dwork et al., 2006). A randomized algorithm A is (e,0)-DP, if for any two neighboring
databases D and D’ differing at most one tuple, and VO C Range(A), we have:
Pr[A(D) = 0] <e‘PrlA(D')=0]+6 3)
where € controls the amount by which the distributions induced by D and D’ may differ, and ¢ is a broken probability.

A smaller € enforces a stronger privacy guarantee.

DP has been preserved in many ML models and tasks (Abadi et al., 2017; Phan et al., 2019b; Papernot et al., 2018).
However, existing mechanisms have not been designed to preserve DP in L2M under a fixed and consistently bounded
privacy budget given a growing stream of learning tasks. That differs from our goal in this study.
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3 PRIVACY RISK AND LIFELONG DP

In this section, we focus on analyzing the unknown privacy risk in L2M and introduce a new concept of Lifelong DP.

Privacy Risk Analysis. One benefit of L2M is that end-users can use an L2M model after training each task T,
instead of waiting for the model to be trained on all the tasks. Thus, in practice, the adversary can observe the model
parameters 61, ..., 0™ after training each task ¢1,...,t,,. Note that the adversary does not observe any information
about the (black-box) training algorithm. Another key property in an L2M model is the episodic memory, which is
kept to be read at each training step incurring privacy leakage. Therefore, the training data D and episodic memory
M need to be protected together across tasks. Finally, in L2M, at each training step for any task ¢; (¢ € [1,m]), we
only have access to D; and M;, without a complete view of the cumulative dataset of all the tasks U;c[q ) D; and
M, = Uig[1,m—1]M;. This is different from the traditional definition of a database in both DP (Def. 1) and in a model
trained on a single task. To cope with this, we propose a new definition of lifelong neighboring databases, as follows:

Definition 2 Lifelong Neighboring Databases. Given any two lifelong databases data,, = {D, M} and data/,,
{D',M'}, where D = {D1,...,Dp,}, D' ={D},...,D,.}, M ={My,...,.M,}, M ={Mj,...,M/ } M; =

Ujen,i—11Mj, and M} = Ujcp ;1) M. data,, and data!, are called lifelong neighboring databases if, Vi € [1,m]:
(1) D, and D, differ at most one tuple; and (2) M; and M| differ at most one tuple.

A Naive Mechanism. To preserve DP in L2M, one can employ the moments accountant (Abadi et al., 2016) to train
the model f by injecting Gaussian noise into clipped gradients g and g,y (Eq. 2), with privacy budgets ep, and ey
on each dataset D, and on the episodic memory M, and a gradient clipping bound C. The post-processing property
in DP (Dwork et al., 2014) can be applied to guarantee that g, computed from the perturbed g and g,.. ¢, is also DP.

Let us denote this mechanism as A, and denote A, as A applied on the task 7. A naive approach (Desai et al., 2021)
is to repeatedly apply A on the sequence of tasks T. Since training data is non-overlapping among tasks, the parallel
composition property in DP (Dwork & Lei, 2009) can be applied to estimate the total privacy budget consumed across
all the tasks, as follows:

Pr[A(data,) = {0'}ic(1,m)] < e“Pr[A(data),) = {0 }ici1,m)] + 6 4)
where € = max;e(1 m](€p, + €, ), and Vi, j € [1,m] : § is the same for ep, and ey, .

A(data,,) indicates that the model is trained from scratch with the mechanism A, given randomly initiated parameters
89, ie., A(QO, data,,). Intuitively, we can achieve the traditional DP guarantee in L2M, as the participation of a
particular data tuple in each dataset D is protected under the released (¢, 6)-DP {6" };c[1,,,,. However, this approach
introduces unknown privacy risks in each task and in the whole training process, as discussed next.

Observing the intermediate parameters {#°};, turns the mechanism A, into a list of adaptive DP mechanisms
Ay, ..., A; sequentially applied on tasks t1,...,t,, where A; : (H;; R;) x D; — R;. This is an instance of
adaptive composition, which we can model by using the output of all the previous mechanisms {6}, as the auxil-
iary input of the A, mechanism. Thus, given an outcome 7, the privacy loss ¢(-) at 87 can be measured as follows:

Pr{A.({0%}i<,,data,) = 07]
PrlA.({0%}i<,,data]) = 07]

c(07; Ar, {0"} ., data,, datal ) = log 5)

The privacy loss is accumulated across tasks, as follows:
Theorem 1 V7 > 1:c(07; A;,{0"},<,,data,,data]) = > 7_, c(0%; A;,{07},<,, data;, data)).

As aresult of the Theorem 1, the privacy budget at each task 7 cannot be simply bounded by max,¢(1 m)(€p, +€m, ),
given 0 (Eq. 4). This problem might be addressed by replacing the max function in Eq. 4 with a summation function:
e=3y e[t,m] (ep, + e, ), to compute the upper bound of the privacy budget for an entire of the continual learning
process. To optimize this naive approach, one can adapt the management policy (Lécuyer et al., 2019) to redistribute
the privacy budget across tasks while limiting the total privacy budget € to be smaller than a predefined upper bound,
that is, the training will be terminated when € reaches the predefined upper bound.

However, the challenge in bounding the privacy risk is still the same, centering around the growing number of tasks m
and the heterogeneity among tasks: (1) The larger the number of tasks, the larger the privacy budget will be consumed
by the ) function. It is hard to identify an upper bound privacy budget given an unlimited number of streaming
tasks in L2M; (2) Different tasks may require different numbers of training steps due to the difference in terms of the
number of tuples in each task; thus, affecting the privacy budget ¢; and (3) The order of training tasks also affect the
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privacy budget, since computing g,.s by using data in the episodic memory from one task may be more than other
tasks. Therefore, bounding the DP budget in L2M is non-trivial.

Lifelong DP. To address these challenges, we propose a new definition of e-Lifelong DP to guarantee that an adversary
cannot infer whether a data tuple is in the lifelong training dataset data,,, given the released parameters {ei}ie[l,m]
learned from a growing stream of an infinite number of new tasks, denoted Vm € [1, c0), under a consistently bounded
DP budget € (Eq. 6). A consistently bounded DP means having only one fixed value of ¢, regardless of the number of
tasks m. In other words, it does not exist an i < m and an €’ < ¢, such that releasing {67 } je[1,q given training dataset
data; is €’-DP (Eq. 7). A consistently bounded DP is significant by enabling us to keep training and releasing an L2M
model without intensifying the end-to-end privacy budget consumption. Lifelong DP can be formulated as follows:

Definition 3 e-Lifelong DP. Given a lifelong database data,,, a randomized algorithm A achieves e-Lifelong DP, if
for any of two lifelong neighboring databases (data,,, datay,,), for all possible outputs {0'};c(1,,) € Range(A),

VYm € [1, 00) we have that
P[A(data,,) = {0"}icp,m)] < efP[A(data’m) = {9 Ve m] (6)
B¢’ < ei <m): P[A(data;) = {0/} ;1] < e P[A(data)) = {67} ;11,4 (7

where Range(A) denotes every possible output of A.

In our Lifelong DP definition, the episodic memory (data) M can be an empty set (} in the definition of lifelong
neighboring databases (Def. 2) given L2M mechanisms that do not need to access M (Yoon et al., 2020; Ye & Bors,
2020; Maschler et al., 2021; Qu et al., 2021; He & Zhu, 2022).

To preserve Lifelong DP, we need to address the following problems: (1) The privacy loss accumulation across tasks;
(2) The overlapping between the episodic memory M and the training data D; and (3) The data sampling process
for computing the episodic gradient g,y given the growing episodic memory M. The root cause issue of these
problems is that in an L2M model, the episodic memory M, which accumulatively stores data from all of the previous
tasks, is read at each training step. Thus, using the moments account to preserve Lifelong DP will cause the privacy
budget accumulated, resulting in a loose privacy protection given a large number of tasks or training steps. Therefore,
designing a mechanism to preserve Lifelong DP under a tight privacy budget is non-trivial and an open problem.

Algorithm 1 L2DP-ML Algorithm
Input: €1, e2, T={t: }ic[1,m], {Di}ie[1,m] _
Output: (e1 + €1/vx + €1/ + €2)-Lifelong DP parameters {6"}ic(1,m] =
{01,032} ic(1,m)
1: Draw Noise x1 <
[Lap(Z5)]™!
2: Randomly Initialize: 0° = {09,053}, My = 0,Vr € T : D, = {Z, +
Tr + 35 }o e, hidden layers {hy + 2,..., hx}

A~ A~
[Lap(ZR))%, X2 + [Lap(ZE))%, x5

Figure 1: Network design of L2DP-ML.

Projected gradient

3: forre[l,m]d0 ~ 97 Grer
4:  if 7 ==1then L Updated (979 g —Irer
5: g+ {Ve, R 5 (07~ N, Vo, L5 (05~ 1Y} with the noise ‘ | ® | gradient ref9ref
6: else L BECCEEEESEECEEEE i Episodic
7: M; + M,_1 U{D--1} gradient
8: Randomly Pick a dataset Dyey € M- }
9: g+ {Vo,Rp_(67"),Vo,Lp_(07~1)} with the noise o --- -
10: Jref {Vgl B, f(@T 1), Vo, L5 Doy (6571} with the noise
o] o Figure 2: Gradient update in L2DP-ML. The

1 ~ 9 gref updated gradient g is computed by 1) gy

‘ 997 5r orer I7eS computed from a randomly picked dataset
12:  Descent: {67,037} < {677',077'} — 0§ # learning rate o (yellow box) in the episodic memory and 2)
13:  Release: {67,037} g of the current task.

4 PRESERVING LIFELONG DP

To overcome the aforementioned issues, our idea is designing a L2M mechanism such that the privacy budget will not
accumulate across training steps while memorizing previously learned tasks. More precisely, we design our network



Published at 1st Conference on Lifelong Learning Agents, 2022

as a multi-layer neural network stacked on top of a feature representation learning model. Then, we propose a new
Laplace mechanism-based Lifelong DP algorithm, called L2ZDP-ML (Alg. 1), in computing the gradients g, g,.y,
and g. Finally, to overcome expensive computation cost and heterogeneity among tasks, we develop a scalable and
heterogeneous algorithm through a streaming batch training (Alg. 2), to efficiently learn Lifelong DP parameters
(Theorem 2).

Network Design. In our Alg. 1 and Fig. 1, a DNN is designed as a stack of an auto-encoder for feature representation
learning and a typical multi-layer neural network, as follows: f(z) = G(a(x,61),02) where a(-) is the auto-encoder
and G(-) is the multi-layer neural network. The auto-encoder a(-) takes x as an input with model parameters 61;
meanwhile, the multi-layer neural network G(-) takes the output of the auto-encoder a(-) as its input with model
parameters f5 and returns the class scores f(z).

This network design allows us to: (1) Tighten the sensitivity of our model, since it is easy to train the auto-encoder
using less sensitive objective functions, given its small sizes; (2) Reduce the privacy budget consumption, since the
computations of the multi-layer neural network is DP when the output of the auto-encoder is DP; and (3) Provide a
better re-usability, given that the auto-encoder can be reused and shared for different predictive models.

Given a dataset D, the objective functions of the auto-encoder and the multi-layer neural network can be the classical
cross-entropy error functions for data reconstruction at the input layer and for classification at the output layer, denoted
Rp.(01) and Lp, (02) respectively. Without loss of generality, we define the data reconstruction function R p_(6;)
and the classification function Lp_(62) as follows:

Z zd: {xm log(1 + e_e“h’")} + Z zd: {(1 — xps) log(1 + eelsh"')] )]

z,€D, s=1 z,€D, s=1
K T T
== 3> [uklog(l 4+ e W) 4 (1 ) log(1+ eV 9)
z,.€ED, k=1

where the transformation of x, is h, = 6] z,., the hidden layer h; of a(x,6;) given D, ishyp_ = {0 2, }s. D,
Zr = 01 h, is the reconstruction of z,., and h,,. computed from the z, through the network with W is the parameter
at the last hidden layer h.

Our L2M objective function is defined as:
{67,05} = arg (gnian[RDT (01) + Lp. (02)] st Ru (07) < R, (07 1) and Ly, (05) < L. (6571)  (10)

where {61, 2} are the model parameters; while, {67, 07} are the values of {6, 6} after learning task 7.

At each training step on the current task 7, to update the model parameters {67, 67} minimizing Eq. 10, we need to
compute the gradients g and g,.. ¢, and then follow Eq. 2 to compute the projected gradient g for the model parameters
{67,067} (Fig. 2). Given the projected g, we can update {67, 07} by applying typical descent operation, as follows.

Gradient Update g. To compute the gradient g for {67,637} on the current task 7, we first derive polynomial forms
of Rp_(61) and Lp_(605), by applying the 1st and 2nd orders of Taylor Expansion (Arfken, 1985) as follows:

Rp,(61) = > 2[919 — po) (11)

€D, 5=1
K K

Lp.(62) = > > [beeWak = (e Wapdym| = >0 >0 [%|hmwﬂk|+é(hmwﬂk)2} (12)
k=1xz,.€D- k=1z,.€D-

To preserve €1-DP in learning 6, we leverage Functional Mechanism (Zhang et al., 2012) to inject a Laplace noise

into polynomial coefficients of the function R D, (01), which are the input = and the first transformation h;. Laplace
mechanism (Dwork et al., 2014) is well-known in perturbing objective functions to prevent privacy budget accumula-
tion in training ML models (Phan et al., 2017a;b; 2020). As in (Phan et al., 2020), the global sensitivity Aﬁ is bounded

as follows: Az < d(|hy|+2), with [hy| is the number of neurons in h;. The perturbed R function becomes:

R, (61) Z [Z (501hr) = T (13)
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where 7, = x, + ﬁLap(Af), hy = 0] Ty, by = hy +
is a privacy budget.

‘DZT‘ Lap(i‘—f), T, = 01h,, h, is clipped to [—1,1], and ¢;

Importantly, the perturbation of each example z turns the original data D, into a (€1 /7y )-DP dataset D, = {Z, }» ep,
with 7 = Az /|D;| by following Lemma 2 in (Phan et al., 2020) (Alg. 1, line 2). Based upon that, all the compu-

tations on top of the (e /v« )-DP dataset D, including k., h,., T, and the computation of gradients g of the model
parameters 0 are shown to be (e1/7x) -DP without accessing any additional information from the original data D,
ie, Vs € [1,d] : Vg, Rp (61) = 57%(55671(91) = Yk, (L — %,,). This follows the post-processing property
of DP (Dwork et al., 2014). Consequently, the total privacy budget used to perturb R is (e1 + €1/7x), by having

o (EB* (91)) x (B,T> < (€1 + €1/7x)- Details are available in our proof of Theorem 2, Appx. B.
Pr(Rﬁ,T(el)) pPr(D.)

A similar approach is applied to perturb the objective function L p. (62) at the output layer with a privacy budget e.
The perturbed function of L is denoted as Zﬁf (62). Asin Lemma 3 (Phan et al., 2020), the output of the auto-encoder,
28
_ D 11161111
and ||01||1,1 is the maximum 1-norm of 6;’s columns'. As a result, the computations of all the hidden layers of the
multi-layer neural network G(-) that takes the output of the auto-encoder Elﬁ, as its input, is (€1 /7)-DP, since 5157

is (e1/v)-DP, following the post-processing property of DP (Dwork et al., 2014) (Alg. 1, line 2).

which is the perturbed transformation h,; = {51—@ + %Lap(é—f)}fr D, 18 (€1/7)-DP, given v =

That helps us to (1) avoid extra privacy budget consumption in computing the multi-layer neural network G(): (@)
tighten the sensitivity of the function 55, (e, Az < 2|h,|); and (3) achieve DP gradient update for 6. The total

privacy budget used to perturb £ is (e1 /v + €3), i.e., Pr (ZBT (62))/Pr(Ly (62)) < (e1/7 + €2). Consequently, the

total privacy budget in computing the gradient updates g, i.e., {v(hﬁﬁf 0771, Vo, Zﬁf (03~ 1)}, for the current task
7is (€1 + €1/vx + €1/ + €2)-DP (Alg. 1, lines 5 and 10).

Episodic and Projected Gradients g,.; and g. Now, we are ready to present our approach in achieving Lifelong
DP, by configuring the episodic memory at the current task 7 (i.e., M;) as a fixed and disjoint set of datasets from
previous tasks, i.e., M, = {D1,...,D,_1} (Alg. 1, line 7); such that, at each training step, the computation of
episodic gradients g, for the model parameters {61, 62} using a randomly picked dataset D, € M (Alg. 1, lines
8 and 11),is (€1 + €1/« + €1/ + €2)-DP, without incurring any additional privacy budget consumption for the dataset
D,.c. The projected gradients g is computed from g and g, (Eq. 2) is also (€1 + €1 /vx + €1/7 + €2)-DP, following
the post-processing property of DP (Dwork et al., 2014).

Hence, we reformulate the L2M objective function in Eq. 10, as follows:
{67,605} = arg min[Ros, (01) + L (62)] st Rua (67) < Rua, (07", Lo, (603) < Lns, (657
1,02
where M, = {D1,...,D,_1} (14)

By using the perturbed functions R and £, the constrained optimization of Eq. 14 can be addressed similarly to Eq. 2,
when the projected gradient g is computed as: § = g — (¢ gres)/ (g, 3re #)9res, Where g is the gradient update on

the current task 7, and g,y is computed using a dataset D, ¢ randomly selected from the episodic memory M.

Lifelong DP Guarantee. Given the aforementioned network f(x) as the stack of the auto-encoder and the multi-
layer neural network, and privacy budgets €; and €5, the total Lifelong DP privacy consumption in learning the model
parameters {61, 6>} at each task is computed in Theorem 2.

Theorem 2 Alg. I achieves (e1 + €1/7x + €1/7 + €2)-Lifelong DP in learning {03, 05} ;c(1 m)-

Theorem 2 shows that Alg. 1 achieves e-Lifelong DP in learning the model parameters at each task {6¢, Gé}ie[Lm],
where € = (€1 + €1/7x + €1/7 + €2). There are three key properties in the proof of Theorem 2 (Appx. B):

(1) For every input z in the whole training set D = {D;};c[1,mm], @ is included in one and only one dataset, denoted
D, € D (Eq. 17). Hence, the DP guarantee to x in D is equivalent to the DP guarantee to 2 in D, (Eqs. 19 and 20).

1
https://en.wikipedia.org/wiki/Operator_norm
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(2) If we randomly sample tuples from the episodic memory to compute the episodic gradients gy, the sampling
set and its neighboring set can have at most i — 1 different tuples (i € [1,m]), since each D; and its neighboring
dataset ﬁ; can have at most 1 different tuple. In addition, a random sampling set of tuples in the episodic memory
can overlap with more than one datasets D;, which is used to compute the gradient g. Importantly, different sampling
sets from the episodic memory can overlap each other; thus, a simple data tuple potentially is used in multiple DP-
preserving objective functions using these overlapping sets to compute the episodic gradients g..y. These issues
introduce additional privacy risk by following the group privacy theory and overlapping datasets in DP. We address
this problem, by having the episodic memory as a fixed and disjoint set of datasets across T training tasks (Eq. 18).
As a result, we can prevent the additional privacy leakage, caused by: (i) Differing at most ¢ — 1 tuples between
neighboring M; and M, for all ¢ € (1, m]; and (ii) Generating new and overlapping sets of data samples for computing
the episodic gradient (which are considered overlapping datasets in the parlance of DP) in the typical training. Thus,
the optimization on one task does not affect the DP protection of any other tasks, even the objective function given one
task can be different from the objective function given other tasks (Eq. 21).

(3) Together with the results achieved in (1) and (2), by having one and only one privacy budget for every task, we can
achieve Egs. 6 and 7 in Lifelong DP (Def. 3). We present these steps in Eqs. 27 and 29.

5 SCALABLE AND HETEROGENEOUS TRAINING

Although computing the gradients given the whole dataset D, achieves Lifelong DP, it has some shortcomings: (1)
consumes a large computational memory to store the episodic memory; (2) computational efficiency is low, since we
need to use the whole dataset D and D,y to compute the gradient update and the episodic gradient at each step; This
results in a slow convergence speed and poor utility.

Scalability. To address this, we propose a streaming batch training (Alg. 2, Appx. C), in which a batch of data is used
to train the model at each training step, by the following steps.

(1) Slitting the private training data D, (V7 € T) into disjoint and fixed batches (Alg. 2, line 4).

(2) Using a single draw of Laplace noise across batches (Alg. 2, lines 1-2). That prevents additional privacy leakage,
caused by: (i) Generating multiple draws of noise (i.e., equivalent to applying one DP-preserving mechanism multiple
times on the same dataset); (ii) Generating new and overlapping batches (which are considered overlapping datasets
in the parlance of DP); and (iii) More importantly, for any example z, x is included in only one batch. Hence, each
disjoint batch of data in Alg. 2 can be considered as a separate dataset in Alg. 1.

(3) For each task, we randomly select a batch to place in the episodic memory (Alg. 2, line 17).

(4) At each training step, a batch from the current task is used to compute the gradient g, and a batch randomly
selected from the episodic memory is used to compute the episodic gradient g,y (Alg. 2, lines 11-14). Thus, Alg. 2
still preserves (€1 + €1 /7vx + €1/ + €2)-Lifelong DP (Theorem 2).

By doing so, we significantly reduce the computational complexity and memory consumption, since only a small batch
of data from each task is stored in the episodic memory.

Heterogeneity. Based upon this, our algorithm can be applied to address the heterogeneity in terms of data sizes
among tasks, which differs from multi-modal tasks (Liu et al., 2019). We can train one task with multiple epochs,
without affecting the Lifelong DP protection in Alg. 2, by 1) keeping all the batches fixed among epochs, and 2) at the
end of training each task, we randomly select a batch of that task to place in the episodic memory. The order of the task
does not affect the Lifelong DP, since the privacy budget is not accumulated across tasks. These distinct properties
enable us to customize our training, by having different numbers of training epochs for different tasks and having
different training orders of tasks. Tasks with smaller numbers of data tuples can have larger numbers of training
epochs. This helps us to achieve better model utility under the same privacy protection as shown in our experiments.

6 EXPERIMENTS

Our validation focuses on understanding the impacts of the privacy budget € and the heterogeneity on model utility.
For reproducibility, our implementation is available and uploaded.

Baseline Approaches. We consider A-gem (Chaudhry et al., 2019) as an upper bound in terms of model performance,
since A-gem is a noiseless model. We aim to show how much model utility is compromised for the Lifelong DP pro-
tection. Also, we consider the naive algorithm (Desai et al., 2021), called NaiveGaussian, as a baseline to demonstrate
the effectiveness of our L2ZDP-ML mechanism. It is worth noting that there is a lack of a precise definition of adjacent
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Figure 3: Average accuracy in the (a) Permuted MNIST (20 tasks), b) Permuted CIFAR-10 (17 tasks), and (c) HARW.

Table 1: Average forgetting measure. (Smaller the better)

L2DP-ML NaiveGaussian A-gem
e=0.5 0.305 £ 0.00886 0.012 £+ 0.00271
Permuted MNIST e=1 0.278 + 0.00907 0.015 4+ 0.00457 0.162 4+ 0.01096
€= 0.237 £+ 0.00586 0.017 £ 0.00385
e=4 0.033 £+ 0.00896 0.138 £+ 0.00582
Permuted CIFAR-10 e="T7 0.062 + 0.01508 0.174 + 0.01149 0.133 £ 0.00859
e=10 0.034 £ 0.00184 0.181 £ 0.01956
L2DP-ML Balanced L2DP-ML (e = 0.2) A-gem
e=0.2 0.1133 £ 0.0003
HARW e = 0.2 (2 epochs) | 0.1639 £ 0.00074 0.1309 + 0.002 0.1269 + 0.00045
(5Hz - 10Hz e = 0.2 (5 epochs) | 0.2031 &+ 0.0013
-20Hz - 50Hz) e=20.>5 0.1124 £ 0.00029 | Heterogeneous L2DP-ML (e = 0.2) Balanced A-gem
e=1 0.1106 + 0.00026 0.1920 + 0.00034 0.1593 £ 0.00021

databases resulting in an unclear or not well-justified DP protection for L2M in existing works (Farquhar & Gal, 2018;
Phan et al., 2019a). Therefore, we do not consider them as baselines in our experiments.

To evaluate the heterogeneity, we further derive several versions of our algorithm (Alg. 2), including: (1) Balanced
L2DP-ML, in which all the tasks have the same number of training steps, given a fixed batch size. This is also true for
a Balanced A-gem algorithm; (2) L2ZDP-ML with the same number of epochs for all the tasks; and (3) Heterogeneous
L2DP-ML, in which a fixed number of training epochs is assigned to each task. The numbers of epochs among tasks
can be different. For instance, 5 epochs are used to train tasks with SHz, 10Hz, and 20Hz data, and 1 epoch is used to
train the task with a larger volume of 50Hz data. The number of epochs is empirically identified by the data size of
each task, since the search space of the number of epochs for each task is exponentially large.

Datasets. We evaluate our approach using permuted and split MNIST (Kirkpatrick et al., 2017), permuted and split
CIFAR-10 (Ivan, 2019), split CIFAR-100 datasets?, and our human activity recognition in the wild (HARW) dataset.
Permuted MNIST is a variant of MNIST (LeCun et al., 1998) dataset, where each task has a random permutation of the
input pixels, which is applied to all the images of that task. We adopt this approach to permute the CIFAR-10 dataset,
including the input pixels and three color channels. Our HARW dataset was collected from 116 users, each of whom
provided mobile sensor data and labels for their activities on Android phones consecutively in three months. HARW
is an ultimate task for L2M, since different sensor sampling rates, e.g., S0Hz, 20Hz, 10Hz, and 5Hz, from different
mobile devices are considered as L2M tasks. The classification output includes five classes of human activities, i.e.,
walking, sitting, in car, cycling, and running. The data collection and processing of our HARW dataset is in Appx. D.
The setting of split CIFAR-10 and CIFAR-100, and split MNIST datasets are in Appx. E.

Model Configuration. In the permuted MNIST dataset, we used three convolutional layers (32, 64, and 96 features).
In the permuted CIFAR-10 dataset, we used a Resnet-18 network (64, 64, 128, 128, and 160 features) with kernels
4, 3, 3, 3, and 3). In the HARW dataset, we used three convolutional layers (32, 64, and 96 features). Detailed
model configurations are in the Appx. E. To conduct a fair comparison, we applied a grid-search for the best values
of hyper-parameters, including the privacy budget ¢ € [4, 10], the noise scale z € [1.1,2.5], and the clipping bound
C € [0.01, 1], in the NaiveGaussian mechanism. Based on the results of our hyper-parameter grid-search (Table 5),
wesetz =2.2fore =4.0,z=1.7fore =7.0,and z = 1.4 for e = 10.0, and C = 0.01 is used for all values of e.

Evaluation Metrics. We employ the well-applied average accuracy and forgetting measures after the model has been
trained with all the batches up to task 7 (Chaudhry et al., 2018; 2019), defined as follows: (1) average accuracy,. =

’Datasets were downloaded and evaluated by Phung Lai, Han Hu, and NhatHai Phan.
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Figure 4: Average accuracy in the HARW dataset with random task orders: (a) HARW 50Hz - 20Hz - 10Hz - 5Hz, (b)
HARW 20Hz - 50Hz - 5Hz - 10Hz, and (¢) HARW 20Hz - SHz - 10Hz - 50Hz (higher the better).

Table 2: Average forgetting measure on random orders of HARW tasks. The order of [20Hz, 5Hz, 10Hz, 50HzZ] is in
Table 7, Appx. E. (Smaller the better)

L2DP-ML (e = 0.2) L2DP-ML (e = 0.5) L2DP-ML (e = 1)
0.1016 £ 0.0002 0.1012 £ 0.0001 0.098 + 0.0001
HARW (50Hz - A-gem Balanced A-gem Balanced L2DP-ML (e = 0.2)
20Hz - 10Hz - 5Hz) 0.1029 + 0.0002 0.1241 £+ 0.0002 0.1274 £ 0.0008
L2DP-ML (e = 0.2, 2 epochs) | L2DP-ML (e = 0.2, 5 epochs) | Heterogeneous L2DP-ML (e = 0.2)
0.1148 £ 0.0002 0.1012 £ 0.0014 0.1442 £ 0.0003
L2DP-ML (e = 0.2) L2DP-ML (e = 0.5) L2DP-ML (e = 1)
0.0769 + 2.07e-5 0.0761 + 3.88e-5 0.0772 £ 6.7¢-5
HARW (20Hz - A-gem Balanced A-gem Balanced L2DP-ML (e = 0.2)
50Hz - 5Hz - 10Hz) 0.0781 + 2.28e-5 0.14 £+ 3.26e-4 0.1248 £ 0.0013
L2DP-ML (e = 0.2, 2 epochs) | L2DP-ML (e = 0.2, 5 epochs) | Heterogeneous L2DP-ML (e = 0.2)
0.0775 + 8.45e-5 0.099 + 0.0015 0.1268 £+ 0.00028

%22:1 Gr.n,, Where ar, ; € [0, 1] is the accuracy evaluated on the test set of task ¢, after the model has been
trained with the nt" batch of task 7, and the training dataset of each task, D, consists of a total n batches; (2)
average forgetting,. = ﬁ Zt:ll ., where f] is the forgetting on task ¢ after the model is trained with all the

batches up till task 7. f] is computed as follows: f; = maxle{ly__,ﬁ,l}(al,n}t — arp,); and (3) We measure the
significant difference between two average accuracy curves induced by models A and B after task 7, using a p value

(2-tail t-tests) curve: p value = ({1 S agi)’t}ie[uh {: S, af;fl)_’t}ie[lﬁ]). All statistical tests are 2-tail t-tests.

Results in Permuted MNIST. Fig. 3a and Table 1 illustrate the average accuracy and forgetting measure of each model
as a function of the privacy budget € on the permuted MNIST dataset. It is clear that the NaiveGaussian mechanism
does not work well under a tight privacy budget € € [0.5, 2] given a large number of tasks m = 20. This is because
each task can consume a tiny privacy budget €/m resulting in either a large noise injected into the clipped gradients or
a lack of training steps to achieve better model utility. By avoiding the privacy budget accumulation across tasks and
training steps, our L2ZDP-ML models significantly outperform the NaiveGaussian mechanism. Our L2DP-ML model
achieves 47.73% compared with 10.43% of the NaiveGaussian after 20 tasks given € = 0.5 (p < 6.81e — 15).

Regarding the upper bound performance, there is a small average accuracy gap between the noiseless A-gem model
and our L2DP-ML models given a small number of tasks. The gap increases when the number of tasks increases
(23.3% at ¢ = 0.5 with 20 tasks). The larger the privacy budget (i.e., ¢ = 2.0), the higher the average accuracy we can
achieve, i.e., an improvement of 9.92% with p < 2.83e — 14, compared with smaller privacy budgets (i.e., € = 0.5).
Also, our L2DP-ML models have a relatively good average forgetting with tight privacy protection (¢ = 0.5, 1, and
2), compared with the noiseless A-gem model.

Results in Permuted CIFAR-10. Although permuted CIFAR-10 tasks are very difficult (Fig. 3b and Table 1), even
with the noiseless A-gem model, i.e., 35.24% accuracy on average, the results on the permuted CIFAR-10 further
strengthen our observation. Our L2DP-ML models significantly outperform the NaiveGaussian mechanism. Our
L2DP-ML model achieves an improvement of 8.84% in terms of average accuracy over the NaiveGaussian after 17
tasks given € = 4 (p < 4.68e — 7). We further observe that the NaiveGaussian mechanism has a remarkably larger
average forgetting compared with our L2ZDP-ML (Table 1).

Interestingly, the gap between A-gem and our L2DP-ML models is notably shrunken when the number of tasks in-
creases (from 16.47% with 1 task to 9.89% with 17 tasks, at ¢ = 4). In addition, the average forgetting values in
our L2DP-ML are better than the noiseless A-gem. This is a promising result. We also registered that the larger the
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privacy budget (i.e., e = 10), the higher the average accuracy that we can achieve, i.e., an improvement of 4.73% with
p < 1.15e — 9, compared with smaller budgets (i.e., ¢ = 4).

Heterogeneous Training. We now focus on shedding light into understanding the impacts of heterogeneity and
privacy on model utility given different variants of our LZDP-ML mechanisms and the noiseless A-gem model. The p
value curves are in Figures 5 and 6, Appx. E.

On the HARW task (Fig. 3c and Table 1), our L2DP-ML model achieves a very competitive average accuracy, given
a very tight DP budget ¢ = 0.2 (i.e., 61.26%) compared with the noiseless A-gem model (i.e., 62.27%), across four
tasks. Our model also achieves a better average forgetting, i.e., 11.33, compared with 12.69 of the noiseless A-gem
model. That is promising. Increasing the privacy budget modestly increases the model performance. The differences
in terms of average accuracy and forgetting are not significant. This is also true, when we randomly flip the order of
the tasks (Fig. 4 and Table 2). The results showed that our model effectively preserves Lifelong DP in HARW tasks.

Heterogeneous training, with customized numbers of epochs and task orders, further improves our model performance,
under the same Lifelong DP protection. Fig. 5 illustrates the p values between the average accuracy curves of our
L2DP-ML, given 1) heterogeneous training with different numbers of epochs, 2) task orders, and 3) privacy budgets,
over its basic settings, i.e., € = 0.5 for the permuted MNIST dataset, € = 4 for the permuted CIFAR-10 dataset, and
€ = 0.2 for the HARW dataset, with one training epoch.

o In the permuted MNIST dataset (Figs. 3a and 5a), when our L2DP-ML model is trained with 2 or 3 epochs per
task, the average accuracy is improved, i.e., 2.81%, 4.8% given 2, 3 epochs, respectively, with p < 8.44e — 9. In
the permuted CIFAR-10, using larger numbers of training epochs shows significant performance improvements over
a small number of tasks (Fig. 5b). When the number of tasks becomes larger, the p values become less significant
(even insignificant), compared with the p value curves of larger DP budgets (i.e., ¢ = 2 and € = 10 in the permuted
MNIST and permuted CIFAR-10). Meanwhile, training with a larger number of epochs yields better results with small
numbers of tasks (i.e., fewer than 6 tasks), compared with larger DP budgets.

o In the HARW tasks, the improvement is more significant (Figs. 3¢ and 5c). Heterogeneous and Balanced L2DP-ML
models outperform the basic settings with uniform numbers of training epochs, i.e., 1, 2, and 5 epochs. On average,
we registered an improvement of 1.93% given the Balanced L2DP-ML and an improvement of 5.14% given the
Heterogeneous L2DP-ML, over the basic setting (1 training epoch). The results are statistically significant (Fig. 5c).
The average forgetting values of the Balanced L2DP-ML (0.1593) and the Heterogeneous L2DP-ML (0.1920) are
higher than the basic setting (0.1133), with p < 2.19e — 5 (Table 1). This is expected as a primary trade-off in L2M,
given a better average accuracy. In fact, the average forgetting values are also notably higher given larger uniform
numbers of epochs, i.e, 2 and 5 epochs, and the Balanced A-gem. We do not address this fundamental issue in L2M
since it is out-of-scope of this study. We focus on preserving Lifelong DP.

e We observe similar results in randomly flipping the order of the tasks (Figs. 4 and 6, Table 2). Among all task orders,
our Heterogeneous L2DP-ML achieves the best average accuracy (66.4%) with the task order [SHz, 10Hz, 20Hz,
50Hz] (Fig. 3c) compared with the worse order [20Hz, S0Hz, 5Hz, 10Hz] (56.69%) (Fig. 4b), i.e., p < 9.9e — 5. More
importantly, in both average accuracy and forgetting, our Balanced and Heterogeneous L2DP-ML models achieve a
competitive performance compared with the noiseless Balanced A-gem, which is considered to have the upper bound
performance, and a better performance compared with having the uniform numbers of epochs across tasks. This
obviously shown that the distinct ability to offer the heterogeneity in training across tasks greatly improves our model
performance, under the same Lifelong DP protection.

Results in Split Tasks. We observe similar results on split CIFAR-10, CIFAR-100, and MNIST datasets as L2DP-ML
achieves competitive average accuracy approaching the noiseless A-gem model under rigorous privacy budgets (Fig. 7,
Appx. E). After 5 tasks of the split MNIST dataset, L2ZDP-ML achieves 73.54% and 81.83% in average accuracy at the
privacy budgets 0.5 and 1 respectively, compared with 79.71% of the noiseless A-gem. Interestingly, our L2DP-ML
has slightly higher average accuracy than the noiseless A-gem after 11 tasks of the split CIFAR-10 and CIFAR-100
dataset (14.83% in L2DP-ML at ¢ = 4 compared with 13.44% in the noiseless A-gem). One reason is that Lifelong
DP-preserving noise can help to mitigate the catastrophic forgetting. As showed in Table 6 (Appx. E), our L2DP-ML
obtains a significantly lower average forgetting (2.7% at € = 4) than the noiseless A-gem (19.5%).

7 CONCLUSION

In this paper, we showed that L2M introduces unknown privacy risk and challenges in preserving DP. To address
this, we established a connection between DP preservation and L2M, through a new definition of Lifelong DP. To
preserve Lifelong DP, we proposed the first scalable and heterogeneous mechanism, called L2DP-ML. Our model
shows promising results in several tasks with different settings and opens a long-term avenue to achieve better model
utility with lower computational cost, under Lifelong DP.
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A PROOF OF THEOREM 1

Proof 1 Let us denote A1.; as A1, ..., A;, we have:

Pr[A,;({0%}i<,,data,) = 07]

c(GT;AT,{ei}z‘«vdataf’data;):log Prid:({0%}i<r, datay) = 07]
1<Ty T,

1o H [A (07'71 datav) = Hi\Al:,;_l({Gj}jQ_l,datau 1) = 1171]
— L PrA (07T data]) = 07 Av 1 ({07} 1, datal,,_;) = 0%
Ny, PrAO date) = 1A (07) i1, datan ) = 017
i=1 g Pr[A;(0~1, data;) = 9i|A1:i71({9j}j<i71>datalm‘ 1) = 0t
Z (6% A;, {67} ;<;, data;, data))
i=1

Consequently, Theorem I does hold.

B PROOF OF THEOREM 2

Proof 2 V1 € T, let D, and ﬁ; be neighboring datasets differing at most one tuple x. € D, and x', € EIT, and any
two neighboring episodic memories M. and M. Let us denote Alg. 1 as the mechanism A in Definition 3. We first
show that Alg. 1 achieves typical DP protection. V7 and D,..y, we have that

Pr[A({0}i<;, data;) = 07] (15)
= Pr(Rp, (677)) Pr(D;) Pr(Lp (0571)) x Pr(Rp, (67 ) Pr(Dyes) Pr(Lp,,  (6571))

Therefore, we further have

[ ({9 }z<‘r7data T
PrA({0'}i<r, datal) = 07

0]
0]
) T(Eﬁf 97— 1)) Pr(ﬁﬁrcf(el—_l)) PT(Eref) PT(ZEch(Hg_l))
)

Pr( (077 H )) P (ﬁ
" Pr(Rp, (071) Pr(DL) Pr(Ep, 050)  Pr(Ryy 050) Pr(DLuy) Pr(Eoy @5 D)
In addition, we also have that:
ID, €Dst . € Dy and 3D, €D s.t. 2, € D, (17)
where D = {Dy,..., Dy}
Together with Eq. 17, by having disjoint and fixed datasets in the episodic memory, we have that:
(zc € Dy or ¢ € Dyey), but (z. € Dy and . € Diey) (18)

Without loss of the generality, we can assume that x, € D.: Egs. 16 - 18 =
Pr[A({0'}ic; data,) = 07]  Pr(Rp_ (0771)) Pr(D.) Pr(L5, (0571))
PrlA({0'}ic;,datal) = 07| Pr(Ry (677 ) Pr(D.) Pr(Ly (63 Y)

<(e1+e/yx+e/y+e) (19)

This is also true when x, € ﬁ,.ef and v, ¢ D,.
As a result, we have
Pr[A({0"}i<,,data;) = 07]

V7 e [l,m]: PrlA({07}i<,,datal) = 07|

<(e1+e1/vx+e/y+e€) (20)

After one training step, D, will be placed into the episodic memory M, to create the memory M, ;1. In the next
training task, D, can be randomly selected to compute the episodic gradient g,.y. This computation does not incur
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any additional privacy budget consumption for the dataset D, by applying the Theorem 4 in (Phan et al., 2020),
which allows us to compute gradients across an unlimited number of training steps using Ry _ (91_1) and L5 (03 -1 ).
Therefore, if the same privacy budget is used for all the training tasks in T, we will have only one privacy loss for every
tuple in all the tasks. The optimization in one task does not affect the DP guarantee of any other tasks. Consequently,
we have

Be' < (e1+ €1/ +e1/7v+ €2),Fi < ms.t. PrlA({07};<;, data;) = 0'] < € Pr [A({67}<;,data;) = 6] (21)
Eq. 21 can be further used to prove the Lifelong DP protection. Given data,,, where M, = D, in Alg. 1, we have that

Pr[A(datan) = {0"}iep.m)] = [ [ PrlA({67}<i, data;) = 6'] (22)
i=1

Therefore, we have

Pr[A(datan,) = {0"}ic1,m ﬁ A({67} <, data;) = 6°]
P’I“[ (datain) {9 }16[1 m] 121 {93}J<z>data ) 91]
[ (2 o) £ Pr(f @) PR, 07)) pr(D;,,) Pr€s:, 07 | @
= i — — i X — — 7 7—
i1 PR (677h) Pr(D)) Pr(Cpy(65) ~ Pr(Rpe (677) Pr(Dy,,) PrCyy (657)
where data), = {D,{M/};cq1,m) }, and M] = 5; inAlg. 1.
Since all the datasets are non-overlapping, i.e., Nicp1 ) Di = 0, given an arbitrary tuple x., we have that
D, € Ds.t. x. € Dy and HIE,T cD st x, € E/T (24)

Thus, the optimization of {0},05} = arg ming, ¢, [R5 (97 Y+ ZLx (07 Y] for any other task i different from T does
not affect the privacy protection of x. in D. From Egs. 23 and 24, we have

Pr [A(datam) = {ei}ze[l m]]

Pr [A(data’ ) = {9 }16[1 m]] - -
_ Pr(Rp (077) Pr(D,) Pr(Cp (057Y) Pr(Rpi 077) pr(D,,) Prlp: (0571) 05
D)) :

Pr(%;(ef ") Pr(Dy) Pr(ls 59” XHPT Ry (0171) Pr(D,;) Pr(Cpe (0571)

D, s

)

The worse privacy leakage case to x. is that D, is used in every ﬁief, ie, T=1andVi € [2 m] : 5i€f = D,,
wzth D e = 0. Meanwhzle the least privacy leakage case to x. is that D, is not used in any Dwf, e, Vi€ [2,m]:
P F D, with D = (. In order to bound the privacy loss, we consider the worse case; therefore, from Eq. 25,
we further have that
Pr [A(datam) = {0"}icp1,m] ﬁ Pr(Rp T(Gl 1)) Pr(D;) Pr(25T 05°1) @6)
Pr[A(data),) = {07} ic(1,m] Pr(Ry (677°1)) Pr(D,) Pr(Ly (0571))

1=1

Eq. 26 is equivalent to the continuously training of our model by optimizing R and L with D used as both the current
task and the episodic memory, across m steps. By following the Theorem 4 in (Phan et al., 2020), the privacy budget
is not accumulated across training steps. Therefore, we have that

PrlA(datan) = {0 enm] _ 7777
vm € [1, 00) "Pr [A(data/ )= {gi}ie[l,m]] = H P

PT‘(R (91)) ( 7.) PT(ZBT (92
- Pr(Ry (91)) Pr( D, ) PT(ZFT (6,

;§ < (&1 +e€/yx+e/y+e€) 27
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In the least privacy leakage case, we have that

_ Pr[A(data,) = {0'}icpn] _ PrA({0} i<, data,) = 0]

Vr<m: , - > X 28
TS B[ AWata) = Fhepn] © PrIAG e data) =] - (@ Tl e) G

As a result, we have that
B <e,7<m): Pr [A(dataT) = {9"}1-6[1,7]] < e Pr [A(data’T) = {Hi}ie[l’ﬂ] (29)

where € = (€1 + €1/vx + €1 /7 + €2).

From Egs. 27 and 29, we have that Alg. 1 achieves (€1 + €1/7x + €1/7 + €2)-Lifelong DP in learning {0"};c(1,m) =
{03,053} ic(1,m)- Consequently, Theorem 2 does hold.

C L2DP-ML WITH STREAMING BATCH TRAINING

Algorithm 2 L2DP-ML with Streaming Batch Training
Input: T={;},c[1,m]» {Di}ie[1,m]» batch size A, privacy budgets: €; and e, learning rate o
Output: (€1 + €1/7x + €1/7 + €2)-Lifelong DP parameters {0 }ic(1,m) = {05, 05 }ic[1,m]
. A A A
1: Draw Noise y; < [Lap(e—f)]d, X2 [Lap(e—f)]ﬁ, X3 [Lap(e—z‘:)]m"‘
2: Randomly Initialize § = {0,0,}, M; = 0,Vr € T : D, = {Z, + z, + XL}, €D, hidden layers {h; +
2%, ..., hy}, where h; is the last hidden layer
3: for 7 € T do
4 B= {B1,...,Bp}st. VB € B : Bisarandom batch with the size s, ByN...N B, ={,and B U...UB, =

D

5. for B< Bdo

6: if 7 == 0 then

7: Compute Gradients:

8: 9 {Vo,Rp(0]"),Ve,Lp(63 ")} with the noise X2

9: Descent: {07,03} « {67,057} — og
10: else
11: Select a batch B, randomly from a set of batches in episodic memory M-
12: Compute Gradients:
13: g {VglRBLGI_l), Vo, Lp (Eg_l)} with the noise %2
14: greg < {Vo,Rp,(077"), Vo, Lp, (057")} with the noise 32

. ~ 9" grey )

15: 997 T gy Ired
16: Descent: {07,03} « {677,057} — 0g

17:  Randomly Select a batch B € B
18: M, + M, ;UB

D HARW DATASET

Data Collection. We utilize Android smartphones to collect smartphone sensor data “in the wild” from university
students as subjects for the following reasons: (1) University students should have relatively good access to the smart-
phones and related technologies; (2) University students should be more credible and easier to be motivated than other
sources (e.g., recruiting test subjects on crowd-sourcing websites); and (3) It will be easier for our team to recruit and
distribute rewards to students. We launched two data collection runs at two universities for three months each. During
the course of three months, we let the participants to collect data and labels by themselves (in the wild), and only
intervene through reminding emails if we saw a decline in the amount of daily activities. A total of 116 participants
were recorded after the two data collection runs.

Data Processing. For the demonstration purpose of this paper, we use only accelerometer data. Our data processing
consists of the following steps: (1) Any duplicated data points (e.g., data points that have the same timestamp) are
merged by taking the average of their sensor values; (2) Using 300 milliseconds as the threshold, continuous data
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Table 3: Statistics of the HARW dataset.

Class Description N training | N testing
Walking Walking 49376 8599
Sitting Exclude in vehicle | 52448 8744
In-Vehicle, Car Driving, sitting 49536 8586
Cycling 14336 2537
Workout, Running 1984 319

*All classes exclude phone position = “Table”

Table 4: Baseline results on the HARW dataset.

Model Accuracy (%)
CNN-32 81.86
CNN-64 82.49
CNN-128 82.62
BILSTM 78.68
CNN-Ig 76.39
CNN-Ig-featureless | 77.08

sessions are identified and separated by breaking up the data sequences at any gap that is larger than the threshold; (3)
Data sessions that have unstable or unsuitable sampling rates are filtered out. We only keep the data sessions that have
a stable sampling rate of 5Hz, 10Hz, 20Hz, or 50Hz; (4) The label sessions that are associated with each data session
(if any) are identified from the raw labels. Note that the label sessions are also filtered with the following two criteria
to ensure good quality: (a) The first 10 seconds and the last 10 seconds of each label session are trimmed, due to the
fact that users were likely operating the phone during these time periods; (b) Any label session longer than 30 minutes
is trimmed down to 30 minutes, in order to mitigate the potential inaccurate labels due to users’ negligence (forgot
to turn off labeling); and (5) We sample data segments at the size of 100 data points with sliding windows. Different
overlapping percentages were used for different classes and different sampling rates. The majority classes have 25%
overlapping to reduce the number of data segments, while the minority classes have up to 90% overlapping to increase
the available data segments. The same principle is applied to sessions with different sampling rates. We sample 15%
of data for testing, while the rest are used for training (Table 3).

Data Normalization. In our L2ZDP-ML models, we normalize the accelerometer data with the following steps: (1)
We compute the mean and variance of each axis (i.e., X, Y, and Z) using only training data to avoid information
leakage from the training phase to the testing phase. Then, both training and testing data are normalized with z-
score, based on the mean and variance computed from training data; (2) Based on this, we clip the values in between

[min, maz] = [—2,2] for each axis, which covers at least 90% of possible data values; and (3) Finally, all values are
linearly scaled to [—1, 1] to finish the normalization process, as x = 2 x [Z=mm_ 1 /9],

In the HARW dataset, each data tuple includes 100 values x 3 channels of the accelerometer sensor, i.e., 300 values
in total as a model input. The classification output includes five classes of human activities, i.e., walking, sitting, in
car, cycling, and running (Table 3, Appx. D). Given 20Hz, 5Hz, 10Hz, and 50Hz tasks, we correspondingly have 881,
7553, 621, and 156,033 data points in training and 159, 1,297, 124, and 27,134 data points in testing.

Baseline Model Performance. We conducted experiments on the HARW dataset in a centralized training on the
whole dataset including all the data sampling rates using following baselines: 1) CNN-based model with the numbers
of convolution-channels set to 32, 64, 128, denoted as CNN-32, CNN-64, CNN-128, respectively; 2) Bidirectional
LSTM (BiLSTM); and 3) CNN-based models proposed by Ignatov (2018), with additional features (CNN-Ig) and
without additional features (CNN-Ig-featureless) using the Ignatov’s recommended settings in Ignatov (2018).

As in Table 4, our model trained on each task independently achieves competitive results with these baselines under
a rigorous DP budget (¢ = 0.2), i.e., 77%, 76%, 75%, 58%, on the SHz, 10Hz, 20Hz, and 50Hz learning tasks
respectively. Although the number of 50Hz training data points is larger than other tasks, the data labels are noisy
and collected in short-time periods due to the limited computational resources on mobile devices; thus, the model
performance in the SOHz learning task is lower.
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E HYPER-PARAMETER GRID-SEARCH AND SUPPLEMENTAL RESULTS

Model Configuration. In the permuted MNIST and the Split MNIST datasets, we used three convolutional layers
(32, 64, and 96 features). Each hidden neuron connects with a 5x5 unit patch. A fully-connected layer has 512 units.
In the permuted CIFAR-10 and the Split CIFAR-10/100 datasets, we used a Resnet-18 network (64, 64, 128, 128,
and 160 features) with kernels (4, 3, 3, 3, and 3). One fully-connected layer has 256 neurons. In the HARW dataset,
we used three convolutional layers (32, 64, and 96 features). Each hidden neuron connects with a 2x2 unit patch. A
fully-connected layer has 128 units.

In the Split CIFAR-10 and CIFAR-100 setting, there are 11 tasks, in which the first task is the full CIFAR-10 classi-
fication task, and the remaining 10 tasks consist of splits from the CIFAR-100 dataset. Each split contains 10 classes
from the CIFAR-100. We adopt this approach from (Von Oswald et al., 2020). In the Split MNIST setting, there are 5
tasks, in which each task consists of 2 classes from the MNIST dataset. There is no overlapping classes between tasks
in the Split CIFAR-10 and CIFAR-100, and in the Split MNIST.

In order to be fair in comparison with the L2ZDP-ML and A-gem mechanisms, we conducted experiments over a
wide range of privacy hyper-parameters such as privacy budget (¢), noise scale (2), and sensitivity to select the best
hyper-parameters in NaiveGaussian mechanism in our experiments. The search ranges and their results (i.e., average
accuracy over all tasks) are provided in Table 5. We reported the best results, i.e., highest average accuracy over all
tasks, of the hyper-parameter grid-search experiments.
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Figure 5: p value for 2-tail t-tests on the (a) Permuted MNIST (20 tasks), b) Permuted CIFAR-10 (17 tasks), and (c)
HARW (5Hz - 10Hz - 20Hz - 50Hz) (lower the better).
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Figure 6: p value for 2-tail t-tests on the HARW dataset with random task orders: (a) HARW 50Hz - 20Hz - 10Hz -
5Hz, (b) HARW 20Hz - 50Hz - 5Hz - 10Hz, and (c) HARW 20Hz - 5Hz - 10Hz - 50Hz. (lower the better).
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Figure 7: Average accuracy in the (a) Split MNIST (5 tasks), and b) Split CIFAR-10 and CIFAR-100 (11 tasks) (higher
the better).

Table 5: Average accuracy (%) in hyper-parameter grid-search of NaiveGaussian mechanism given the permuted
CIFAR-10 dataset.

Clipping bound | 0.01 0.1 1.0
Privacy budget (¢)
Noise scale (z)
z=2.5 13.68 | 11.23 | 10.26
z=24 12.66 | 11.99 | 9.98
z=23 11.56 | 11.40 | 10.09
e=4.0 z =22 13.79 | 11.99 | 10.30
z=2.1 13.50 | 11.39 | 10.11
z=2.0 15.12 | 12.94 | 10.26
z=1.9 14.67 | 12.39 | 10.34
z=18 14.32 | 11.79 | 10.28
e=17.0 z=1.7 15.26 | 12.55 | 11.33
z=1.6 14.64 | 12.28 | 11.04
z=1.5 14.79 | 12.23 | 10.80
z=14 15.71 | 13.34 | 10.66
z=13 15.12 | 12.96 | 11.49
e=10.0 z=1.2 14.65 | 12.05 | 10.64
z=1.1 11.42 | 11.15 | 10.14

Table 6: Average forgetting measure (smaller the better).

L2DP-ML A-gem
. e=0.5 0.056 £ 0.00324
Split MNIST | 0019 = 0.00526 0.195 £ 0.00941
e=4 0.027 + 0.00264

e =4 (2 epochs) | 0.033 £ 0.00276
Split CIFAR-10/100 | € = 4 (3 epochs) | 0.046 + 0.00307 | 0.195 + 0.00688
e="17 0.027 + 0.00165
e=10 0.021 4+ 0.00429
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Table 7: Average forgetting of the order of [20Hz, 5Hz, 10Hz, S0Hz] in the HARW task. (Smaller the better)

HARW (20Hz -
5Hz - 10Hz - 50Hz)

L2DP-ML (¢ = 0.2)

L2DP-ML (¢ = 0.5)

L2DP-ML (¢ = 1)

0.0928 £ 5.34e-5

0.0921 £ 8.64e-5

0.089 + 8.64e-5

A-gem

Balanced A-gem

Balanced L2DP-ML (e = 0.2)

0.0866 £ 1.1e-4

0.1723 £ 0.00066

0.144 £ 0.0031

L2DP-ML (e = 0.2, 2 epochs)

L2DP-ML (e = 0.2, 5 epochs)

Heterogeneous L2DP-ML (e = 0.2)

0.1161 £ 0.0003

0.1792 + 0.0017

0.1395 £ 0.00026
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