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ABSTRACT
In a number of machine learning models, an input query is searched
across the trained class vectors to find the closest feature class vec-
tor in cosine similarity metric. However, performing the cosine
similarities between the vectors in Von-Neumann machines in-
volves a large number of multiplications, Euclidean normalizations
and division operations, thus incurring heavy hardware energy
and latency overheads. Moreover, due to the memory wall prob-
lem that presents in the conventional architecture, frequent cosine
similarity-based searches (CSSs) over the class vectors requires a lot
of data movements, limiting the throughput and efficiency of the
system. To overcome the aforementioned challenges, this paper in-
troduces COSIME, a general in-memory associative memory (AM)
engine based on the ferroelectric FET (FeFET) device for efficient
CSS. By leveraging the one-transistor AND gate function of FeFET
devices, current-based translinear analog circuit and winner-take-
all (WTA) circuitry, COSIME can realize parallel in-memory CSS
across all the entries in a memory block, and output the closest
word to the input query in cosine similarity metric. Evaluation
results at the array level suggest that the proposed COSIME design
achieves 333× and 90.5× latency and energy improvements, respec-
tively, and realizes better classification accuracy when compared
with an AM design implementing approximated CSS. The proposed
in-memory computing fabric is evaluated for an HDC problem,
showcasing that COSIME can achieve on average 47.1× and 98.5×
speedup and energy efficiency improvements compared with an
GPU implementation.

1 INTRODUCTION
Cosine similarity measures the similarity between two vectors in
an inner product space. It is widely used in a number of machine
learning models such as hyperdimensional computing (HDC) and
deep neural networks (DNNs). During the inference phase of these
machine learning applications, a large number of cosine similarity-
based searches (CSSs) are often needed. While CSS has been exten-
sively studied in many algorithm-level approaches [1], and can be
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executed in digital machines, it requires a large number of multi-
plications, as well as 𝐿2 normalizations and divisions. Moreover,
given the extensive search operations required by many machine
learning algorithms such as HDC classifications, CSS also causes
massive data movements between the memory and the process-
ing units, i.e. the memory wall problem, limiting its performance
and efficiency. These challenges posed by CSS becomes even more
significant when deployed in power and resource constrained sce-
narios [2], calling for innovative and efficient hardware design for
CSS.

Compute-in-memory (CiM) is a promising architectural para-
digm that enables operations across entire memory blocks by in-
tegrating some basic processing capabilities inside the memory to
overcome the memory wall problem. For example, content address-
able memories (CAMs) [3, 4], which support parallel search across
the stored vectors in memory against the input query, have been
proposed as associative memories (AMs) to accelerate inference for
machine learning applications e.g., few-shot learning, transformer,
etc., [5, 6]. Moreover, in conjunction with non-volatile memory
(NVM) technologies such as resistive RAM (ReRAM), ferroelectric
FET (FeFET), etc., and customized sense amplifier (SA), CAM de-
signs have demonstrated great potential as highly energy efficient
AMs for nearest neighbor (NN) search using the Hamming distance
metric [6–9].

However, it can be seen in Fig. 1 that the CAMdesigns supporting
Hamming distance based search achieves energy efficiency at the
expense of non-negligible accuracy loss for classification tasks. The
AM in [10] supports a specific approximated CSS by approximating
the denominator of cosine calculation and exploiting the the quasi-
orthogonal property of hyperdimensional vector. That said, such
approximation still causes slight accuracy loss, and is limited only to
the HDC application. Therefore, a more general CiM based CSS that
can not only offer energy efficiency and performance improvements
but also maintain comparable accuracy to the full precision CSS
implemented in software is highly desirable.

In this paper, we propose COSIME, an energy efficient, FeFET
based in-memory search engine that implements parallel CSS across
the memory to identify the word closest to the input query. COSIME
incorporates several novel circuit designs summarized below. Fe-
FETs are exploited as non-volatile storage to store the pre-trained
data words (e.g., pre-trained class vectors in machine learning appli-
cations) in two FeFET arrays, where one array enables a row-wise
dot product calculation between the input query and all stored
words and the other array implements bit counting of the stored
vectors. Current-mode analog circuits are employed to efficiently

https://doi.org/10.1145/3508352.3549412


(a) (b)

Figure 1: Accuracy of (a) nearest neighbor classification, (b)
few-shot learning tasks withHamming distance based search
and CSS [7], respectively.

realize the cosine similarity calculation as well as the NN search.
Since the analog circuits are independent of the memory array, the
proposed COSIME design is not limited to FeFET technology, but
can also be applied to other NVMs with access transistors.

To validate the functionality and evaluate the scalability and
robustness of COSIME, NN searches based on cosine similarity are
performed and analyzed. Evaluation results suggest that COSIME
achieves 90.5× energy saving and 333× latency reduction com-
pared to the AM design that implements approximated CSS [10].
To benchmark COSIME at the application level, we use COSIME for
HDC classification where COSIME is implemented as an inference-
accelerating AM. In this setup, COSIME demonstrates 47.1× and
98.5× speedup and energy efficiency improvement while maintain-
ing the same classification accuracy compared with a GPU. To the
best of our knowledge, COSIME is the first CiM design that supports
NN search based on accurate cosine similarity.

2 BACKGROUND
In this section, we review FeFET basics and justify why FeFET
is a favorable choice for implementing CiM based CSS. We then
summarize recent efforts on designing AMs for similarity search.

2.1 FeFET Basics
FeFET based on recently discovered ferroelectric HfO2 is a com-
petitive candidate for high-speed, high-density, and low-power
embedded NVM due to its intrinsic transistor structure, CMOS
compatibility, excellent scalability, and superior energy efficiency
[11]. As shown in Fig. 2(a), applying a positive (negative) gate volt-
age pulse sets the FeFET to low-𝑉𝑇𝐻 (high-𝑉𝑇𝐻 ) state (Fig. 2(b)).
Unlike others NVMs whose memory write is driven by current and
consumes significant power, FeFET exhibits superior write energy
efficiency since the polarization switching is driven by an electric
field, rather than large conduction currents [6].

It is demonstrated in [12, 13] that by connecting a series resis-
tor with proper resistance value on the FeFET source/drain, the
ON state current will be only limited by the series resistance, as
shown in Fig. 2(c). As a result, the ON state current variation is
significantly reduced with such 1FeFET1R structure and made in-
dependent from the FeFET 𝑉𝑇𝐻 variation. This suggests possible
tuning to the FeFET ON current for both the low-𝑉𝑇𝐻 and high-
𝑉𝑇𝐻 states. [14] experimentally demonstrated a back-end-of-line
(BEOL) 1FeFET1R structure, validating the aforementioned ON cur-
rent tuning scheme with smaller cell area than other devices. A
resistor with less than 8% variability is demonstrated. Given the
small 1R variability and relatively large resistance of R, the ON state
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Figure 2: (a) FeFET operation principles. 𝐼𝐷 -𝑉𝐺 characteristics
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(c) a FeFET with a series resistor on the drain. (d) A single
FeFET can compactly realize the AND gate.

current of 1FeFET1R cell is approximately proportional to 1
𝑅
due to

the large𝑀Ω resistance of 1R, and the ON state current variation
Δ𝐼 , i.e., the derivation of ON state current, is proportional to − Δ𝑅

𝑅×𝑅 ,
where Δ𝑅

𝑅
refers to the 1R variability. Therefore, the impact of the

1R variability on the ON state current is negligible [12].
In this work, the 1FeFET1R structure is adopted, and proposed to

realize a compact AND gate (i.e., dot product for binary vectors) by
storing one operand as the FeFET𝑉𝑇𝐻 state and applying the other
operand as the gate voltage, as shown in Fig. 2(d) [15]. Such cell is
leveraged in this work to calculate the cosine similarity in-memory.

2.2 Existing Associative Memory with
Similarity Search

With advances in NVMs, binary/ternary/multi-bit CAM design
have been proposed for energy efficient and ultra-dense associative
search in various applications, e.g., IP routers, look-up table, re-
configurable computing and machine learning models, etc. [16–20].
Typically, CAM works in the exact match mode, in which only the
stored vectors that exactly match the query are identified. However,
NN search is also highly desirable as it identifies the vector closest
to the query, a core computation in many machine learning mod-
els. With the exact matching mode, to identify the NN, multi-step
searches with queries of increasing distance to the target query are
applied, incurring overheads in energy and latency.

This can be overcome by leveraging the approximate matching
mode of CAM, which directly computes the Hamming distance
on the match line (ML) of CAM. Recent work [6–9] implemented
NN search based on Hamming distance for few-shot learning tasks.
However, they suffer from significant accuracy loss compared with
CSS, as shown in Fig. 1. Recently, an AM supporting approximate
CSS was proposed in [10]. This design specifically targets to HDC
classification problems and approximates the denominator of co-
sine calculation by exploiting the quasi-orthogonal property of
hyperdimensional vectors, thus limiting its application to other



machine learning models. In this work, we propose a more general
AM design that supports NN search based on cosine similarity.

3 COSIME: IN-MEMORY COSINE SIMILARITY
SEARCH ENGINE

COSIME implements in-memory cosine similarity search for the
NN, a critical operation in the inference phase of BNN and HDC
models as well as other machine learning models (e.g., for few-
shot learning). Fig. 3 shows the architecture of COSIME. It consists
of two FeFET memory arrays, a current-mode translinear circuit
block for each row in the memory arrays, and an analog winner-
take-all (WTA) circuit. Below we elaborate the cosine similarity
metric derivation, as well as the detailed design of the COSIME
components.

3.1 Cosine Similarity
Cosine similarity (or cosine distance) has been used as a distance
metric for measuring the difference between an input feature query
vector and the stored vectors. Specifically,

cos⟨®𝑎, ®𝑏⟩ = ®𝑎 · ®𝑏
∥ ®𝑎∥ × ∥®𝑏∥

(1)

Without loss of generality, in this work we assume that ®𝑎 is the
binary input vector whose bits are either 0 or 1, and ®𝑏 as the class
binary vector stored in the memory block. Eq. (1) equals to 1 means
that ®𝑎 and ®𝑏 are exactly the same, while Eq. (1) equals to 0 means
that ®𝑎 and ®𝑏 are orthogonal to each other. The numerator of Eq.
(1) is simply the dot product of two vectors. The denominator is
the product of the 𝐿2 norm of the two vectors, while 𝐿2 norm of
a binary vector is the square root of the number of ‘1’s in the
vector. Directly computing 𝐿2 norm requires a complex circuit,
hindering the denominator from efficient hardware implementation.
Therefore, prior works typically simplify the cosine equation by
removing the denominator, or approximating the denominator to a
constant value. Doing so may introduce significant errors.

COSIME aims to obtain the closest vector (i.e., NN) to the input
query in terms of cosine similarity. From Eq. (1), cosine similarity
can be equivalently expressed in a more circuit friendly variant
without affecting the search output. Specifically, for computing
cosine similarity, COSIME removes the need for square root oper-
ation without any accuracy loss by squaring both the numerator
and denominator as shown in Eq. (2).

cos2⟨®𝑎, ®𝑏⟩ = ( ®𝑎 · ®𝑏)2

(∥ ®𝑎∥ × ∥®𝑏∥)2
(2)

Note that in Eq. (2), the denominator consists of the squared norm
of the stored vector ®𝑏 which is the number of ‘1’s within ®𝑏, and
squared norm of input query vector ®𝑎 which is shared by all the
cosine similarity metrics, and thus can be removed during the
CSS. In this sense, the cosine similarity metric can be equivalently
expressed as the 𝑋 2/𝑌 operator, where 𝑋 denotes the dot product
( ®𝑎 · ®𝑏)2, and 𝑌 denotes ∥ ®𝑏∥2, i.e., the number of ‘1’s within ®𝑏. Based
on the above formulation, we illustrate the circuits implementing
the computation of 𝑋 , 𝑌 and 𝑋 2/𝑌 .

3.2 FeFET Memory arrays
We employ two identical FeFET-based non-volatile memory arrays
to store the class vectors. As shown in Fig. 3(a), the gates of the
FeFETs within a column are connected to the bitlines (BLs), while
the drains of the FeFETs within a word share a wordline (WL). As
discussed in Sec. 2.1, FeFETs can be used as a single transistor AND
gate, enabling the memory array implementing in-memory binary
bitwise dot product naturally.

During search, for the FeFET memory array on the left side of
Fig. 3(a), high/low voltages are applied to the bitlines 𝐵𝐿 according
to the respective bit values in the input query. Only when the
FeFET of a cell stores ‘1’ (corresponding to low 𝑉𝑇𝐻 state), and its
gate voltage is at high level indicating an input bit ‘1’, the cell is
turned on, conducting 𝐼𝑂𝑁 current from the wordlineWL to ground.
The resulting output current (𝐼𝑥 ) flowing through a WL therefore
represents the dot product of this word and the input query, i.e.,
𝑋 . To implement the squared norm of the stored vector, i.e., 𝑌 , the
FeFET memory array on the right side of Fig. 3(a) is used, and stores
the identical class vectors as the left memory array. All the bitlines
of this array, however, are applied with high gate voltage, turning
on the FeFETs storing ‘1’. It is easy to see that the magnitude of
the output current 𝐼𝑦 of a word in this array represents the number
of ‘1’s within the stored vector, i.e., 𝑌 . Note that the magnitude of
the output currents 𝐼𝑥 , 𝐼𝑦 can be adjusted by tuning the resistor
within the 1FeFET1R structure as discussed in Sec. 2.1, ensuring
that the input currents are in the working range of the following
translinear circuit model.

3.3 Translinear Circuits
To implement the key operation 𝑋 2/𝑌 for CSS, we propose to em-
ploy the translinear circuit from [21] and feed the output currents of
FeFET memory arrays 𝐼𝑥 and 𝐼𝑦 into this analog arithmetic circuit.
Fig. 3(b) shows the schematic of the translinear circuit implement-
ing efficient current-mode squaring and division. This translinear
circuit mainly consists of a translinear loop (indicated by the blue
arrow) including clockwise (CW) transistors M1, M4 and counter-
clockwise (CCW) transistors M2, M5. The transistors along the
loop are operating in the subthreshold (weak inversion) region, and
their drain-source currents can be characterized by the following
expression [22]:

𝐼𝐷𝑆 ≈ 𝐼0
𝑊

𝐿
𝑒
𝑉𝐺𝑆
𝜂𝑉𝑇 (3)

where 𝐼0 denotes the drain current 𝐼𝐷 when 𝑉𝐺𝑆 = 𝑉𝑇 , 𝑉𝑇 denotes
the thermal voltage, 𝜂 the subthreshold slope factor.

The relation between the 𝑉𝐺𝑆 ’s of the transistors along the
translinear loop follows Kirchoff’s Law, i.e.,∑︁

𝐶𝑊

𝑉𝐺𝑆 =
∑︁
𝐶𝐶𝑊

𝑉𝐺𝑆 (4)

from Eq. (3), we obtain:

𝑉𝐺𝑆 = 𝑉𝑇𝜂𝑙𝑛(
𝐼𝐷𝑆

𝐼0
) (5)

By substituting Eq. (5) into Eq. (4) while keeping the loop transistors
in the subthreshold region, the translinear circuit generates the
analog output current 𝐼𝑧 as below:

𝐼𝑧 =
𝐼2𝑥
𝐼𝑦

(6)
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Figure 3: COSIME overview. (a) 1FeFET1R memory array. (b) Translinear circuit. (c) Winner-Take-All (WTA) circuit.

The operating voltage 𝑉0 in Fig. 3(b) is set to 0.6V to keep the
translinear circuit in the subthreshold region, and 𝐼𝑦 around 600nA
corresponding to the average squared 𝐿2 norm of the stored vec-
tors. Fig. 4(a) shows the operating region with respect to the input
current 𝐼𝑥 , where the simulated transfer characteristic aligns with
the theoretical result. It can be seen that the input current 𝐼𝑥 from
the FeFET memory array should be within the operating range to
guarantee the functionality of the translinear circuit. In order to
maintain the correct functioning of the translinear circuit and guar-
antee the scalability of COSIME, we propose to adjust the resistor
in every 1FeFET1R to satisfy the required input current range of
the translinear circuit. For example, when the memory arrays scale
to 𝑁 times row-wise, the input current per row from the memory
arrays can remain constant by tuning the 1FeFET1R structure as
presented in [12], thus reducing the 1FeFET1R cell ON current to
1
𝑁

times.

𝐼𝑧 =
( 𝐼𝑥
𝑁

× 𝑁 )2
𝐼𝑦
𝑁

× 𝑁
=
𝐼2𝑥
𝐼𝑦

(7)

Moreover, the input current range can also be guaranteed by ad-
justing the size ratio𝑊 /𝐿 of the current mirror associated with the
translinear circuits.

3.4 Winner-Take-All Circuit
By employing the FeFET memory arrays and translinear circuits
discussed above, the squared cosine distances between the stored
vectors and the input query are effectively represented by the out-
put currents of the translinear circuits. The last stage of the NN
search is to find the maximum current as the ultimate search result.
The conventional maximum current selection implementation is

(a) (b)

Stablize Time
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Input

Time (ns)
0

Ix (nA)
1
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(3)
2 43

Figure 4: (a) The transfer characteristic of the translinear
circuit, where the center linear region indicates the operating
region for the input. (b) Waveforms of (1) input and WTA
activation for NN search, (2) translinear circuit output, and
(3) WTA output.

a current comparator-based tree structure which requires a huge
number of transistors and increases the latency as the number of
stored class vectors increases [9]. Here, we propose to utilize a
current-mode O(N) WTA circuit presented in [23], which can offer
efficient maximum current detection operation.

Fig. 3(c) shows the schematic of the WTA circuit. It consists of a
gated transistor 𝑇𝐶 as the current source, a coupled transistor pair
(i.e., the sourcing transistor𝑇1𝑖 and the output transistor𝑇2𝑖 ) and an
output feedback current mirror (i.e., 𝑇3𝑖 and 𝑇4𝑖 ) for each input and
output branch. The WTA circuit generally operates by inhibiting
the transistor pairs sourcing smaller input currents, and amplifying
the transistor pair sourcing the maximum input current. When one
of the input currents is larger than others, the gate voltage 𝑉𝑐 of
the corresponding sourcing transistor is driven to a higher level,
while the drain voltages of other sourcing transistors are driven to
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a lower level to maintain the smaller input currents. As a result, the
reduced drain voltages will drive less output currents through the
output transistors, and the output transistor corresponding to the
maximum input drives a larger output current. The feedback current
mirror on the output path adds the output current back to the input
path, thus further exacerbating the current differences among the
inputs. Such a WTA circuit therefore can distinguish input currents
with even 1% difference. To this end, the WTA realizes NN search
in cosine similarity metric. Fig. 4(b) shows the transient input and
output waveforms of the WTA circuit. Note that to ensure correct
WTA functionality, the WTA is activated after the input currents,
i.e. the translinar circuit outputs, become stable.

3.5 Scalability of WTA Circuit
The 2-rail-input WTA circuit demonstrated in [9] may cost a large
number of two-rail-input WTA components to construct a compar-
ison tree. Instead, we hereby deploy an M-rail-input WTA circuit
in [24] to our COSIME design. In [24], the derivation 2-rail-input
WTA’s output w.r.t. the input changes is given. To understand M-
rail-input WTA’s counterpart, below we elaborate why the transfer
characteristics between the inputs and the outputs of WTA are
weakly correlated with the number of input rail in COSIME, thus
validating the scalability of COSIME by using theM-rail-inputWTA
circuit.

Fig. 5 shows the small-signal circuit model of the M-rail-input
WTA circuit excluding the feedback current mirrors. The small
signal of 𝑉1, 𝑉2, and 𝑉𝑐 are denoted as 𝑣1, 𝑣2, and 𝑣𝑐 , respectively.
For a particular operating point [𝐼𝑧1, . . . , 𝐼𝑧𝑀 , 𝐼𝑜1, . . . , 𝐼𝑜𝑀 ], without
loss of generality, we assume a small change in 𝐼𝑧1, denoted as
𝑖𝑧1. the corresponding small-signal parameters of the sourcing and
output transistors in the subthreshold region are𝑔11 = 𝐼𝑧1

𝑉𝑇
. . . 𝑔1𝑀 =

𝐼𝑧𝑀
𝑉𝑇

, 𝑔21 =
𝐼𝑜1
𝑉𝑇

. . . 𝑔2𝑀 =
𝐼𝑜𝑀
𝑉𝑇

, 𝑟11 =
𝑉𝐴
𝐼𝑧1

. . . 𝑟1𝑀 =
𝑉𝐴
𝐼𝑧𝑀

, and 𝑟21 =

𝑉𝐴
𝐼𝑜1

. . . 𝑟2𝑀 =
𝑉𝐴
𝐼𝑜𝑀

, where 𝑉𝐴 is the Early voltage and 𝑉𝑇 is the
thermal voltage. Applying Kirchhoff’s current law to the small
signal circuits in Fig. 5 yields:



𝑖𝑧1 = 𝑣1
𝐼𝑧1
𝑉𝐴

+ 𝑣𝑐
𝐼𝑧1
𝑉𝑇

𝑣 𝑗
𝐼𝑧 𝑗

𝑉𝐴
= −𝑣𝑐

𝐼𝑧 𝑗

𝑉𝑇
, ∀𝑗 ∈ [2, 𝑀]

𝑀∑︁
𝑖=1

[ 𝐼𝑜𝑖
𝑉𝑇

(𝑣𝑖 − 𝑣𝑐 ) + 𝑣𝑐
𝐼𝑜𝑖

𝑉𝐴
]

(8)

Given that Early voltage 𝑉𝐴 >> 𝑉𝑇 = 𝑘𝑇 /𝑞, solving Eq. 8 yields:
𝑑𝑉1
𝑑𝐼𝑧1

=
𝑣1
𝑖𝑧1

=
1
𝐼𝑧1

(𝑉𝑇 +𝑉𝐴 (1 −
𝐼𝑜1
𝐼𝑐

))

𝑑𝑉𝑗

𝑑𝐼𝑧1
=
𝑣 𝑗

𝑖𝑧1
=

−1
𝐼𝑧1
𝑉𝐴 (

𝐼𝑜1
𝐼𝑐

)
(9)

where 𝐼𝑐 =
∑𝑀

𝑗=1 𝐼𝑜 𝑗 . The 𝑗 th current 𝐼𝑜 𝑗 (see Fig. 3(c)) of the output
transistor operating in the subthreshold region can be expressed
as:

𝐼𝑜 𝑗 = 𝐼𝑜𝑒𝑥𝑝 ((𝑉𝑗 −𝑉𝑐 )/𝑉𝑇 ) (10)
then the term in Eq. 9

𝐼𝑜1
𝐼𝑐

=
1

1 +∑𝑀
𝑗=2 𝑒𝑥𝑝 ((𝑉𝑗 −𝑉1)/𝑉𝑇 )

(11)

Substituting Eq. 11 into Eq. 9 obtains:
𝑑𝑉1
𝑑𝐼𝑧1

=
1
𝐼𝑧1

(𝑉𝑇 +𝑉𝐴 (1 −
1

1 +∑𝑀
𝑗=2 𝑒𝑥𝑝 ((𝑉𝑗 −𝑉1)/𝑉𝑇 )

))

𝑑𝑉𝑗

𝑑𝐼𝑧1
= −𝑉𝐴

1
𝐼𝑧1

( 1
1 +∑𝑀

𝑗=2 𝑒𝑥𝑝 ((𝑉𝑗 −𝑉1)/𝑉𝑇 )
))

(12)

Given that the initial input currents 𝐼𝑧1 = 𝐼𝑧2 = · · · = 𝐼𝑧𝑀 = 𝐼𝑚 ,
the initial gate voltage of 𝑇21, . . . ,𝑇2𝑀 should be identical, i.e., 𝑉𝑚 .
Eq. 12 can be simplified as below:
𝑑𝑉1
𝑑𝐼𝑧1

=
1
𝐼𝑧1

(𝑉𝑇 +𝑉𝐴) and
𝑑𝑉𝑗

𝑑𝐼𝑧1
= 0, when 𝑉𝑗 −𝑉1 ≫ 𝑉𝑇

𝑑𝑉1
𝑑𝐼𝑧1

=
𝑉𝑇

𝐼𝑧1
and

𝑑𝑉𝑗

𝑑𝐼𝑧1
= −𝑉𝐴

𝐼𝑧1
, when 𝑉𝑗 −𝑉1 ≪ 𝑉𝑇

(13)

It can be seen that with 𝑉𝑗 − 𝑉1 ≫ 𝑉𝑇 and 𝑉𝑗 − 𝑉1 ≪ 𝑉𝑇 , the
dynamics of the output transistors with the input current are in-
dependent of the number of input rails M. When 𝑉𝑗 ≈ 𝑉1 ≈ 𝑉𝑚 ,
Eq. 12 simplifies to:

𝑑𝑉1
𝑑𝐼𝑧1

=
𝑀 − 1
𝑀

𝑉𝐴

𝐼𝑧1
𝑑𝑉2
𝑑𝐼𝑧1

=
−1
𝑀

𝑉𝐴

𝐼𝑧1

(14)

In 2-rail-input WTA, 𝑉1 is a linear function of 𝐼𝑧1 with a slope of
𝑉𝐴
2𝐼𝑧1 [25], and in an M-rail-input WTA,𝑉1 is a linear function of 𝐼𝑧1
with a slope of 𝑀−1

𝑀
𝑉𝐴
𝐼𝑧1

as shown in Eq. 14. As the number of input
rails scales up, the winner’s behavior w.r.t. the dynamics of the
output transistor only differs by a constant factor. While for losers
𝑗 ∈ [2, 𝑀], as the input rail number increases, the behavior w.r.t.
the dynamics differ by 1

𝑀
. To this end, the impact of the number of

input rails on the winner’s output is negligible, which can be seen
from Fig. 6(a), where the latency of COSIME changes little with
increasing number of input rails, i.e., number of class vectors.

4 EVALUATION
In this section, we first evaluate COSIME in terms of energy and
latency at the array level. We then investigate the scalability and ro-
bustness of COSIME upon device variations. We finally benchmark
COSIME for binary HDC inference and compare it with a GPU
implementation. We have simulated all the COSIME components
at the circuit-level with Cadence Spectre. The write voltage for the
1FeFET1R CAM is ±4𝑉 . The 45nm PTM high-performance model
is adopted for CMOS transistors [26], and the Preisach model [27]



(b)(a)

Figure 6: Search energy and delay of COSIMEwith (a) varying
number of rows/vectors (1024 bits per row), and (b) varying
number of dimensions, respectively.

is used for FeFET. The array wordlength is 1024 bits. The search
delay is measured from the beginning of the search operation when
the FeFET memory arrays are activated until the WTA circuit gen-
erates the output. Besides, the search delay is measured under the
worst case, where two non-identical stored vectors are closest to
each other, i.e., they only differ by 1 bit at the denominator, and
the resulted squared cosine similarities are 𝑐𝑜𝑠2𝜃 = 1/4 and 1/5,
respectively.

4.1 Array-Level Evaluation
Fig. 6(a) shows the latency and energy trends of COSIME in terms
of the number of words in the memory array. It can be seen that
the increasing class vectors participating the NN search of COSIME
have negligible impacts on the latency, aligning with the discussion
in Sec. 3.5. The search energy of COSIME mainly consists of two
parts: the WTA circuit along with its amplification current mirrors
consuming up to 56% of the total energy, and the squared cosine
translinear circuits along with their associated current mirrors
taking around 43%. As the number of classes increases, i.e., the
number of current paths of WTA circuit increases, the total search
energy grows linearly. This is due to the fact that the increasing
number of the WTA circuit branches introduces more input and
output currents provided by the supply rails.

In addition to varying the number of rows (i.e., classes) within
the FeFET memory arrays, we also investigate the scalability of
COSIME by varying the number of bits in a word (i.e., dimensions)
in terms of energy and latency metrics. As pointed out in Sec. 3.3,
we maintain the correct functionality of translinear circuit and thus
COSIME by tuning the resistor within the 1FeFET1R structure in
the FeFET memory arrays. Fig. 6(b) reports the search energy and
latency of COSIME with varying number of bits per word in the
memory arrays. As can be seen, the latency and search energy of
COSIME has negligible change when increasing wordlength from
64 to 1024, as the total current provided by the supply rails is kept
the same based on the tuning method discussed in Sec. 3.3.

Here we also validate the robustness of COSIME design upon
device variability. The device-to-device variability of the FeFETs
is extracted from [12], i.e., 𝜎𝐿𝑉𝑇 = 54𝑚𝑉 for low-𝑉𝑇𝐻 state and
𝜎𝐻𝑉𝑇 = 82𝑚𝑉 for high-𝑉𝑇𝐻 state. The variability of the resistor
in the 1FeFET1R cell is extracted from [14], i.e., 8%. The MOSFET
device is assumed with 10% size and 10% 𝑉𝑇𝐻 variations, and the
supply voltage is assumed with 10% variation. Fig. 7(a) shows the
output waveforms of COSIME for 100 Monte Carlo simulations. The
array-level results indicate a 90% search accuracy of COSIME with

(a) (b)

Figure 7: Monte Carlo simulations considering all device-to-
device variations: (a) The output waveforms of COSIME in
the worst-case, achieving 90% accuracy. (b) The error rates of
different cosine similarity outputs with an output 𝑐𝑜𝑠𝜃 = 0.5.
similarity threshold cos𝜃 = 0.5 even in the worst case1. Fig. 7(b)
shows the array-level search function error rates of COSIME gen-
erating different cosine similarity values when one entry of the
array generates an output corresponding to 𝑐𝑜𝑠𝜃 = 0.5. It can be
seen from Fig. 7(b) that as the cosine similarities of two stored
words with the input query get closer, the error rate of COSIME in-
creases, due to the closer current inputs to the WTA circuit. Yet the
maximum error rate is ≈ 10%, which would have minimal impact
on the application-level accuracy for many machine learning and
neuromorphic applications, such as HDC [9, 10, 29].

Fig. 8 demonstrates and compares different types of AMs imple-
menting various distance metric calculations between the input
query and stored vectors for neural network or HDC models. Fol-
lowing the feature extractor and additional function layer as shown
in Fig. 8(a), employing conventional memory (Fig. 8(b)) such as
DRAM to support NN search incurs significant data movement
overhead as all the memory entries need to be sequentially trans-
ferred from the memory unit to the processing unit to calculate
the cosine similarity between the input query and stored vectors.
FeFET based AM in [6] (Fig. 8(c)) deploys a 2FeFET TCAM array to
implement approximate search in terms of Hamming distance be-
tween the input query and stored vectors. Fig. 8(d) from [7] exploits
the multi-bit characteristic of FeFET to build an AM implementing
NN search in a novel distance metric (i.e., MCAM distance). Com-
pared with prior AM designs, COSIME (Fig. 8(e)) achieves superior
search energy, performance and area overhead, while still main-
taining high accuracy as an AM implementing NN search in cosine
similarity distance metric.

TABLE 1 summarizes the distance metric, search energy per bit
and latency of different AM designs. The results show that COSIME
offers 90.5× more energy efficiency and 333× less latency than the
approximated CSS design from [10]. In comparision with the exist-
ing AMswith Hamming distance [9] or recently proposed Euclidean
distance [30], COSIME is also superior in terms of search energy
and latency. The significant improvements of COSIME over the
counterpart approximated CSS design mainly benefit from the fol-
lowing aspects: (1) the advantages of FeFET in read/write energy [6];
(2) the 1FeFET1R structure limiting the conducting current within
COSIME, which improves the energy efficiency and functionality;

1The worst case refers to that the cosine values corresponding to the WTA outputs
are 𝑐𝑜𝑠𝜃 = 1/2 and 1/

√
5, respectively. In this case, the two stored vectors differ by 1

bit, which is the harshest situation for WTA circuit to distinguish the corresponding
array currents. Such assumption is pessimistic.
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(d) MCAM in [7], performing NN search in MCAM distance. (e) COSIME, performing CSS.

and (3) relatively simple analog circuits in COSIME compared with
the capacitor and analog-to-digital converter (ADC) in [10]. More-
over, TABLE 1 demonstrates the area overheads of different AMs.
Both the A-HAM in [9] and the E2-MCAM in [30] consume high
area overhead since a tree-based loser-take-all (LTA) circuitry and
sufficiently large flash cells supporting the 3-bit storage are used,
respectively. The approximated CSS design in [10] consumes 1.31×
area overhead than COSIME since it adopts ADC for its RRAM
readout. On the contrary, COSIME exhibits ultra-low area overhead
since: (1) the analog peripherals of COSIME arrays consume much
less area than the peripherals of other designs; (2) ultra-compact
1FeFET1R structure has been successfully demonstrated without
consuming extra area overhead [14].
4.2 Case Study: Hyperdimensional

Classification
To validate the effectiveness of COSIME as an AM at application
level, we benchmark our proposed COSIME array in the context
of HDC models for classification as a case study. HDC is based on
the understanding that the brain computes with patterns of neu-
ral activity that are not readily associated with numbers, and has
been proven as effective for many cognitive tasks, such as object
tracking [32], speech recognition [33], image classification [34, 35],
etc. Due to the size of the brain’s circuits, neural patterns can be
modeled with hypervectors [36]. HDC builds upon a well-defined
set of operations with random hypervectors, is extremely robust

upon failures, and offers a computational paradigm that is easily
applied to learning problems [37]. For HDC classification, the first
step is to encode data into high-dimensional space. Then, HDC
performs a learning task over encoded data by performing a single-
pass training. The training generates a hypervector representing
each class. During the inference phase, as an input query comes
which contains the sample data to be classified, it is searched across
the stored class hypervectors for the closest one in terms of co-
sine similarity. A class with the highest similarity to the query is
selected as the inference prediction. HDC uses cosine similarity
as an ideal distance metric, while prior work approximated with
Hamming distance for easier hardware implementation. However,
this approximation often results in accuracy loss.

Here, we evaluate HDC classification accuracy and efficiency
over three large-scale data sets given in Table 2. Fig. 9(a) shows
the HDC classification accuracy when the dimensionality of hyper-
vectors varies from 𝐷 = 256 to 𝐷 = 1𝑘 . The results are reported
using our proposed COSIME (cosine similarity) and Hamming dis-
tance [38] as the similarity metrics. The results show that HDC
achieves maximum accuracy with dimensionality 𝐷 = 1𝑘 . Reduc-
ing this dimensionality to 512 and 256 results in 1.7% and 12.2%
accuracy loss. Our evaluation also indicates that by using cosine
similarity for distance metric HDC achieves significantly higher
accuracy (on average 7%) as compared to Hamming distance metric.
Such observation is consistent with Fig. 1, and demonstrates the



Table 1: Comparison of Existing AMs with Different Distance Metrics

Memory Technology Metric Search Energy per bit(𝑓 𝐽 ) Latency(𝑛𝑠) Area∗ (𝑚𝑚2) Process (nm)
A-HAM [9] RRAM Hamming 0.20(×0.7) 8.92(×2.9) 0.524(×26.5) 45

FeFET TCAM [6] FeFET Hamming 0.40(×1.4) 0.36(×0.12) 0.010§ (×0.51) 45
E2-MCAM★ (1.5 V) [30] Flash Euclidean2 0.56(×1.95) 5.85(×1.95) 0.192(×9.7) 55
Approx. Cosine [10] RRAM Approx. Cosine 25.9(×90.5) 1000(×333) 0.026¶ (×1.31) 90/65†
COSIME (this work) FeFET Cosine 0.286(×1) 3(×1) 0.0198(×1) 45

*: Assuming 256 × 256 array size. §: Area associated with sensing is not included. ¶: Area is estimated via Neurosim3.0 [31] and scaled to
45nm technology for fair comparison. ★: E2-MCAM stores 3 bits per cell for search, and the sensing circuitry energy is not included. †: NVM
is based on 90nm CMOS while digital peripherals are based on 65m.
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Figure 9: (a) Classification accuracy of HDC using the proposed COSIME and Hamming distance as similarity metric. (b)
Computation speedup and (c) energy efficiency improvement of COSIME compared to GPU.

benefits of COSIME, which implements CSS for machine learning
and HDC tasks. Regarding the errors induced by COSIME circuits,
[9, 10, 29] have shown that the HDC classification is able to achieve
negligible accuracy loss compared with the original accuracy with
up to 20% error rate in the AM. Therefore, COSIME, as an AM for
HDC, is robust to the device variation even considering the worst
case for the HDC classification, as the maximum error rate ≈ 10%,
which is below the HDC error tolerance.

In HDC, the associative search dominates both the training
and inference phases (e.g., taking over 90% of training time [39]).
Fig. 9(b), (c) show the energy efficiency improvement and execu-
tion time speedup of associative search running on COSIME over
an NVIDIA 1080 GPU. Our results indicate that COSIME provides
higher speedup and energy efficiency in higher dimensionality. For
example, COSIME achieves 47.1× faster and 98.5× higher energy
efficiency on average than GPU with 𝐷 = 1𝑘 dimensions. COSIME
provides higher benefits for applications with more classes. For
example, ISOLET, which has the highest number of classes (see Ta-
ble 2), receives the highest speedup and energy efficiency compared
to the GPU implementation. This efficiency comes from (1) the
capability of COSIME based AM to enable fast and parallel search
operations and (2) addressing data movement issues by eliminating
data access to off-chip memory.

5 CONCLUSION
Hardware acceleration for CSS is important for edge intelligence
and AI models. In this paper, we propose, for the first time, COSIME,
a FeFET based AM that performs CSS in-memory. COSIME consists
of compact FeFET memory arrays for dot product and squared
𝐿2 norm operations, translinear circuits for squaring and division,

Table 2: Datasets (𝑛: feature size, 𝐾 : number of classes)

𝑛 𝐾
Train
Size

Test
Size Description

UCIHAR 561 12 6,213 1,554 Activity Recognition[40]
FACE 608 2 522,441 2,494 Face Recognition[41]
ISOLET 617 26 6,238 1,559 Voice Recognition [42]

and the WTA circuit for NN search. The functionality, scalability
and robustness of COSIME have been validated. The energy and
latency results of COSIME at the array level indicate 90.5× and 333×
improvements over the state-of-the-art approximated CSS design,
respectively. HDC application benchmarking suggests that COSIME
achieves 47.1× speedup and 98.5× energy efficiency improvement
over an GPU implementation. Note that the proposed COSIME
design is not limited to FeFET technology, but is rather general
and can be applied for other NVMs with access transistors. This is
because the peripheral circuitry of COSIME is largely independent
of the NVM array as long as the array output currents are within the
sensing range. Therefore, COSIME paves a promising way towards
efficient CiM designs for CSS in data-intensive applications.
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