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ABSTRACT
Reinforcement Learning (RL) is a powerful technology to solve decision-
making problems such as robotics control. Modern RL algorithms,
i.e., Deep Q-Learning, are based on costly and resource hungry deep
neural networks. This motivates us to deploy alternative models for
powering RL agents on edge devices. Recently, brain-inspired Hyper-
Dimensional Computing (HDC) has been introduced as a promising
solution for lightweight and efficient machine learning, particularly
for classification.

In this work, we develop a novel platform capable of real-time hyper-
dimensional reinforcement learning. Our heterogeneous CPU-FPGA
platform, called DARL, maximizes FPGA’s computing capabilities by
applying hardware optimizations to hyperdimensional computing’s
critical operations, including hardware-friendly encoder IP, the hy-
pervector chunk fragmentation, and the delayed model update. Aside
from hardware innovation, we also extend the platform to basic single-
agent RL to support multi-agents distributed learning. We evaluate the
effectiveness of our approach on OpenAI Gym tasks. Our results show
that the FPGA platform provides on average 20× speedup compared
to current state-of-the-art hyperdimensional RL methods running on
Intel Xeon 6226 CPU. In addition, DARL provides around 4.8× faster
and 4.2× higher energy efficiency compared to the state-of-the-art RL
accelerator while ensuring a better or comparable quality of learning.
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1 INTRODUCTION
Reinforcement Learning(RL) is a sub-field in artificial intelligence that
has amassed a lot of attention in the research community due to its abil-
ity to accomplish various tasks on new environments [1, 2]. In recent
years, RL has proved to solve an impressive range of problems, includ-
ing those that were previously unreachable for machines. Domains of
tasks include those in system optimizations [3], Genomics [4], com-
puter games [5, 6], and dynamic resource management [7]. Compared
to its machine learning predecessors, both supervised and unsuper-
vised machine learning methods, reinforcement learning does not
need a massive compilation of data for training. Instead, an environ-
ment is defined to simulate the intelligent task that the model needs to
learn, where the agent initially knows nothing of its environment. By
interacting with its environment, the agent observes new states and
their respective rewards and uses this acquired experience as feedback
to learn how to improve and optimize its decision-making process.
In Reinforcement Learning, there are two overarching approaches
in doing this: the first, is policy-based learning [8], where the agent
relies on a strategy to decide which state to subsequently advance to;
the second, is value-based learning [9] where states are assigned a
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computed value to measure the expectation of attaining higher future
rewards. The latter approach, includes Q-Learning, an algorithm that
utilizes the Bellman Equation to compute the value for each state
in the environment, named the Q-value [9]. At each time step, the
Q-value for each possible next state is calculated to aid the agent in
determining its next move. The agent iterates through this process
until it reaches a terminating state or when the number of time steps
in a session concludes.

As is known with Q-Learning algorithms, in large state and action
spaces, the number of Q-values for each respective state-action pair
is innumerable; thus, compiling the Q-values table requires a deep
neural network to compute these values [10]. Neural networks are
the current state-of-the-art for powering these algorithms despite the
expensive computation needed to train these algorithms, especially
during the backpropagation step [10]. Recently, Hyper-Dimensional
Computing (HDC) has been introduced as a brain-inspired machine
learning model for highly efficient and robust machine learning. The
motivation behind HDC is based on how the human brain operates
on high-dimensional data representations [11]. This observation leads
to why HDC encodes objects with high-dimensional data representa-
tions, called hypervectors that store thousands of elements [12]. HDC
imitates important functionalities of the human memory model with
memory functions, such as storing and loading information. It also
uses vector operations, which are computationally tractable and math-
ematically rigorous, in describing human cognition [13]. A couple
advantageous elements of HDC include its ability to learn from single
or a few shots of training, where data is quickly learned compared to
iterative training algorithms. The second key advantage is how HDC
is analogous to human-like learning and reasoning capabilities, which
allows for for human-interpretable machine decisions.

Recent work uses this HDC model as an alternative to Deep Q-
Learning for reinforcement learning tasks [14]. This HDC-based RL
model is able to achieve comparable learning outcomes to a Deep
Q-Learning Model with the advantage of being computationally more
efficient, while also producing significantly higher learning quality
i.e. faster learning and convergence. This advantage is particularly
important in edge computing since HDC algorithms require far less
computational power, due to the simple arithmetic of these algorithms
compared to the complexity of Neural Networks [15, 16]. Despite
the success, HDC-based RL still lack parallelism and require a large
amount of resources on traditional cores [14]. Previous works already
show that HDC related operations, such as hypervector multiplication,
have a long execution time on the CPU [17, 18]. Furthermore, many
domain-specific accelerators [19, 20, 21, 22, 23] have achieved great
acceleration results of RL algorithms.

To the best of our knowledge, we propose the first FPGA-based
hyperdimensional RL acceleration platform, called DARL (Distributed
Accelerator for Hyperdimensional Reinforcement Learning). We de-
veloped this architecture and algorithm co-optimization to maximize
an RL agent’s learning throughput by realizing the best use of FPGA’s
resource utilization. Here are the main contributions of the paper:

• DARL is an online platform for accelerating hyperdimensional Q-
Learning on FPGA. It first exploits hyperdimensional primitives
to encode the agent’s state into high-dimensional space. Then it
approximates the dynamic programming equations by conducting
a regression operation on the encoded state hypervector over the
action model. Finally, the action with the highest Q-value will be
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chosen and written into the replay buffer. The regression Q-model
will also be updated. Therefore, our solution is a natural full-stack
HDC accelerator by implementing both RL training and inference
on the same platform.

• We conduct architecture optimization to accelerate on-chip hy-
pervector operations. First, we design a hardware-friendly kernel
encoding module to reduce on-chip resource utilization. Second, we
fragmentized long hypervectors into small chunks and carefully de-
signed a systolic array to accelerate vector to matrix multiplication.
Third, we cut the original backpropagation style model update into
two stages to reduce the accelerator’s critical path and improve the
learning throughput.

• We extend the original single-agent Q-Learning into multiple agents
distributed Q-Learning. A lightweight network-on-chip IP is de-
signed to coordinate different agents’ learning progress. The on-
chip high bandwidth memory is adopted to increase data-level paral-
lelism.The RL agents’ increment significantly enhances the learning
convergence speed and model’s robustness.
We evaluate the effectiveness of our approach on classic OpenAI

Gym [24] tasks. Our results show that the CPU-FPGA platform pro-
vides on average 20× speedup compared to current state-of-the-art
hyperdimensional Q-Learning methods [14] that run on Intel Xeon
6226 CPU. On the Xilinx Alveo U280 accelerator card platform, draw-
ing less than 20 Watt, DARL demonstrates 187972.9 IPS (inference per
second) and 11053.7 IPS/W when deploying eight agents. Both the
throughput and energy-efficiency of our design is around 4× better
than the state-of-the-art RL accelerator [23]. DARL’s throughput and
energy efficiency reach 38.7k IPS and 5.2k IPS/W using only 73.1K look
up table for the single-agent accelerator making it suitable for deploy-
ment on an edge device. Our platform shows flexibility on different
FPGA platforms with different resources condition.

2 BACKGROUND AND MOTIVATION
2.1 Hyperdimensional Computing Overview
Stemming from theoretical neuroscience, HyperDimensional Com-
puting (HDC) emerged as a short-term human memory model [11]
that is conceptually motivated by the cerebellum cortex operating
on high-dimensional representations of data, which originates from
the extensive size of brain circuits. This thereby models the human
memory with hypervectors, where the data is transformed into high-
dimensional space [11]. Each of the dimensions in these hypervector
models abstractly models a neuron’s functionality in processing ex-
ternal stimuli. By choosing to work in high dimensional space, there
exists a multitude of nearly orthogonal hypervectors. HDC exploits
this property by using well-defined operations to combine hyper-
vectors while maintaining their respective information with high
probability [11]. In the training process, the encoded signal values are
superimposed to produce a “model hypervector”, which is the repre-
sentation of the phenomenon of interest. The HDC defined association
search operation is then used to perform the learning and cognitive
computation over the encoded data. The similarity between the model
hypervectors and query (i.e., new data point) is used to inform the
model of the appropriate decision.

2.2 HDC-based Q-Learning
Q-Learning Overview The primary goal of Reinforcement Learning
(RL) is training an agent’s capabilities to find the reward-maximizing
behavior when interacting with its environment [1]. Based on whether
an agent uses a policy to select its action for each time step C , we can
divide the RL algorithm into policy-based RL, such as Proximal Policy
Optimization (PPO), and off-policy RL, such as Q-Learning [9]. This
work focuses on off-policy Q-Learning due to its fast convergence
speed. Figure 1 presents a general Q-Learning procedure. At each
time step C , an agent receives its state(BC ) from the environment and
performs an action(0C ) to the environment. The agent maintains a
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Figure 1: Q-Learning Overview

Q function to select the action based on its current state(BC ). After
conducting 0C to the environment, the agent will receive a reward(AC )
as feedback and transfer into a new state(BC+1). The agent will repeat
these interactions with the environment and try to maximize the
cumulative reward 'C =

∑)
8=C W

8−C ∗ AC , where T is the episode’s total
time, or trajectory length, and W ∈ (0, 1] is the time step discount
factor.

Deep Q-Learning vs HDC-based Q-Learning One of the most
critical components of every Q-Learning algorithm is the Q function.
All other optimization techniques, including experience replay and
the use of a target network, rely on this Q function. Traditionally, the
Q function is represented as a table called the Q-table [9]. Such Q-table
based Q-Learning algorithms are referred to as Tabular Q-Learning.
Tabular Q-Learning is simple but has difficulty scaling because when
a task’s complexity increases, the size of the Q-table will also increase,
amassing a burden to memory access.

Today, most researchers use Neural Networks (NN) to implement
the Q function to handle more complicated tasks [25]. These neural
network-based Q-Learning algorithms are called Deep Q Learning
(DQN). Although DQNs can handle complex tasks, the computing
resources necessary to train these models is immense, which makes
the deployment of DQN models on edge devices extremely difficult.
Additionally, the loss gradient calculation and backpropagation limit
the DQN model’s performance improvement. To overcome these is-
sues, there has been recent work [14] that uses hyperdimensional
computing(HDC) to replace neural networks in the Q-Learning al-
gorithm. It shows that HDC-based Q-Learning (HDQL) can achieve
faster learning speed than DQN. Also, [14] shows that HDQL can
achieve high learning rewards with limited memory access.

HDQL Acceleration on FPGA Although work in [14] shows
HDQL’s potential to solve RL tasks, it still has fundamental work to
consider. There are two main issues that work [14] did not solve. The
first problem is that work [14] only conducts experiments of HDQL on
the CPU. However, as reported by previous HDC-related papers [26,
27, 17], HDC’s high parallelism cannot be fully utilized on the CPU.
The second problem is that work [14] only considers single-agent
Q-Learning. Recent works [28, 29] already show that multiple agents’
distributed training will significantly improve RL models’ learning
speed and robustness. In this paper, we first perform the Hardware-
Software Co-design of a single agent HDQL (sHDQL) accelerator on
CPU-FPGA heterogeneous platform. Then, in section 4, we extend the
single-agent HDQL into multiple agents distributed HDQL(dHDQL)
and design efficient accelerators on the same CPU-FPGA platform
based on our algorithm. We name this RL agents’ number varying
platform as DARL (Distributed Accelerator for Hyperdimensional
Reinforcement Learning).

3 DARL ACCELERATION PLATFORM
3.1 DARL Overview
Figure 2 shows the DARL platform’s top architecture. The agent’s
interaction with the environment is run on a CPU, and a replay buffer
is maintained on the same host CPU. To accelerate high-dimensional
vectors (called hypervectors) operations during training and inference,
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Figure 2: HDQL acceleration overview on CPU-FPGA Platform.

the host CPU will offload corresponding state, action, and reward data
to the FPGA kernel via PCIe communicationas as shown in Figure 2•0 . After finishing the hypervector computation, the kernel FPGA
will return to training or inferring results back to the host CPU.

The hypervector computation on the FPGA includes three layers:
the encoding layer (Encoding), the regression layer (Regression),
and the model updating layer (Updating). The FPGA kernel reads the
input data, such as the state, action mask, and reward, via the AXI
interface from DRAM or HBM (•1 ). The quantization precision that
we chose here is afixed point-32 bit. The original state vector ( ®BC )
is encoded into a HDC vector inside the encoding layer. The kernel
function that we selected for this layer’s encoding is an exponential
function(5 (G) = 4 9G ), which means each element of the encoded
hypervector is a complex number. Here, we call this hypervector a
complex hypervector. To simplify the on-chip computation, we will
divide this complex hypervector into the real ( ®'4) and imaginary ( ®�<)
parts based on Euler’s formula. The encoded HDC vectors will then be
loaded into the regression layer (•2 ). Two regression models: Q and
Q’, are maintained inside this layer to conduct double estimation. After
the regression layer, the generated function values: +& and +&′ will
be loaded into the updating layer (•3 ). Two operations occur inside
this layer. The first is the selection of the optimal action index and
relaying it back to the host CPU(•5 ). The second is to generate the
model update value and store it in the on-chip cache (•4 ). More details
of these three layers will be discussed from section 3.2 to section 3.4.

3.2 Encoding Layer Architecture
The state vector(®B) is passed from the off-chip DRAM or on-chip HBM
into the encoding layer. As is shown in Figure 3•1 , each element of ®B
will multiply with its corresponding position hypervector. Suppose
the dimension of the state vector and position hypervector are # and
� : these # position hypervecters will be stored on-chip as a position
hypervector matrix (P). P’s dimension will be # × � . In process•1 ,
each row vector of matrix P will be multiplied with its corresponding
state vector’s element:

®% ′
8
= B8 ∗ ®%8 8 ∈ [1, # ] (1)

In process•2 , the reduction operation will be applied over matrix P’
row direction to generate hypervector ®�:

� 9 =

#∑
8=0

% ′8, 9 8 ∈ [1, # ] 0=3 9 ∈ [1, �] (2)

After the reduction operation, the generated ®� will be encoded using a
kernel function. The kernel function that we select in this paper is the
exponential function. A new hypervector ®�′ will be generated after
applying this kernel function to every element of ®�:

�
′
8 = 4 9�8 8 ∈ [1, �] (3)
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Figure 3: Encoding layer architecture design.

To avoid computing over these complex numbers on the FPGA, our
design divides the complex hypervector ®� ′ into its real part ( ®'4) and
imaginary part( ®�<), as is shown below:

�
′
8 = '48 + 9�<8 8 ∈ [1, �] (4)

'48 = 2>B (�8 ) 8 ∈ [1, �] (5)
�<8 = B8=(�8 ) 8 ∈ [1, �] (6)

Furthermore, after passing the hypervector into the exp encoder IP,
two hypervectors: ®'4 and ®�< will be generated (•3 ) as the encoded
result. Now the input state vector is mapped into hyperspace. The last
process•4 in the encoding layer is to pass the real ( ®'4) and imaginary
partitions of the hypervectors ( ®�<) into the regression layer.

In this section, we elaborate on the implementation of our expo-
nential encoder IP on FPGA. Inside each exp encoder IP, there are Sine
and one Cosine encoder IPs. For the FPGA hardware design, there
are many efficient methods to implement triangle functions, such as
Taylor Expansion or using Vitis HLS math function. To save on-chip
resources utilization and reduce computing latency, we choose to use
what we call the triangle codebook method. As we mentioned in
section 3.1, for each element of the hypervector, its precision is a
32-bits fixed point number, which means we can pre-compute all its
possible sin and cos values on the local CPU and load it into the FPGA
on-chip storage such as BRAM or URAM. Here, we use BRAM to store
the pre-computed Sine and Cosine values. We refer to this BRAMwith
the stored Sine and Cosine values as a codebook. The original signed
32-bits fixed-point number will be treated as an address to access
those on-chip BRAMs during the Sine/Cosine computing process. The
benefits of using this codebook includes reducing resources utilization,
especially LUT and DSP, and saving calculation time.

3.3 Regression Layer Architecture
Inside the regression layer, the encoded state hypervectors ®'4 and ®�<
will have double regression performed on them. Here, double regres-
sion indicates that there are two action models inside this layer. We
define them as Q and Q’. The dimensions of the Q and Q’ hypervector
matrices are both:�×� . Here,� is the task’s action space and � is the
hypervector’s dimensionality. Each row hypervector of the Q and Q′

matrices represent the corresponding action’s Q function. Like double
deep Q-Learning, model Q’ is a delayed model which will be periodi-
cally updated using parameters in model Q.The benefit of maintaining
two action models is to avoid maximization bias by disentangling
the updates from biased estimates. Specifically, model Q is used for
learning purposes and Q’ is used for inference purposes. In contrast to
traditional DQN, which separates the learning and inference processes,
the two processes occur simultaneously in our platform kernel, as
shown in Figure 4 processes•0 and•1 . The purpose of doing this is
to reduce data transmission time and realize online learning. At the
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Figure 4: (a) Regression layer architecture design. (b) Systolic Array IP microarchitecture

starting point of each episode, the model Q will flush Q’, as is shown
in process•4 . The on-chip hypervector to hypervector multiplication
is accelerated using a systolic array. However, before introducing the
microarchitecture of systolic IP, we want to illustrate model Q’s up-
date process. To reduce the FPGA accelerator’s critical path, the model
update matrix is stored inside an update cache. For each time step, the
host CPU will load the action index vector: ®" into the kernel FPGA.
The dimension of the vector ®" is A and each element’s value is either
True or False, representing whether its corresponding action hyper-
vector needs to be updated. The action index vector ®" will also be
loaded into the systolic array together with the model Q, as is shown
in process•2 and•� . The model Q’s updating equation is shown as
below:

&'8, 9 =

{
&'8, 9 +*'8, 9 " [8] == )AD4

&'8, 9 " [8] == �0;B4
8 ∈ [1, �] 0=3 9 ∈ [1, �]

(7)

&�8, 9 =

{
&�8, 9 +* �8, 9 " [8] == )AD4

&�8, 9 " [8] == �0;B4
8 ∈ [1, �] 0=3 9 ∈ [1, �]

(8)
Here QR represents the real part of the Q matrix and QI represents

the imaginary part of the Q matrix. UI and UR represent real and
imaginary parts of the update matrix. Analogous to the memory hier-
archy design, people use a writing buffer to delay the synchronization
process between the main memory and cache hierarchy. Using the up-
date cache will allow for the action hypervector update to look similar
to the forward path, making the Vitis_HLS synthesis and placement
process significantly easier to schedule. The structure of the update
cache is like a hardware FIFO. The input of the FIFO comes from the
updating layer, as is shown in Figure 4 process•3 and the output of
the FIFO is in the regression layer. More details of the update matrix
generation will be covered in section 3.4.

In Figure 4, we also present the systolic array microarchitecture.
One of the interesting hardware design tricks here is that we resize the
original hypervector from a single size D vector into �

"
size M vectors.

As is shown in Figure 4, there are a total of 2∗�
"

systolic array IP in
the regression layer. Inside each systolic array, the size M vector will
be multiplied with a size A × M matrix. This process will happen for
both real and imaginary parts, as is shown for process•� and•� . The
multiplication result from the real part will then be subtracted by the
imaginary part. After all 2∗�

"
groups of systolic array operations, two

reduction IPs(
∑
) are used to reduce those 2∗�

"
multiplication results

into two vectors: ®+& and ®+&′ . Here, ®+& is the regression result for
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the learning process and ®+&′ is the regression result for the inference
process. Both of these two vectors’ dimensions is A. The calculation
formulas of Q value vector ®+& and Q’ value vector ®+&′ are shown
below:

®+& =

�
"∑
:=1

®'4: ·&':)
||'4: || ∗ ||&': ||

−
®�<: ·&�:)

||�<: || ∗ ||&�: ||
: ∈ [1, �

"
] (9)

®+&′ =

�
"∑
:=1

®'4: ·&'′
:
)

||'4: || ∗ ||&'′
:
|| −

®�<: ·&� ′
:
)

||�<: || ∗ ||&� ′: ||
: ∈ [1, �

"
] (10)

Here QR’ and QI’ are the real and imaginary parts of model Q’. As
the synthesis and placement result show, cutting hypervectors into
partitions significantly saves on-chip resource utilization. Finally, the
generated ®+& and ®+&′ will be passed to the updating layer, as is shown
in process•5 and•6 .

3.4 Updating Layer Architecture
In Figure 5.a, the action index vector ( ®") specified by the host CPU is
loaded into the select IP to choose the appropriate element from ®+&
and ®+&′ . For the inference stage, all elements of ®" will be False and
select IP will choose the largest elements’ index of ®+&′ . This index is
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actually the action index(0C ) at time step t, which will then be passed
back to the CPU and stored in the replay buffer. For the training stage,
only one element of ®" will be set to True. The prediction value @?A43
and true value @CAD4 will be selected from ®+& and ®+&′ respectively
based on the element’s value of ®" . The mathematical function of select
IP is shown as below:

8=34G =

{
0A6<0G8+& [8] 8 5 ∀8∈[1,�] " [8] == �0;B4

−1 >Cℎ4AF8B4
(11)

@?A43 =

{
+& [8] 8 5 ∃8∈[1,�] " [8] == )AD4

0 >Cℎ4AF8B4
(12)

@CAD4 =

{
+&′ [8] 8 5 ∃8∈[1,�] " [8] == )AD4

0 >Cℎ4AF8B4
(13)

In Figure 5.b, the update value is calculated as shown below:

+D?30C4 = (@CAD4 − @?A43 ) ∗ V + AC (14)
Here V is the learning rate and AC is the environment reward. The AC is
also sampled from the replay buffer.

In Figure 5.c and Figure 5.d, +D?30C4 will first multiply the real and
imaginary parts of the encoded state vector( ®'4 and ®�<), and then flush
the update cache based on the action index vector ®" , as shown below:

®*'8 =

{
®'4 ∗+D?30C4 " [8] == )AD4

®*'8 " [8] == �0;B4
8 ∈ [1, �] (15)

®* �8 =

{
®�< ∗+D?30C4 " [8] == )AD4

®* �8 " [8] == �0;B4
8 ∈ [1, �] (16)

Specifically, in Figure 5.d, the update action hypervector is stored
inside the update cache. In the future clock cycle, when a specific action
hypervector will be used in the regression layer, the corresponding
update hypervector will be used to update the Q hypervector matrix
as discussed in section 3.3. For example, suppose during the training
process that at time step C + 2 , the action index 0C+2 is equal to 0C ,
then the corresponding action hypervector of model Q will be updated
as is shown below:

®&'0C+2 = ®&'0C+2 + ®*'0C+2 Fℎ4A4 " [0C+2] = )AD4 (17)

®&�0C+2 = ®&�0C+2 + ®* �0C+2 Fℎ4A4 " [0C+2] = )AD4 (18)
By cutting the backpropagation update process into two stages, as is
shown by Vitis HLS synthesis result, the critical path of the kernel
accelerator is shortened. More details of the performance improvement
will be presented in section 6.4.

4 DISTRIBUTED HDC-BASED Q-LEARNING
In section 3, we present the details of the architecture design of the
single-agent version of DARL platform (DARL1). This section will in-
troduce how to realize multiple agents distributed learning on a single
FPGA chip. We utilize high bandwidth memory (HBM) to achieve mul-
tiple agents’ data-level parallelism. A lightweight network-on-chip
(NoC) IP is also designed to accelerate the synchronization process
between multiple agents.

4.1 Top Distributed On-chip Learning
Architecture

The top architecture of the multiple agents DARL platform is shown
in Figure 6. Suppose there are a total of #0 RL agents, and each agent
has its own HBM channel. Each Xilinx HBM channel has two pseudo
channels (PS). Here we index them as PS0 and PS1. As is shown in
Figure 6.b, the host CPU will copy the training batch or inference state
into the HBM PS0. Each agent will then read these tuples from PC0, as

PC0 PC1

HBM

AXI AXI

channel 1

PC0 PC1

AXI AXI

Network on Chip IP

Encoding

Q

E
agent1

11

shard1

buffer1
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88
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st at rt st+1

replay buffer

M

88

22 44

33
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(b)

(c)

44
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Q’

Channel N

Figure 6: Distributed HDC-based Q-Learning Platform

is shown in Figure 6•1 . During the inference stage, each agent will
pass the action index of current time step (0C ) back to the host CPU
as shown in•8 .

Inside each agent of Figure 4, there still exists encoding, regression,
and update layers. For better illustration, we also present the simplified
version of each agent’s internal architecture in Figure 4.c. As shown in
process•2 , each agent has its own update cache: shard, which is used
to store the agent’s current action hypervector update. The updating
process of each agent’s model Q is shown as process•4 in Figure 4.
The main difference between distributed Q-Learning and DARL1 is the
synchronization of the different agents’ training update. We assume
that during the training stage, each agent works independently, which
means each agent’s model Q will be updated independently. However,
during the inference stage, each agent’s models, Q and Q’, need to be
synchronized. The bundled mode concept is therefore introduced by
the previous distributed learning work [29]. Here, the bundled mode
indicates that each agent has its own local model Q and a common
Q′ target model. The common Q′ means that each agent will keep a
replica of model Q′ so that the inference stage can be independent
from each other. Despite each agent not being updated Q′ directly
during the training process, for later targetQ′ update synchronization,
a simplified network-on-chip (NoC) IP is added to conduct the average
and scatter operation for each agent’s update hypervector as is shown
in the process•3 and•5 . This average and scatter operation is called
anAllReduce operation. More discussion of this AllReduce operation
will be included in section 4.2.

After the last time step of the current training stage, the synchro-
nized action hypervector update will be added to each agents’ target
model: Q′ as is shown in process•6 . Also, the model Q’ will flush
the agent’s local model Q as is shown in process•7 . In this case, at
the beginning of the next training-inference cycle, all agents’ local
models: Q and target model: Q’ will be synchronized. As we will see
in section 6, the learning speed and target model’s robustness will be
significantly improved due to multiple agents’ participation.

4.2 AllReduce via Network On Chip IP
AllReduce operator is widely adopted in distributed training platforms
to synchronize different model parameters [30, 31]. Here we define the
AllReduce operator as averaging all agents’ action hypervector update
stored in the shard and scattering it over all agents’ local buffer U.
After the AllReduce operator, each agent’s buffer will have a copy of
the action hypervector update. After the last time step of the training
stage, this update will be added to each agent’s target Q’ model. The
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equation for the AllReduce operator is shown below:

*8 [ 9] =
1

#0
·
#0∑
:=0

Bℎ0A3: [ 9] 8 ∈ [1, #0] 0=3 9 ∈ [1, �] (19)

Here i is the agent index and j is the action index. Both shard and local
buffer are on-chip storage and will be flushed to 0 at the beginning
time step of the training stage.

On-chip AllReduce operator is normally realized by designing a
specific network-on-chip(NoC) IP. For general on-chip NoC design,
people typically focus on network topology, router microarchitecture,
and flow control mechanisms. In this paper, since we mainly focus on
RL algorithm acceleration and only want to realize multiple agents’
target model synchronization, a straightforward NoC IP is designed,
which is shown in Figure 6. The NoC topology that we selected for
our design is the butterfly topology [32]. Compared to other popular
topologies such as ring, mesh, or torus, the butterfly is easier to imple-
ment on a resources-constrained FPGA platform [33, 21]. The process
of AllReduce operator inside the NoC IP is illustrated in Figure 7. As-
sume each agent has a unique vector denoted ®�, ®�, ®� , ®� , where each
vector’s dimension is D. In this case, each agent will first add its own
vector with its neighbor’s vector and pass it to the next layer. So in
Figure 7•0 and•1 we have:

�8 = �8 + �8 8 ∈ [1, �] (20)

�8 = �8 + �8 8 ∈ [1, �] (21)
Until now, each agent has exchanged its model with its neighbor. But
since we have 4 nodes, the exchange process will continue. In process•2 , �64=C1 will exchange its vector with �64=C3, and in process•3 ,
meanwhile �64=C4 will exchange its vector with �64=C2. So we have:

�8 =
�8 + �8

4
=
�8 + �8 +�8 + �8

4
8 ∈ [1, �] (22)

It is now evident to observe that each agent’s vector is shared, thus,
the AllReduce operation has been completed. Here we only present
the process of 4 agent nodes AllReduce operator, however, the same
structure could be pursued for any number of agents.

5 RL AGENT’S THROUGHPUT CALCULATION
This section introduces the RL model learning throughput’s definition
and calculation. Unlike regular supervised or unsupervised learning,
the throughput of RL should consider both the training and infer-
ence stage. We define the throughput as the number of inferences
processed per second (IPS), which is also widely adopted by previ-
ous work [20, 21, 23]. Suppose there are a total of #064=C agents in
the DARL platform, and the total learning episodes length is E. Each
agent’s environment interaction times in the 8Cℎ episode is)8 . In RL ter-
minology, we also call )8 the trajectory length. Based on the n greedy
algorithm introduced in section 3.1, we also defined the kernel FPGA’s
8Cℎ episode iteration cycles for inference and training as )

′
8
and )

′′
8

respectively. Here we also define the ratio between )
′
8
and )

′′
8
as the

Table 1: Resource Utilization and Performance on Alveo U280

CartPole LunarLander
Config1 DARL1 DARL8 DARL1 DARL8
LUT 73.1K (6%) 866.7K (73%) 117416 (8%) 988.2K (84%)
BRAM 276 (6%) 1425(30%) 546 (12%) 2825 (65%)
URAM 79 (8%) 431(48%) 143 (14%) 431 (48%)
FF 38047 (1%) 329.1K(11%) 42508 (1%) 367.7K(12%)
DSP 17 17 17 17

f (MHz)2 171 MHZ 171 MHz 171 MHz 171 MHz
L (cycle)3 417 547 421 624

1 Configuration of DARL 2 The frequency 3 The latency

training frequency(V). The batch size for each training step is M. Sup-
pose that the data communication times between the host CPU and
kernel FPGA for inference and training are )2><<1(s) and )2><<2(s)
respectively. Each step’s kernel runtime is F(s). We also use )4=E (s) to
represent the agents’ environment interaction time. )>Cℎ4A represents
other execution latency on CPU such as Xilinx Runtime Platform(XRT)
initiation time. Equation 23 24 25 show the throughput(IPS) formal
mathematical calculation process.

�%( =

∑�
8=0 #064=C ×)8

)8=5 +)CA08= +)>Cℎ4A
Fℎ4A4 (23)

)8=5 = )2><<1 +
�∑
8=0

()
′
8 × � +)4=E ×)8 ) (24)

)CA08= = )2><<2 +
�∑
8=0

)
′′
8 ×" × � (25)

6 EVALUATION
6.1 Experimental Setup
We develop full DARL library using two modules: (1) an optimized
software implementation using Python library supported encoding
and learning phase of our reinforcement learning, (2) hardware im-
plementation of RL on CPU, GPU and FPGA platforms. We used Intel
Xeon 6226 at 2.9 GHz as the host CPU. We use Xilinx Alveo U280 for
the kernel acceleration. We also used the Xilinx Vitis framework to
conduct the communication between CPU and FPGA via PCIe. We
choose the benchmark from OpenAI Gym [24], including CartPole [5]
and LunarLander [6]. We evaluated our design’s performance in three
aspects. The first is our HDC-based RL algorithm’s accuracy, the sec-
ond is total execution latency, and the third is the learning throughput
and energy efficiency. In the whole section 6, we use DARL1 and
DARL8 to represent the DARL platform with single and eight agents.

6.2 Single vs. Multi-Agent: Resource Utilization
Table 1 reports the accelerator’s resource utilization of HDQL running
on the Xilinx Alveo U280 platform. The synthesis and implementa-
tion tool that we use is Xilinx Vitis HLS and Vivado 2021.2. Here, the
hypervector dimension is 2048 (2K), and each tuple’s precision is a
fixed-point 32-bit. As is shown by previous work [34], the dimension
of the hypervector will have a significant influence on the model’s
accuracy, which means that in order to achieve high rewards for learn-
ing tasks, the dimension of the hypervector cannot be very low. We
will show in the next section that a 2K fixed-point 32-bit hypervector
provides enough learning rewards for both tasks. Since the two tasks,
CartPole and LunarLander, have different action space and state di-
mensions, as shown in Table 1, the resource utilization for those two
tasks is different.

Table 1 provides detailed resource utilization for our designed ac-
celerator with varying number of agents. We found that Xilinx Alveo
U280 can support at most eight agents without sacrificing perfor-
mance. However, we believe a board with more resources, such as
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Xilinx VCU128 FPGA could conduct larger-scale distributed learning.
Our HDC-based Q-Learning accelerator shows very high flexibility in
targeting different FPGA platforms. For example, for the accelerator
with a single agent, the lookup table(LUT) usage is only 73.1K, which
indicates that our accelerator can be deployed on much smaller edge
computing devices such as the Xilinx Zedboard or Zynq ZCU104 board.
To increase learning throughput and reduce the number of learning
episodes, a distributed training model with a decent number of agents,
based on their FPGA board’s resource condition, can be selected. In
Table 1, it is also apparent that, after using eight agents for distributed
learning, the FPGA on-chip resources are almost fully utilized, with
the exception of DSP. Compared to traditional deep learning, one of
the most critical strengths of HDC is that the model update is not based
on gradient descent. As a result of choosing the precision for quantiz-
ing the data to be a fixed-point 32-bit instead of a floating-point, the
DSP usage in-depth decreased. Decreasing on-chip DSP usage plays
an essential role in the energy efficiency improvement, which will be
discussed in section 6.5. In Figure 10.a, we also present the three opti-
mization’s influence over DARL1’s resource utilization and speedup.
Reducing the accelerator’s critical path and designing a lightweight
kernel encoder allows forDARL to achieve high-performance learning
throughput speed while requiring affordable resource utilization.

The last part that we want to discuss in this section is the single
iteration latency on FPGA. In Table 1, we only cover the on-chip
latency whichmeans the latency is only related to processes•1 ,•2 ,•3 ,•4 in Figure 2. Other important RL parts, such as the interaction with
the environment or the passing of data from CPU to FPGA via AXI
DMA, are not included in Table 1. We will provide the total execution
latency for both tasks in section 6.4. Compared to single-agent learning,
distributed learning takes more clock cycles to finish one step iteration.
On-chip muti-agents synchronization makes the single-step latency
increase. However, compared to previous work [20] synchronizing
agents’ learning reward on CPU, the latency overhead of conducting
the AllReduce operation in our design is small due to the butterfly
NoC IP’s support. In section 6.3, we will show that distributed training
will significantly improve the RL agents learning throughput.

6.3 Performance: Algorithm Accuracy
Figure 8 reports our HDC-based Q-Learning reward change over train-
ing episodes targeting CartPole and LunarLander tasks. Again, the
dimensionality of the hypervector is 2K, and each hypervector’s tuple
precision is fixed-point 32-bit. The replay buffer batch size M that
we selected for CartPole is 8 and for LunarLander, 16. We also test
DQN [25] for the same task and report its learning results for compar-
ison. Both single and multiple agents HDC-based Q-Learning achieve
much higher rewards than DQN during the same episodes.

Compared to single-agent learning, multiple agents distributed
learning achieves significantly higher rewards within the same episode
for both tasks, as shown by the black arrow in Figure 8.a. To achieve
OpenAI Gym suggested accumulated rewards target, such as 200 for
the LunarLander task, multi-agents need fewer episodes than single-
agent training, as shown by the black arrow in Figure 8.b. In addition
to convergence speed improvements, we also observe that for complex
control task such as LunarLander, distributed training significantly
improves the learning reward’s steadiness. As is shown in Figure 8,
the fluctuation of rewards for multiple agents is much lower than for
single agents. We believe multiple agents makes the learning model’s
robustness much higher.

6.4 Performance: Execution Time
Figure 9 presents our design’s execution time for accumulating target
rewards for two OpenAI Gym environments. Specifically, for the Cart-
Pole environment, the target reward is 500, and for the LunerLander
environment is 200. In Figure 9, we can see that the distributed training
significantly speeds up the model’s learning speed. In Figure 9, we also
provide the execution time breakdown. Here we cut the total execu-
tion time into three parts: training execution time(Training), inferring
execution time(Inferring), and Vitis platform’s overhead(Other). The
Inferring part here also includes agents’ interaction with the environ-
ment and receiving a reward from the environment. The Other part
includes all latency caused by the Vitis Xilinx runtime(XRT), such
as OpenCL initialization time, buffer allocation time, and CPU-FPGA
PCIe communication time. For small tasks, such as Cartpole, the XRT
platform overhead portion is considerable since the total learning
episode is small. However, its portion is much smaller for a more
complicated task, such as LunarLander.

We also implement the HDC-based Q-Learning on Intel Xeon 6226
for comparison. The CPU’s execution times for the CartPole environ-
ment and LunarLander environment are 19.41s and 1568.3s respec-
tively. Our single-agent accelerator achieves around 19x and 260x
speedup compared to CPU for CartPole and LunarLander, respectively.
With the more complicated tasks, such as action space and state di-
mension increasing,DARL’s speedup becomes more apparent. We also
compareDARLwith other platforms’ acceleration result in Figure 10.b.
We notice that the GPU acceleration of HDQL is not apparent. We
believe this is caused by wasting a lot of time passing the Q model
hypervector between CPU and GPU.
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Table 2: Comparison Table with Previous RL Acceleration Works

ASPLOS’19 [20] FCCM’20 [21] ICCAD’20 [22] IPDPSW’21 [35] DAC’21 [23] DRAL1 DRAL8
Platform Xilinx VCU1525 Alveo U200 ASIC PYNQ-Z1 Alveo U50 Alveo U280
Clock 180MHz 285MHz 800MHz 100MHz1 164MHz 171MHz

Algorithm A3C PPO A3C2 DQN DDPG sHDQL dHDQL
Task Env Discrete Continuous both Discrete Continuous Discrete
Precision Floating 32-bit Floating 32-bit - Fixed 32-bit Fixed 32, 16-bit Fixed 32-bit

DSP 2348 3744 - 4 2302 17
Model Size 2592.0 KB 229.6 KB - - 514.4 KB 64 KB 512 KB
Throughput 12849.1 IPS 6823.2 IPS + + 38779.8 IPS 36597.1 IPS 187972.9 IPS

Energy Efficiency 3 141.7 IPS/W - + + 2638.0 IPS/W 5256.3 IPS/W 11053.7 IPS/W
1 100MHz is Zynq FPGA PL part’s frequency. For PS ARM core part, the frequency is 650MHz. 2 Work in [22] supports not just A3C. 3 Only accelerator’s energy efficiency.
− Paper didn’t provide relate information. + Paper provide related information and we discussed it in section 6.4 and section 6.5.
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6.5 Training Throughput and Energy Efficiency
In Figure 11.a, we present the DARL platform’s learning through-
put(IPS) and lookup table(LUT) usage, which varies by the number of
agents. As mentioned in section 5, the throughput represents the ratio
of the total number of collected samples to the entire system runtime.
In Figure 11.a, when increasing the number of agents, the throughput
also increases. The maximum throughput we can achieve when using
eight agents is 184158.5 and 191787.4, respectively, for CartPole and
LunarLander environments. In Figure 11.a, we also notice that the
platform’s throughput is nonlinear to the number of agents(Nagent).
As mentioned in sections 6.3 and section 6.4, distributed RL decreases
the total learning episodes, which means the trajectory length (T) also
decreases. The equation 23 in section 5 shows that increasing #064=C

and decreasing T causes the throughput’s increment to be nonlinear
to #064=C ’s increment.

Figure 11.b reported our platform’s energy efficiency and power
consumption change varying different number of agents. We use Xil-
inx Power Estimator(XPE) to estimate the kernel accelerator’s power
and ignore the host CPU’s power consumption.We did this for the later
part’s fair comparison with previous RL acceleration works. Due to
using HBM, our accelerator’s power consumption is relatively higher
than previous ASIC work [22] but still less than previous FPGA accel-
eration work [23] since HDC’s nature strength reduces the kernel’s
DSP usage.

Table 2 summarizes the comparison of our design with previous
RL acceleration work published at the top conference. Here DARL1
and DARL8 represent the DARL platform with single and eight agents.
The throughput and energy efficiency of DARL1 and DARL8 included
in the Table 2 are the average of CartPole and LunarLander’s results
in Figure 11. Our design shows around 4x improvement over the
state-of-the-art RL FPGA accelerator [23] for throughput and energy
efficiency.

7 RELATED WORKS
Reinforcement Learning Accelerator Accelerating reinforcement
learning (RL) algorithms on Domain Specific Architectures(DSA), such
as FPGA and ASIC, have recently amassed considerable attention [36].
Generally speaking, RL algorithms can be divided into two categories,

tabular RL and deep RL. Traditional acceleration work focuses on
tabular RL algorithms acceleration [37, 38, 39]. However, the key com-
ponent of tabular RL, the Q table, is prone to becoming excessively
large which prevents tabular RL from handling complicated tasks. To
overcome this challenge, a number of recent works have been proposed
to accelerating neural network based RL(Deep RL) [40, 35]. Recent
years, many famous RL algorithms such as DQN [25], DDPG [41],
PPO [8] have been accelerated on the FPGA platform [40, 35, 21, 23].
However, all these works focused on single-agent RL acceleration.
Multi-agents distributed RL has been proved to be successful by previ-
ous works [29, 42, 28]. With the improvements to single chip comput-
ing capability, on-chip distributed RL acceleration has been proposed
recently [20, 22]. However, work [20] didn’t conduct multiple agents
on-chip synchronization, restricting the RL model’s learning speed.
Work [22] instead only focuses on the interconnection part of the
different agents but focuses little on the single agent’s acceleration
architecture.

Hyperdimensional Computing Hyperdimensional computing
(HDC) was first introduced by neuroscientist P. Kanerva [11]. One
of the important strengths of HDC is that it does not have deviation
based backpropagation. This makes HDC acceleration on hardware
platform, such as FPGA, popular [17]. Prior works have applied HDC
into diverse cognitive tasks, such as robotics [43], genome pattern
matching [44, 45], and speech recognition [46]. Recently people have
successfully applied HDC to solve RL tasks [14]. The core idea is to use
HDC based regression functions [47] to approximate the Q function
of the RL agent. Work [14] shows HDC’s potential in the RL area, but
is only preliminary work. To maximize HDC’s full strength, the hard-
ware acceleration of HDC-based RL algorithms(HDRL) is necessary.
However, no prior work has attempted to accelerate HDRL on FPGA
or other hardware platforms. Hence, we propose the DARL platform
in this paper as an efficient FPGA-based hardware acceleration of
HDC-based RL algorithms.

8 CONCLUSION
In this paper, we develop a novel platform capable of real-time hyper-
dimensional reinforcement learning. Our heterogeneous CPU-FPGA
platform, called DARL, maximizes FPGA’s computing capabilities by
applying several hardware optimizations to hyperdimensional comput-
ing, including hardware-friendly encoder IP, the hypervector chunk
fragmentation, and the delayed model update. Aside from hardware
innovation, we also extend the platform from basic single-agent RL to
support multi-agents distributed learning. We evaluate the effective-
ness of our approach on OpenAI Gym tasks.
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