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A B S T R A C T   

The recent integration of imaging technology with additive manufacturing (AM) leads to the plethora of in- 
process and high-dimensional data. Machine learning (ML) methods have been implemented to improve un
derstanding of defect formation in AM-built parts and controlling process variability in real-time. However, 
modern ML methods, in particular deep neural networks, are empowered by massive high-quality labeled data, 
which are limited in AM due to the following reasons: First, large data labeling is often tedious, costly, and 
requires substantial human efforts with considerable expertise. Second, the performance of the learning methods 
depends to a great extent on the presence of positive data instances (i.e., defective) as they are more informative 
for monitoring. Third, the rare positives result in a severe imbalanced dataset poses critical challenges in training 
ML methods designed with the assumption that the input contains an equal number of instances from each class. 
In this research, we propose novel annotation and learning with limited number of data through the integration 
of active search and hyperdimensional computing (HDC). The active search is developed to benefit from a single 
bandit model to learn about the data distribution (exploration) while sampling from the regions potentially 
containing more positives (exploitation). HDC is introduced as an alternative computing method that mimics 
important brain functionalities and encodes data with high-dimensional vectors, thereby enabling single-pass 
learning with just a few samples. Experimental results on a real-world case study of drag link joint build show 
the proposed model locates the rare positives thoroughly and detects lack of fusion defects with the accuracy of 
89.58%, in 3.221 ± 0.029 second training time and with only 66 sample data. The joint active search and 
neuromorphic computing framework is shown to have strong potentials for general applications in a diverse set 
of domains with in-situ imaging data.   

1. Introduction 

The rapid emergence of technology has led to the shift from sparse 
and episodic measurement to in-situ and high-dimensional optical im
aging. As such, high-resolution data become readily available, which 
offer unprecedented opportunity to address the ever-increasing 
complexity of systems and control the process variations in various 
domains, including healthcare [1–3] and manufacturing [4–6]. In 
particular, in-situ imaging is recently integrated with additive 
manufacturing (AM) to empower the next generation of processes and 
tackle inconsistency issues (e.g., variations in geometrical accuracy, 
process stability, and mechanical properties). This provides a possibility 
to detect the onset of AM defects (e.g., porosity, crack, delimitation, and 

lack of fusion) prior to completion of the build. Therefore, it prevents 
defects permanently sealed in by subsequent layers, which may impact 
the build’s strength, residual stress, hardness, and fatigue life. 

Supervised machine learning (ML) methods are recently invested in 
AM to establish a framework that seamlessly integrates in-situ image- 
based monitoring with compensation methods to effectively detect and 
subsequently correct the process drift and anomalies toward high- 
quality printing [7,8]. However, the capability of these methods is 
highly dependent on the availability of labeled datasets that meet 
certain technical goals for training and validation. Although a remark
able amount of data can be generated easily with the cameras and 
connected devices in AM, three key challenges hinder the development 
of state-of-the-art supervised learning methods: 
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• Annotation cost: While labeling datasets is quietly affordable for so
cial networks, consumer preferences, and finance, such task is usu
ally expensive in terms of the consumed time, cost, and human labor 
[9]. In other words, rather than normal individuals, costly human 
expertise is required to differentiate the presence of various types of 
defects from images.  

• Data velocity: The next generation of AM enables advanced product 
designs and capabilities but increasingly relies on highly industrial 
sensing and control systems. A typical smart factory can generate 
around 5 petabytes (i.e., 5 million gigabytes) per week [10]. How
ever, only a small number of data can be utilized for supervised 
learning due to the lack of labels.  

• Limited number of rare positives: Positive data (i.e., data with defects) 
are more informative for learning in ML applications; however, it is 
arduous to locate the rare positives. In addition, severe imbalances 
pose challenges for many predictive models due to the assumption of 
equality in the number of instances for each class in input data. 
Although data augmentation techniques (e.g., crop, flip, rotation, 
scale, and translation) may have an explicit regularization effect, 
their explotation leads to the ineffcient learning, resulting in poor 
prediction capability. 

Therefore, the contribution of this research is two-fold: (1) we pro
pose new query strategies to find the rare positives, and (2) we develop 
new supervised learning methodologies to learn useful information 
within a limited number of data. Our solution utilizes the idea of active 
search and neuromorphic computing to swiftly train with minimal data 
for supervised learning. We first leverage active search on a graph to 
actively find rare positives as many as possible within a given budget. 
Such searching problems often face an exploration and exploitation 
dilemma — we need to locate the rare positives and explore the distri
bution of the dataset by selecting the negatives at the same time. 

Because materials are deposited and then sintered or melted in the 
layer-by-layer fashion in AM, there exist temporal (i.e., across layers) 
correlations in layerwise images. The solidarity process impacts the 
integrity of subsequent layers. Such dynamics are critical to gaining an 
in-depth understanding of defect formation and propagation. Therefore, 
label of an image can be inferred from other images with sequential 
structure because parts are fabricated in a layer-by-layer fashion. For 
example, intentional flaws were embedded in the build at four different 
locations along the build-up direction intersected with cubical and cy
lindrical patterns in the design of the drag link joint build. As shown in 
Fig. 1, flaws can be seen more clearly from the optical image when it first 
shows (see yellow box in layer l). However, powder from the next layer 
might fill the flaw (see yellow box in layer l + 1) and interfere with the 
annotator’s decision making. Information from other layers can support 
the decision making in the current layer due to the sequential rela
tionship between layers. A similar condition can be seen from the 
example in the red boxes. As such, having the sequential information 
from the previous layer can help the annotator label the image correctly 
and detect semantic and logic errors. Therefore, we leverage graph 
bandit to balance the exploration and exploitation in active search and 
at the same time address the data dependencies with the network 

structure. 
Further, inspired by human memory, we systematically design 

hyperdimensional computing (HDC) primitives to represent 
manufacturing data in high-dimensional space for supporting highly 
accurate training with a limited number of data. We propose the HDC, 
an adaptive training framework for accurate, efficient, and robust 
learning. HDC is motivated by the observation that the human brain 
operates on high-dimensional data representations. Objects are thereby 
encoded with high-dimensional vectors, called hypervectors, which have 
thousands of elements [11,12]. HDC incorporates learning capability 
along with typical memory functions of storing/loading information and 
mimics several important functionalities of the human memory model 
with vector operations, which are computationally tractable and 
mathematically rigorous in describing human cognition. As a result, 
HDC has the capability to expose hidden features, enabling single-pass 
learning with just a few samples. 

The remainder of this paper is organized as follows: Section 2 pro
vides a literature review on the relevant methods of active learning, 
active search, and neuromorphic computing. Section 3 presents the 
proposed methodology. Experimental design and results on the drag link 
joint part based on the real-world case study are given in Section 4. In 
the end, in Section 5, we conclude this paper by highlighting gaps of 
existing learning methods in AM and then provide an overview of the 
proposed methodology. 

2. Research background 

2.1. Additive manufacturing process dynamics and machine learning 

In the domain of AM, one of the major challenges is the occurrence of 
various defects such as cracks, delamination, distortion, rough surface, 
lack of fusion, porosity, foreign inclusions, and process instability 
[13–16]. Area with limited pathways for heat transfer can manifest as 
regions of high residual stress generating cracks, delamination, and 
distortion. Porosity-induced part failure can occur due to lack of fusion 
and keyholing. Surface tension causes balling of the melt pool, which 
solidifies into rough surfaces that encourage crack initiation and growth 
[17]. AM defects usually originate from the layerwise material deposi
tion process. Some may also propagate from the previous layer to sub
sequent layers, further causing the failure of the entire build. The 
current quality assurance in AM embodies design of experiment and 
simulation to reveal the underlying mechanism for the formation of 
specific features during fabrication (e.g., melt pool geometry, keyhole, 
and microstructure). However, trial-and-errors and simulation methods 
(e.g., finite element analysis and computational fluid dynamics) are 
often expensive and time-consuming. Therefore, many researchers have 
explored the feasibility of introducing ML methods to solve the quality 
challenges in AM. A significant amount of data, mainly visual images, 
are collected and processed to train different ML algorithms to monitor 
the printing process. 

In practice, domain experts annotate experimental data through 
comparison with X-ray computed tomography (XCT) scans for super
vised learning tasks. With the labeled dataset, ML methods learn from 

Fig. 1. An example of data annotation with the 
information of sequential structure. Part design is 
shown in the left, and layerwise images of three 
consecutive layers are presented in the right. Yel
low and red boxes indicate intentional defects 
(represent lack of fusion) in the drag link build. 
The defects in yellow boxes of layer l + 1 are hard 
to confirm without the information from layer l. 
(For interpretation of the references to color in this 
figure legend, the reader is referred to the web 
version of this article.)   
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the training set and make inference, perform predictions, and determine 
optimal process parameters. Gaussian process (GP) [18], conventional 
learning (e.g., support vector machine and k-nearest neighbor) [19,20], 
and neural network [21] are three major models. For example, Tapia 
et al. [22] developed a GP-based surrogate model to construct 3D 
response maps of melt pool depth versus process parameters. Wang et al. 
[23] leveraged the support vector machine to quantify the top build 
surface condition narrow down the process window for the electron 
beam melting (EBM) process. Scime and Beuth performed k-means 
clustering [24] and multi-scale CNN [25] to train the system to correctly 
classify the powder-bed image patches into seven types, based on the 
images captured during the powder bed fusion process. However, lack of 
enough training data, computational complexity, and overfitting 
proneness are the main drawbacks of the current ML practices in AM. 
The acquisition of a sufficient amount of data representative of signal 
patterns in the presence of defects or faulty states may be difficult to 
have in practice, and data labeling may be a time-consuming and 
troublesome task [26]. Furthermore, large AM datasets are limited 
owing to the infinite number of combinations in build design, material, 
and platform (i.e., one model for each single system, not generalizable to 
other systems, even similar ones). 

2.2. Active search 

Active search is an increasingly pivotal learning problem in which 
we use a limited budget of label queries to discover as many members of 
a certain class as possible [27]. It is a special realization of active 
learning (also named query learning or optimal experimental design) 
that annotates data for a specific model by evaluating the performance 
on labeled data. Active search is studied in many real-world applica
tions, such as drug discovery [28], sentiment analysis [29], and 
recommendation systems [30], just to name a few. 

The labels of data are not known at the beginning of the search but 
can be revealed by querying the annotator during the annotation pro
cess. Note that the annotator is also named as oracle in the literature. 
Therefore, the goal of the active search is to design a query strategy that 
is able to sequentially query points to find are positives (i.e., valuable 
points) under a labeling budget in an efficient manner. Often, this query 
strategy faces the fundamental dilemma between exploration and 
exploitation, whether to search for new regions of valuable points 
(exploration) or take advantage of the currently most-promising regions 
(exploitation) [31]. Bandit algorithms [32,33] are widely utilized to 
manage this trade-off in active search because selecting an item can be 
related to pulling an arm. For example, Antos et al. [34] focused on 
multi-armed bandits with budget constraints, the arm-pull is costly, and 
their model is limited by a fixed budget. Zhu et al. [35] proposed a Meta- 
Bandits to evaluate a set of base bandits and annotate the rare positives 
efficiently. 

As big data poses new challenges for models to deal with complex 
dependencies, there have been some attentions to active search in the 
graph setting. Wang et al. [27] proposed a myopic method for active 

search on graphs. Vanchinathan et al. [36] designed a Gaussian process 
(GP) based algorithm to extend the upper-confidence bound (GP-UCB) 
algorithm [37] for stochastic optimization with theoretical guarantees. 
Ji and Han [38] integrated V-optimality in their experimental design, 
and Ma et al. [39,40] further improve the state-of-the-art by combining 
GP-UCB with Σ-optimality. In this research, we leverage the graph to 
cope with the complex structure in manufacturing data. Here, data are 
represented as vertices, and their relationships are encoded by edges. As 
shown in Fig. 2, the vertices in magenta color are the observed nodes 
where we have both rare positives (i.e., happy face) and negatives (i.e., 
sad face). We need to determine which vertex to query next based on the 
observed vertices through active search. 

Recently, several works have recognized the opportunities of intro
ducing active learning to aid data labeling and annotation in 
manufacturing. Rožanec et al. [41] discussed how to leverage active 
learning to identify missing knowledge in the learning of manufacturing 
ontology. Similarly, Zajec et al. [42] proposed an active learning-based 
module that receives input from the database and knowledge graph to 
suggest data instances that are expected to be most informative to the 
system. Instead of recognizing the missing information, our objective of 
active search is to identify the rare positives with as few iterations as 
possible. Wuest et al. [43] mentioned that active learning could be used 
for obtaining labeled training data for manufacturing problems. Meng 
et al. [9] argued the missing functionality of active learning in the AM 
field. Very limited work has been done to study the performance of 
active learning in the field of AM. To the best of our knowledge, this 
work is one of the first works to investigate the active search in the field 
of manufacturing. 

2.3. Neuromorphic computing 

HDC, also referred to as brain-inspired or neuromorphic computing, 
is commonly used for representations of structured knowledge and 
computer-based semantic reasoning. HDC is a new ML paradigm that 
can transform data into knowledge at a very low cost and with compa
rable accuracy to state-of-the-art methods for diverse applications. It is 
also robust to errors in communication - it can correctly infer even when 
as much as 30% of the bits are corrupted [44,11]. There are two main 
components in HDC, encoding and arithmetic operations. HDC encodes 
raw data into high-dimensional vectors (hypervectors), which can have 
as many as 10,000 bits. Processing data requires simple arithmetic op
erations, rotation, and nearest neighbor search, all of which are easy to 
accelerate in hardware [45–47], thus leading to very low-power and 
high-performance implementations. 

The development of HDC was ignited by studies on brain activity 
showing that the processing of even simple mental events requires 
concurrent operation in many separated neurons [48]. Inspired by this 
observation, information in HDC is similarly represented in this fashion: 
a single concept is associated with a pattern of activation of many 
neurons. This is achieved by using a vector with very large dimensions. 
Several different types of HDC have been introduced, each using 
different representations [49,50]. HDC-based learning reduces the 
communication costs since training is error-tolerant against data noise 
and converges within a few epochs to achieve comparable accuracy to 
the state-of-the-art methods [11,51–53], while requiring a very small 
amount of data. As a result, recent years show a growing interest in 
implementation of HDC to sensory data in various systems. For example, 
Emruli et al. [54] modeled dependencies in temporal sequences of het
erogeneous measurements using HDC. Imani et al. [11] and Khaleghi 
[11] proposed HDC for enabling lightweight privacy and security. Other 
applications of HDC include natural gesture recognition [55] and mo
dality classification of medical images [56]. These results provide 
empirical evidence that HDC has the potential to become a powerful tool 
for the analysis of complex dependencies between image data in additive 
manufacturing. 

Fig. 2. An example of active search on graph. We need to determine which 
vertex to query next based on the observed vertices in magenta. (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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3. Methodology 

In this paper, we combine active search and neuromorphic 
computing for the rare positives in additive manufacturing. As shown in 
Fig. 3, the proposed methodology contains two main steps. First, we 
perform the active search on a graph to find all rare positives with a 
budget efficiently. We relate the problem to multi-arm bandit (MAB) and 
leverage the graph-UCB to address the exploration-exploitation 
dilemma. Note that here, we do not allow data replacement for the 
active search. Then, we conduct neuromorphic computing for super
vised learning with a limited number of training and testing data. 

3.1. Active search and bandits on graph for data annotation 

Given a set of N vertices V = {v1, v2…,vN} with their labels L = {l1, 
l2,…, lN} where li ∈ {0,1}, we aim to preform active search in a graph 
with a given structure G = {V , E } and identify all vertices with li=1. 
Here, if there is a relationship between vi and vj, an undirected edge (vi, 
vj) is added to E . 

Let OT = {v1*,…vT*} denotes the optimal sequence with the budget 
of T. Our objective is to design a query strategy that generates a query 
sequence ST = {v1,…vT} which minimizes the regret between the pro
posed strategy and the optimal strategy 

Regret (T) =
∑T

t=1
r
(
v*

t

)
− E

[
∑T

t=1
r(vt)

]

(1)  

where r(v) is the function that predicts the reward of vertex vi when it is 
selected for annotation. Note that sequences OT and ST do not allow 
repeated elements. Our model assumes that there is one annotator who 
does not make mistake in this work. As such, our objective for the active 
search here is to find the rare positives with the minimum number of 
iterations. 

Denote the vector of rewards of all nodes in G as v ∈ ℝN, the joint 
distribution of these random variables can be written as 

logp(r) ∼ −
∑N

i=1

∑N

j=1

Ai,j
(
ri − rj

)2

2
−

∑N

j=1

ω
(
rj − μ0

)

2
(2)  

where μ0 is the prior mean and ω is the regularization parameter. A 
denotes the adjacent matrix of G , where Ai, j ⩾ 0 ∀ i, j. We represent the 

Laplacian matrix of G as L = D − A, where D = diag (D). Then we have 

r ∼ N (μ0, K0) (3)  

where μ0 = μ0 × 1 and K0 = (L + ωI)−1. Note that this prior model is 
also known as Gaussian random fields. 

Suppose for ST = {v1,…, vT}, f(v) = r(v) + ε, where ε ∼ N
(
0, σ2

n
)
. We 

assume the unknown reward function r(v) is sampled from a GP prior 
with mean 0 sand covariance function κ [57]. Therefore, for each un
selected v ∈ V/St, we can present the posterior distribution of f(v) as 

μt(v) = kt(v)
T (

Kt + σ2
nI

)(−1)f t

σ2
t = κ(v, v) − kt(v)

T (
Kt + σ2

nI
)
kt(v)

(4)  

where kt(v) = [κ(v,v),…,κ(vt,v)]T, Kt is the positive semi-definite kernel 
matrix where Kt(i, j) = [κ(vi,vj)] ∀ i, j < t, and I is the identity matrix with 
the size of t × t. The mean and the variance will support to navigate the 
exploration—exploitation trade off in further steps. Finally, we lever
aged the extension of the popular GP-UCB algorithm proposed by Van
chinathan et al. [36], which authors named GP-SELECT.

The algorithm utilized in this work is described in Algorithm 1. The 
algorithm treats the exploration-exploitation dilemma with GPs. The 
algorithm selects the next node to query based on the selection rule at 
iteration t: 

vt = argmaxv∈V/St = μt−1(v) + βtσt−1(v) (5)  

where μ(t) is the exploitation term and σ(t) is the exploration term, and 
the trade-off between exploitation and exploration is handled by the 
time varying parameter βt. Next, with the selected sub-dataset ST = {v1, 

Fig. 3. The flowchart of the proposed methodology. We integrate the active search and neuromorphic computing for efficient supervised learning in advanced 
manufacturing. 
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…vT}, we propose a novel methodology to train a classification model 
with limited number of rare positives. 

3.2. HDC: supervised learning using hyperdimensional computing 

Fig. 4 shows the flowchart of hyperdimensional classification. HDC 
often contains four steps, namely encoding, single-pass training, infer
ence, and retraining. 

3.2.1. Encoding 
In the first step, the algorithm maps each data points into a high- 

dimensional space, named encoding. HDC leverages different encoding 
methodologies according to the data property. HDC uses different 
encoding methods depending on data types [12,55,58]. The encoded 
data should satisfy the common-sense principle: data points different 
from each other in the original space should also be different in the HDC 
space. 

In this paper, we introduce an encoding method which exploits the 
kernel trick [59,60] to map data points into the high-dimensional space. 
The underlying idea of the kernel trick is that data, which is not linearly 
separable in original dimensions, might be linearly separable in higher 
dimensions. Let us consider certain functions K(x,y) which are equiva
lent to the dot psroduct in a different space, such that K(x,y) = Φ(x) ⋅ 
Φ(y), where Φ(⋅) is often a function for high-dimensional projection. The 
Radial Basis Function (RBF) or Gaussian Kernel is the most popular 

kernel: K(x, y) = e
−‖x−y‖2

2σ2 . We can take advantage of this implicit mapping 
by replacing their decision function with a weighted sum of kernels: 

f (⋅) =
∑N

i=0
ciK(⋅, xi)

where (xi,yi) is the training data sample, and the cis are constant 
weights. The study in [59] showed that the inner product can efficiently 
approximate RBF kernel, such that: 

K(x, y) = Φ(x)⋅Φ(y) ≈ z(x)⋅z(y)

The Gaussian kernel function can now be approximated by the dot 
product of two vectors, z(x) and z(y). The proposed encoding method is 
inspired by the RBF kernel trick method. Fig. 5 shows our encoding 

procedure. Let us consider an encoding function that maps a feature 
vector F

̅→
= {f1, f2, …, fn}, with n features (fi ∈ ℝN) to a hypervector 

H
̅→

= {h1, h2, …, hD} with D dimensions (hi ∈ {−1,1}). We generate each 
dimension of the encoded data by calculating a dot product of the 

feature vector with a randomly generated vector as: hi = cos
(

B
̅→

i⋅ F
̅→

+

b
)

× sin
(

B
̅→

i⋅ F→
)

, where Bi is the randomly generated vector with a 

Gaussian distribution (mean μ=0 and standard deviation σ=1) with the 
same dimensionality of the feature vector and b is a random value 
sampled uniformly from [0,2π]. 

The random vectors 
{

B
̅→

1, B
̅→

2, ⋯, B
̅→

D

}

can be generated once 

offline and then can be used for the rest of the classification task. After 

this step, each element hi of a hypervector H
̅→n 

has a non-binary value. 
In the HDC, binary (bipolar) hypervectors are often used for the 
computation efficiency. We thus obtain the final encoded hypervector 

by binarizing it with a sign function ( H
̅→

= sign
(

H
̅→n)

) where the sign 

function assigns all positive hypervector dimensions to ‘1’ and zero/ 
negative dimensions to ‘−1’. The encoded hypervector stores the in
formation of original data point with D bits. 

3.2.2. Training 
The objective of the single-pass training is to find the universal 

property for training dataset. The trainer model adds the hypervectors to 
create a single vector and linearly combines hypervectors belonging to 

each class. Assume we have k classes M =

{

C
̅→

1, C
̅→

2, … C
̅→

k

}

, if we 

have J inputs with label l, the class hypervector C
̅→l 

can be calculated 
as 

Fig. 4. Overview of hyperdimensional classification.  
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Fig. 5. Non-linear hyperdimensional encoding.  

Fig. 6. (a) HDC single-pass training; and b) adaptive iterative training.  
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C
̅→l

=
∑J

j
H
̅→l

j (6) 

However, the above-mentioned hypervector generation often results 
in the saturation of class hypervectors by data points with the most 
common patterns and leads to misclassification. Therefore, we design a 
novel HDC, an adaptive training framework for efficient and accurate 
learning. The proposed algorithm identifies common patterns during 
training and eliminates the saturation of the class hypervectors during 
single-pass training. Instead of naively combining all encoded data, our 
approach adds each encoded data to class hypervectors depending on 
how much new information the pattern adds to class hypervectors. 

Fig. 6a shows HDC functionality during adaptive initial training. 
Assume H

̅→
a new training data point. The proposed HDC first computes 

the cosine similarity of this new data point with all class hypervectors 

C
̅→

i as 

δ

(

H
̅→

, C
̅→l

)

=
H
̅→

⋅ C
̅→l

‖ H
̅→

‖ ⋅ ‖ C
̅→l

‖

(7)  

where H
̅→

⋅ C
̅→

i denotes the dot product between the query and the class 
hypervector. HDC updates the model based on the δ similarity. For 
example, if the input data has a label of l but the more similar to class l′

from the calculation, we update the model as follows 

C
̅→

l← C
̅→

l + η(1 − δl) H
̅→

C
̅→

l′ ← C
̅→

l′ + η(1 − δl′ ) × H
̅→ (8)  

where η represents the learning rate. When δl is large, i.e., the input is a 
common data point which is already exist in the model, the update adds 
a very small portion of encoded query to model to eliminate model 
saturation (1 − δl ≃ 0). On the other hand, when δl has a small value, i.e., 
the query has a new pattern which does not exist in the model, we up
date the model with a large factor (1 − δl ≃ 1). 

3.2.3. Inference 
Inference checks the similarity of each encoded test data with the 

class hypervector. We encode the input and generate a query hyper
vector H

̅→
. The similarity δ can be calculated by H

̅→
. Query data gets the 

label of the class with the highest similarity. Finally, retaining improves 
HDC classification accuracy by discarding the mispredicted queries from 
corresponding mispredicted classes and adding them to the right class. 

3.2.4. Retraining 
Fig. 6b) illustrates the functionality of HDC during adaptive learning. 

Adaptive training follows a similar learning procedure as initial training. 
In our proposed methodology, HDC adaptive learning is equivalent to 
the retraining phase, as it provides a higher chance and weight to non- 
common patterns to represent on the final model. Retraining examines if 
the model correctly returns for an encoded training data H. If the model 

mispredicts the label l as l′, we utilize δl = δ
(

H, C
̅→

l

)

and δl′ =

δ
(

H, C
̅→

l′

)

to calculate the similarity of data with correct and miss- 

predicted classes through Eq. (9). As such, we ensure that the model is 
updated based on how far a training data point is miss-classified with the 
current model. Also, we provide separate coefficients for the true and 
miss-predicted labels, allowing to update each class hypervector 
independently. 

4. Experimental results 

4.1. Build fabrication 

To evaluate and validate the proposed methodology, we fabricated a 
drag link joint build with the powder bed fusion (PBF) technology in 
which the machine utilizes a laser power source for melting the metal 
powder. Our experiment was performed on an EOSINT M 280 Laser PBF 
machine. The material was a titanium alloy, Ti-6Al-4V, also known as 
ASTM B348 Grade 23 powder material which has a particle size between 
14 μm and 45 μm. The LPBF machine experimental setting is shown in 
Table 1. 

Overall, the drag link joint build has an enclosing box dimension of 
23.7 mm × 13.3 mm × 27.3 mm, with the layer thickness of 60 μm. We 
intentionally design defects in the build, and the flaws are embedded in 
the build at four different locations along the build-up direction that is 
intersected with cubical and cylindrical patterns (see Fig. 7). Flaw pat
terns consist of 50 μm, 250 μm, 500 μm, and 750 μm cubical and cy
lindrical shapes, which are centered in the z plane direction. Cylindrical 
flaws with the diameter of 50 μm, 250 μm, 500 μm, and 750 μm are also 
placed in the part. These intentionally embedded flaws represent the 
lack-of-fusion flaws that happen in the Laser PBF process, i.e., small 
zones of infused material placed in a component. 

During the fabrication, a DSLR camera (i.e., Nikon D800E) with a 
resolution of 36.3 megapixels is utilized to capture layerwise image 
profiles of the powder bed (see [61] for detailed information related to 
the printer setup). The layerwise images captured by the DSLR camera 
contain both the region of interest (ROI) and the powdered area. As 
shown in Fig. 8c), we perform an image registration to separate the ROI 
from the background. Specifically, we utilized the standard registration 
procedure to register the moving voxel (i.e., XCT volume) and the fixed 
voxel (i.e., STL file) through five steps, namely interpolation, compari
son, optimization, parameter update, and transformation. 

First, image registration is performed with the backward mapping 
starts at interpolation (Fig. 9). We utilize bi-linear interpolation to map 
voxel values to the new coordinate system based on the moving trans
formation. Then, the mean square difference is defined to measure the 
similarity metric between fixed and transformed voxels. The gradient 

Table 1 
LPBF machine parameters setting for fabrication.  

Print parameters Value 

Laser power 340 W 
Scan speed 1250 mm/s 
Hatching distance 0.12 mm 
Layer thickness 60 μm  

Fig. 7. : Locations of intentional defects in the drag link joint build.  

R. Chen et al.                                                                                                                                                                                                                                    



Journal of Manufacturing Processes 71 (2021) 743–752

749

descent optimizer specifies the searching strategy by calculating the 
optimal set of transformation parameters (i.e., translation, scaling, and 
rotation angles around z, y, and x axes). Finally, the parameters and the 
transformation map the position of each unit in two voxels. The algo
rithm is aimed at optimizing the parameter to find the spatial mapping, 
which brings the moving voxel to align with the fixed target. 

Fig. 10 shows two examples of image registration, a) for a layer with 
no defect and b) for a layer with intentional defects, respectively. We can 
clearly see the two cubical defects are captured by the layerwise images. 
When the defect is first present, it is often shown as dark spots in the 
layerwise image. However, when fabricating the next layer, the metal 
powder will fall into the defect and will be presented in gray color by the 
layerwise image (see Fig. 1). We treat the layer with defects as rare 
positives and label them as 1. For more information regarding the 
experimental setup and iterative image registration, please refer to our 
previous works [62,63]. 

4.2. Active search for locating rare positives 

We first run the active search on the selected set, and the recall (i.e., 
the percentage of all rare positives that are selected and annotated by 
bandits) is visualized in Fig. 11. Note that in total, we have 66 layers 
(layers 2 to 67) of the drag link joint build which contains 16 layers of 
rare positives and 50 negative data points for our study. 

We consider the following parameter values for our experiment. β =
{2,1,0.1,0.01}, ω = {0.5,0.1,0.05,0.01}, σ2={1,0.5,0.25,0.1}, and D=

{2,3,4,5}. Here, D denotes the maximum depth of a network structure. 
For example, D=3 indicates that a layer (i.e., vertex in G can be linked at 
most to the previous 3 and next 3 layers in the network structure. Fig. 12 
shows the result of recall versus the number of queries of the whole 
dataset. Note that we colored the 1st, 10th, 20th, 30th, 40th, 50th, 
and60th annotation result among 64 different combinations. Other re
sults are represented in gray color. Also, some results might overlap with 
each other. As we can see from the result, the active search algorithm is 
able to find all rare positives within the first 25 iterations in most cases. 
Once the first rare positive is found, the other rare positives are easier to 
be selected by the algorithm. If one layer has defects, according to the 
observation, the next layer has a bigger probability of having defects. A 
pore often exists more than one layer; for example, the size of a pore in 
PBF is usually more than 100 μm, and the layer thickness that we have 
for our experiment is 60 μm. For the next step, we select the best 
parameter set for each case (i.e., different network structures) for su
pervised learning with the proposed HDC. 

4.3. HDC for supervised learning 

We separate 75% of our data for training and 25% for testing for 
HDC. As shown in Fig. 12, we compared the testing accuracy between 
different numbers of queries and the testing accuracy when training the 
whole dataset. The testing accuracy increases as the number of queries 
increases, and the accuracy slowly converge to the accuracy when 
training the model with the whole dataset (i.e., T=66). When T=66, the 
accuracy of the classification is around 0.89 no matter how d varies. 

Fig. 8. : a) The schematic diagram of the LPBF process, b) the advanced imaging system, and c) a picture of the fabricated drag link joint build.  

Fig. 9. : Image registration flowchart to map layerwise image according to the 
CAD slice. 

Fig. 10. Examples of registered layerwise images a) layer 5, and b) layer 51. We can see that one cubical and one cylindrical defects are captured by the layerwise 
image in b). 
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However, the accuracy converges faster when the value of d is bigger. In 
our experiment, we have 16 images with the label of 1. According to 
Fig. 12, ST from the active search become a balanced dataset when 
T>30. In addition, the variance of the accuracy decreases when the 
number of queries increases. This is because that the model becomes 
more stable when the number of training data increases. We also collect 
the running time of the proposed algorithm. It can be seen in Table 2 that 
the running time increases when the size of the dataset increases. 

We further report other indicators, i.e., sensitivity (SEN), specificity 
(SPC), and precision (PPV), for the above four cases when T=30. 

SEN =
TP

TP + FN
, SPE =

TN
FP + TN

,

NPV =
TN

TN + FN
, PPV =

TP
TP + FP

ACC =
TP + TN

TP + TN + FP + FN

(9)  

where TP, FP, TN, FN denote true positive, false negative, false positive, 
and true negative in the confusion matrix, respectively. Here, the 
sensitivity indicates the ability of our model to correctly identify the rare 
positives, specificity shows the capability of the model to correctly 
identify layers without defects, and precision shows the proportion of 
rare positives that are identified correctly. From Table 3, the indicators 
do not vary much under different d. Overall, the proposed HDC enables 
fast and efficient learning from a small amount of data. 

5. Conclusions 

Additive manufacturing (AM) processes still suffer from various 
process-related quality issues such as cracks, porosity, geometric 
distortion, and delamination. The recent advancement in imaging 
technology leads to a data-rich environment in AM and provides a 
unique opportunity to enhance the understanding of processes. Machine 
learning (ML) shows great potential to accelerate the transition of high- 

dimensional image data into real-time actionable knowledge in AM. 
However, implementation of ML methods requires a significant amount 
of labeled data, which is often tedious, costly, and requires substantial 
human efforts with considerable expertise. This research is aimed at 
tangling active search strategy and neuromorphic computing to selec
tively label AM image data and swiftly learn their underlying dynamics. 
We incorporate ideas from Gaussian Process optimization and multi- 
armed bandits to provide a principled approach for active search with 
strong theoretical guarantees. Active search takes advantage of graph 
analysis to find rare defective layerwise images as many as possible 
within a given budget using exploration and exploitation formulation. 
Novel hyperdimensional computing is introduced to provide a natural 
way to scalable and strong learning system that better mimics brain 
functionality. The proposed active search and neuromorphic computing 
framework is shown to have strong potentials for analyzing in a diverse 
set of domains with in-situ imaging data to support learning tasks such 
as defect detection, process parameter optimization, and design 
recommendation with a lower budget. Experimental results on complex 
additive manufacturing build show that with 33% queries of data, the 
accuracy of the proposed framework converges to the accuracy when 
training the model with the whole dataset (i.e., T = 66). The proposed 
active search and neuromorphic computing framework is shown to have 
strong potentials for analyzing in a diverse set of domains with in-situ 
imaging data to support learning tasks such as defect detection, pro
cess parameter optimization, and design recommendation with a lower 
budget. Our contribution to process improvement in AM is two-fold. 
First, using less data through active search allows defect detection at a 
faster speed. Second, most machine learning methods, especially 
powerful deep neural networks, require a large number of training data 
for anomaly detection in AM. Such data are not usually available due to 
the change in process, design, or material types. In the future, we will 
further investigate and develop active search and neuromorphic 
methods and tools for monitoring complex spatial patterns in 3D/4D 
image streams. 

Fig. 11. The recall of the active search when a) D=2, b) D=3, c) D=4, and d) D=5.  
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active learning in manufacturing. arXiv Preprint 2021:arXiv:210702298. 
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