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Abstract. This paper examines the impact of having empty networks in an
Epistemic Network Analysis model, that is, units whose networks contain no
connections in a given model. These empty networks, also known as zero
points, can negatively impact the interpretive validity of Epistemic Network
Analysis spaces. In this study, we explore a change in the underlying mathe-
matics and algorithm of Epistemic Network Analysis that we argue will make
models easier to interpret accurately.
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1 Introduction

Many epistemic network analysis (ENA) models contain units (people, groups, or other
items of interest) that have no connection between codes in the model. There is nothing
particularly unusual or inherently problematic about having such zero points, or units in
model that have no information on the variables of interest. However, in ENA models,
empty networks can cause an interpretive problem in two ways: (1) the position of
empty networks in an ENA model can be difficult to interpret, and as a result, (2) they
can make interpretations of the overall model less reliable.

In this paper, we look at a change in the ENA mathematics and algorithm, and we
argue that this change will make models easier to interpret accurately.

2 Background

2.1 Zero Values

In many analysis techniques, researchers can encounter units of analysis that have zero
values for all of the variables in a model: for example, students who score a zero on a
test—or perhaps a zero on every test—or an assembly line that has zero stoppages
during the time of observation.

Depending on the statistical method being used, the nature of the question, and why
points might have zero values in the first place, researchers deal with zero points in
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different ways. For example, Fayaz explains that many statistical methods, including
regression, involve dropping units that don’t have any connections from the data if
translations or transformations are not employed to handle the zero points [2]. Others
approaches may actually introduce units with all zero values into their data to solve
other problems. For example, attitude analyses sometimes purposely create a zero point
provide reference or context for other points on the scale [3]. Scott [4] argues that in
social network analysis (SNA), data points should be translated (that is, have a constant
value added) such that units with no connections become outliers in a visualization.
Some regression analyses place zero-valued units in the middle of the range of possible
values for the variable or variables; others perform non-linear transformations (for
example, log transforms) to account for zero values.

Because there are many possible ways of accounting for zero values, any analysis
technique—and any analyses using that technique—has to provide a justification for
the particular choice or choices made.

2.2 Zero Values in ENA

To date, the quantitative ethnography community—and users of ENA more widely—
have not addressed this question (or provided such justifications) in detail.

To address this issue, we first ask: Do zero points actually present a problem for
ENA analyses? After answering that question with a definitive yes, we then examine
why, and provide a proposal for addressing the issue in a more theoretically sound way.

Wherefore Art Thou Romeo? Consider, for example, an analysis of two Shakespeare
plays, Romeo and Juliet and Hamlet (taken from [1]).
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Fig. 1. ENA model comparing characters from Hamlet and Romeo and Juliet
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In this example:

Data were the Lines of the plays

Conversations were each scene of each act of each play
Units of analysis were each character in each play
Codes were men, women, honor, love, and death

The stanza window was four lines [5], with a binary model. The data was nor-
malized and the model used a means rotation [6] with Characters from Hamlet and
Characters from Romeo and Juliet as the two groups.

The resulting model is shown in Fig. 1.

Perhaps not surprisingly, there are a number of characters in the plays who do not
refer at any point to men, women, honor, love, or death (or, more specifically, do not
make connections between these codes). The location of these characters in the ENA
space is indicated by the pink circle.

This location of the zero points is difficult to interpret. In what sense are characters
who say nothing (or nothing relevant to the model) more like characters in Romeo and
Juliet than Hamlet? Moreover, an ordinary reading of the ENA space would indicate
that these characters would be making more connections to death than to love—being
low in the ENA space where death is rather than high in the space where love is. But
this makes little sense, as by definition these characters make no connections between
any codes!

Where Truth is Hid, Though it Were Hid, Indeed, /Within the Center. We thus
propose that from an interpretive point of view, a more logical position for the zero
points would be to place them at the origin of the graph, as shown in the right diagram
of Fig. 2. Now these characters are neither more similar to Romeo and Juliet or Hamlet,
and they are not associated with any of the codes in the model more than any others—
which makes sense as they are associated equally to all with a strength of zero.

Notice that when this happens, the model changes: that is, the plotted points, node
positions, means, and confidence intervals are all different.

We refer to this method as zero re-centered projection, and in the following sec-
tions, we will attempt explain why the current modeling approach leads to this inter-
pretive problem, how zero re-centered projection addresses the issue, and why
resolving the problem in this way causes the model to change.

2.3 Interpretation of ENA Objects

In ENA, information about each unit of analysis, i is represented in four distinct but
coordinated ways:

1. as an adjacency matrix, A;, showing the cumulative connections for each pair of
codes for that unit;

2. as a (usually normalized) adjacency vector, v;, that represents the location of the
adjacency matrix, A; in a high dimensional space, where each dimension represents
the (normalized) connections between a pair of codes in the adjacency matrix;
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Fig. 2. Zero re-centered ENA model comparing characters from Hamlet and Romeo and Juliet
(right) compared to the same model using the current ENA projection (left)

3. as a plotted point, p; that represents the location of the adjacency vector v; under a
projection from the space of adjacency vectors; and

4. as a network graph, G;, whose edges represent the values in the adjacency vector,
A;, and whose centroid approximates the location of the plotted point

A key feature of ENA is that the locations of a plotted point, p;, can be interpreted
in terms of its network graphs, G;, in the following sense:

Points that are located up/down/right/left in the space, have network graphs that
have strong connections in the up/down/right/left part of the space.

So, for example, the characters with red plotted points in Fig. 1 are more toward the
right side of the diagrams because they have network graphs with strong connections
between codes on the right side of the diagrams—which is what the red lines on the
network graphs indicate. Characters with blue plotted points in Fig. 1 are more toward
the left side of the diagrams because they have network graphs with strong connections
between codes on the left side of the diagrams—which is what the blue lines on the
network graphs indicate. Thus, we interpret the location of the points in terms of the
kinds of connections that their networks contain. In Fig. 1, we can thus interpret the
differences between the plays in the sense that both plays are about death, but char-
acters in Romeo and Juliet make more connections between death, women, and love,
whereas characters in Hamlet associate death more with themes of men and honor.



70 D. W. Shaffer et al.

2.4 Coordination of ENA Objects

These interpretations are made possible because the different representations (adja-
cency matrices A;, adjacency vectors v;, plotted points p;, and network graphs G,) are
coordinated in the following very specific sense:

The nodes of the network graphs are positioned so that for any unit, i in the model,
the centroid c; of its network graph G; approximates the position of the associated
plotted point p;.

This relationship between plotted points, p;, and centroids, c;, is illustrated in Fig. 3.
In the figure, the centroid of G is at the center of the graph, because all of the edges
have the same weight. As weight is added (G,) or subtracted (G3) from edges in the
graph, the centroids move toward the heavier edges and away from the lighter edges.

2 1

Fig. 3. Three network graphs, showing the relationship among node weights (white numbers in
black circles), connection strength (numbers along graph edges), centroids (c1-c3 in red), and
plotted points (p1-p3 in green). Distance between the plotted point and centroid for each graph is
shown with a green line. Larger distances between centroids and plotted points make
interpretations of plotted points in terms of network graphs less reliable. (Color figure online)

The centroid for a network graph is computed as follows. First, compute the total
weight, w;, for each node, N; as the sum of the weights of the edges connected to it.
(This is shown in Fig. 3) Then, for the x coordinate of c¢;, X, is computed as the

weighted average of the x coordinates, x;, of the nodes n;:

XiW;
_ 7
X, ===
wj

Y., is computed similarly.

Thus, if the plotted point, p; for some adjacency matrix, A;, is close to its centroid,
c;, then the edge weights in its corresponding network graph, G;, will allow us to
interpret the position of its plotted point in terms of the connections between nodes.
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In turn, if in general plotted points and centroids are aligned in this way, then the
positions of the nodes make it possible to interpret the dimensions of the plotted points
in terms of the positions of the nodes. This is referred to as the co-registration of
plotted points, p;, and network graphs, G;, and it is a critical—indeed, crucial—step in
interpreting ENA models.

2.5 More Mischance/On Plots and Errors Happen

Of course, plotted points and centroids are never completely coincident, as illustrated
by the green lines in Fig. 3. This discrepancy can be quantified for each dimension by
correlating the coordinates of the plotted points, p;, and centroids, c;. Thus, if X and X,
are vectors of the x coordinates of the centroids and plotted points respectively, we
compute the Pearson correlation as:

k Xei—X. Xp—Xp
Se Sp

X axis goodness of fit = r, = p—
where 7 is the total number of points and s. and s, are the standard errors of X, and X,
respectively. Goodness of fit for the y axis is computed similarly. Other methods of
correlation can be used as well, and ENA automatically computes both Pearson and
Spearman correlations.

Correlation is an appropriate measure of goodness of fit because network graphs
have no inherent scale relative to the values of plotted points. Thus, correlation pro-
vides a scale-invariant (or scaleless) measure of the degree of coregistration of a set of
plotted points, p;, and network graphs, G;.

As a result, the goodness of fit quantifies the degree to which the dimensions of the
plotted points can be accurately interpreted by the network graphs—and thus whether
the interpretations of differences between plotted points are valid.

2.6 A Mote It is to Trouble the Mind’s Eye

And this brings us to the heart of the matter. In general, it is important to have high
correlations between plotted points and centroids to warrant reliable interpretations of
the coordinates of the plotted points—and generally desirable to have correlations r >
0.9. However, has shown in Table 1 in the analysis of Hamlet and Romeo and Juliet
above, the original correlations (using the usual ENA positioning of zero points) are
below this desirable threshold, and well below it in the case of the y axis.
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Table 1. Correlations between plotted points and network centroids.

Axis of interest | Original model correlation | Zero re-centered correlation
X 0.88 0.93
Y 0.75 0.94

On the other hand, Table 1 shows that if we position the zero points at the origin, as
in the right diagram of Fig. 1, the goodness of fit measure for this data is higher, and
more specifically above 0.9 on both dimensions.

Thus, the problem with positioning zero points in the usual manner is two-fold:

1. The location of zero points, or the points corresponding to empty networks, is
difficult to interpret; and

2. The interpretation of the positions of all of the other plotted points in the model
becomes less reliable

In fact, it was precisely the problem of understanding why some models had low
goodness of fit (sometimes far worse than the example above) that led us to investigate
the mathematical implications of zero points in ENA models.

We turn to that issue in the next section of the paper.

3 Zero’s Fault

3.1 Projecting Zero

To understand this fault or flaw—that is, why empty networks can cause interpretive
problems—recall that each adjacency matrix, A;, in the model shows the cumulative
connections for each pair of codes for that unit. Each adjacency matrix, A; is repre-
sented as an adjacency vector, v;, that represents the location of the adjacency matrix, A;
in a high dimensional space, where each dimension represents the (normalized) con-
nections between a pair of codes in the adjacency matrix.

The set of adjacency vectors, v;, is then projected into a 2-dimensional plane by
centering the vectors on their mean, ¥ and multiplying by a rotation matrix, R. Different
projections (for example, means rotation or singular value decomposition) use different
rotation matrices, but those differences are not important here.

Thus, we compute each p; as:

pi=Rx (vi—")

This is useful because it projects the mean of the vectors v; to the origin of the ENA
space:

Rx(¥—9)=Rx0=0

However, because all of the connections in an empty network, A, are zero, all of
the values of vy will be zero. And as a result:
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po:RX(O—V)

That is, empty networks appear as the projection of —v in the original space.

Thus, empty networks are not projected to the origin of the ENA space unless the
mean of the vectors is zero: that is, ¥ = 0. But that is essentially impossible, because all
of the connection counts in the adjacency matrices A; are either zero or positive. As a
result, there are no negative values in any adjacency vector, v;. So unless all v; = vy, v =
0.

The empty networks will only be projected to the origin of the ENA space if all of
the networks are empty!

3.2 Zero’s Centroid

The fact that empty networks are not projected to the origin by itself creates the
interpretive problem described above: how should we interpret the position of any
plotted point, p,, from an empty network. But, perhaps more important, it also causes
the overall goodness of fit for the model to drop.

To see why, recall that we compute the centroid, c; of a network graph, G; as:
= X%

Wi

However, because in an empty network, Ay, all of the node weights, w; = 0, the
location of the centroid, ¢y will be:

:Xjo:XjXOZ

X., 0

Wi Wi

That is, the centroid of an empty network will always be at the origin.

In other words, while the projected point, py, for an empty network will never be at
the origin, its centroid, ¢y will always be at the origin.

As a result, using ENA’s usual projection method:

1. The presence of a an empty network will always reduce the goodness of fit—that is,
the interpretive reliability—of an ENA model; and, more to the point,

2. The presence of many empty networks in a data set has the potential to significantly
reduce the goodness of fit of a model.

4 Zero Re-centering

The result of this unavoidable mathematical mismatch between p, and co—that is, the
projected location of empty networks and the centroid of empty networks—is that the
location of empty networks using ENA’s current projection method will always be
difficult to interpret, and models with many empty networks will be difficult interpret
reliably overall.



74 D. W. Shaffer et al.

In other words, we argue that ENA’s projection method should be revised so as to
deal with zero points in a way that will not compromise interpretive validity.

Given that the centroid of empty networks, ¢y, will always be at the origin, it seems
unavoidable that any solution to this problem would involve a projection where the
projected point for empty networks, po, should also be at the origin. In this section of
the paper, we examine two alternatives: un-centered projection and zero re-centered
projection.

4.1 Un-centered Projection

Recall that ENA’s current projection is of the form:
Pi = R X (V,' — ﬁ)

That is, the set of adjacency vectors, v;, is projected into a 2-dimensional plane by
centering the vectors on their mean, ¥ and multiplying by a rotation matrix, R.
If instead we compute:

pi =R x (v;)
that is, we do not center the vectors on their mean, then instead of projecting the mean

to the origin of the ENA space, the empty networks are placed at the origin, as shown
in Fig. 4.
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Fig. 4. ENA model of Hamlet and Romeo and Juliet using an un-centered projection
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Because ENA uses a linear projection, this ENA model is essentially equivalent to
the original (Fig. 1), but shifted so that the zero points are at the origin of the ENA
space rather then the mean.

This approach addresses the problem that empty networks create for goodness of fit
because using an un-centered projection, py = ¢y = 0. However, the positions of the
nodes now show that the y axis is capturing almost exclusively the difference between
the characters with empty networks and all of the other characters: most of the plotted
points are at the top of the graph (high y values), with many zero points at the origin
and a few points in between.

This highlights a critical feature of many ENA models: namely, that this model uses
normalized adjacency vectors.

The question of normalization arises because two units of analysis (characters in the
ENA models here) can have the same patterns of discourse, but one might have more
data than the others. To see why, imagine that two characters in a play had exactly the
same coded lines, but one repeated those same coded lines 50 times each. Both
adjacency vectors would go in the same direction from the origin in the space of
adjacency vectors, v;, but the character with 50 times as many lines would have a vector
50 times as long.

Fig. 5. Illustration of the process of normalizing ENA data

Figure 5 illustrates this idea. The black vector points in a similar direction to the
blue vector, but is closer in length to the red vector. Without normalization (left image),
the black vector appears more similar (closer) to the red vector than the blue. When the
vectors are normalized to have the same length (right image), the black vector is more
similar to the blue vector.

Thus, normalization accounts for differences in the total number of coded lines of
data for each unit in a model.
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The process of normalization has been described elsewhere [1], but briefly, nor-
malization transforms the original adjacency vectors, v; into normalized vectors
Vi = “‘j—‘, which are then used in the projection:

pi=Rx (v — %)

That is, each adjacency vector is divided by its length, such that all of the vectors
have length |vl*‘ = 1. Or almost all the vectors. Because zero vectors have no length,
their normalized value is:

o0
vol 0
which is undefined.

That is, zero points in a normalized plot have no inherent position in the normalized
vector space. The current ENA projection (and thus an un-centered projection) place
zero points at the origin of the space of normalized vectors, v;. But that position—in an
ENA model with normalized data—is, in fact, arbitrary.

4.2 Zero Re-centered Projection

Because the placement of the zero points is undefined, we thus propose that rather than
placing the zero points at the origin, we place the zero points at the mean of the non-
zero points in the vector space. That is:

. Viwil=0
vy =———
[vivvE 0]

The resulting projection will appear somewhat different from the current ENA
projection because now v* Iy = 0—that is, the zero points are in a different location, so
the projection will change.

However, as shown in Fig. 2, this produces a model where the zero points are easy
to interpret sensibly: they have no connections, and thus sit at the center of the ENA
space. They are neither similar to nor different from either play in the model.

5 For ’tis a Question Left Us Yet to Prove

To test whether these alternative projections address questions of goodness of fit, we
conducted a simulation study using the data from Hamlet and Romeo and Juliet.
We hyopthesized that:

1. Models with the un-centered projection and the zero re-centered projection would
both outperform the current ENA projection method in terms of goodness-of-fit;
and

2. The difference in goodness of fit between the current ENA projection and the
alternative methods would be larger as the number of zero points in the model rose.
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The original data set had a total of 71 characters, 21 of whom had empty networks
using the model described above. To conduct the simulation, we first chose a set of
target numbers of empty networks, k= {0, 1, ..., 61}. We kept a minimum of 10 non-
zero networks because if there are fewer non-zero points than codes, nodes cannot be
reliably placed.

For each value of k, we randomly sampled the original data 1000 times. For each
sample, we randomly chose (with replacement) 71-k characters with non-zero adja-
cency matrices. We then added k units with zero adjacency matrices to make a new set
of 71 units.

For each of the 1000 data sets, we constructed six ENA models. We used singular
value decomposition (SVD) and a means rotation (MR). Then, for each rotation
method, we constructed three models: one using ENA’s current projection method, one
using un-centered projection, and one using zero re-centered projection.

For each model over the 1000 sampled data sets, we computed the goodness of fit
on the x axis using a Pearson correlation coefficient, and found the mean correlation
and standard error using the Fisher z-transformation.

Figure 6 shows the results, with the percentage of zero points (17—010 k) on the x axis
and correlation on the y axis.

Current projection Un-centered projection Zero re-centered projection

1.0

rotation

0.9 - MR

-~ SVD

Correlation

08

0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%
Percentage of Zero Points Percentage of Zero Points Percentage of Zero Points

Fig. 6. Correlations for MR (red) and SVD (teal) for the current projection (left), un-centered
projection (center), and zero re-centered projection (right). (Color figure online)

As expected, both the un-centered projection and the zero re-centered projection
outperformed the current ENA projection. However, the simulation study suggests that
the difference was only significant for the means rotation; SVD performed similarly for
both models.

The results did not confirm our second hypothesis. The difference in performance
did increase as the percentage of zero points went from 0% to 25%. However, the
difference decreased as the percentage of zero points rose further, with differences
becoming statistically insignificant after 50% of the points in the model were zero
points.
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This is likely because as the number of zero points increases, the mean of the
vectors, ¥, gets closer to zero, so the difference between plotted points and centroids for
zero points decreases: that is, po — ¢y — 0. Thus, as the number of zero points increases
past some point (25% of the data in this case), their impact on goodness of fit becomes
smaller.

Further work will be required to determine why these effects were not seen in a
model using SVD rather than a means rotation.

6 Discussion

This work has clear limitations, not least of which is that we only conducted an
empirical study using one data set. Thus, although the mathematical argument may be
sound, further research will be needed to determine what levels of zero points create
poor goodness of fit for the current ENA projection relative to either alternative pro-
jection. Further work should also address the question of why models using SVD did
not show the same differences as models using a means rotation—including a more
thorough analysis of whether this finding holds in a wider range of data sets and
models, and if so, whether the difference can be explained mathematically.

Perhaps more important, this study only considered ENA models using normalized
data. In models where data is not normalized, the position of zero points is not
undefined. Thus, further work will be needed to determine whether zero points deflate
goodness of fit statistics when using the current ENA projection in un-normalized
models.

Despite these limitations, it appears that the zero re-centered projection provides
interpretive clarity without sacrificing mathematical rigor. It places the zero points at
the center of the ENA space, consistent with the fact that they correspond to empty
networks. The un-centered projection accomplishes this as well, but despite the fact
that the zero points have an undefined position in the space of vectors, v;, it allows the
zero points to influence the location of the mean of the projection.

A parsimonious reader might ask: Why not just remove the zero points entirely?
This would surely solve the problem they create for goodness of fit. However, it would
also potentially lead to inflated Type I error rates: that is, it could lead a researcher to
conclude that the differences between two groups are statistically significant when in
fact they are not.

To see why, imagine any data set with a statistically significant difference between
two groups. If we add one hundred million zero points to each group, the difference
would almost certainly no longer be significant. Zero points impact statistical measures
on the plotted points other than goodness-of-fit, so they cannot simply be removed to
improve goodness-of-fit without potentially impacting other important model statistics.

Similarly, an empirically-minded reader might ask: If this is such a big problem,
why hasn’t anyone said anything about it before? Again a fair question, and one that
we think is answered in two ways. First, although researchers always should be con-
cerned with goodness-of-fit in models, that is not always the case, even in a community
as concerned with interpretive validity as QE researchers. That is, people may just not
have noticed that there was a problem with goodness-of-fit in their models. Second, as
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our experiment shows, these problems only arise when the number of zero points is in a
particular range of proportions to the total number of data points—and the number of
data sets for which this is the case may be small.

There may be situations in which a zero re-centered model is not the best choice
when using normalized data, although what such reasons might be is not evident from
the current study. In fact, we were not able to think of any such situations—although of
course that doesn’t mean that they don’t exist.

We thus recommend that researchers use the zero re-centered model when working
with normalized data unless they have specific reasons not to.
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