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Abstract. Regular expression (regex) based automated qualitative cod-
ing helps reduce researchers’ effort in manually coding text data, without
sacrificing transparency of the coding process. However, researchers us-
ing regex based approaches struggle with low recall or high false negative
rate during classifier development. Advanced natural language processing
techniques, such as topic modeling, latent semantic analysis and neural
network classification models help solve this problem in various ways.
The latest advance in this direction is the discovery of the so called “neg-
ative reversion set (NRS)”, in which false negative items appear more
frequently than in the negative set. This helps regex classifier develop-
ers more quickly identify missing items and thus improve classification
recall. This paper simulates the use of NRS in real coding scenarios and
compares the required manual coding items between NRS sampling and
random sampling in the process of classifier refinement. The result using
one data set with 50,818 items and six associated qualitative codes shows
that, on average, using NRS sampling, the required manual coding size
could be reduced by 50% to 63%, comparing with random sampling.

Keywords: Negative reversion · Qualitative coding · LSTM neural net-
work.

1 Introduction

Coding in qualitative research is traditionally a complex manual process of the-
ory discovery [10]. Qualitative researchers go through the data item by item to
extract information they find interesting or pertinent to their study. They dis-
cover patterns or themes to form big-C Codes [12]. Once a code is well defined,
they go back to the data and systematically identify where each code occurs
through out the entire dataset. As Shaffer and Ruis [13] pointed out, coding is
basically a process of “defining concepts and identifying where they occur” [13].
While a researcher may be able to find the patterns for code definition using a
relatively small part of a data set, “identifying where they occur” requires the
researcher to go through every item in the data set. Such manual coding is often
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very expensive and can be impossible for quantitative ethnographers, because
they often deal with data that is too large to code by hand.

In contrast to manual coding, machine learning algorithms have been used
to train classifiers for automatic coding. Such algorithms use part of the data
that researchers manually coded to train a classification model, which is then
used to classify the rest of the data [9, 1]. Researchers have identified challenges
in using machine learning for automatic coding [4, 2]. The so called “black box”
issue is a major challenge for ethnographers, qualitative researchers, or people
working in the digital humanities interested in adopting automated qualitative
coding methods. Namely, when an excerpt is coded as positive for a certain code,
the evidence for the coding is often unclear from the output of the machine
learning model, which makes it difficult for researchers to be successful in the
interpretation stage in the analyses. Another challenge is that the amount of
human coded data required for training machine learning algorithms is large,
especially when the base rate (positive rate or frequency) of a code is small.
For example, if a code occurs in about 1% of the items in the data set, to train
a reliable neural network classifier often requires about 4,000 manually coded
training items. In addition, machine learning algorithms tend to build classifiers
based on high frequency expressions (words, phrases). Thus, the expressions used
by minority groups or sub-populations could be under represented, resulting in
biased and unfair coding.

Regex based coding has been proven to be a more efficient method for qual-
itative coding, which often requires manually coding only a few hundreds of
excerpts in order to develop a reliable regex-based classifier. Once regexes are
well developed, the coding is an automatic process and the matched text ele-
ments provide explicit coding evidence [13, 12]. However, regex based classifiers
suffer from the low recall problem [3, 2]. That is, regex based classifiers can suf-
fer from too many false negatives, where a researcher or domain expert would
identify that a code is present, but the classifier does not. Various ways have
been proposed to overcome the challenge of the low recall problem. For exam-
ple, Latent Semantic Analysis [11] can be used to form a “snowball” method to
help recursively expand keyword set for regex construction [3]. The latest dis-
covery is the so called “negative reversion set ” (NRS) in which false negative
items are denser than in the negative set of regex classifiers [2]. This discovery
makes it possible to greatly shorten the time in searching for missing patterns in
regex development because researchers can use this set to focus on coding cases
that are more likely to be false negatives and use the patterns shown in those
examples to improve their classifiers.

Researchers developing new methodologies often conduct simulation studies
to examine or compare the performance of different statistics or analytical ap-
proaches [7, 6]. This paper simulates the use of NRS in real world scenario and
tackles the issue of required manual coding size. The main question we want to
answer is, how much manual coding efforts can be reduced by using the NRS?
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2 Negative Reversion Set and Research Questions

2.1 Negative Reversion Set

The usefulness of Negative Reversion Set (NRS) was discovered by the triangu-
lation of three “raters”: 1) a human; 2) a regex based classifier; and 3) a neural
network model trained from the regex classifier. For a given data set D and a
given code C, the human classification is denoted by D = P +N , where P is the
set of human classified positive items and N the set of human classified negative
items. The plus sign “+” denotes the union of the two sets. The classification
by the regex classifier is denoted by D = P̃ + Ñ , where P̃ and Ñ are the regex
classified positive and negative sets, respectively.

Taking human classification as ground truth, the four intersection sets of the
two classifications by human and regex classifier are denoted by

– true positive set PP̃ : both human and regex classify as positive;
– false positive set NP̃ : human classifies as negative but regex classifies as

positive;
– false negative set PÑ : human classifies as positive but regex classifies as

negative; and
– true negative set NÑ : both human and regex classify as negative.

In the formulas above, “XY ” denotes the intersection of two sets “X” and “Y ”.
The error and accuracy of the regex classification are determined by the size

of the above four sets. The following metrics are used in this paper to measure
the error and accuracy of the regex classifier:

– proportion of true positives:

tp =
|PP̃ |
|D|

;

– proportion of false positives:

fp =
|NP̃ |
|D|

;

– proportion of false negatives:

fn =
|PÑ |
|D|

;

– proportion of true negatives:

tn =
|NÑ |
|D|

;

– precision:

precision =
tp

|P̃ |
=

tp

tp+ fp
;
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– recall:
recall =

tp

|P |
=

tp

tp+ fn
; and

– Cohen’s kappa:
κ =

po − pc
1− pc

where po = tp+ tn is the observed agreement and pc = (tp+ fp)(tp+ fn) +
(tn+ fp)(tn+ fn) is the chance agreement.

A regex classifier provides input to a neural network model to train another
classifier, which classifies the data as D = ˜̃P+ ˜̃N . Replacing P̃ and Ñ by ˜̃P and ˜̃N
in the above formulas, the metrics about the performance of the neural network
model are computed the same way as the regex classifier described above.

Table 1 shows the intersections of the three classifications. The so called
“Negative Reversion Set” is the set of items that regex classifies as negative but
the neural network model classifies as positive, i.e., the intersection of the regex
negative set Ñ and the neural network positive set ˜̃P , which can be written as the
union of two sets — a “correct” negative reversion set PÑ ˜̃P and an “incorrect”
negative reversion set NÑ ˜̃P :

NRS = Ñ ˜̃P

= PÑ ˜̃P +NÑ ˜̃P.
(1)

Table 1. Intersect sets of three classifications.

Human Regex Neural Network

P

PP̃

PÑ

P P̃ ˜̃P

PP̃ ˜̃N

PÑ ˜̃P

PÑ ˜̃N

N

NP̃

NÑ

NP̃ ˜̃P

NP̃ ˜̃N

NÑ ˜̃P

NÑ ˜̃N

In Equation 1, the “correct” negative reversion set PÑ ˜̃P is the set of items
that are falsely classified by regex as negative but correctly “reversed” back to
positive by neural network. The “incorrect” negative reversion set NÑ ˜̃P is the
set of items that regex correctly coded as negative but wrongly reversed by
the neural network as positive. The proportion of correctly reversed items in
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the negative reversion set is used to measure the false negative density in the
negative reversion set. For any two sets X ⊆ Y , we define the density of X in Y
by

d(X,Y ) =
|X|
|Y |

.

Thus the density of correctly reversed false negative items in the negative rever-
sion set can be written as

d(PÑ ˜̃P, Ñ ˜̃P ) =
|PÑ ˜̃P |

|Ñ ˜̃P |
,

and the false negative density in the regex negative set is given by

d(PÑ, Ñ) =
|PÑ |
|Ñ |

.

Cai et al. [2] found that the density of false negative items in NRS could be
much higher than in the regex negative set. That is,

d(PÑ ˜̃P, Ñ ˜̃P ) ≫ d(PÑ, Ñ).

As a side note, we point out that similar notations can be used to define “Positive
Reversion Set (PRS)” which could be written as the union of “Correct Positive
Reversion” and “Incorrect Positive Reversion”:

PRS = P̃ ˜̃N = PP̃ ˜̃N +NP̃ ˜̃N.

Positive reversion set could be useful for improving precision of regex classifiers,
which is an interesting issue but out of the scope of this paper.

2.2 NRS Assisted Regex Development

Based on their discovery, Cai et al. [2] proposed a regex development procedure
(see Figure 1). In their procedure, the regex development starts from an initial
list. This regex list is a set of “atomic regex”, each of which cannot be decomposed
as two regexes combined by the symbol “|”. For example, “\bchair|\btable” is
not an atomic regex because it can be decomposed as “\bchair” and “\btable”. A
researcher provides one or more keywords that can represent a part of the code.
The keywords are then used to construct the atomic regexes.

Once the initial regex list is obtained, the data is coded by the regex list and
a neural network model is then trained using a part of the data classified by the
regex list. The reversion sets, including negative reversion set and positive re-
version set, are then identified by intersecting the regex classification and neural
network classification. Items from reversion sets are then selected and presented
to the researcher to rate the occurrence of the code. A conflict occurs if the
researcher’s rating is different from the regex classification. The researcher may



6 Z. Cai et al.

resolve the conflict by changing the rating or modifying the regex list. When
the regex list is modified, a new neural network model is re-generated and new
reversion sets are identified. New items are continuously selected and presented
to the researcher, until the researcher’s rating and the regex classification reach
an acceptably high level of agreement. In this procedure, reversion sets serve as
providers of most likely conflict items.

Fig. 1. Neural network assisted regex development for qualitative coding.

2.3 Research Questions

The regex development procedure suggested by Cai et al. [2] assumed that se-
lecting items from a set with denser false negatives helps shorten the searching
of new regexes. However, exactly how much such selection helps increase the
efficiency of regex based classifier refinement remains an unanswered question.
In this paper, we attempt to answer this question. Specifically, we ask:

RQ1 How does the false negative density change over multiple iterations? We
know that the false negative density in the negative reversion set Ñ ˜̃P could be
much higher than in the regex negative set Ñ . However, for each subsequent
iterations, the number of false negative items reduces and thus the density could
reduce quickly. This leads to the following questions, 1) How dense could it be
at the beginning of the process? and 2) How quickly would it drop?
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RQ2 Is using the negative reversion set more efficient than random sampling
for the purpose of regex based classifier refinement, if so how much more? We
hypothesize that sampling from a set with dense false negatives could help a
researcher more quickly identify missing regexes. The question is, for a given
level of required coding accuracy, how many fewer items would a researcher
need to examine when using the negative reversion set compared to random
sampling?

3 Method

3.1 Data

The data we used in this study were collected by previous researchers from
an engineering virtual internship called Nephrotex [5, 8]. Participants worked
as interns at a fictitious company that designs and manufactures ultrafiltration
membranes for hemodialysis machinery used to treat end-stage renal failure. The
work was divided into two phases. In the first phase, participants were grouped
into teams of five. Each team worked on a specific task. In the second phase,
participants were regrouped, or jigsawed, into new teams of five members from
different teams in the first phase. The task in the second phase was to reflect
the work each member did in the first phase to collaborate with their new team
with varied expertise. The utterances in all online team chat conversations were
collected, resulting in a data set with 50,888 utterances. After filtering out 70
longest utterances, 50,818 utterances were used in this study, each of which had
a length not more than 100 words.

3.2 Codes

Previous researchers created six codes, including Tech Constraints, Performance,
Collaboration, Design, Data and Requests. They developed and validated regexes
for each code. Table 2 shows the name, description, example regex and IRR
(Inter-Rater Reliability) of the six codes. The three numbers in the IRR column
are the kappa values between three pairs of raters: human rater 1 : human rater
2, regex : human rater 1, and regex : human rater 2. Since the regexes were well
developed and validated, in this study we consider the regex lists “complete” and
use the full regex classification as human classification.

3.3 Three Classifiers

This study involves three types of classification processes. The first type named
“Full Regex”, which uses the complete regex list developed and validated by pre-
vious researchers. This classification is used as “ground truth” and is considered
equivalent to “human” classification. The second type is called “Partial Regex”,
which uses a subset of the a full regex list to classify the data. This type is used
to simulate incomplete regex classifiers that are under development. The third
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Table 2. Code definition, example regexes and IRR.(All codes were validated at a
kappa threshold of 0.65 and a rho threshold of 0.05)

Code Description Example IRR
TECH
CONSTRAINTS

Referring to inputs:
material, processing
method, surfactant,
and CNT.

\bPESPVP, \bdry-jet,
\bnegative charge,
\bsurfactant, ...

0.96|1.00|0.96

PERFORMANCE Referring to
attributes: flus, blood
cell reactivity,
marketability, cost, or
reliability.

\bafforda, \bBCR,
\bflux, \bexpensive,
\bmarketa, ...

0.88|0.93|0.84

COLLABORATION Facilitating a joint
meeting or the
production of team
design products.

\bmeeting, \bwe all,
\bdiscussion, \bwhat
should,...

0.76|0.87|0.76

DESIGN Referring to design
and development
prioritization,
tradeoffs, and design
decisions.

\bfinal decision,
\bdecision, \bwent
with, \bbased each
design,...

0.89|0.86|0.84

DATA Referring to or
justifying decisions
based on numerical
values, results tables,
graphs, research
papers, or relative
quantities.

\bchart, \bequal
value, \bresults, ...

0.94|0.90|0.89

REQUESTS Referring to or
justifying decisions
based on internal
consultant’s requests
or patient’s health or
comfort.

\buser, \bDuChamp,
\bPadma, \bsafety,
\bhospital, ...

0.88|0.94|0.94
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type is the LSTM neural network (see Figure 2), which uses a small part of the
data classified by a partial regex classifier to train a predictive model. Details
about this neural network model can be found in Cai et al. [2].

Fig. 2. LSTM neural network for negative reversion.

3.4 Simulation Procedure

To answer our research questions, we simulated coding process under two condi-
tions, one was called “nn” condition and the other was called “random” condition.
In “nn” condition, the neural network modeling was included in the loop to iden-
tify negative reversion sets. The “nn” condition procedure went as follows.

1 Select one of the six codes;
2 Select a single regex with base rate not less than 0.001 from the full regex

list as lead regex (there are a total of 119 such regexes in the six classifiers);
3 Use the selected lead regex as partial regex list;
4 Code the data with the partial regex list;
5 Compute kappa between full regex coding and partial regex coding;
6 Sample 400 items containing at least 10 positive items and train a neural

network model;
7 Code the data using the neural network model;
8 Find the negative reversion set;
9 Sample 30 items from the negative reversion set;

10 Compute the false negative density in the 30 items;
11 If there are no false negative items, go to step 14 ;
12 Find the regexes in the full regex list that match any of the false negative

item in the 30 items and add the matched regexes into the partial regex list;
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13 Go to step 4;
14 If there are more regexes that have not been selected as lead regex, go to 2;
15 If there are more codes, go to 1;
16 Stop.

The procedure for the random condition was the same as the “nn” condition,
except that the 30 items in each iteration were randomly selected from the regex
negative set, instead of NRS.

3.5 Data Aggregation

The false negative density and the achieved kappa in each iteration were averaged
over the 119 leading regexes. The 95% confidence intervals were also computed
for these means.

4 Results

4.1 False Negative Density

Figure 3 shows the average false negative density in each 30-item iteration under
the two conditions (nn and random). In the first iteration, the 30 items from
NRS (nn condition) had about 36% false negatives on average, while the random
sampling from the regex negative set (random condition) had only around 11% on
average. The density in both conditions dropped quickly in the earlier iterations
and became about the same from the 6th iteration on. This indicates that the
use of NRS is more effective at the beginning stages of regex list development.

Fig. 3. False negative density in neural network identified negative reversion set (NRS)
and in random sample from partial regex negative set
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4.2 Required Manual Coding

Figure 4 shows the average kappas with 95% confidence intervals for each iter-
ation, each condition. At iteration 1, for a given code and given lead regex, the
partial regex list for both conditions were the same. And that is because both
conditions started with the same lead regex. Therefore, the kappas between full
regex list and partial list for both conditions were the same. From iteration 2
on, the items in the partial regex list for the nn condition were sampled from
negative reversion set, while unsurprisingly, items were randomly sampled form
the negative regex set for the random method condition, which is why we see the
divergence in kappas from itteration 2. The kappa values for nn condition imme-
diately became higher than the random condition, which implies that, the full
regex list could be more quickly identified using the nn method. For example, to
get a kappa κ = 0.8, the nn condition needed to iterate up to the 4th iteration,
which required 90 items; while the random condition needed to iterate up to
9th iteration, which required 240 items. Table 3 shows the estimated average
number of required items for the two conditions. Overall, the nn to random ratio
is less than 0.5. For higher kappa, the ratio is even smaller.

Fig. 4. Kappa between full regex coded data and partial regex coded data at each
iteration for two methods

Table 3. Estimated number of manually coded items for developing regex with
(nn)/without (random) NRS.

kappa 0.5 0.6 0.7 0.8 0.9
nn 45 60 70 90 180

random 90 120 150 240 420
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5 Conclusions and Limitations

In this paper, we explored the use of the negative reversion technique in regex
classifier development through a simulated coding procedure. We obtained two
major results. One result is about the change of the density of the false negative
items in the iterative procedure. We found that the false negative items were
dense in early regex development but quickly dropped as the procedure iterated.
This result has multiple implications. One is that the use of negative reversion
set is more effective at the beginning of the iterations. When the regex list
gets close to complete, the benefit from using negative reversion set is limited.
Another implication is that, the dropping rate of the false negative density may
be used as an indicator of the convergence of the iterative procedure. Namely,
when the density and the dropping rate become small, further iteration may
not be needed and the quality of the regex list under development may be high
enough. However, if we consider the quality of the regex list as a function of
density change, the code base rate needs to be taken into account, because for
codes with smaller base rate, density is smaller and the change rate may be
different. Further exploration on this issue is needed but is beyond the scope of
this paper.

In addition, we found that sampling from the negative reversion set could be
two or three times more efficient than random sampling from the regex negative
set. In other words, using negative reversion set could largely reduce the number
of items human needs to manually code when developing regex based classifiers.

Our results are averaged over 119 lead regexes from six classifiers with fairly
tight confidence intervals providing evidence for the robust of our conclusions
and the use of the NRS more broadly. However, when this technique is applied to
other data sets, several factors may impact the results. The first factor is the code
base rate. The six codes used in this paper have base rates ranging from 7% to
16%. When this technique is applied to codes with base rates far away from this
range, the density drop rate, the kappa growth rate, and, more importantly, the
number of required manual coding items could be different. The second factor
is the number of items selected in each iteration. In this paper, we chose 30
items in each iteration just because it was easier for demonstrating performance.
However, this number may affect the results. A smaller number may further
reduce required manual coding. Meanwhile, a smaller number also implies more
frequent updating of the neural network models, which takes computing time.
The R code we ran on a mac laptop needs about 1 minute to update an LSTM
neural network model with 400 items in the training data. When the computing
time is an issue, less frequent neural network updating could be considered.
However, if the neural network updating can be further optimized and becomes
fast enough, fewer items, or even single item per iteration could be considered.

Training size for neural network models is another factor that may impact the
results. In this paper, we chose training size as 400 items and required that there
are at least 10 positive items among these 400 items. How much the results rely
on this choice is unclear. Future work in finding ways to optimize this choice is
under consideration. One note on this is that, we don’t believe using a very large
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training size will give us better results. The reason is that, larger the training
size is, closer the neural network model will be to the regex classifier. That is,
with a large training size, the training data could "force" the neural network
to have a high level of agreement with the regex classifier and thus reduce the
density of false negatives in the negative reversion set. We also point out that,
any text classification models, not necessarily neural network models, could be
used to construct the negative reversion set. It wouldn’t be a surprise to us that
there are models work better than the one we used in this paper.

As a final note, while this paper only considered false negatives, similar logic
can be applied to construct “positive reversion set”. In practical use, we believe
both positive reversion set and negative reversion are useful. However, the neg-
ative reversion set could be more helpful when a code has a low base rate.
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