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ABSTRACT
Many large-scale services (e.g., video streaming platforms,
data centers, sensor grids) need diverse real-time summary
statistics across multiple subpopulations of multidimensional
datasets. However, state-of-art frameworks do not offer gen-
eral and accurate analytics in real-time at reasonable cost.
The root cause is the combinatorial explosion of data sub-
populations and the diversity of summary statistics we need
to simultaneously monitor. We present Hydra, an efficient
framework for multidimensional analytics that presents a
novel combination of using a “sketch of sketches” to avoid
the overhead of monitoring exponentially-many subpopula-
tions and universal sketching to ensure accurate estimates
for multiple statistics. We build Hydra as an Apache Spark
plugin and address practical system challenges to minimize
overheads at scale. Across multiple real-world and synthetic
multidimensional datasets, we show that Hydra can achieve
robust error bounds and is an order of magnitude more ef-
ficient in terms of operational cost and memory footprint
than existing frameworks (e.g., Spark, Druid) while ensuring
interactive estimation times.

1 INTRODUCTION
Many large-scale infrastructures (e.g., Internet services, sen-
sor farms, datacenter monitoring) producemultidimensional
data streams that are growing both in data volume and di-
mensionality [12, 25, 26, 82]. These multidimensional data
contain measurements of metrics along with metadata that
describe said measurements across domain-specific dimen-
sions. For instance, video streaming services analyze user
experience issues across dimensions, such as ISP, CDN, De-
vice, City, etc. [63, 64].We see similar trends in other domains
e.g., network and data center monitoring [8, 9, 72].
In these settings, analysts need interactive and accurate

estimates of diverse summary statistics acrossmultiple data
subpopulations of their data. For instance, video analystswant
tomonitor different statistics of viewer quality across subpop-
ulations of viewers (e.g., entropy of bitrate in each major US
city, etc.) [63]. Similarly, network operators want to analyze
traffic grouped by combinations of their 5-tuple (srcIP, dstIP,
srcPort, dstPort, protocol) [72]. This is analogous to classical

OLAP cube applications where the number of cube vertices
grows exponentially as more subpopulations are admitted.
In such multidimensional telemetry settings, we ideally

want frameworks offering high fidelity and interactive es-
timates at low operational cost. However, there are two fun-
damental challenges. First, there is a combinatorial explosion
of data subpopulations to monitor, which can result in expo-
nential overhead in operational cost and resources. Second,
estimatingmultiple statistics entails compute and/ormemory
overhead proportional to the number of statistics of interest.
We find that existing frameworks are fundamentally lim-

ited in terms of the tradeoff across operational cost, accu-
racy, and estimation latencies they can offer. Exact analytics
frameworks (e.g., Spark [99], Hive [87], Druid [96]) that rely
on horizontal resource scaling entail poor cost-performance
tradeoff as datasets become larger.While approximate analyt-
ics [39] (e.g., sampling- or sketch-based analytics) can trade
off estimation accuracy for lower cost and improved inter-
activity, these too suffer undesirable tradeoffs. For instance,
sampling-based approaches provide generality acrossmetrics
and canhandlemany subpopulations, but their accuracy guar-
antees can beweak.On the other hand, sketch-based analytics
(e.g., [18, 19, 28–30, 40, 49, 50, 88, 89, 98]) can offer robust accu-
racy guarantees, but cannot address the combinatorial explo-
sion of data subpopulations and also incur per-statistic effort.

In this paper, we present Hydra, a framework for efficient
and general analytics over multidimensional data streams.
Hydrabuilds on the novel combination of twokey ideas. First,
to tackle the combinatorial explosion of subpopulations, we
use a “sketch of sketches” that enables memory efficient data
stream summarization. This reduces the framework’s data-
residentmemory footprint by one to two orders of magnitude
compared to Spark- and Druid-based alternatives and offers
robust and provable accuracy guarantees. Second, to provide
high-fidelity estimations simultaneously for many statistics,
we leverage universal sketching [72]. Unlike canonical sketch-
based approaches that deploy one custom sketch type per
statistic [50, 88, 89], a universal sketch estimates multiple
different summary statisticswith only one sketching instance.

To the best of our knowledge, Hydra is the first work to: (a)
propose the combination of sketch-of-sketcheswith universal



sketching for the multidimensional telemetry problem;1 (b)
analytically prove the theoretical guarantees of such a con-
struction; and (c) design a practical end-to-end system design
and implementation of this idea using the theoretical analy-
sis. We build a prototype Hydra on Apache Spark but note
that our core design is platform agnostic and can be ported
to other streaming/batching systems as well [11, 85, 96]. We
also implement practical optimizations to mitigate compute
bottlenecks to further reduce Hydra’s runtime and cost.

We evaluate Hydra using two real-world datasets; (1) a
2h-long, January 2019 CAIDA trace from the equinix-NYC
vantage point [4, 5] and (2) an anonymized real-world trace
of video QoE from a video analytics provider capturing the
perceived QoE of viewers of a US-based content provider [6].
To further evaluate the sensitivity of Hydra-sketch, we also
leverage a synthetic multidimensional dataset drawn from a
Zipf distribution with different parameter values [49, 89].

We compare Hydra against six baselines: A native Spark-
SQL implementation for exact analytics, a Spark-based imple-
mentation that uniformly samples incoming data, a sketch-
based approach that allocates one universal sketch instance
persubpopulation, VerdictDB [81] (a sampling-based alterna-
tive) and two key-value based implementations (on Apache
Spark andApache Druid) that pre-aggregate data at ingestion
time and provide precisely accurate analytics .

Our evaluation shows that: (1) Hydra offers robust accu-
racy (mean error across statistics ≤5% with 90% probability)
at 1/10 of the operational cost of exact analytics frameworks;
(2) Hydra’s configuration heuristics ensure close to optimal
accuracy memory tradeoff; (3) Hydra’s memory footprint
scales sub-linearly with dataset size and number of data sub-
populations. Combined with performance optimizations that
improve end-to-end runtime by 45%, Hydra offers 7-20× bet-
ter query latency than Spark- and Druid-based alternatives.

2 BACKGROUNDANDMOTIVATION
In this section, we present several motivating scenarios, intro-
duce key aspects of multidimensional telemetry, and discuss
the limitations existing analytics frameworks.

2.1 Motivating Scenarios

Video ExperienceMonitoring: Tomaintain their ad- and
subscription-driven revenues, video providers need to detect
issues that can degrade viewer experience. To that end, an-
alysts fist collect video session summaries (i.e., per viewer
measurements of video quality) and use them to periodically
(e.g., every minute) compute various summary statistics and,
thus, monitor quality metrics across multiple subpopulations
of viewers [14, 63, 64]. For instance, to track the entropy of

1While some prior work has proposed sketch of sketches, they do so for
more narrow estimates of interest and do not demonstrate practical system
implementations supporting a broad range of estimates (e.g., [41]).

bitrate and the L1 Norm of buffering ratio – common indica-
tor of streaming anomalies – for viewers in different cities,
analysts may want to estimate the following query:
SELECT City, Entropy(Bitrate), L1Norm(Buffering)
FROM SessionSummaries
GROUP BY City

Network FlowMonitoring:Network operators commonly
rely on control-plane telemetry [44, 54] for tasks such as traf-
fic engineering [46, 72], attack and anomaly detection [84] or
forensics [95]. These frameworks periodically monitor per-
formance metrics (e.g., flow distributions, per-flow packet
sizes, latency, etc.) across different subpopulations of flows,
i.e., network flows grouped across combinations of packet
header fields. For instance, the operator might want to track
indicators of DDoS attacks as follows:

SELECT dstIP, Cardinality(srcIP)
FROM FlowTrace
GROUP BY dstIP

These usecases share a problem structure that is charac-
teristic ofmultidimensional telemetry. Queries that involve
estimating many statistics across many data subpopulations
appear in various settings, such as A/B testing [59, 65], ex-
ploratory data analysis [26, 90], operations monitoring [16],
and sensor deployments [97].

2.2 Requirements and Goals
Drawing on these use cases, we derive three key properties
of the telemetry problemwe want to tackle:

1. MultidimensionalData:Wedefineamultidimensional
data record as x = (d1,..., dD, m), where di is the value
of a dimension Di and m is the value of metric M . In
video, quality metrics might be bitrate or buffering time
whereasdimensionsmightbe theviewer’s location, their
player device, their ISP or CDN.Metrics and dimensions
are domain- and usecase-specific.

2. Analytics on Data Subpopulations: Analytics are es-
timated in parallel across subpopulations of the input
data. A subpopulationQi is a collection of data records
{x𝑖 } such that all x𝑖 ∈ Qi match on a subset of dimen-
sion values. With a slight abuse of notation, we define
Qi using this set of dimension values, i.e., Qi = {Di,1 =
di,1∧ ···∧Di,l = di,l}, where {Di,1, ...,Di,l} ⊆ {D1, ...,DD};
e.g., a data subpopulation could be NYC-based viewers
using AppleTV.

3. Multiple statistics to estimate: For each subpopula-
tion, the operator wants to estimate various summary
statistics e.g., heavy hitters, entropy, cardinality, etc.A
query qk specifies a set of subpopulations {Qi} and a
statistic g to estimate using the valuesmj of xj ∈Qi.

In practice, operators have three requirements: (1) High
fidelity for a broad set of statistics i.e., robust, apriori con-
figured, error bounds for as many statistics as possible; (2)
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Near real-time estimations and; (3) Low footprint (e.g., cloud
compute and memory costs).

2.3 PriorWork and Limitations
Prior work has focused on developing two broad (but not
mutually exclusive) approaches. The first enables distributed
computations by horizontally scaling the frameworks’ re-
sources. The second enables approximate analytics that sac-
rifice estimation accuracy for improved performance.

1. Horizontal resource scaling:Here we find SQL and
NoSQL analytics frameworks whose distributed design
reduces estimation latency throughhorizontal scaling of
server resources (e.g., Spark [99],Hive [87],Hadoop [85],
Dremel [74], Druid [96], Flink [35]). These frameworks
scale their clusters with input data and can provide pre-
cisely exact estimations. However, as data volume and
dimensionality grow, i) deploying such clusters becomes
increasingly expensive and ii) the continuous addition
of resources eventually results in marginal estimation
latency gains due to data shuffling overheads [20].

2. ApproximateAnalytics:Approximateanalytics frame-
works leverage sampling or data summarization algo-
rithms inorder to tradeoffaccuracy forperformance and
cost. Sampling-based frameworks allow for low estima-
tion latencyby samplingdata eitheronline, at query time
(the analyst applies the sampling operators and param-
eters as part of the estimation query) [24, 36, 74, 79, 87]
or offline, bymeans of a pre-processing step that creates
data samples to be used at query time [17, 18, 20, 86].
While there is a rich body of sampling-based efforts,

these have two key shortcomings. First, their accuracy
guarantees are in the form of confidence bounds that are
computed after query estimation has taken place and
depend on the statistic being estimated and the num-
ber of samples used [73]. Therefore, when an estimate
does not meet accuracy requirements, frameworks of-
ten fall back to using other samplers or precisely ex-
act estimates. Second, to offset the resource overheads
of producing offline samples, frameworks often make
hard apriori choices on what subsets of their data to
create samples for (e.g., BlinkDB [20] that mines query
logs for frequently queried data or VerdictDB [81] that
allows users to identify popular data tables). In con-
trast, sketch-based analytics ensure bounded accuracy-
memory trade-offs for arbitrary workloads in sub-linear
space [42, 43, 45, 72, 98]. These frameworks build com-
pact data summaries at ingestion and use them to esti-
mate statistics with apriori provable error bounds.

We can also combine horizontal resource scaling and ap-
proximations. For instance, both Apache Spark and Druid al-
low for data summarization at ingestion time such that incom-
ing data are stored as a key-value store where the keys are dis-
tinct ⟨Qi,m𝑗 ⟩ tuples and the values are their respective counts.

Better

Figure 1: End-to-end cost of analytics. The green-shaded region
indicates the ideal operating regime forHydra.

These hybrid approaches enable data reduction without com-
promising the frameworks ability to offer precise estimations.

Qualitative Analysis: Next, we analyze the overhead to
process multidimensional streams and the resident data cost
using the above solutions. Let us denote the dataset size (in
terms of number of data records) asV and let𝑄 be the number
of data subpopulations.AssumingD dimensions and that each
data record belongs in 2D different subpopulations, then𝑄 =

O(2D×V ).2 In addition, given that the framework needs to es-
timateO(S) different statistics, the number of summary statis-
tics to be estimated is an exponentialO(Q×S)=O(2D×V×S).
Assuming, as it is the case for frameworks for precisely exact
analytics, that the CPU and memory requirements for data
ingestion and/or statistics estimation scale linearly with sub-
populations, we see that the framework’s runtime, resource
requirements and cost also scale exponentially.

Quantitative Analysis: To corroborate this qualitative anal-
ysis, we evaluate the operational cost for several analytics
frameworks when used in a multidimensional context (Fig-
ure 1). Specifically, we measure their $ cost as a function of
their observed accuracy when asked to estimate in real-time
4 summary statistics from a 130GB real-world dataset with
approximately 5.6 million data subpopulations.3 We provide
a detailed description of our experimental setup and base-
lines in §6. Ideally, we need a frameworkwhose cost-accuracy
tradeoff lies in the top-left, green region, i.e., it offers the accu-
racy of a precise analytics frameworks at the cost of sampling.
However, we observe that the cost gap between the cheapest
(1% uniform sampling) and the most expensive baselines (pre-
cisely accurate Spark-SQL) is two orders of magnitude wide.
A sketch-based approach where the framework allocates one
sketch per subpopulation, while cheaper than Spark-SQL, re-
mains expensive as it allocates exponentially many sketch
instances, thus incurring high memory overheads.4 Finally,
2In practice, assuming each dimension has cardinality C, there are O(CD)
subpopulations in the dataset. In practice, we find that O(2D×V ) is a tighter
empirical bound for𝑄 and we will use that moving forward
3Following the typical cloud billingmodel [1], we use the total runtime times
the number of cluster nodes used (20) as a proxy for the $ cost.
4As discussed in §6, this baseline uses universal sketching that can simultane-
ously estimate all 4 statistics of interest per subpopulation with one sketch.
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Figure 2: Hydra’s example workflow. Workers perform data
ingestion and querying. The frontend node exposes the query API to the
operator and performs configuration and query plan dissemination.

precise baselines that summarize data at ingestion time, such
as Apache Druid and Spark (denoted as Spark-KV) lie in the
middle between Spark-SQL and sampling.

Key takeaways:Multidimensional telemetry entails a combi-
natorial explosion of data subpopulations and summary statis-
tics tomonitor. Strikingagoodbalancebetweencost, accuracy,
and estimation latency is challengingdue to the combinatorial
explosion in data subpopulations and the number of summary
statistics the frameworkneeds to enable. Existing frameworks
can only meet a subset of these goals, which motivates us to
rethink how to support such analytics workloads at scale.

3 HYDRA: SYSTEMOVERVIEW
To support multidimensional workloads at scale, we envision
Hydra as a streaming, sketch-based OLAP framework [3, 96].
Hydra’s distributed design (illustrated in Figure 2) includes
one frontend and multiple worker nodes and its input are
i) streams of multi-dimensional data, ingested in parallel at
the worker nodes and ii) estimation queries provided by the
operator to the frontend node. Hydra implements two logical
operations: Data Ingestion and Query Estimation.

(1) Data Ingestion:Data Ingestion happens at the worker
nodes. Eachworker summarizes an incoming data stream to a
local instance ofHydra-sketch. Data summarization happens
on a per-subpopulation basis. Specifically, for every incoming
data record, Hydra first identifies what subpopulations the
data record belongs in and correspondingly updates a novel
sketching primitive that we discuss below, Hydra-sketch.
Hydra-sketch instances are configured to ensure accuracy
guarantees and lowmemory footprint (§4.6).

(2) Query Estimation:Query Estimation involves both
frontend and worker nodes. The frontend receives operators’
queries with the statistics to estimate and the set of subpopu-
lations to estimate these statistics on. Using this information,
the frontend node creates a query plan that distributes to the
worker nodes who execute the queries. After estimation has
taken place, the frontend node collects the results from the
worker nodes and returns them to the operator.

While the idea of using sketching to optimize analytics is
not new, in our context canonical sketch-based approaches

O(S)

Sketches Per Subpopulation Sketch of Sketches

…

Ingestion:   (O 2!×V×S ,
O 2!×V×S )

Estimation: (O S , O 1 )

HydraSketch

A2,4 A1,3

A1 A3,5 AK

A1,2 A4

A2,4 A1,3

A1 A3,5 AK

A1,2 A4

O(S)

(O 2!×V×S ,
O w×r×S )

(O S , O 1 )

(O 2!×V ,
O w×r )

(O S , O 1 )

w

r
Q1 Q2 QK

Q1,  QK Q1,  QK

Q1

Figure 3: Comparison of Ingestion and Estimation (CPU time, space
complexity) for different sketch-based designs. We highlight the theo-
retical improvements in space complexity fromHydra’s design ideas.

will need to instantiate up to O(S) sketch instances per sub-
population. This is inefficient as the framework needs expo-
nentially many sketch instances, despite a sketch’s ability to
summarize a subpopulation’s in sub-linear space.

Key Idea: To avoid the above limitations of conventional
approaches, Hydra uses a novel combination of two ideas.

First,weobserve thatwecanreduce theexponentialO(Q)=
O(2D×V ) ingestion-time, memory cost of sketch-based ap-
proaches through a novel “sketch of sketches”. We show that
through a w × r array of sketch instances (Fig. 3), where
w×r≪ 2D×V , Hydra reduces the memory cost of estimat-
ing O(S) statistics from O(2D ×V ×𝑆) to O(w× r ×S). The
intuition is that, unlike canonical sketch-based approaches,
we can summarize multiple subpopulations into one sketch
instance and then query it with predictable error [41, 89].

Second, to reduce the need for instantiating O(S) different
sketch types for O(S) summary statistics, Hydra leverages
universal sketching [33, 72]. Universal sketching enables re-
placing O(S) sketches with a single sketch that simultane-
ously estimatesmultiple different statistics per subpopulation.
This means that as long the desired statistics can be estimated
with a universal sketch, there is no limit in the number of
statistics that the sketch can estimatewith fixedmemory foot-
print. This design choice further reduces the framework’s
space complexity from O(w×r×S) to O(w×r).

While these two ideas (sketch of sketches and universal
sketching) have been independently proposed in other nar-
rower contexts, to the best of our knowledge, we are the first
effort to: (1) propose the combination of these ideas to tackle
themultidimensional telemetry problem; (2) rigorously prove
the accuracy-resource tradeoffs of this construction; and (3)
demonstrate a practical end-to-end realization atop state-of-
art horizontally scalable “BigData” platforms.

4 HYDRADETAILEDDESIGN
We first provide background on sketching to set up the intu-
ition for Hydra-sketch. We then introduce the basic Hydra-
sketch algorithm, formally prove its error bounds, and devise
Hydra-sketch configuration strategies. Table 1 summarizes
the notation we use in this section.
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Notation Definition
V Input size
D Number of data dimensions
𝑄 Number of data subpopulations
S Number of summary statistics
Sm,n Stream of lengthm and n distinct keys

w Number of sketches per 2D-sketch row
r Number of rows in 2D-sketch

(𝜖,𝛿) 0<𝜖 <1 as additive error and 𝛿 is the probability that
the result error is not bounded by 𝜖 (failure probability)

wUS Number of counters per universal sketch row
rUS Number of universal sketch rows

(𝜖US,𝛿US) 0<𝜖US <1 as additive error in universal sketch and
𝛿US is the failure probability

L Number of universal sketch layers
k Number of keys in universal sketch heavy hitter heaps

Table 1: Hydra Notation. The upper subsection introduces notation
specific to the sketch-of-sketches and the lower to universal sketches.

4.1 Background on Sketching
Let Sm,n denote a data stream with length m and n distinct
keys. Suppose we want to estimate a frequency-based sum-
mary statistic of the keys (e.g., entropy, cardinality, frequency
moments). A natural design is to estimate the desired statistic
with a key-value data structure tracking the frequency per
key. For instance, for frequency estimation, we can maintain
and increment one counter per key. While correct, the space
complexity is linear in n and not space efficient (Figure 4).

Input Stream

3 5 5 973
m: length of stream
n : distinct keys

n
O(n) ingestion 

memory
Per-key state

Input Stream

3 5 5 973
m: length of stream
n : distinct keys

n
O(n) ingestion 

memory
Per-key state

1 2 n

Figure 4:Maintaining per-key state is not space efficient

Hash-basedmappings for space efficiency:To ensure sub-
linear (in n) space complexity, sketching algorithms do not
maintain per-key state but, instead, map multiple keys to the
same counters via hashing. For instance, a simple sketch for
frequency estimation consists ofw integer counters, where
w≪n. Based on the hash of the key, an element gets mapped
to a counter, which is then incremented to maintain an esti-
mateof that key’s frequency.Naturally,multiplekeys colliding
introduces some error (Figure 5).

Input Stream
3 5 5 973
m: length of stream
n : distinct keys

w
O(w) sub-linear 

ingestion memory
Hash-based 

mapping

Input Stream
3 5 5 973

m: length of stream
n : distinct keys

w
O(w) sub-linear 

ingestion memory

Hash-based 
mapping

3, 5 7 9

Figure 5: Hashing enables sub-linear memory complexity

Multiple independentupdatesfortightererrorbounds:As
defined, this basic mechanism only provides a small probabil-
ity that the estimation errorwill liewithin a desirable range of
error values [22]. To overcome this, sketches use independent

instances (e.g., r arrays) of the counter structure of lengthw.
Each vector of lengthw has its own hash function and thew
hash functions are pairwise independent. Thus, ingesting a
stream element now translates to r update operations (e.g.,
incrementing r integer counters instead of one). For each key,
this sketch produces r different estimates of the statistic of in-
terest. The final estimatewill be a summary of r estimates (i.e.,
min,median etc.) (Figure 6) [42]. This amplifies the probability
that the estimation error lies within the desired range.

Input Stream
3 5 5 973

m: length of stream
n : distinct keys

w

O(wr) sub-linear 
ingestion memory

r
h1

h2

hr

Hash-based mapping
Redundant counters

Figure 6: Independent hashing improves accuracy.

4.2 Tackling Subpopulation Explosion
For now, let us make the simplifying assumption (which we
relax later) that our system only needs to estimate one sum-
mary statistic (e.g., entropy) per data subpopulation. Similar to
Figure 4, a starting point for our design would be to maintain
per-subpopulation state, i.e., allocate one sketch instance for
each of theO(2D×V ) distinct subpopulations. This approach,
similar to an OLAP cube, is not scalable as it requires as many
sketches as the number of data subpopulations.

To avoid keeping per-subpopulation state, we borrow from
the first intuition that we saw in the sketch construction in
the background (fig. 5). The basic sketch construction avoids
maintaining per-key state by allowing multiple keys to ex-
plicitly collide in a hashed key-value store whose size is less
than the number of unique elements.
Note that the basic sketch is maintaining a single counter

per array entry but we want to able to estimate some statisti-
cal summary of an subpopulation instead. Therefore, instead
of keeping a single counter per array entry, we maintain a
sketch-per-entry. This brings us to the following construction
(Figure 7). We consider a single array ofw (e.g., w≪2D×V )
sketches. For each (Q𝑖 ,m𝑗 ) pair, we hash theQ𝑖 and map it to
one of thew sketches, thus colliding multiple subpopulations
to the same sketch. Then, we update the sketch withm𝑗 and
at query time, we estimate the statistic forQ𝑖 .

𝑉:   Length of stream
2!: Aggregations per datapoint
𝑂 2!×𝑉 : Aggregations in stream

Multidimensional Stream

{𝑥! = 𝑑",! , 𝑑$,! , … , 𝑑%,! , 𝑚! , 𝑑&,!∈ 𝐷&}

w
Q1 Q2 Q3 Qi Qj …

Hash-based mapping to sketches
O(w) ingestion memory

Figure 7: Hash-based mapping of subpopulations to a sketch vector.

Analogous to the basic sketch from §4.1, by mapping mul-
tiple subpopulations to one sketch, this baseline construction
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will have some estimation error. To control this, we extend
the idea of using redundant counter vectors and pairwise-
independent hashes shown in Figure 6. That is,weuse r arrays
of w sketches and use r pairwise-independent hash functions
to map each subpopulation to one sketch per row (Figure 8).
At query time, we return the median of the r estimates.

𝑉:   Length of stream
2!: Aggregations per datapoint
𝑂 2!×𝑉 : Aggregations in stream

w

r

Multidimensional Stream

{𝑥! = 𝑑",! , 𝑑$,! , … , 𝑑%,! , 𝑚! , 𝑑&,!∈ 𝐷&}
Q1 Q2 Q3 Qi Qj …

𝑂 𝑤×𝑟 ingestion memory

h1

h2

hr

Figure 8: Redundant sketch vectors and pairwise-independent
hashes for tighter error bounds.

In summary, the above sketch-of-sketch constructionmain-
tains a 2D array of sketches to track multiple subpopulations.
This reduces the memory cost of ingestion to 𝑂 (w× r) i.e.,
sub-linear in subpopulations. In §4.5, we formally prove the
memory-accuracy tradeoffs for this construction.

4.3 EnablingMultiple Statistics
The above discussion is based on the simplifying assumption
that we need to only estimate one summary statistic. Since
sketchingalgorithmsaregenerally customdesignedper statis-
tic, to support𝑂 (S) different summary statistics, we need to
create𝑂 (S) sketch-of-sketches instances. This raises two nat-
ural concerns. First, the total memory cost of this solution
becomes𝑂 (w×r×S), i.e., linear to the number of summary
statistics of interest. Second, the framework cannot offer gen-
erality as it cannot estimate summary statistics that are not
already allocated; e.g., some future analysis might require
estimating the entropy of a metric but the framework has not
instantiated an entropy-specific sketch-of-sketch instance.
Our insight here is that the sketch of sketches structure

can be combined with universal sketching [72] to achieve the
desired generality across statistics. A universal sketch is a
sketching primitive that enables the simultaneous estimation
of multiple different, apriori unknown, statistics with one
sketch instance. Therefore, instead of a sketch-of-sketches
per statistic, we can use one sketch of universal sketches. We
formally prove this in §4.5 and show that Hydra’s ingestion
cost drops to O(w×r).

Backgroundonuniversal sketches:Auniversal sketch can
estimate any summary statistic that belongs to a broad class
of functions, known as Stream-PolyLog [32, 33, 72].We denote
each function in Stream-PolyLog, asG-sum=

∑︁
g(fj), where fj

is the frequency of the j-th unique element in the input stream
Sm,n and g is a function defined over fj . If g is monotonically
increasing and upper bounded by O(fj2), then G-sum can be
computed by a single universal sketch with polylogarithmic

memory. Universal sketch provides 𝜖-additive error guar-
antees to Stream-PolyLog and demonstrates better memory-
accuracy tradeoffs than the composition of custom sketches
when estimating multiple statistics from Stream-PolyLog in
practice [72]. Key statistics of interest can be formulated via
a suitable G-sum ∈ Stream-PolyLog. Such examples include:
𝛼-Heavy Hitters (𝑓𝑖 ≥ 𝛼Σ𝑓𝑖 ), L1-Norm (Σ𝑓𝑖 ), L2-Norm (Σ𝑓 2𝑖 )
Entropy (−Σ 𝑓𝑖

𝐿1
log 𝑓𝑖

𝐿1
), and Cardinality (|⟨𝑓1,...,𝑓𝑁 ⟩|). Note that

there are many other summary statistics that can be esti-
mated by combining statistics, such as standard deviation,
histograms, mean, or median. A statistic that cannot be di-
rectly estimated by Hydra-sketch is quantiles.

Thebasic buildingblockofuniversal sketches areL2-Heavy
Hitter (HH) sketches e.g., Count-sketch [75]. Each count-
sketchmaintains rCS arraysofwCS counters each, rCS pairwise-
independent hash functions and a max-heap keeping track of
the top-𝑘 Heavy Hitters in the sketch; When updating each
count-sketch with a new data item, the sketch updates a ran-
domly located counter in every row based on the correspond-
ing hash index to keep track of that data item’s frequency. The
top-𝑘 HH heap is subsequently updated to reflect the addi-
tion of the new item. A universal sketch consists of L layers of
count-sketches. Each count sketch applies an independent 0-1
hash functionhl∈[0, L) to the inputdatastreamtosub-sampleat
every layer (from the previous layer). These layers then track
theheavyhitters, i.e., the important contributors to theG-sum.

The intuition here is that the layered structure of universal
sketch is designed for sampling representative elements with
diverse frequencies and these elements can be used to esti-
mateG-sumwith bounded errors. If only one layer of heavy
hitter sketch were used, the estimations would lack represen-
tatives from less frequent elements. The heavy-hitters at each
layer are processed iteratively from the bottom layer to the
top and the recursively aggregated result is used to compute
the desired statistic. This is an unbiased estimator ofG-sum
with bounded additive errors (Theorem 1).

Theorem 1 ([33, 72]). Given a stream Sm,n let us consider
a Universal Sketch US with L = O(logn) layers. If each layer
of US provides an (𝜖US, 𝛿US)-L2 error guarantee, then US can
estimate any G-sum function G ∈ Stream-Polylog to within a
(1±𝜖US) factor with probability 1−𝛿US . Satisfying a (𝜖US, 𝛿US)-
L2 error guarantee requires 𝑂 (𝑙𝑜𝑔n) Count-Sketch instances
with𝑤CS =O(𝜖−2US ) columns and 𝑟CS =O(log𝛿−1US ) rows.

4.4 TheHydra-sketch Algorithm
Combining these ideas gives us the Hydra-sketch algorithm.

(1) Updating Hydra-sketch: Updating Hydra-sketch
with a data record, xj =< d1,j, d2,j, ... ,dD,j,, mj > is a three-
step process. At the first, “fan-out” stage, we compute the
𝑂 (2D) subpopulations {Q1, ...,Q2D } that xj belongs in. Note
that while𝑂 (2D) is an exponential term, it is exponential to
the number of dimensionsD and, thus, significantly smaller
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than the total number of subpopulationsQ, which is exponen-
tial to the cardinality of values in each dimension. Then, we
mapeachQi to r universal sketches instances using r pairwise-
independent hash functions hk∈[0,r) :Qi→[0,w). For the k𝑡ℎ
row, the index of the universal sketch to update USk is the
hash ofQi using hash function hk . Last, we update each USk
with the metric valuem𝑗 .

(2) QueryingHydra-sketch:Hydra-sketch’s querying
algorithm takes as input a statistic g and an aggregationQi i.e.,
the aggregation to estimate g on. Querying consists of 2 steps.
The first involves identifying the set of r universal sketch in-
stances {USk} that Qi maps to. Then g is estimated from each
USk , and the median value of these estimations is returned.

Given this basic algorithm, we now focus on formally prov-
ing that Hydra-sketch offers rigorous accuracy guarantees
and that it is usable in practice.

4.5 Accuracy Guarantees
Theorem 2 states the accuracy bounds of Hydra-sketch.

Theorem 2. Let us assume that each Universal Sketch US
can approximate the G-sum, for amonotone function𝑔within a
(1+𝜖US)-factor with probability 1−𝛿US >1/2. Further, let GS be
the G-sum applied to the stream S and G𝑖 when applied to the
target subpopulation Q𝑖 . ThenHydra-sketch with𝑤 =O(𝜖−1)
columns and 𝑟 =O(log𝛿−1) rows, for user defined parameters
𝜖, 𝛿 , provides an estimate ˆ︁G𝑖 that with probability 1−𝛿 satisfies:

G𝑖 (1−𝜖US) ≤ ˆ︁G𝑖 ≤G𝑖 (1+𝜖US)+𝜖 ·GS (1)

Proof. To bound the error of our algorithm, we analyze
the frequency vector 𝑓𝑗 of the stream of elements mapped
to each Universal Sketch instance US 𝑗 =h𝑗 (Q𝑖 ), where Q𝑖 is
the queried subpopulation. The frequencies of allm𝑖 ∈Q𝑖 are
guaranteed to appear in 𝑓𝑗 , since theUpdate algorithmof §4.4
maps them to US 𝑗 .

Let𝔔= {Q1,...,} denote all groups in the input streamS, and
let𝔔 𝑗 =

{︁
Q𝑘 ∈𝔔 |h𝑗 (Q𝑘 )=h𝑗 (Q𝑖 )

}︁
denote the set of groups

mapped to US 𝑗 . That is, GS=
∑︁

Q𝑘 ∈𝔔
∑︁

m𝑘 ∈Q𝑘
g(𝑓m𝑘

).
Thequantitywhichwewish toestimate isG𝑖 ≜

∑︁
𝑥 ∈Q𝑖

g(𝑓m),
i.e., the g-sum of the group Q𝑖 , while the US 𝑗 processes all
groups in𝔔 𝑗 and thus approximates

∑︁
Q𝑘 ∈𝔔 𝑗

∑︁
m𝑘 ∈Q𝑘

𝑔(𝑓m𝑘
)=

G𝑖 +
∑︁

Q𝑘 ∈𝔔 𝑗 \{Q𝑖 }
∑︁

m𝑘 ∈Q𝑘
𝑔(𝑓m𝑘

). For all 𝑗 ∈ {0,...,𝑟−1}, de-
note byˆ︃G𝑖, 𝑗 the estimate of US 𝑗 , and denote the noise added
by the other groups as 𝑁 𝑗 =

∑︁
Q𝑘 ∈𝔔 𝑗 \{Q𝑖 }

∑︁
m𝑘 ∈Q𝑘

𝑔(𝑓m𝑘
). No-

tice that, since any group in 𝔔 \ {Q𝑖 } has a probability of
1/w of being in 𝔔 𝑗 , its expectation satisfies that: E[𝑁 𝑗 ] =∑︁

Q𝑘 ∈𝔔\{Q𝑖 }
∑︁

m𝑘 ∈Q𝑘𝑔 (𝑓m𝑘 )
w ≤ GS

w .Therefore, according toMarkov’s
inequality, for any 𝑐 ∈R+, Pr[𝑁 𝑗 ≥ 𝑐 · GSw ] ≤ 1/𝑐 . Next, by the
correctness of the universal sketch, we have that,

Pr[ˆ︃G𝑖, 𝑗 ∉ [(G𝑖+𝑁 𝑗 ) (1−𝜖US),(G𝑖+𝑁 𝑗 ) (1+𝜖US)]] ≤𝛿US .
Since g is part of𝐺-sum ∈ Stream-PolyLog, it must be mono-
tone, and thus 𝑁 𝑗 ≥ 0. This means that with probability of at

least 1−𝛿US−1/𝑐 both ˆ︃G𝑖, 𝑗 ∈ [G𝑖 (1−𝜖US),(G𝑖 +𝑁 𝑗 ) (1+𝜖US)]
and 𝑁 𝑗 <𝑐 · GSw simultaneously hold, and thus

G𝑖 (1 − 𝜖US) ≤ ˆ︃G𝑖, 𝑗 ≤ G𝑖 (1 + 𝜖US) +
𝑐

w
(1 + 𝜖US)GS . (2)

Therefore, we pick w =𝑐 · (1+𝜖US) ·𝜖−1 and a 𝑐 value such
that 1−𝛿US−1/𝑐 >1/2, to get that

Pr
[︂
G𝑖 (1−𝜖US) ≤ˆ︃G𝑖, 𝑗 ≤G𝑖 (1+𝜖US)+𝜖 ·GS

]︂
>1/2

Recall that the algorithm’s query sets ˆ︁G𝑖 =median𝑗
ˆ︃G𝑖, 𝑗 and

that the r rows are i.i.d. and thus a Chernoff bound yields
Pr

[︂
G𝑖 (1−𝜖US) ≤ ˆ︁G𝑖 ≤G𝑖 (1+𝜖US)+𝜖 ·GS

]︂
≥ 1−𝛿. □

Takeaways:Wenote the following fromTheorem2.Theerror
bounds ofHydra-sketch are tunable based on the choice of its
configuration parameters that control (𝜖, 𝛿) and (𝜖US, 𝛿US). In
addition, the upper error bound is additive, which means that
it will allow for loose error bounds in cases where 𝜖 ·GS≈G𝑖 .
We discuss these takeaways in more detail below.

4.6 Hydra-sketch configuration

HydraSketch Universal Sketch

r

Count Sketch Array       Count Sketch     HH Heap 

𝐿

Wcs

rcs
k

W

Figure 9: Hydra-sketch structure and configuration parameters.

We now focus on techniques to tune Hydra-sketch’s pa-
rameters. As illustrated in Figure 9, Hydra-sketch has six con-
figuration parameters: two parameters (r andw) define the
structure of the sketch arrays and additional four (L, wCS, rCS,
and k) determine the inner structure of theUniversal Sketches.
The choice of configuration parameters of Hydra-sketch af-
fects its empirical accuracy and memory footprint. For in-
stance, largerw and r values ensure better estimation accu-
racy but require more memory.
It is often useful to reason about the relative error of the

estimation; rephrasing Theorem 2, we can write:

Pr
[︃
−𝜖US ≤

ˆ︁G𝑖−G𝑖
G𝑖

≤𝜖US+𝜖 ·
GS
G𝑖

]︃
≥ 1−𝛿.

and thus

Pr
⎡⎢⎢⎢⎢⎣
|︁|︁|︁ ˆ︁G𝑖−G𝑖 |︁|︁|︁

G𝑖
≤𝜖US+𝜖 ·

GS
G𝑖

⎤⎥⎥⎥⎥⎦ ≥ 1−𝛿.

That is, we have that with probability 1−𝛿 , the relative error
is at most 𝜖US+𝜖 · GSG𝑖

. Since 𝜖US, 𝜖 , and GS are determined by
the configuration and not a specific subpopulation, we get
that the relative error bound is looser if𝐺𝑖 is small. Intuitively,
if a subpopulation is very small, the noise we get from the
colliding subpopulations may be larger than its own statistics.
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With that inmind,we consider a quantity𝐺min that denotes
the minimal G-sum for which we want to guarantee some
relative error, e.g., of 20%, with a high probability, e.g., 90%.
This means that for any subpopulation with a higher G-sum,
the error is upper bounded by 𝜖US+𝜖 · GS

𝐺min
. This allows us to

derive configuration heuristics for Hydra-sketch as follows:

Controllingtheprobabilityoferrorboundsholding:From
Theorem 2, for the error bound of our example to hold with
90% probability, 1−𝛿 =0.9 and, hence, 𝛿 =0.1. This translates
to r ≈ 3. Similarly, from Theorem 1, a universal sketch will
estimate any G-sum function within an 𝜖US factor with prob-
ability 1−𝛿US . For probability 90%, 𝛿US =0.1 and, thus, rCS≈3.

Minimizing upper error bound: To minimize the upper
error bound of Hydra-sketch, we need to minimize 𝐸 =

𝜖US+𝜖 GS
G𝑚𝑖𝑛

underamemoryconstraint,O(𝑀)=w×wUS . From
Theorems 1 and 2, we know that 𝜖 ≈ 1/w and 𝜖US ≈ 1/√wUS .
This allows us to minimize 𝐸 forw andwUS as follows:

1. Solving for 𝜖US :Given the memory constraint, we can
write 𝐸=𝜖US+ GS

𝑀G𝑚𝑖𝑛𝜖
2
US
. Minimizing 𝐸 over 𝜖US gives us:

𝜖US =
3

√︃
2GS

𝑀G𝑚𝑖𝑛

⇒wUS =Θ(𝑀G𝑚𝑖𝑛

GS
)2/3 . (3)

2. Solving for 𝜖: Similarly, we can write 𝐸=
√︂

1
𝑀𝜖

+𝜖 GS
G𝑚𝑖𝑛

.
Minimizing over 𝜖 gives:

𝜖 =

(︄
2
√
𝑀GS

G𝑚𝑖𝑛

)︄−2/3
⇒w=Θ

(︄√
𝑀GS
G𝑚𝑖𝑛

)︄2/3
(4)

Controllingremaininguniversalsketchparameters:Last,
weconfigure the levels (L)maintained ineachuniversal sketch
instance and the number of heavy keys (k) needed to store at
each level’sheavyhitterheap.FromTheorem1,L=O(lognUS),
where nUS is the average number of distinct subpopulations
summarized at a universal sketch. For the value of k, we em-
pirically set its lower bound to k=Ω(1/𝜖2US). For 𝜖US =0.1, this
translates to 𝑘≈100.

Let us now see howwe can use these guidelines in practice.
As an example, let us assume we want the relative error of
estimation to not exceed 0.2 with 90% probability for subpop-
ulations where G𝑖/GS ≥ 10−3. Thus, G𝑚𝑖𝑛 = 10−3 ·GS. Let us
also assume that 𝜖US =𝜖 · GS

G𝑚𝑖𝑛
=0.1. From Eq. (3), we can get

an estimate of memory needed,𝑀 ≈ 106 needed. Note that
here𝑀 measures “units ofwUS” i.e., counters. Thus, 𝜖US =0.1
and wUS =Θ(102). From O(𝑀) =w ·wUS , we can further see
that alsow=Θ(102).
In §6, we show that these strategies can achieve near opti-

mal tradeoffs. We acknowledge that implementing this work-
flow assumes that the operator has some prior knowledge
about the workload i.e., a rough estimate of the number of
subpopulations. We believe this is not an unreasonable re-
quirement in many practical settings.

5 IMPLEMENTATION
This section discusses our implementation of Hydra and
practical performance challenges we faced. Our prototype of
Hydra-sketch can be found (anonymized) in [2].

Baseline Implementation andWorkflow:We implement
Hydra’sworkflow (§3) on top ofApache Spark [99] as Spark’s
extensibility allowed us to easily prototype design alterna-
tives. However, Hydra’s workflow can easily fit into different
analytics frameworks e.g.,Druid [96].

Data ingestion happens at the worker nodes. Each worker
node splits its input into ∼64MB partitions, allocates one
Hydra-sketch instance per partition and updates it with that
partition’s data. We implement these and Hydra-sketch in-
stances as Spark RDDs. To allocate appropriately configured
Hydra-sketch instances, workers rely on configuration man-
ifests distributed by the frontend node.

As a result of splitting input data into smaller batches, each
worker node maintains multiple instances of Hydra-sketch.
The design of Hydra enables sketch merging due to the
well-known linearity property of frequency-based sketches.
Therefore, during data ingestion,worker nodesmergeHydra-
sketch instances of fully ingested partitions until Hydra is
left with one Hydra-sketch instance to query. For sketch
merging, we use Spark’s “treeAggregation” module [13], thus
mitigating the risk of performance bottlenecks.

Queryestimation involvesboth the frontendandtheworker
nodes. The operator inputs the desired queries and the fron-
tend then generates a query plan for the worker nodes to
execute. Estimation results are collected at the frontend node.

An accuracy-improving heuristic: Recall from §4.4 that af-
terQ𝑖 is mapped to a universal sketch, that sketch only stores
the frequencies of metric values m𝑗 . This design, however,
does not keep track of which subpopulation Q𝑖 eachm𝑗 maps
to. As a result, a universal sketch will return the same estima-
tions for all subpopulationswhose data it stores. Our heuristic
is simple: Instead of updating each universal sketch withm𝑗 ,
we can use a more fine-grained key, i.e., the concatenation of
the metric value and its corresponding subpopulation. This
way, heavy hitter heaps will maintain heavy counts for each
(Q𝑖 ,m𝑗 ) pair and will be able to differentiate between them.

Implementation optimizations: To further reduce the sys-
tem’s runtime, we introduce a few optimizations:

(1) One Large Hash per (Q𝑖 ,m𝑗 ) Pair: Updating Hydra-
sketch (Q𝑖 ,m𝑗 ) requiresO(r×L) hash computations, r to iden-
tify the universal sketches to update and up to L per universal
sketch.Wereduce thenumberofhashes toO(1) bycomputing
one large 128-bit hash and breaking it down into substrings
of variable lengths and treating each substring as a separate
hash. Prior analysis [47, 67] shows that different substrings
from the same long hash provide sufficient independence.
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(2) OneLayerUpdate: In prior universal sketching imple-
mentations, the algorithm keeps a heap to track frequent keys
per layer. For each datapoint update, the universal sketching
needs to update two of its layers on average. InHydra-sketch,
we follow [97] and update only the lowest sampled layer per
datapoint. This technique reduces the layers updated to one
per datapoint, while providing an equivalent implementation.

(3) Heap-onlysketchmergeMerging twoHydra-sketch
instances involves iterating over two 2D universal sketches
arrays HS1 and HS2 and merging each pair (HS1

𝑘,𝑙
, HS2

𝑘,𝑙
).

This means iterating over the universal sketch layers, sum-
ming up corresponding counters, recomputing the heavy
elements and re-populating the heavy hitter heaps. How-
ever, we find that we can only merge the heavy hitter heaps
instead of all counters.

6 EVALUATION
WenowevaluateHydrausingreal-worldandsyntheticdatasets.
We provide a sensitivity analysis of our design, and evaluate
our configuration strategies and optimizations. In summary:

1. Hydra offers ≤ 10sec query latencies and are 7-20×
smaller than existing analytics engines.

2. Hydra offers ≤5%mean errors (combined across statis-
tics) with 90% probability for a broad set of summary
statistics at 1/10 of the $ cost of exact analytics engines.

3. Thanks to Hydra’s sub-linear (to the number of sub-
populations) memory scaling, Hydra achieves close to
an order of magnitude improvement in operational cost
compared to the best exact analytics baseline.

4. Hydra’s sketch configuration strategies ensure near-
optimal memory-accuracy tradeoffs.

5. Hydra’s performance optimizations improve end-to-
end system runtime by 45% compared to a deployment
that uses the basic Hydra-sketch design.

6.1 Experimental Methodology
Setup:We evaluate Hydra on a 20-node cluster of m5.xlarge
(4CPU - 16GBmemory5) AWS servers [1].We allocate 3 CPUs
for Hydra and its input data is CSV files that are streamed
from AWS S3. We configure Hydra-sketch using the heuris-
tics of §4.6 to ensure a conservative lower error bound of -10%
(i.e., 𝜖US =0.1) and upper bound of 20% with 90% probability
for G𝑚𝑖𝑛/GS=2·10−3. We also use the performance optimiza-
tions of §5. While these bounds are conservative, they ensure
a memory footprint of <100MB per Hydra-sketch instance;
our results show that the actual errors were much smaller.

Datasets: We use two real-world datasets and a synthetic
trace. Each dataset maps to a different usecase. First, we use
CAIDA flow traces [4] collected at a backbone link of a Tier1
US-based ISP. The total trace is up to 130GB in initial size
and flow data can be clustered in up to approximately 5.6M
5In practice,weobserve that nodeshave≈10-11GBof availablemainmemory.

subpopulationsQ𝑖 . Given that we analyzem𝑗 metric values
per subpopulation, this dataset contains up to 506M distinct
⟨Q𝑖 ,m𝑗 ⟩ pairs. Second, we use a real-world trace of video
session summaries corresponding to one major US-based
streaming-video provider. The size of the video-QoE trace
is approximate 5GB, with data that we cluster in up to 700k
subpopulations and up to 25M ⟨Q𝑖 ,m𝑗 ⟩ pairs. Third, we gener-
ate synthetic traces following Zipf distribution with varying
skewness (e.g., 0.7 to 0.99).

Summary statistics:We evaluate Hydra’s accuracy using
L1/L2norms, entropy and cardinality i.e., statistics thatmap to
the queries described in §2. For each subpopulation, we com-
pute theprecisevalueofeachstatistic asground truthand then
estimate the relative error with respect to Hydra’s accuracy.

Evaluation baselines: For our experiments, we compare
Hydra against several baselines: From the space of precise an-
alytics we compare with: (1) Spark-SQL: This is a traditional
SQL implementation where incoming data record is stored as
a row inone (logical) data table.At estimation time,wecreate a
Key-Value store,where thekeysaredistinct subpopulationsQi
and the values are lists of metric valuesm𝑗 per subpopulation;
(2) Spark-KV:Here, we summarize incoming data at inges-
tion time and maintain a Key-Value store where the keys are
distinct ⟨Q𝑖 ,m𝑗 ⟩ pairs and the values are their respective fre-
quency counts; (3)Druid:This is similar to Spark-KVbut uses
Druid’s data roll-up feature to generate the key-value store.

From the space of approximate analytics engines, we com-
pare against: (1) Uniform Sampling: We implement 10%
uniform sampling at ingestion time and then apply the Spark-
KV approach to the sub-sampled data that contains ≈ 82M
distinct ⟨Q𝑖 ,m𝑗 ⟩ pairs; (2) VerdictDB [81]:We deploy Ver-
dictDB on Amazon Redshift and use the default nodes of that
service (20 dc2.large nodes, each with 2CPU, 15GBmemory
and 160GB NVMe-SSD as storage) as backend SQL engine.
VerdictDB builds offline samples, so we create hash based
sample tables for cardinality metric and uniform sample ta-
bles for L1 and L2 norm.We set sampling rate = 1% for both
sample tables. VerdictDB does allow entropy estimations. (3)
One Universal Sketch per subpopulation.

6.2 End-to-End Evaluation ofHydra
To evaluate Hydra end-to-end we investigate whether the
systemmeets operators’ requirements as outlined in §2. To
that end, we investigate three questions:

What isHydra’s operating cost compared to our base-
lines?Wemeasure the normalized query estimation $ cost
for 4 statistics for the CAIDA dataset (130GB, 5.6M subpopu-
lations, 506 distinct ⟨Q𝑖 ,m𝑗 ⟩ pairs). We estimate their normal-
ized cost as VerdictDB on Amazon Redshift constrained us to
specific servers with a different pricing model.

Figure 1 depicts Hydra’s cost-accuracy tradeoff. Hydra’s
cost is∼2 orders ofmagnitude smaller than that of Spark-SQL.
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Figure10:Errordistribution fordifferentdata subpopulations forHydra (blue)anduniformsampling (orange).Red lines indicate theerror threshold.
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Figure 11: Hydra’s estimation error for the CAIDA dataset.

That is because Spark-SQL processes the entire dataset at
query time and because estimation happens at the frontend
node. Hydra’s estimation cost is also an order of magnitude
lower than Druid’s that uses data summaries created at inges-
tion. However, as we will see later, Druid’s ingestion is very
inefficient. The best performing, precisely accurate, baseline
is Spark-KV that produces frequency counts for the result-
ing 506 KV-pairs at ingestion time and uses that for statistics
estimation. Spark-KV is ∼7×more expensive than Hydra.
Regarding approximate analytics baselines, we observe

that VerdictDB, while very accurate (∼98% mean accuracy
for 1% sampling, exhibits large estimation times, comparable
to worst-case estimation times in the original VerdictDB pa-
per [81]. When normalized by server cost, VerdictBD’s cost
is comparable to Spark-SQL. Hydra’s operational cost is on
par with a sampling approach that uniformly samples 10% of
all data but whose error can be very large. Perhaps surpris-
ingly, the 10% baseline exhibits higher cost. This is because
this baseline still needs to process ≈ 82M KV pairs and still
requires more memory than Hydra. In the case of the smaller
video-QoE dataset (not shown due to lack of space), Hydra is
only 3× cheaper than Spark-SQL and approximately as costly
as Spark-KV. This smaller gap is due to the smaller size of the
dataset. In §6.3, we look at the empirical runtime andmemory
requirements that explain the observed cost results.

DoesHydra enable interactive query latencies? Figure 12
illustrates Hydra’s runtime as a function of the dataset size
and the number of data subpopulations for theCAIDAdataset.
We can see that Hydra’s query time is ∼11sec for 5.6 mil-
lion data subpopulations, almost one order of magnitude (7×)
smaller than that of Spark-KV.Wefind this to be an acceptable
query latency for a framework that is configured to period-
ically run estimations on streaming data (e.g., every minute)
and large volumes of subpopulations. Due to the centralized

statistics estimation of Spark-SQL, execution would fail for
dataset sizes larger than30GB.However, even forasmall input,
the querying latency of Spark-SQL is ∼2 orders of magnitude
larger than Hydra’s. Druid’s ingestion would prematurely
terminate for dataset sizes ≥60GB because the framework (a)
indexes data upon ingestion and (b) is optimized for reads over
writes [7]. We did not focus on improving Druid’s ingestion.

IsHydra accurate and general across summary statis-
tics? To evaluate Hydra’s accuracy and generality, we look
at the accuracy of four different sets containing different num-
bers of summary statistics. Figure 11 depicts the boxplot of
empirical estimation error for each statistic. Positive error
values indicate overestimation errors and negative error val-
ues indicate underestimation. For all application sets Hydra
operates under the same resource budget and configuration
as described previously.Wefind that estimatingmultiple sum-
mary statistics does not incur accuracy reduction, compared
to when individual statistics are estimated. This highlights
Hydra’s generality, which is enabled by the fact that informa-
tion maintained in the universal sketches is statistic-agnostic
and is equally used for multiple statistics of interest. Hydra’s
median estimation error is almost 0 for the L2-norm, -5.7% and
-5.5% for entropy and L1 norm respectively and 9.8% for cardi-
nality estimation.Wecanobserve that the estimatederrors are
well within the accuracy threshold that we set. However, for
cardinality, we observe a higher median and variance in error
values. This is due to a large concentration of G𝑖 ’s near G𝑚𝑖𝑛 .
Recall from the discussion of §4.6 thatHydra’s error is loosest
when G𝑖 ≈G𝑚𝑖𝑛 and this allows for higher error variance.

Figure 10 corroborates this observation by depicting the
distribution of estimation error values for all summary sta-
tistics as a function of the subpopulation’s normalizedG-sum
i.e., G𝑖/GS. Note that for values of G𝑖/GS≈G𝑚𝑖𝑛/GS the vari-
ance of empirical error becomes larger as that is the region
where the error is allowed to approach our worst-case error
bound. Cardinality estimation using one universal sketch per
subpopulation yields estimations with <7% error. The figure
also compares Hydra with uniform sampling and highlights
the high variance in error that sampling exhibits. We observe
the same behavior for the video-QoE dataset with a mean
error across statistics of ∼6%.
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Figure 12: Runtime for CAIDA Dataset

6.3 Detailed Analysis ofHydra-sketch
First,wecompareHydra-sketch’smemory footprint to thatof
our baselines. Second, we show that our configuration strate-
gies converge to a near optimal configuration with respect to
memory and runtime. Lastly, we show that our performance
optimizations reduce Hydra’s runtime by 45%.

Memory Footprint vs. Subpopulations: Figure 13 shows
memory footprint as a function of the number of subpop-
ulations monitored for the CAIDA dataset. Hydra follows
the theoretically-expected sub-linear memory scaling as the
dataset size and subpopulations increase. Indeed, while we
observe that for smaller datasets, a Spark-KV implementation
might be preferable in terms of memory footprint (as the size
of the sketch instances might even exceed that of the input),
this trend is very quickly reversed. This is an observation that
is also confirmed for the video-QoE dataset.

0 25 50 75 100 125
Dataset Size (GB)

102

103

104

105

M
em

or
y 

Fo
ot

pr
in

t (
M

B)

1 2 3 4 5 6
Data Subpopulations (Millions)

Spark SQL
Druid

Uniform Sampling
Spark KV

HYDRA
Univ.Sketch/Subpopulation

Figure 13: Memory footprint per dataset size and subpopulation.
VerdictDB numbers do not expose memory utilizations.

Configuration Heuristics: Figure 14 depicts the relation-
ship between the memory footprint of Hydra-sketch and its
estimation error for different configurations. The estimation
error of the figure is that of the L1-Normof theCAIDAdataset.
The optimal configurations simultaneously minimize the es-
timation error and Hydra-sketch memory footprint (marked
with red stars). The orange diamond configuration is the sug-
gested configuration based on the configuration strategies
discussed in §4. Thus, our strategies result in a configuration
comparable to the optimal configurations. This observation
holds across all summary statistics and datasets.
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Figure 14: Hydra’s configuration strategies are close to optimal

AnalysisofPerformanceOptimizations:Figure15depicts
the cumulative improvement in Hydra’s performance using
the performance optimizations of §5. Each datapoint corre-
sponds to a different Hydra-sketch configuration (the Pareto
frontier of Figure 14) and we run each configuration twice,
once for the basic Hydra-sketch design and once with the
performance optimizations. The performance optimizations
further reduce the memory footprint of Hydra-sketch and
the total system runtime. Table 2 captures Hydra’s runtime
reduction after each performance optimization. The baseline
is Hydra without optimizations and, overall, we see a total
performance improvement of 45%.

Baseline Heap-only
Merge

OneHash One Layer
Update

100% 92% 64% 55%
Table 2: Runtime improvements with performance optimizations
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Figure 15: Comparison of the Pareto frontiers of basic and the
optimizedHydra-sketch implementation for the same configurations.

Skewness of Dataset: Figure 16 highlights the difference in
estimation accuracy for two synthetic datasets generatedwith
a zipfian distribution. The subpopulations are samples from
a zipfian distribution with parameters 𝛼 = 0.7 and 𝛼 = 0.99
respectively (a value of 𝛼 = 0 indicates a perfectly uniform
distribution). Our experiment confirms our intuition that the
more skewed dataset ensures a better (memory, error) trade-
off. In practice, many real-world datasets are skewed and thus
can benefit from being analyzed by Hydra.

7 RELATEDWORK
MapReduce-based Analytics Frameworks: There are var-
ious analytics frameworks that are based on the MapReduce
paradigm [51, 85]. Dryad [61] introduced the concept of user-
defined functions in general DAG-based workflows. Apache
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Figure 16: Impact of data skewness onHydra’s memory footprint
and runtime. We use a synthetic dataset where subpopulation sizes
are sampled from a Zipfian distribution with parameter 𝛼 .

Drill and Impala [68] are limited to SQL variants. Apache
Spark [99] leverages aDAG-based execution engine and treats
unbounded computation as micro-batches. Apache Flink [35]
enablespipelinedstreamingexecution forbatchedandstream-
ing data, offers exactly-one semantics and supports out-of-
order processing.Hydra could be built on top ofApache Flink.

Stream Processing Frameworks: This line of research fo-
cuses on the architecture of stream processing systems, an-
swering questions about out-of-order datamanagement, fault
tolerance,high-availability, loadmanagement, elasticityetc. [10,
11, 15, 21, 23, 27, 35, 60, 66, 76]. Fragkoulis et al. analyze the
state of the art of stream processing engines [48].

High-dimensional Data Cubes:Data cubes have been an
integral part of online analytics frameworks and enable pre-
computing and storing statistics for multidimensional aggre-
gates so that queries can be answered on the fly. However,
data cubes suffer from the same scalability challenges as Hy-
dra. Prior works have focused onmechanisms to identify the
most frequently queried subsets of the data cube and opti-
mize operations that are performed only on a small subset of
dimensions at a time [52, 56, 57, 69, 71].

Data Aggregations: The aggregation-based queries that
we discussed in §2 appear in multiple streaming data sys-
tems [20, 26, 31, 44, 55, 83, 96] that motivate Hydra. Many of
the above frameworks enable approximate analytics but do
not fully satisfy operators’ requirements as outlined in §2.

Sampling-based Approaches: Multiple analytics frame-
works use sampling to provide approximate estimations [18,
37, 78, 92]. BlinkDB [20] builds stratified samples on its input
to reduce query execution time given specific storage budgets.
STRAT [38] also uses stratified sampling but instead builds a
single sample. SciBORQ [86] builds biased samples based on
past query results but cannot provide accuracy guarantees.

Online Aggregation:Online Aggregation frameworks [58,
70, 80] continuously refine approximate answers at runtime.
In these frameworks, it is up to the user to determine when
the acceptable level of accuracy is reached and to terminate
estimation. Naturally, this approach is unsuitable for multidi-
mensional telemetry that needs to estimate multiple statistics
across data subpopulations.

DataSummaries:Data“synopses” (e.g.,wavelets,histograms,
sketches, etc.) have been extensively used for data analyt-
ics [19, 34, 43, 53, 62, 72, 91, 93]. These data summaries can
either be lossless or lossy and they aim at providing efficiency
for multidimensional analytics. However, these approaches
are tailored to narrow set of estimation tasks. Gan et al. de-
velop a compact and efficiently mergeable quantile sketch for
multidimensional data [50].
Several prior efforts explore nested sketches as a solution

to the multidimensional distinct counting problem [41, 88, 89,
94]. The CountMin Flajolet-Martin (CM-FM) replaces each
integer counter of count-min sketch with a distinct counting
sketch [41]. The CM-FM, while making a step in the right
direction for multidimensional analytics, is limited both in
terms of the generality and accuracy guarantees it offers [88].
Priorwork by Ting et al. also targets on cardinality estimation
in multidimensional data [88, 89] but focuses on improving
the sketch error bounds. Similar to Hydra, they observe that
in distinct counting sketches, accuracy guarantees depend
on the characteristics of the underlying data. Their key ob-
servation is that the distribution of errors in each counter
can be empirically estimated from the sketch itself. By first
estimating this distribution, count estimation becomes a sta-
tistical estimation and inference problem with a known error
distribution. However, computing such error distributions,
is computationally heavy in streaming settings as it involves
computing maximum likelihood estimators.

8 DISCUSSIONAND FUTUREWORK
Hydra ensures coverage across subpopulations and accuracy
guarantees with good resource utilization for subpopulations
whose G𝑖 >=G𝑚𝑖𝑛 . It is up to the operator to determine G𝑚𝑖𝑛 .
We believe that this is more versatile than pre-selecting spe-
cific subpopulations for which accuracy guarantees should
apply. Given a G𝑚𝑖𝑛 threshold, Hydra self-selects the subset
of important subpopulations.

Hydra opens up avenues for future work. For example, an
open question is how to enable dynamic sketch reconfigu-
ration given changing workloads or operator goals. Also, a
more system-oriented avenue would involve investigating
the applicability of Hydra in the context of in-band network
telemetry as part of programmable network elements [77].

9 CONCLUSIONS
Today’s large-scale services require interactive estimates of
different statistics across subpopulations of their multidimen-
sional datasets. However, the combinatorial explosion of sub-
populationsmakes it hard to offermultidimensional analytics
at a reasonable cost to the operator. In this work, we propose
Hydra, a sketch-based framework that leverages Hydra-
sketch to summarize data streams in sub-linear memory to
the number of subpopulations. We show that Hydra is an
order of magnitude more efficient in than existing analytics
engines while ensuring interactive estimation times.

12



REFERENCES
[1] Amazon AWS EC2 pricing . https://aws.amazon.com/ec2/pricing/

on-demand/.
[2] Anonymized HYDRA repository. https://anonymous.4open.science/r/

HYDRA-F8FD/README.md.
[3] Approximate Algorithms in Apache spark: Hyperloglog

and Quantiles. https://databricks.com/blog/2016/05/19/
approximate-algorithms-in-apache-spark-hyperloglog-and-quantiles.
html.

[4] CAIDANetwork Flow Traces. https://www.caida.org/catalog/datasets/
overview/.

[5] CAIDA Trace. https://www.caida.org/catalog/datasets/monitors/
passive-equinix-nyc/.

[6] Conviva - Real-time Streaming Video Intelligence. https://www.
conviva.com/.

[7] Druid Ingestion Performance. https://stackoverflow.com/questions/
54578482/druid-parquet-poor-ingestion-performance#54580535.

[8] EBS Service Event in the Tokyo Region. https://aws.amazon.com/
message/56489/.

[9] EC2 DNS Resolution Issues in the Asia Pacific Region. https://aws.
amazon.com/message/74876/.

[10] IBM Streams. https://www.ibm.com/cloud/streaming-analytics.
[11] Kafka Streams. https://kafka.apache.org/documentation/streams/.
[12] Kafka tops 1 trillion messages per day at

linkedin. https://www.datanami.com/2015/09/02/
kafka-tops-1-trillion-messages-per-day-at-linkedin/.

[13] Spark treeAggregate and treeReduce. https://github.com/apache/spark/
pull/1110.

[14] SURUS - Anomaly detection at Netflix. https://netflixtechblog.com/
rad-outlier-detection-on-big-data-d6b0494371cc.

[15] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. The
design of the borealis stream processing engine. In Cidr, volume 5,
pages 277–289, 2005.

[16] L. Abraham, J. Allen, O. Barykin, V. Borkar, B. Chopra, C. Gerea, D.Merl,
J. Metzler, D. Reiss, S. Subramanian, et al. Scuba: Diving into data at
facebook. Proceedings of the VLDB Endowment, 6(11):1057–1067, 2013.

[17] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional samples for
approximate answering of group-by queries. In Proceedings of the 2000
ACM SIGMOD international conference on Management of data, pages
487–498, 2000.

[18] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The aqua
approximate query answering system. In Proceedings of the 1999
ACM SIGMOD international conference on Management of data, pages
574–576, 1999.

[19] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and K. Yi.
Mergeable summaries. ACM Transactions on Database Systems (TODS),
38(4):1–28, 2013.

[20] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
Blinkdb: queries with bounded errors and bounded response times on
very large data. In Proceedings of the 8th ACM European Conference
on Computer Systems, pages 29–42, 2013.

[21] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman,
R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S. Whittle. Millwheel:
Fault-tolerant stream processing at internet scale. Proceedings of the
VLDB Endowment, 6(11):1033–1044, 2013.

[22] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. In Proc. of ACM STOC, 1996.

[23] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz,M. Datar, K. Ito, R.Motwani,
U. Srivastava, and J. Widom. Stream: The stanford data stream
management system. In Data Stream Management, pages 317–336.
Springer, 2016.

[24] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, et al. Spark sql: Relational

data processing in spark. In Proceedings of the 2015 ACM SIGMOD
international conference on management of data, pages 1383–1394, 2015.

[25] A. Asta. Observability at twitter: technical overview, part i, 2016, 2016.
[26] P. Bailis, E. Gan, S. Madden, D. Narayanan, K. Rong, and S. Suri. Mac-

robase: Prioritizing attention in fast data. In Proceedings of the 2017ACM
International Conference on Management of Data, pages 541–556, 2017.

[27] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker.
Fault-tolerance in the borealis distributed stream processing system.
In Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, pages 13–24, 2005.

[28] R. B. Basat, G. Einziger, M. Mitzenmacher, and S. Vargaftik. Faster and
more accurate measurement through additive-error counters. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications, pages
1251–1260. IEEE, 2020.

[29] R. B. Basat, G. Einziger, M. Mitzenmacher, and S. Vargaftik. Salsa:
self-adjusting lean streaming analytics. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pages 864–875. IEEE, 2021.

[30] R. Ben Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard.
Constant time updates in hierarchical heavy hitters. In Proceedings of
theConference of theACMSpecial InterestGroup onDataCommunication,
pages 127–140, 2017.

[31] L. Braun, T. Etter, G. Gasparis, M. Kaufmann, D. Kossmann, D. Widmer,
A. Avitzur, A. Iliopoulos, E. Levy, and N. Liang. Analytics in motion:
High performance event-processing and real-time analytics in the
same database. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 251–264, 2015.

[32] V. Braverman and S. R. Chestnut. Universal sketches for the frequency
negativemoments and other decreasing streaming sums. arXiv preprint
arXiv:1408.5096, 2014.

[33] V. Braverman and R. Ostrovsky. Zero-one frequency laws. In
Proceedings of the forty-second ACM symposium on Theory of computing,
pages 281–290, 2010.

[34] C. Buragohain and S. Suri. Quantiles on streams., 2009.
[35] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and

K. Tzoumas. Apache flink: Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, 36(4), 2015.

[36] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. Scope: easy and efficient parallel processing of massive
data sets. Proceedings of the VLDB Endowment, 1(2):1265–1276, 2008.

[37] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACMComput. Surv., 41(3):15:1–15:58, July 2009.

[38] S. Chaudhuri, G. Das, and V. Narasayya. Optimized stratified sampling
for approximate query processing. ACM Transactions on Database
Systems (TODS), 32(2):9–es, 2007.

[39] S. Chaudhuri, B. Ding, and S. Kandula. Approximate query processing:
No silver bullet. In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 511–519, 2017.

[40] X. Chen, S. Landau-Feibish, M. Braverman, and J. Rexford. Beaucoup:
Answering many network traffic queries, one memory update at a time.
In Proceedings of the Annual conference of the ACMSpecial Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, pages 226–239, 2020.

[41] J. Considine, M. Hadjieleftheriou, F. Li, J. Byers, and G. Kollios. Robust
approximate aggregation in sensor data management systems. ACM
Transactions on Database Systems (TODS), 34(1):1–35, 2009.

[42] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for
massive data: Samples, histograms, wavelets, sketches. Foundations
and Trends in Databases, 4(1–3):1–294, 2012.

[43] G. Cormode and S.Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms,
55(1):58–75, 2005.

[44] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope:
A stream database for network applications. In Proceedings of the 2003
ACM SIGMOD international conference on Management of data, pages

13

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://anonymous.4open.science/r/HYDRA-F8FD/README.md
https://anonymous.4open.science/r/HYDRA-F8FD/README.md
https://databricks.com/blog/2016/05/19/approximate-algorithms-in-apache-spark-hyperloglog-and-quantiles.html
https://databricks.com/blog/2016/05/19/approximate-algorithms-in-apache-spark-hyperloglog-and-quantiles.html
https://databricks.com/blog/2016/05/19/approximate-algorithms-in-apache-spark-hyperloglog-and-quantiles.html
https://www.caida.org/catalog/datasets/overview/
https://www.caida.org/catalog/datasets/overview/
https://www.caida.org/catalog/datasets/monitors/passive-equinix-nyc/
https://www.caida.org/catalog/datasets/monitors/passive-equinix-nyc/
https://www.conviva.com/
https://www.conviva.com/
https://stackoverflow.com/questions/54578482/druid-parquet-poor-ingestion-performance#54580535
https://stackoverflow.com/questions/54578482/druid-parquet-poor-ingestion-performance#54580535
https://aws.amazon.com/message/56489/
https://aws.amazon.com/message/56489/
https://aws.amazon.com/message/74876/
https://aws.amazon.com/message/74876/
https://www.ibm.com/cloud/streaming-analytics
https://kafka.apache.org/documentation/streams/
https://www.datanami.com/2015/09/02/kafka-tops-1-trillion-messages-per-day-at-linkedin/
https://www.datanami.com/2015/09/02/kafka-tops-1-trillion-messages-per-day-at-linkedin/
https://github.com/apache/spark/pull/1110
https://github.com/apache/spark/pull/1110
https://netflixtechblog.com/rad-outlier-detection-on-big-data-d6b0494371cc
https://netflixtechblog.com/rad-outlier-detection-on-big-data-d6b0494371cc


647–651, 2003.
[45] M. Durand and P. Flajolet. Loglog counting of large cardinalities. In

European Symposium on Algorithms, pages 605–617. Springer, 2003.
[46] A. Feldmann,A.Greenberg, C. Lund,N. Reingold, J. Rexford, and F. True.

Deriving traffic demands for operational ip networks:Methodology and
experience. IEEE/ACM Transactions On Networking, 9(3):265–279, 2001.

[47] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for
data base applications. Journal of computer and system sciences,
31(2):182–209, 1985.

[48] M. Fragkoulis, P. Carbone, V. Kalavri, and A. Katsifodimos. A survey
on the evolution of stream processing systems. arXiv preprint
arXiv:2008.00842, 2020.

[49] E. Gan, P. Bailis, and M. Charikar. Coopstore: Optimizing precomputed
summaries for aggregation. Proceedings of the VLDB Endowment,
13(12):2174–2187, 2020.

[50] E. Gan, J. Ding, K. S. Tai, V. Sharan, and P. Bailis. Moment-based
quantile sketches for efficient high cardinality aggregation queries.
arXiv preprint arXiv:1803.01969, 2018.

[51] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 29–43, 2003.

[52] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data mining
and knowledge discovery, 1(1):29–53, 1997.

[53] M. Greenwald and S. Khanna. Space-efficient online computation of
quantile summaries. ACM SIGMOD Record, 30(2):58–66, 2001.

[54] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W.Willinger. Sonata: Query-driven streaming network telemetry. In
Proceedings of the 2018 conference of the ACM special interest group on
data communication, pages 357–371, 2018.

[55] A. Hall, A. Tudorica, F. Buruiana, R. Hofmann, S.-I. Ganceanu, and
T. Hofmann. Trading off accuracy for speed in powerdrill. 2016.

[56] J. Han, J. Pei, G. Dong, and K.Wang. Efficient computation of iceberg
cubes with complex measures. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, pages 1–12, 2001.

[57] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data
cubes efficiently. Acm Sigmod Record, 25(2):205–216, 1996.

[58] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In
Proceedings of the 1997 ACM SIGMOD international conference on
Management of data, pages 171–182, 1997.

[59] D. N. Hill, H. Nassif, Y. Liu, A. Iyer, and S. Vishwanathan. An efficient
bandit algorithm for realtime multivariate optimization. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1813–1821, 2017.

[60] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker,
and S. Zdonik. High-availability algorithms for distributed stream
processing. In 21st International Conference on Data Engineering
(ICDE’05), pages 779–790. IEEE, 2005.

[61] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, pages 59–72, 2007.

[62] J. Jestes, K. Yi, and F. Li. Building wavelet histograms on large data
in mapreduce. arXiv preprint arXiv:1110.6649, 2011.

[63] J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and H. Zhang.
Cfa: A practical prediction system for video qoe optimization. In
Proceedings of the 13th Usenix Conference on Networked Systems Design
and Implementation, NSDI’16, pages 137–150, Berkeley, CA, USA, 2016.
USENIX Association.

[64] J. Jiang, V. Sekar, I. Stoica, and H. Zhang. Shedding light on the
structure of internet video quality problems in the wild. In Proceedings
of the ninth ACM conference on Emerging networking experiments and
technologies, pages 357–368. ACM, 2013.

[65] R. Johari, P. Koomen, L. Pekelis, and D. Walsh. Peeking at a/b tests:
Why it matters, and what to do about it. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1517–1525, 2017.

[66] S. J. Kazemitabar, U. Demiryurek, M. Ali, A. Akdogan, and C. Shahabi.
Geospatial streamquery processingusingmicrosoft sql server streamin-
sight. Proceedings of the VLDB Endowment, 3(1-2):1537–1540, 2010.

[67] A. Kirsch and M. Mitzenmacher. Less hashing, same performance:
building a better bloom filter. In European Symposium on Algorithms,
pages 456–467. Springer, 2006.

[68] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi,
J. Erickson, M. Grund, D. Hecht, M. Jacobs, et al. Impala: A modern,
open-source sql engine for hadoop. In Cidr, volume 1, page 9, 2015.

[69] L. V. Lakshmanan, J. Pei, and J. Han. Quotient cube: How to summarize
the semantics of a data cube. InVLDB’02: Proceedings of the 28th Interna-
tional Conference on Very Large Databases, pages 778–789. Elsevier, 2002.

[70] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online aggregation via
randomwalks. In Proceedings of the 2016 International Conference on
Management of Data, pages 615–629, 2016.

[71] X. Li, J. Han, and H. Gonzalez. High-dimensional olap: A minimal
cubing approach. In Proceedings of the Thirtieth international conference
on Very large data bases-Volume 30, pages 528–539, 2004.

[72] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One
sketch to rule them all: Rethinking network flow monitoring with
univmon. In Proceedings of the 2016 ACM SIGCOMMConference, pages
101–114, 2016.

[73] Q.Ma andP. Triantafillou. Dbest: Revisiting approximate queryprocess-
ing engines with machine learning models. In Proceedings of the 2019
International Conference onManagement of Data, pages 1553–1570, 2019.

[74] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis. Dremel: interactive analysis of web-scale datasets.
Proceedings of the VLDB Endowment, 3(1-2):330–339, 2010.

[75] G. T. Minton and E. Price. Improved concentration bounds for
count-sketch. In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 669–686. SIAM, 2014.

[76] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi.
Naiad: a timely dataflow system. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pages 439–455, 2013.

[77] H. Namkung, Z. Liu, D. Kim, V. Sekar, P. Steenkiste, G. Liu, A. Li,
C. Canel, A. A. Philip, R. Ware, et al. Sketchlib: Enabling efficient
sketch-based monitoring on programmable switches. NSDI.

[78] C. Olston, E. Bortnikov, K. Elmeleegy, F. Junqueira, and B. Reed.
Interactive analysis of web-scale data. In CIDR. Citeseer, 2009.

[79] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin:
a not-so-foreign language for data processing. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data,
pages 1099–1110, 2008.

[80] N. Pansare, V. Borkar, C. Jermaine, and T. Condie. Online aggregation
for large mapreduce jobs. Proceedings of the VLDB Endowment,
4(11):1135–1145, 2011.

[81] Y. Park, B.Mozafari, J. Sorenson, and J.Wang. Verdictdb: Universalizing
approximate query processing. In Proceedings of the 2018 International
Conference on Management of Data, pages 1461–1476, 2018.

[82] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and
K. Veeraraghavan. Gorilla: A fast, scalable, in-memory time series
database. Proceedings of the VLDB Endowment, 8(12):1816–1827, 2015.

[83] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman. Aggregation
and degradation in jetstream: Streaming analytics in the wide area.
In 11th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 14), pages 275–288, 2014.

[84] A. Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani. Fast
monitoring of traffic subpopulations. In Proceedings of the 8th ACM
SIGCOMM conference on Internet measurement, pages 257–270, 2008.

[85] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In 2010 IEEE 26th symposium on mass storage

14



systems and technologies (MSST), pages 1–10. Ieee, 2010.
[86] L. Sidirourgos, M. L. Kersten, P. A. Boncz, et al. Sciborq: scientific data

management with bounds on runtime and quality. In CIDR, volume 11,
pages 296–301, 2011.

[87] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: a warehousing solution
over a map-reduce framework. Proceedings of the VLDB Endowment,
2(2):1626–1629, 2009.

[88] D. Ting. Count-min: optimal estimation and tight error bounds using
empirical error distributions. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages
2319–2328, 2018.

[89] D. Ting. Approximate distinct counts for billions of datasets. In
Proceedings of the 2019 International Conference onManagement of Data,
pages 69–86, 2019.

[90] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis.
Seedb: Efficient data-driven visualization recommendations to support
visual analytics. In Proceedings of the VLDB Endowment International
Conference on Very Large Data Bases, volume 8, page 2182. NIH Public
Access, 2015.

[91] J. S. Vitter and M. Wang. Approximate computation of multidimen-
sional aggregates of sparse data using wavelets. Acm Sigmod Record,
28(2):193–204, 1999.

[92] L. Wang, R. Christensen, F. Li, and K. Yi. Spatial online sampling and
aggregation. Proceedings of the VLDB Endowment, 9(3):84–95, 2015.

[93] Z. Wei, G. Luo, K. Yi, X. Du, and J.-R. Wen. Persistent data sketching.
In Proceedings of the 2015 ACM SIGMOD international conference on
Management of Data, pages 795–810, 2015.

[94] Q. Xiao, S. Chen, M. Chen, and Y. Ling. Hyper-compact virtual esti-
mators for big network data based on register sharing. In Proceedings
of the 2015 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, pages 417–428, 2015.

[95] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang. Worm origin
identification using randommoonwalks. In 2005 IEEE Symposium on
Security and Privacy (S&P’05), pages 242–256. IEEE, 2005.

[96] F.Yang,E.Tschetter,X.Léauté,N.Ray,G.Merlino, andD.Ganguli. Druid:
Areal-timeanalytical data store. InProceedings of the 2014ACMSIGMOD
international conference on Management of data, pages 157–168, 2014.

[97] M. Yang, J. Zhang, A. Gadre, Z. Liu, S. Kumar, and V. Sekar. Joltik:
enabling energy-efficient" future-proof" analytics on low-power
wide-area networks. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, pages 1–14, 2020.

[98] M. Yu, L. Jose, and R. Miao. Software defined traffic measurement
with opensketch. In 10th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 13), pages 29–42, 2013.

[99] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, et al. Apache spark:
a unified engine for big data processing. Communications of the ACM,
59(11):56–65, 2016.

15


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Motivating Scenarios
	2.2  Requirements and Goals
	2.3 Prior Work and Limitations

	3 Hydra: System Overview
	4 Hydra Detailed Design
	4.1 Background on Sketching
	4.2 Tackling Subpopulation Explosion
	4.3  Enabling Multiple Statistics
	4.4 The Hydra-sketch Algorithm
	4.5 Accuracy Guarantees
	4.6 Hydra-sketch configuration

	5 Implementation
	6 Evaluation
	6.1 Experimental Methodology
	6.2 End-to-End Evaluation of Hydra
	6.3 Detailed Analysis of Hydra-sketch

	7 Related work
	8 Discussion and Future Work
	9 Conclusions
	References

