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ABSTRACT

The biosignals consist of several sensors that collect time
series information. Since time series contain temporal de-
pendencies, they are difficult to process by existing machine
learning algorithms. Hyper-Dimensional Computing (HDC)
is introduced as a brain-inspired paradigm for lightweight
time series classification. However, there are the following
drawbacks with existing HDC algorithms: (1) low classifi-
cation accuracy that comes from linear hyperdimensional
representation, (2) lack of real-time learning support due to
costly and non-hardware friendly operations, and (3) unable
to build up a strong model from partially labeled data.
In this paper, we propose TempHD, a novel hyperdimen-

sional computing method for efficient and accurate biosig-
nal classification. We first develop a novel non-linear hy-
perdimensional encoding that maps data points into high-
dimensional space. Unlike existing HDC solutions that use
costly mathematics for encoding, TempHD preserves spatial-
temporal information of data in original space before map-
ping data into high-dimensional space. To obtain the most in-
formative representation, our encodingmethod considers the
non-linear interactions between both spatial sensors and tem-
porally sampled data. Our evaluation shows that TempHD
provides higher classification accuracy, significantly higher
computation efficiency, and, more importantly, the capability
to learn from partially labeled data. We evaluate TempHD
effectiveness on noisy EEG data used for a brain-machine
interface. Our results show that TempHD achieves, on aver-
age, 2.3% higher classification accuracy as well as 7.7× and
21.8× speedup for training and testing time compared to
state-of-the-art HDC algorithms, respectively.
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1 INTRODUCTION

In many real-world applications, data are captured over the
course of time, constituting a time series. Particularly, biosig-
nals consist of several sensors that collect time series infor-
mation [1]. Since time series contain temporal dependencies,
it is often difficult to analyze them using machine learning
algorithms. Deep learning algorithms have been commonly
used to extract incident patterns or insights from data and
build a supervised learning model. However, the current
deep learning models have a weak notion of memorization,
while biosignals often deal with temporal information. Re-
cent research tried to use recurrent neural networks (RNN)
and Long short-term memory (LSTM) to learn and memorize
spatial-temporal information [2, 3]. However, these models
are significantly difficult and inefficient to train. In addition,
running deep learning algorithms requires large off-chip
memory to store train data and perform many learning it-
erations [4]. This resource requirement is often above the
capability of today’s embedded devices. Lastly, deep learning
solutions require many train data to build up a reliable model,
while in practice, it is costly and sometimes impossible to
collect such labeled data.
Hyper-Dimensional Computing (HDC) is introduced as

an alternative paradigm that mimics important brain func-
tionalities towards high-efficiency and noise-tolerant com-
putation [4ś8]. HDC is motivated by the observation that
the human brain operates on high-dimensional data repre-
sentations. In HDC, objects are thereby encoded with high-
dimensional vectors, called hypervectors, which have thou-
sands of elements [5]. HDC incorporates learning capability
along with typical memory functions of storing/loading in-
formation. This makes HDC capable of dealing with noisy
time-series data. In addition, HDC mimics important func-
tionalities of the human memory model with vector opera-
tions, which are computationally tractable and mathemati-
cally rigorous in describing human cognition.
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Several recent works used HDC as a lightweight solu-
tion for biosignal classification. For example, works in [9ś
13] used HDC for real-time classification from Electroen-
cephalography (EEG) and Electromyography (EMG) sensors.
A key advantage is HDC training capability in one or a few
shots, where data can be learned with few iterations. Re-
search above already achieved comparable accuracy with
fewer learning iterations as compared to support vector ma-
chines (SVMs), gradient boosting, and neural networks. De-
spite the success, there are three major drawbacks with the
existing HDC solutions: (1) HDC algorithms use non-flexible
mathematics, which has difficulty in encoding and repre-
senting complex time-series data. This results in a lower
learning accuracy over complex time-series tasks. (2) The
current HDC encoding methods use costly high-dimensional
operations to preserve spatial-temporal relations. These op-
erations are not friendly with existing embedded processors.
For example, existing HDC methods use permutation (rota-
tional shift) operation to preserve the orders in a sequence.
Implementing this operation in the current CPU/GPU re-
quires thousands of read/write operations in memory. (3)
The existing HDC algorithms are sensitive to the amount of
labeled data provided to learn a model. This is an essential
factor for biosignal processing, as collecting labeled data is
often very costly or sometimes impossible.
In this paper, we propose TempHD, a novel hyperdimen-

sional computing method for efficient and accurate biosignal
classification. Our solution provides a better representation
of data in high-dimensional space with higher separability,
thus providing a higher learning capability and classification
accuracy with fewer labeled samples. Themain contributions
of the paper are as follows:

• In contrast to the existing HDC algorithms that linearly
map data points into the hyperspace, we develop a non-
linear encoding, inspired by the Kernel method, that maps
spatial information into high-dimensional space. The pro-
posed encoding explicitly considers the non-linear inter-
actions between the input features. This enables TempHD
to have a more informative representation, thus providing
easier data separation in high-dimension.

• We expand the proposed non-linear encoder to also pre-
serve temporal information. Instead of using costly high-
dimensional mathematics, TempHD represents temporal
information by sorting original data before feeding them
into kernel encoding. This eliminates thousands of oper-
ations that are currently required to implement a simple
ordering of signals in high-dimension. Our solution also
considers the interactions between the correlated sampled
signals, thus reducing sensitivity to the sampling noise.

• We develop learning algorithms that adaptively update
HDCmodel to eliminate possible model saturation. During
training, we update HDC model adaptively depending on

C1D C12

C2D C22

CkD Ck2

C11

C21

Ck1

Trained Model

δ1

m
a

xδ2

δk

CosineSimilarity

hD h2 h1

S
in

g
le

-P
a

ss
 

T
ra

in
in

g

H
y

p
e

rd
im

e
n

si
o

n
a

l

E
n

co
d

in
g

Train Data

C1D C12

C2D C22

CkD Ck2

C11

C21

Ck1

Trained Model

δ1

m
a

xδ2

δk

CosineSimilarity

hD h2 h1

S
in

g
le

-P
a

ss
 

T
ra

in
in

g

H
y

p
e

rd
im

e
n

si
o

n
a

l

E
n

co
d

in
g

Train Data

Encoded Query

C1D C12

C2D C22

CkD Ck2

C11

C21

Ck1

Trained Model

δ1

m
a

xδ2

δk

CosineSimilarity

hD h2 h1

S
in

g
le

-P
a

ss
 

T
ra

in
in

g

H
y

p
e

rd
im

e
n

si
o

n
a

l

E
n

co
d

in
g

Train Data

Encoded Query

Test Data

C1D C12

C2D C22

CkD Ck2

C11

C21

Ck1

Trained Model

δ1

m
a

xδ2

δk

CosineSimilarity

hD h2 h1

S
in

g
le

-P
a

ss
 

T
ra

in
in

g

H
y

p
e

rd
im

e
n

si
o

n
a

l

E
n

co
d

in
g

Train Data

Encoded Query

Test Data

Figure 1: Hyperdimensional classification during both
training and inference.

the already stored information in the model. This results
in a higher learning accuracy.

We evaluate TempHD effectiveness on noisy EEG data
used for brain-machine interface [14]. Our evaluation shows
that TempHD provides higher classification accuracy, signifi-
cantly higher computation efficiency, and, more importantly,
the capability to learn from partially labeled data. Our results
indicate that TempHD achieves, on average, 2.3% higher clas-
sification accuracy as well as 7.7× and 21.8× speedup for
training and testing time compared to state-of-the-art HDC
algorithms, respectively.

2 HYPERDIMENSIONAL COMPUTING

Hyper-Dimensional computing (HDC) is based on the under-
standing that brains compute with patterns of neural activity
that are not readily associated with numbers. Due to the very
size of the brain’s circuits, neural patterns can be modeled
with hypervectors [5]. HDC builds upon a well-defined set
of operations with random hypervectors, is extremely robust
in the presence of failures, and offers a complete computa-
tional paradigm that is easily applied to learning problems.
There exist a huge number of different, nearly orthogonal
hypervectors with dimensionality in the thousands.
Figure 1 shows an overview of HDC learning. The first

step in HDC is to encode data into high-dimensional space.
Then, HDC performs a learning task over encoder data by
performing a single-pass training. The result of training will
be to generate a hypervector representing each class. The
inference task can be performed by checking the similarity
of an encoded query to the class hypervector.

2.1 HDC Primitives

The encoder is the most important component of hyper-
dimensional learning. The goal of the encoder is to map
data into high-dimensional space such that we can extract
knowledge from data at a lower cost. The HDC encoding is
performed based on a well-defined set of mathematics. Let us

assume ®H1, ®H2 are two randomly generated hypervectors,

where ®H ∈ {−1, +1}𝐷 and𝛿 ( ®H1, ®H2) ≈ 0.𝐷 is the dimension
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of the HDC space. HDC works based on a set of primitives:
(1) Bundling: is an addition of multiple hypervectors into a

single hypervector, ®R =
®H1 + ®H2. Unlike original space that

bundling act as an average operation, in high-dimensional
space the addition is memorization function. (2) Binding:

associates multiple orthogonal hypervectors (e.g., ®H1, ®H2)

into a single hypervector ( ®R =
®H1 ∗ ®H2). The binded hyper-

vector is a new object in HDC space which is orthogonal

to all input hypervectors (𝛿 ( ®R, ®H1) ≃ 0 and 𝛿 ( ®R, ®H2) ≃ 0).
(3) Permutation: defines as a single rotational shift. The per-
muted hypervector will be nearly orthogonal to its original

hypervector (𝛿 ( ®H1𝜌 ®H1) ≃ 0). (4)Reasoning is done bymea-
suring the similarity of hypervectors. We denote the cosine

similarity with 𝛿 ( ®H1, ®H2).

2.2 Time-series Encoding

As Figure 2a shows, the time series often get sampled in an
𝑛-gram window. In each sampling window, the signal values
(in the y-axis) store the information, and the time (x-axis)
represents the sequence. We assign a random vector to 𝑉𝑚𝑖𝑛

(®𝐿𝑚𝑖𝑛 representing minimum signal value) and 𝑉𝑚𝑎𝑥 (®𝐿𝑚𝑎𝑥

representing maximum signal value). Since these vectors
are randomly generated, they are nearly orthogonal. For
signal values between 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 , we perform vector
quantization to generate vectors that have a spectrum of

similarity to ®𝐿𝑚𝑖𝑛 and ®𝐿𝑚𝑎𝑥 . Finally, the encoding can be
performed by binding the level hypervectors corresponding
to sampled signal while using permutation to store the timing
information. For example shown in Figure 2a, the trigram

Windows can be encoded as ®H = 𝜌𝜌 ®𝐿𝑡3 ∗ 𝜌 ®𝐿𝑡2 ∗ ®𝐿𝑡1 . Note
that for time-series, the encoding repeats after moving a
sliding window one time-step ahead. This will generate a
large number of encoded data that can be used for training.

For applications with multi-sensors, the encoding follows
the same procedure for each sensor using synchronized
𝑛-gram windows. Let us assume a problem with 𝑚 sen-
sors, where sensors generate the following encoded hyper-

vectors { ®H1, ®H2, · · · , ®H𝑚}. We accordingly generate𝑚 ran-
dom hypervector, where each is a signature of a sensor

{ ®P1, ®P2, · · · , ®P𝑚}. To aggregate information, the encoded
hypervector from each sensor will be binded (associated)
with the corresponding identification hypervector:

®H =
®P1 ∗ ®H1 + ®P2 ∗ ®H2 + · · · + ®P𝑚 ∗ ®H𝑚 (1)

where ‘+’ memorizes the sensor information and each ®P
preserves the position of a sensor.

2.3 Challenges

Despite the effectiveness of the above encoding and learning
methods, There is still three main drawbacks that are listed
below:

Vmax

Vmin
t1 t2 t3

V3

V2

V1

Lmax

Lmin

Base Hypervector

D

(b) Runtime Breakdown

Ttrain Tinference

Encoding: 

99.9%

Encoding: 

99.8%

Learning:0.1%
Similarity 

Check:0.2%

(a) Time-Series Encoding

Figure 2: (a) Existing time-series encoding and (b)
Breakdown of HDC execution time during training
and inference.

• The existing encoding methods linearly combine the hy-
pervectors corresponding to each feature, resulting in sub-
optimal classification quality for general and complex clas-
sification problems. To obtain the most informative hyper-
vectors, the HDC encoding should consider the non-linear
interactions between the spatial sensors and temporally
sampled data.

• The encoding method is associated with high computa-
tional cost. For example, the permutation used to preserve
the temporal correlation is not hardware friendly as it
requires thousands of read/write operations in memory.
Figure 2b shows the breakdown of HDC execution time.
Our evaluation shows that the encoding module takes
99.9% and 99.8% of total execution time during training
and inference. The results are reported when classifying
EEG signals running state-of-the-art HDC algorithms on
the CPU. The details of the experimental platform and
dataset are listed in Section 5.

• The current HDC models are weak in learning from par-
tially labeled data. However, in practice, it is hard or im-
possible to collect labeled data from biosensors. Therefore,
it is essential to develop algorithms that can effectively
learn from few labeled data.

3 KERNEL-BASED ENCODING

In this section, we introduce our encoding method that ex-
ploits the kernel trick [15, 16] to map data points into the
high-dimensional space. The underlying idea of the kernel
trick is that data, which is not linearly separable in original
dimensions, might be linearly separable in higher dimen-
sions. Let us consider certain functions 𝐾 (𝑥,𝑦) which are
equivalent to the dot product in a different space, such that
𝐾 (𝑥,𝑦) = Φ(𝑥) · Φ(𝑦), where Φ(·) is often a function for
high dimensional projection. We can take advantage of this
implicit mapping by replacing their decision function with a
weighted sum of kernels:

𝑓 (·) =

𝑁∑︁

𝑖=0

𝑐𝑖𝐾 (·, 𝑥𝑖 ) (2)

where (𝑥𝑖 , 𝑦𝑖 ) is the training data sample, and the 𝑐𝑖s are
constant weights. The study in [15] showed that the inner
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Figure 3: Hyperdimensional kernel-based encoder.

product can efficiently approximate Radial Basis Function
(RBF) kernel, such that:

𝐾 (𝑥,𝑦) = Φ(𝑥) · Φ(𝑦) ≈ 𝑧 (𝑥) · 𝑧 (𝑦) (3)

The Gaussian kernel function can now be approximated by
the dot product of two vectors, 𝑧 (𝑥) and 𝑧 (𝑦).
The proposed encoding method is inspired by the RBF

kernel trick method. Figure 3 shows our encoding procedure.

Assume an input vector in original space ®𝐹 = {𝑓1, 𝑓2, · · · , 𝑓𝑛}

and ®𝐹 ∈ R𝑛 . The encodingmodule maps this vector into high-

dimensional vector, ®H = {ℎ1, ℎ2, · · · , ℎ𝐷 } ∈ R𝐷 , where
𝐷 ≫ 𝑛. The following equation shows an encoding method
that maps input vector into high-dimensional space:

ℎ𝑖 = cos( ®𝐹 · ®B𝑖 + 𝑏𝑖 ) sin( ®𝐹 · ®B𝑖 ) (4)

where ®B𝑘s are randomly chosen hence orthogonal base
hypervectors of dimension 𝐷 ≃ 10𝑘 to retain the spatial or
temporal location of features in an input and 𝑏𝑖 ∼ U(0, 2𝜋).

That is, ®B𝑘 𝑗 ∼ N(0, 1) and 𝛿 ( ®B𝑘1 ,
®B𝑘2 ) ≃ 0, where 𝛿 denotes

the cosine similarity. However, this activation is not a con-
vex function, thus making it impossible to back-propagate
from HDC encoder. To enable HDC model to support back-
propagation, one can decide to exploit hyperbolic tangent

function as an activation function: ℎ𝑖 = tanh ( ®𝐹 · ®B𝑖 + 𝑏𝑖 ).

3.1 Non-Linear Time-Series Encoding

The above encoding is explained in the context of feature
vectors to preserve spatial correlation. However, time series
encoding also needs to preserve temporal information. Here,
we show how the proposed kernel-based encoding can be
extended to support temporal correlation. Let us consider
the time series data shown in Figure 4a. We first sample
data in an 𝑛-gram window. The window size depends on the
nature of the signal and sampling time; however, it is often
smaller than the time-series length. Regardless of windows
size, the goal of HDC encoding is to represent the pattern of
a sampled signal as a high-dimensional pattern. In this repre-
sentation, we need to store sampled 𝑌 values along with the
corresponding time that they occur. In the example shown
in Figure 4b, we sort the sampled signal value depending
on their sampling time. In our example, {𝑌1, 𝑌2, · · · , 𝑌𝑛} are

happening in {𝑡1, 𝑡2, · · · , 𝑡𝑛}. As Figure 4b shows, this tem-
porally sorted data can be treated as a feature vector; thus,
it can be mapped using our proposed kernel-based encoder
(explained in Section 3).

To encode the entire time-series, the 𝑛-gram windows
will move over the signal in an overlapping manner. Our
encoding repeats the same process by sorting the sampled
signal values and feeding them into our non-linear encoder.
This process continues until covering the entire time-series
data. In the case of using a single sensor, the encoded data
can be sent to the classification module for training. How-
ever, in practice, many biosignals often have multiple sen-
sor data. For example, conventional EEG sensors consist of
64 electrodes collecting information of different brain re-
gions [17, 18]. Similarly, multi-electrode EMG signals are
required for applications such as gesture detection [9]. Our
encoding maps the multi-channel encoding by spatially sort-
ing samples obtained from different sensors. Let us assume
an example with𝑚 sensors; all sampled synchronously over
𝑛-gram windows. To consider the location of each sensor,
our solution not only sorts the sampled signal from each
sensor but also sorts the sample based on the index of the
sensor. For example, the samples coming from sensor 1 will
locate in indices [1 : 𝑛], while the 𝑘𝑡ℎ sensor samples will
locate in [𝑛× (𝑘 − 1) + 1 : 𝑛×𝑘] indices. This spatially sorted
sensor signals will be a vector with 𝑛 ×𝑚 length and can
be sent to our proposed kernel encoder for projecting into
high-dimensional space (Figure 4c).

This encoding provides multiple advantages as compared
to existing hyperdimensional encoding for time-series en-
coding:
(1) Quality of Encoding: Each row of the kernel en-

coder is a projection vector that adds up spatial-temporal
information of all sensors with different weights (Figure 4d).
Since the weights are non-binary, the encoder considers the
non-linear interactions between the sensors and their tem-
poral samples. In addition, the activation function used after
the mapping mathematically gives non-linearity to our en-
coder to better represent data in high-dimension. This is an
important factor since the sensors, e.g., electrodes in EEG
sensors, are not independent. For example, physically close
electrodes are likely to read correlated data. However, due
to the complexity of the systems and sensors, it is hard to
learn the relation. Instead, our encoder considers non-linear
interactions that possibly occur between them. Note that the
existing encoding modules linearly add up the sensor data
by associating each sensor with a random bipolar vector. As
a result, they have a more linear nature in both temporal and
spatial mapping. In Section 5.2, we show how our encoding
outperforms existing HDC algorithms in terms of accuracy.

Besides the accuracy, our non-linear data encoding enables
better data separation in high-dimensional space. Therefore,
our learning models can provide high classification accuracy
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Figure 4: (a-c) Overview of our spatial-temporal encoder, (d) kernel encoder to map the sorted features into high-
dimension (e) hyperdimensional classification.

with very few labeled samples. In Section 5.6, we show HDC
capability in learning from partially labeled data.
(2) Computation Efficiency: Existing HDC methods

map sampled data into high-dimensional space in a very
initial step of an encoding process [9, 10, 13]. The sampled
signals in each time series translate to a hypervector with
thousands of dimensions. As a result, both temporal and
spatial information needs to be preserved by computing
over hypervectors. This means that they require thousands
of operations for each encoding operation. Unfortunately,
these operations are inefficient existing hardware platforms,
such as CPU and GPU. Similar cost associates with spatial
encoding, where the position of each sensor is preserved
by associating it with a random hypervector. This also in-
volves thousands of computations to ensure a simple and
pre-defined sort operation. In contrast, our solution provides
a new perspective to develop efficient HDC encoding mod-
ules. Our solution ensures both spatial and temporal informa-
tion to preserve before mapping data into high-dimensional
space. As a result, we have much higher parallelism and
lower computational costs, which are essential for learning
on embedded devices. In Section 5.3, we compare TempHD
efficiency with state-of-the-art learning solutions for biosig-
nal classification.

4 HYPERDIMENSIONAL MODEL
TRAINING

We exploit hyperdimensional learning to directly operate
over encoded data. Figure 4e shows an overview of HDC
classification. HDC identifies common patterns during learn-
ing and eliminates the saturation of the class hypervectors
during single-pass training. Instead of naively combining all
encoded data, our approach adds each encoded data to class
hypervectors depending on how much new information the
pattern adds to class hypervectors. If a data point already
exists in a class hypervector, HDC will add no or a tiny por-
tion of data to the model to prevent hypervector saturation.
If the prediction matches the expected output, no update

will be made to avoid overfitting. This adaptive update pro-
vides a higher chance and weight to non-common patterns
to represent the final model. This method can eliminate the
necessity of using costly iterative training.

Let us assume ®H as a new training data point. HDC com-

putes the cosine similarity of ®H with all class hypervectors
®Cs. We compute similarity of this data point with class 𝑖 as:

𝛿𝑖 = 𝛿 ( ®H , ®C𝑖 ). Instead of naively adding a data point to the
model, HDC updates the model based on the 𝛿 similarity. If
an input data has label 𝑙 and correctly matches with the class,
the model updates as follows:

®C𝑙 ← ®C𝑙 + 𝜂1 (1 − 𝛿𝑙 ) × ®H (5)

where 𝜂 is a learning rate. A large 𝛿𝑙 indicates that the input
is a common data point which is already exist in the model.
Therefore, our update adds a very small portion of encoded
query to model to eliminate model saturation (1 − 𝛿𝑙 ≃ 0). If
the input data get an incorrect label of 𝑙 ′, the model updates
as:

®C𝑙 ′ ← ®C𝑙 ′ − 𝜂2 (𝛿𝑙 ′ − 𝛿𝑙 ) × ®H (6)

where 𝛿𝑙 ′ − 𝛿𝑙 determines the weight that the model needs
to be updated. Small 𝛿𝑙 ′ − 𝛿𝑙 indicates that the query is
marginally mismatched while larger mismatch is updated
with a larger factor (𝛿𝑙 ′ − 𝛿𝑙 ≫ 0).

4.1 Hyperdimensional Inference

In inference, HDC checks the similarity of each encoded
test data with the class hypervector in two steps. The first
step encodes the input (the same encoding used for training)

to produce a query hypervector ®H . Then we compute the

similarity (𝛿) of ®H and all class hypervectors. Query data
gets the label of the class with the highest similarity.
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5 EVALUATION

5.1 Experimental Setup

Our method is general and applicable to classify a wide range
of biosignals, including multi-channel EMG and EEG signals.
In this work, we look at a particular application of TempHD
in the noninvasive Brain-Computer Interfaces (BCI). One
of the targets in BCI is to recognize user intention from
collected biosignals, thereby enables controlling without
body movement. For example, in [1, 19, 20], they request
the human user to move a cursor to a specific location using
mental commands. However, direct prediction for human
intention using noninvasive biosignals often leads to low
accuracy. Thus, researchers approach this problem by using
error-related biosignals, e.g., EEG error-related potentials
(ERP). Instead of being directly controlled by BCI and rec-
ognized human intention, the computer operates and learns
by itself. In addition, it also tries to recognize the human
response to its behavior via ERP, i.e., whether the human
considers its behavior as correct or not. Our TempHD is par-
ticularly designed to classify biosignal with high efficiency
and lower inference delay, so it is suitable for ERP recogni-
tion in BCI control tasks.
As the workload for our design, we use ERP signals col-

lected using EEG sensors [14]. In this particular dataset, EEG
signals are collected from six subjects using 64 electrodes.
The task for subjects is moving a cursor to a target location,
which is similar to the example we mentioned before. How-
ever, they have no control over the computer, and the cursor
is moving by itself either towards the correct direction or
the wrong one. For each trial, the probability of the cursor
moving in the wrong direction is 0.2. Subjects are requested
to judge the correctness of direction, and researchers collect
the corresponding EEG signals of six subjects. The trial is
labeled according to the correctness of the cursor direction.
We use TempHD for direct ERP classification by learning on
the EEG 64-channel raw waveform. We only apply simple
data preprocessing, which is a band-pass filter of 1-10 Hz
for noise reduction. The waveform length of each trial is
around 2000 ms with the sampling rate of 512 Hz; and the
effective time window of each trial is up to 600 ms. We use
downsampling to reduce the number of data points in each
time window for efficient HDC learning. The parameters of
this dataset are shown in Table 1.

During the experiment on this dataset, we test our TempHD
by comparing the accuracy and efficiency with SVM and pre-
vious HDC method for time-series data, which is described
in Section 2.2. We also compare the performance of two HDC
methods under different dimensionality settings. By varying
the size of the training dataset, we present the different learn-
ing accuracy of each method. The default dimensionality for
both HDCmethods is 10000, except for Section 5.4 where the

Table 1: Time window & data points per channel for
subjects.

Subject
Time

window
(ms)

Data points
per window

Downsampling
rate (points/step)

Data points
after

downsampling

S1 250 128 8 16
S2 450 230 8 29
S3 250 128 8 16
S4 600 307 16 19
S5 450 230 8 29
S6 450 230 8 29

Figure 5: Single-subject accuracy and multi-subject
average accuracy comparison between TempHD,
NgramHD, and SVM

dimensionality changes from 500 to 10000. The default num-
ber of iterations for TempHD training is 300. We collect all
the results on the CPU platform with AMD Ryzen-5 3600X.

5.2 TempHD Accuracy

In Figure 5, we show the classification accuracy for each
subject and the average accuracy over all six subjects. We
compare the results of our TempHD with two methods: i)
state-of-the-art HDC classification (NgramHD) [9, 21], and
ii) support vector machine (SVM). TempHD with non-linear
encoding achieves better accuracy in subjects 1 to 4 and
also multi-subject average. Our TempHD gets around 80%
accuracy for subject 1 and subject 3; it also achieves 73%
accuracy, on average, which is about 3% higher than the
NgramHD method’s accuracy. In addition, TempHD signifi-
cantly improves the accuracy compared to SVM. For example,
TempHD accuracy is 15.5% higher in subject 6 and 10% higher
on average.

5.3 TempHD Efficiency

As shown in Figure 6, we collect the runtime results for train-
ing and testing on each subject for TempHD, NgramHD, and
SVM. Although the accuracy results for SVM are the low-
est, it achieves the fastest training and testing among the
three methods because the dataset sizes are relatively small.
However, SVM is known to require a long training time for
large datasets, and biosignal datasets may include a large
amount of data for practical applications. Our TempHD, on
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Figure 6: Single-subject and multi-subject average runtime comparison between TempHD, NgramHD, and SVM.

the other hand, not only achieves the highest accuracy but
also significantly improves the runtime cost comparing to
the previous HDC method. The speedup of TempHD over
NgramHD is around 7.7× for average training runtime; and
for average testing runtime, the speedup is about 21.8×. The
results show that our TempHD is more suitable and more
efficient for biosignal and multi-channel time series classifi-
cation.
We also explore the performance scalability of SVM and

our TempHD by increasing the dataset size so that we can
better infer the performance of both methods with larger
biosignal datasets. We pick the training and testing dataset
for subject 1 and expand it with different ratios from about
5× to 200×. The original training and testing dataset size are
489 and 555, respectively. We present the results in Table 2,
which records the training and testing runtime for different
dataset sizes.We observe that the training time of SVMgrows
much faster than that of TempHD. SVM is faster in training
when the dataset size is small; however, it is nearly 8× slower
than TempHD when the number of training samples is 100k.
In fact, SVM also has a larger testing time when we increase
the dataset size, i.e., about 2× slower for testing when we
expand the testing samples to 112k. Both results align with
the fact that SVM is slow for large datasets. On the other
hand, our TempHD scales better with increasing dataset size.

5.4 TempHD & Dimensionality

In this section, we explore the effect of dimensionality on
both classification accuracy and runtime. As shown in Fig-
ure 7, we compare the performance and efficiency of our
TempHD and NgramHD under different dimensions. The
accuracy and runtime results are averaged over six subjects.
When increasing the dimensionality from 500 to 10,000, we
observe that the accuracy and runtime for both methods in-
crease as expected. However, TempHD constantly achieves
better accuracy and has significantly lower runtime cost
for all dimension settings. Notice that in Figure 7(a), our
TempHD achieves over 70% accuracy with dimensions lower
than 1000. This improvement over the previous HDCmethod
is crucial because lower dimensionality leads to lower compu-
tation and runtime cost, especially for low-power devices. In

Table 2: TempHD performance scalability with data
size.

# Train Samples 2.5k 5k 12.5k 25k 50k 75k 100k

Training
SVM 0.5s 1.2s 3.1s 6.1s 12.2s 451.6s 808.0s

TempHD 3.0s 5.7s 14.0s 27.6s 55.1s 82.0s 111.3s

# Test Samples 2.8k 5.6k 14k 28k 56k 84k 112k

Testing
SVM 0.6s 1.4s 3.3s 6.8s 13.7s 20.0s 26.5s

TempHD 0.5s 0.8s 2.0s 3.4s 6.8s 10.1s 13.7s

Figure 7(b) and (c), we observe that TempHD achieves nearly
40× speedup in training runtime and about 741× speedup in
testing with 500 dimensions.

5.5 TempHD Breakdown

In Figure 8, we present the breakdown pie chart for the ex-
ecution time of training and testing. The encoding time of
TempHD still dominates in both the training and testing pro-
cess, i.e., 65.1% for training set encoding and 99.6% for test-
ing set encoding. Unlike the learning process in NgramHD,
which takes up only 0.1% of the total training time, the adap-
tive multi-iteration learning in TempHD composes 34.9%.
Although iterative learning requires more execution time,
the fast encoding of TempHD significantly reduces the over-
all training time. Also, our iterative learning with an adaptive
learning rate is the key to higher accuracy.

5.6 TempHD with Partial Train Data

In Figure 9, we observe the change of average classification
accuracy with varying percentages of training trials. We
randomly sample a portion of training samples from the
training dataset with the percentage changing from 10% to
90%. Notice that our TempHD provides nearly 60% accuracy
with only 10% of the training samples. This is an appeal-
ing characteristic because the number of training samples
is usually limited in practical applications. The figure also
shows that TempHD constantly achieves better accuracy
than NgramHD and significantly improves the classification
quality comparing to the SVM method.
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6 RELATEDWORKS

Prior research have applied the idea of hyperdimensional
computing to diverse learning and cognitive tasks, such as
graph reasoning [22], robotics [23], neuromorphic comput-
ing [24], language recognition [25], genome sequencing [26]
and activity recognition [9, 27]. Particularly, several recent
works aimed to use HDC in area of biosignal sensors (i.e.,
EEG, EMG, or EXG sensors) for diverse tasks, including
brain-computer interfaces, seizure identification, emotion
detection, activity recognition, and gesture detection [9ś13].
These methods often provide comparable accuracy to exist-
ing machine learning models while requiring a significantly
lower computational cost. However, all existing HDC al-
gorithms use a linear encoder with non-hardware-friendly
operations. This makes HDC very inefficient as it requires
to use of large dimensionality to solve realistic problems.
To the best of our knowledge, TempHD is the first effort to
design a highly accurate and efficient HDC classification for
biosignal. Our approach maps data points in a non-linear

manner with higher separability in high-dimensional space.
This results in higher classification accuracy as well as the
capability to learn from fewer samples.

Prior works also proposed different hardware acceleration
for HDC, using ASIC [28ś30] and processing in-memory [31ś
34]. However, these hardware designs are usually not com-
mercially available and need a relatively long period to syn-
thesize and fabricate after deriving the new applications. As
such, to ease the deployment of the HDC in the real world,
we need a framework solution to run HDC on a highly paral-
lel but general-purpose platform, especially embedded CPU.
However, the current HDC algorithms rely on costly high-
dimensional operations, which are significantly slower than
traditional processors. In contrast, we designed a novel HDC
classification with hardware-friendly operations. Our solu-
tion leverages hardware-friendly mathematics for encoding
with significant potential of acceleration in hardware.

7 CONCLUSION

In this paper, we propose TempHD, a novel hyperdimen-
sional computing method for efficient and accurate biosig-
nal classification. We first develop a novel non-linear hy-
perdimensional encoding that maps data points into high-
dimensional space. Unlike existing HDC solutions that use
costly mathematics for encoding, TempHD preserves spatial-
temporal information of data in original space before map-
ping data into high-dimensional space. To obtain the most
informative representation, our encoding method consid-
ers the non-linear interactions between both spatial sen-
sors and temporally sampled data. Our evaluation shows
that TempHD provides higher classification accuracy, signifi-
cantly higher computation efficiency as well as the capability
to learn from partially labeled data.
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