Enabling Efficient and General Subpopulation
Analytics In Multidimensional Data Streams

Antonis Manousis

Carnegie Mellon University

Ran Ben Basat
University College London

ABSTRACT

Many large-scale services (e.g., video streaming platforms,
data centers, sensor grids) need diverse real-time summary
statistics across multiple subpopulations of multidimensional
datasets. However, state-of-art frameworks do not offer gen-
eral and accurate analytics in real-time at reasonable cost.
The root cause is the combinatorial explosion of data sub-
populations and the diversity of summary statistics we need
to simultaneously monitor. We present HYDRA, an efficient
framework for multidimensional analytics that presents a
novel combination of using a “sketch of sketches” to avoid
the overhead of monitoring exponentially-many subpopula-
tions and universal sketching to ensure accurate estimates
for multiple statistics. We build HYDRA as an Apache Spark
plugin and address practical system challenges to minimize
overheads at scale. Across multiple real-world and synthetic
multidimensional datasets, we show that HYDRA can achieve
robust error bounds and is an order of magnitude more ef-
ficient in terms of operational cost and memory footprint
than existing frameworks (e.g., Spark, Druid) while ensuring
interactive estimation times.

1 INTRODUCTION

Many large-scale infrastructures (e.g., Internet services, sen-
sor farms, datacenter monitoring) produce multidimensional
data streams that are growing both in data volume and di-
mensionality [12, 25, 26, 82]. These multidimensional data
contain measurements of metrics along with metadata that
describe said measurements across domain-specific dimen-
sions. For instance, video streaming services analyze user
experience issues across dimensions, such as ISP, CDN, De-
vice, City, etc. [63, 64]. We see similar trends in other domains
e.g., network and data center monitoring [8, 9, 72].

In these settings, analysts need interactive and accurate
estimates of diverse summary statistics across multiple data
subpopulations of their data. For instance, video analysts want
to monitor different statistics of viewer quality across subpop-
ulations of viewers (e.g., entropy of bitrate in each major US
city, etc.) [63]. Similarly, network operators want to analyze
traffic grouped by combinations of their 5-tuple (srcIP, dstIP,
srcPort, dstPort, protocol) [72]. This is analogous to classical

Zaoxing Liu

Boston University

Zhuo Cheng

Carnegie Mellon University

Vyas Sekar

Carnegie Mellon University

OLAP cube applications where the number of cube vertices
grows exponentially as more subpopulations are admitted.

In such multidimensional telemetry settings, we ideally
want frameworks offering high fidelity and interactive es-
timates at low operational cost. However, there are two fun-
damental challenges. First, there is a combinatorial explosion
of data subpopulations to monitor, which can result in expo-
nential overhead in operational cost and resources. Second,
estimating multiple statistics entails compute and/or memory
overhead proportional to the number of statistics of interest.

We find that existing frameworks are fundamentally lim-
ited in terms of the tradeoff across operational cost, accu-
racy, and estimation latencies they can offer. Exact analytics
frameworks (e.g., Spark [99], Hive [87], Druid [96]) that rely
on horizontal resource scaling entail poor cost-performance
tradeoff as datasets become larger. While approximate analyt-
ics [39] (e.g., sampling- or sketch-based analytics) can trade
off estimation accuracy for lower cost and improved inter-
activity, these too suffer undesirable tradeoffs. For instance,
sampling-based approaches provide generality across metrics
and can handle many subpopulations, but their accuracy guar-
antees can be weak. On the other hand, sketch-based analytics
(e.g.,[18,19,28-30, 40,49, 50, 88, 89, 98]) can offer robust accu-
racy guarantees, but cannot address the combinatorial explo-
sion of data subpopulations and also incur per-statistic effort.

In this paper, we present HYDRA, a framework for efficient
and general analytics over multidimensional data streams.
HypRA builds on the novel combination of two key ideas. First,
to tackle the combinatorial explosion of subpopulations, we
use a “sketch of sketches” that enables memory efficient data
stream summarization. This reduces the framework’s data-
resident memory footprint by one to two orders of magnitude
compared to Spark- and Druid-based alternatives and offers
robust and provable accuracy guarantees. Second, to provide
high-fidelity estimations simultaneously for many statistics,
we leverage universal sketching [72]. Unlike canonical sketch-
based approaches that deploy one custom sketch type per
statistic [50, 88, 89], a universal sketch estimates multiple
different summary statistics with only one sketching instance.

To the best of our knowledge, HyDRA is the first work to: (a)
propose the combination of sketch-of-sketches with universal

sketching for the multidimensional telemetry problem;! (b)
analytically prove the theoretical guarantees of such a con-
struction; and (c) design a practical end-to-end system design
and implementation of this idea using the theoretical analy-
sis. We build a prototype HYDRA on Apache Spark but note
that our core design is platform agnostic and can be ported
to other streaming/batching systems as well [11, 85, 96]. We
also implement practical optimizations to mitigate compute
bottlenecks to further reduce HyDRA’s runtime and cost.

We evaluate HYDRA using two real-world datasets; (1) a
2h-long, January 2019 CAIDA trace from the equinix-NYC
vantage point [4, 5] and (2) an anonymized real-world trace
of video QoE from a video analytics provider capturing the
perceived QoE of viewers of a US-based content provider [6].
To further evaluate the sensitivity of HyDra-sketch, we also
leverage a synthetic multidimensional dataset drawn from a
Zipf distribution with different parameter values [49, 89].

We compare HYDRA against six baselines: A native Spark-
SQL implementation for exact analytics, a Spark-based imple-
mentation that uniformly samples incoming data, a sketch-
based approach that allocates one universal sketch instance
persubpopulation, VerdictDB [81] (a sampling-based alterna-
tive) and two key-value based implementations (on Apache
Spark and Apache Druid) that pre-aggregate data at ingestion
time and provide precisely accurate analytics .

Our evaluation shows that: (1) HypRrA offers robust accu-
racy (mean error across statistics <5% with 90% probability)
at 1/10 of the operational cost of exact analytics frameworks;
(2) HYyprA’s configuration heuristics ensure close to optimal
accuracy memory tradeoff; (3) HYDRA’s memory footprint
scales sub-linearly with dataset size and number of data sub-
populations. Combined with performance optimizations that
improve end-to-end runtime by 45%, Hypra offers 7-20% bet-
ter query latency than Spark- and Druid-based alternatives.

2 BACKGROUND AND MOTIVATION

In this section, we present several motivating scenarios, intro-
duce key aspects of multidimensional telemetry, and discuss
the limitations existing analytics frameworks.

2.1 Motivating Scenarios

Video Experience Monitoring: To maintain their ad- and
subscription-driven revenues, video providers need to detect
issues that can degrade viewer experience. To that end, an-
alysts fist collect video session summaries (i.e., per viewer
measurements of video quality) and use them to periodically
(e.g., every minute) compute various summary statistics and,
thus, monitor quality metrics across multiple subpopulations
of viewers [14, 63, 64]. For instance, to track the entropy of

!While some prior work has proposed sketch of sketches, they do so for
more narrow estimates of interest and do not demonstrate practical system
implementations supporting a broad range of estimates (e.g., [41]).

bitrate and the L1 Norm of buffering ratio - common indica-
tor of streaming anomalies — for viewers in different cities,
analysts may want to estimate the following query:

SELECT City, Entropy(Bitrate), L1Norm(Buffering)
FROM SessionSummaries
GROUP BY City

Network Flow Monitoring: Network operators commonly
rely on control-plane telemetry [44, 54] for tasks such as traf-
fic engineering [46, 72], attack and anomaly detection [84] or
forensics [95]. These frameworks periodically monitor per-
formance metrics (e.g., flow distributions, per-flow packet
sizes, latency, etc.) across different subpopulations of flows,
i.e., network flows grouped across combinations of packet
header fields. For instance, the operator might want to track
indicators of DDoS attacks as follows:

SELECT dstIP, Cardinality(srcIP)
FROM FlowTrace
GROUP BY dstIP

These usecases share a problem structure that is charac-
teristic of multidimensional telemetry. Queries that involve
estimating many statistics across many data subpopulations
appear in various settings, such as A/B testing [59, 65], ex-
ploratory data analysis [26, 90], operations monitoring [16],
and sensor deployments [97].

2.2 Requirements and Goals

Drawing on these use cases, we derive three key properties
of the telemetry problem we want to tackle:

1. Multidimensional Data: We define a multidimensional
data record as x = (d, ..., dp, m), where d; is the value
of a dimension D; and m is the value of metric M. In
video, quality metrics might be bitrate or buffering time
whereas dimensions might be the viewer’slocation, their
player device, their ISP or CDN. Metrics and dimensions
are domain- and usecase-specific.

2. Analytics on Data Subpopulations: Analytics are es-
timated in parallel across subpopulations of the input
data. A subpopulation Q; is a collection of data records
{x;} such that all x; € Q; match on a subset of dimen-
sion values. With a slight abuse of notation, we define
Q; using this set of dimension values, i.e., Q; = {D;; =
di,l /AN /\Di,l = di,l}> where {Di,l,m,Di,l} c {D1,...,DD};
e.g., a data subpopulation could be NYC-based viewers
using AppleTV.

3. Multiple statistics to estimate: For each subpopula-
tion, the operator wants to estimate various summary
statistics e.g., heavy hitters, entropy, cardinality, etc. A
query g specifies a set of subpopulations {Q;} and a
statistic g to estimate using the values m; of x;€ Q;.

In practice, operators have three requirements: (1) High
fidelity for a broad set of statistics i.e., robust, apriori con-
figured, error bounds for as many statistics as possible; (2)

Near real-time estimations and; (3) Low footprint (e.g., cloud
compute and memory costs).

2.3 Prior Work and Limitations

Prior work has focused on developing two broad (but not
mutually exclusive) approaches. The first enables distributed
computations by horizontally scaling the frameworks’ re-
sources. The second enables approximate analytics that sac-
rifice estimation accuracy for improved performance.

1. Horizontal resource scaling: Here we find SQL and
NoSQL analytics frameworks whose distributed design
reduces estimation latency through horizontal scaling of
server resources (e.g., Spark [99], Hive [87], Hadoop [85],
Dremel [74], Druid [96], Flink [35]). These frameworks
scale their clusters with input data and can provide pre-
cisely exact estimations. However, as data volume and
dimensionality grow, i) deploying such clusters becomes
increasingly expensive and ii) the continuous addition
of resources eventually results in marginal estimation
latency gains due to data shuffling overheads [20].

2. Approximate Analytics: Approximate analytics frame-
works leverage sampling or data summarization algo-
rithms in order to trade off accuracy for performance and
cost. Sampling-based frameworks allow for low estima-
tion latency by sampling data either online, at query time
(the analyst applies the sampling operators and param-
eters as part of the estimation query) [24, 36, 74, 79, 87]
or offline, by means of a pre-processing step that creates
data samples to be used at query time [17, 18, 20, 86].

While there is a rich body of sampling-based efforts,
these have two key shortcomings. First, their accuracy
guarantees are in the form of confidence bounds that are
computed after query estimation has taken place and
depend on the statistic being estimated and the num-
ber of samples used [73]. Therefore, when an estimate
does not meet accuracy requirements, frameworks of-
ten fall back to using other samplers or precisely ex-
act estimates. Second, to offset the resource overheads
of producing offline samples, frameworks often make
hard apriori choices on what subsets of their data to
create samples for (e.g., BlinkDB [20] that mines query
logs for frequently queried data or VerdictDB [81] that
allows users to identify popular data tables). In con-
trast, sketch-based analytics ensure bounded accuracy-
memory trade-offs for arbitrary workloads in sub-linear
space [42, 43, 45, 72, 98]. These frameworks build com-
pact data summaries at ingestion and use them to esti-
mate statistics with apriori provable error bounds.

We can also combine horizontal resource scaling and ap-
proximations. For instance, both Apache Spark and Druid al-
low for data summarization at ingestion time such that incom-
ing data are stored as a key-value store where the keys are dis-
tinct (Q;, m;) tuples and the values are their respective counts.

100 A * x 0 o W

90

80 S

A
= 70 —o— Spark-SQL
°; 60 —— 1 Sketch per Subpopulation
2 50 —+— Spark-KV
3 40 —%— Druid
9
< 10 A Uniform Sampling 1%
—O— Uniform Sampling 10%

20 %@ v VerdictDB

10 o HYDRA

0 107 107 107

Cost of Analytics ($ Normalized)

Figure 1: End-to-end cost of analytics. The green-shaded region
indicates the ideal operating regime for HYDRA.

These hybrid approaches enable data reduction without com-
promising the frameworks ability to offer precise estimations.

Qualitative Analysis: Next, we analyze the overhead to
process multidimensional streams and the resident data cost
using the above solutions. Let us denote the dataset size (in
terms of number of data records) as V and let Q be the number
of data subpopulations. Assuming D dimensions and that each
data record belongs in 2P different subpopulations, then Q=
0(2PxV).2 In addition, given that the framework needs to es-
timate O (S) different statistics, the number of summary statis-
tics to be estimated is an exponential O (QxS) =0 (2Px V' x5).
Assuming, as it is the case for frameworks for precisely exact
analytics, that the CPU and memory requirements for data
ingestion and/or statistics estimation scale linearly with sub-
populations, we see that the framework’s runtime, resource
requirements and cost also scale exponentially.

Quantitative Analysis: To corroborate this qualitative anal-
ysis, we evaluate the operational cost for several analytics
frameworks when used in a multidimensional context (Fig-
ure 1). Specifically, we measure their $ cost as a function of
their observed accuracy when asked to estimate in real-time
4 summary statistics from a 130GB real-world dataset with
approximately 5.6 million data subpopulations.® We provide
a detailed description of our experimental setup and base-
lines in §6. Ideally, we need a framework whose cost-accuracy
tradeoff lies in the top-left, green region, i.e., it offers the accu-
racy of a precise analytics frameworks at the cost of sampling.
However, we observe that the cost gap between the cheapest
(1% uniform sampling) and the most expensive baselines (pre-
cisely accurate Spark-SQL) is two orders of magnitude wide.
A sketch-based approach where the framework allocates one
sketch per subpopulation, while cheaper than Spark-SQL, re-
mains expensive as it allocates exponentially many sketch
instances, thus incurring high memory overheads.* Finally,

%In practice, assuming each dimension has cardinality C, there are O (CP)
subpopulations in the dataset. In practice, we find that O (2P x V) is a tighter
empirical bound for Q and we will use that moving forward

3Following the typical cloud billing model [1], we use the total runtime times
the number of cluster nodes used (20) as a proxy for the $ cost.

4 As discussed in §6, this baseline uses universal sketching that can simultane-
ously estimate all 4 statistics of interest per subpopulation with one sketch.

Estimation Tasks: {gi}
Data Aggregations: {Q;}

Result Output - o

Query API
Frontend node Sketch Query
Configuration Planning
~ 2
1. Configuration PN T 3, Query Plan
Distribution / e | Distribution
/ =7 o= .
L ~N\!
Worker nodes e
I N N —— I S N —— o
T I I
2. sketch Update Query Update Query 4 Query

Update Estimation
Figure 2: Hypra’s example workflow. Workers perform data
ingestion and querying. The frontend node exposes the query API to the
operator and performs configuration and query plan dissemination.

precise baselines that summarize data at ingestion time, such
as Apache Druid and Spark (denoted as Spark-KV) lie in the
middle between Spark-SQL and sampling.

Key takeaways: Multidimensional telemetry entails a combi-
natorial explosion of data subpopulations and summary statis-
tics to monitor. Striking a good balance between cost, accuracy,
and estimation latency is challenging due to the combinatorial
explosion in data subpopulations and the number of summary
statistics the framework needs to enable. Existing frameworks
can only meet a subset of these goals, which motivates us to
rethink how to support such analytics workloads at scale.

3 HYDRA:SYSTEM OVERVIEW

To support multidimensional workloads at scale, we envision
HyDRA as a streaming, sketch-based OLAP framework [3, 96].
Hypra’s distributed design (illustrated in Figure 2) includes
one frontend and multiple worker nodes and its input are
i) streams of multi-dimensional data, ingested in parallel at
the worker nodes and ii) estimation queries provided by the
operator to the frontend node. Hypra implements two logical
operations: Data Ingestion and Query Estimation.

(1) Data Ingestion: Data Ingestion happens at the worker
nodes. Each worker summarizes an incoming data stream to a
local instance of HyDRA-sketch. Data summarization happens
on a per-subpopulation basis. Specifically, for every incoming
data record, HYDRA first identifies what subpopulations the
data record belongs in and correspondingly updates a novel
sketching primitive that we discuss below, HyDra-sketch.
Hypra-sketch instances are configured to ensure accuracy
guarantees and low memory footprint (§4.6).

(2) Query Estimation: Query Estimation involves both
frontend and worker nodes. The frontend receives operators’
queries with the statistics to estimate and the set of subpopu-
lations to estimate these statistics on. Using this information,
the frontend node creates a query plan that distributes to the
worker nodes who execute the queries. After estimation has
taken place, the frontend node collects the results from the
worker nodes and returns them to the operator.

While the idea of using sketching to optimize analytics is
not new, in our context canonical sketch-based approaches

Sketch of Sketches

w

0y, G ~ 0 O~
== |
S o] SEERS
] / K
/.

Sketches Per Subpopulation HydraSketch

o(s)

Ingestion: (0(2PxVxs), (0(2PxVxS), (0(2PxV),
0(2xVx$)) 0(wxrx$)) 0(wxr))

Estimation: (0(S), 0(1)) (0(s), (1) (0(8), 0(1))

Figure 3: Comparison of Ingestion and Estimation (CPU time, space
complexity) for different sketch-based designs. We highlight the theo-
retical improvements in space complexity from HYDRA s design ideas.

will need to instantiate up to O(S) sketch instances per sub-
population. This is inefficient as the framework needs expo-
nentially many sketch instances, despite a sketch’s ability to
summarize a subpopulation’s in sub-linear space.

Key Idea: To avoid the above limitations of conventional
approaches, HYDRA uses a novel combination of two ideas.

First, we observe that we canreduce the exponential O (Q) =
O(2Px V) ingestion-time, memory cost of sketch-based ap-
proaches through a novel “sketch of sketches”. We show that
through a w X r array of sketch instances (Fig. 3), where
wxr < 2P x V, Hypra reduces the memory cost of estimat-
ing O(S) statistics from O (2P x VxS) to O(wxrxS). The
intuition is that, unlike canonical sketch-based approaches,
we can summarize multiple subpopulations into one sketch
instance and then query it with predictable error [41, 89].

Second, to reduce the need for instantiating O(S) different
sketch types for O(S) summary statistics, HYDRA leverages
universal sketching [33, 72]. Universal sketching enables re-
placing O(S) sketches with a single sketch that simultane-
ously estimates multiple different statistics per subpopulation.
This means that as long the desired statistics can be estimated
with a universal sketch, there is no limit in the number of
statistics that the sketch can estimate with fixed memory foot-
print. This design choice further reduces the framework’s
space complexity from O (wxrxS) to O(wxr).

While these two ideas (sketch of sketches and universal
sketching) have been independently proposed in other nar-
rower contexts, to the best of our knowledge, we are the first
effort to: (1) propose the combination of these ideas to tackle
the multidimensional telemetry problem; (2) rigorously prove
the accuracy-resource tradeoffs of this construction; and (3)
demonstrate a practical end-to-end realization atop state-of-
art horizontally scalable “BigData” platforms.

4 HYDRA DETAILED DESIGN

We first provide background on sketching to set up the intu-
ition for HypRrA-sketch. We then introduce the basic HYDRA-
sketch algorithm, formally prove its error bounds, and devise
HybpRra-sketch configuration strategies. Table 1 summarizes
the notation we use in this section.

Notation Definition
\4 Input size
D Number of data dimensions
Q Number of data subpopulations
S Number of summary statistics
Smn Stream of length m and n distinct keys
w Number of sketches per 2D-sketch row
r Number of rows in 2D-sketch

(€,0) 0 <€ <1 as additive error and ¢ is the probability that

the result error is not bounded by € (failure probability)

wUs Number of counters per universal sketch row
rus Number of universal sketch rows
(eus,0us) 0<eys <1 asadditive error in universal sketch and
dys is the failure probability
L Number of universal sketch layers
k Number of keys in universal sketch heavy hitter heaps

Table 1: Hypra Notation. The upper subsection introduces notation
specific to the sketch-of-sketches and the lower to universal sketches.

4.1 Background on Sketching

Let S, , denote a data stream with length m and n distinct
keys. Suppose we want to estimate a frequency-based sum-
mary statistic of the keys (e.g., entropy, cardinality, frequency
moments). A natural design is to estimate the desired statistic
with a key-value data structure tracking the frequency per
key. For instance, for frequency estimation, we can maintain
and increment one counter per key. While correct, the space
complexity is linear in n and not space efficient (Figure 4).

Input Stream

3EEEDE :>[IEEED 0t gesion

m: length of stream memory
n : distinct keys

Figure 4: Maintaining per-key state is not space efficient

Per- key state

Hash-based mappings for space efficiency: To ensure sub-
linear (in n) space complexity, sketching algorithms do not
maintain per-key state but, instead, map multiple keys to the
same counters via hashing. For instance, a simple sketch for
frequency estimation consists of w integer counters, where
w < n. Based on the hash of the key, an element gets mapped
to a counter, which is then incremented to maintain an esti-
mate of thatkey’s frequency. Naturally, multiple keys colliding
introduces some error (Figure 5).

3, 5 7 9
Input Stream

B1I6IBIEE] = IZIZED

Hash—based
mapping
Figure 5: Hashing enables sub-linear memory complexity

O(w) sub-linear
ingestion memory

m: length of stream
n : distinct keys

Multiple independentupdates for tighter errorbounds: As
defined, this basic mechanism only provides a small probabil-
ity that the estimation error will lie within a desirable range of
error values [22]. To overcome this, sketches use independent

instances (e.g., r arrays) of the counter structure of length w.
Each vector of length w has its own hash function and the w
hash functions are pairwise independent. Thus, ingesting a
stream element now translates to r update operations (e.g.,
incrementing r integer counters instead of one). For each key,
this sketch produces r different estimates of the statistic of in-
terest. The final estimate will be a summary of r estimates (i.e.,
min, median etc.) (Figure 6) [42]. This amplifies the probability
that the estimation error lies within the desired range.

A

Input Stream

Illll@énwwwﬂr

v

O(wr) sub-linear
ingestion memory

m: length of stream
n : distinct keys

Hash-based mapping
Redundant counters

Figure 6: Independent hashing improves accuracy.

4.2 Tackling Subpopulation Explosion

For now, let us make the simplifying assumption (which we
relax later) that our system only needs to estimate one sum-
mary statistic (e.g., entropy) per data subpopulation. Similar to
Figure 4, a starting point for our design would be to maintain
per-subpopulation state, i.e., allocate one sketch instance for
each of the O(2P x V) distinct subpopulations. This approach,
similar to an OLAP cube, is not scalable as it requires as many
sketches as the number of data subpopulations.

To avoid keeping per-subpopulation state, we borrow from
the first intuition that we saw in the sketch construction in
the background (fig. 5). The basic sketch construction avoids
maintaining per-key state by allowing multiple keys to ex-
plicitly collide in a hashed key-value store whose size is less
than the number of unique elements.

Note that the basic sketch is maintaining a single counter
per array entry but we want to able to estimate some statisti-
cal summary of an subpopulation instead. Therefore, instead
of keeping a single counter per array entry, we maintain a
sketch-per-entry. This brings us to the following construction
(Figure 7). We consider a single array of w (e.g., w < 2Px V)
sketches. For each (Q;, m;) pair, we hash the Q; and map it to
one of the w sketches, thus colliding multiple subpopulations
to the same sketch. Then, we update the sketch with m; and
at query time, we estimate the statistic for Q;.

Multidimensional Stream

{x; = (dydyy o dpom;), d € D} :

V: Length of stream
2P Aggregations per datapoint
0(2PxV): Aggregations in stream

Q; ‘
\gog Qa\ Q\q\v
T =TI
EEEEEE

Hash-based mapping to sketches

O(w) ingestion memory

Figure 7: Hash-based mapping of subpopulations to a sketch vector.

Analogous to the basic sketch from §4.1, by mapping mul-
tiple subpopulations to one sketch, this baseline construction

will have some estimation error. To control this, we extend
the idea of using redundant counter vectors and pairwise-
independent hashes shown in Figure 6. That is, we use r arrays
of w sketches and use r pairwise-independent hash functions
to map each subpopulation to one sketch per row (Figure 8).
At query time, we return the median of the r estimates.

Multidimensional Stream

{x; = (dypdyyy o dpomy), dj € D}

V: Length of stream
2P: Aggregations per datapoint
0(2PxV): Aggregations in stream

0(wxr) ingestion memory
Figure 8: Redundant sketch vectors and pairwise-independent
hashes for tighter error bounds.

In summary, the above sketch-of-sketch construction main-
tains a 2D array of sketches to track multiple subpopulations.
This reduces the memory cost of ingestion to O(w X r) ie.,
sub-linear in subpopulations. In §4.5, we formally prove the
memory-accuracy tradeoffs for this construction.

4.3 Enabling Multiple Statistics

The above discussion is based on the simplifying assumption
that we need to only estimate one summary statistic. Since
sketching algorithms are generally custom designed per statis-
tic, to support O(S) different summary statistics, we need to
create O(S) sketch-of-sketches instances. This raises two nat-
ural concerns. First, the total memory cost of this solution
becomes O(wXxrXxJ5), i.e, linear to the number of summary
statistics of interest. Second, the framework cannot offer gen-
erality as it cannot estimate summary statistics that are not
already allocated; e.g., some future analysis might require
estimating the entropy of a metric but the framework has not
instantiated an entropy-specific sketch-of-sketch instance.

Our insight here is that the sketch of sketches structure
can be combined with universal sketching [72] to achieve the
desired generality across statistics. A universal sketch is a
sketching primitive that enables the simultaneous estimation
of multiple different, apriori unknown, statistics with one
sketch instance. Therefore, instead of a sketch-of-sketches
per statistic, we can use one sketch of universal sketches. We
formally prove this in §4.5 and show that HYDRA’s ingestion
cost drops to O(wXxr).

Background on universal sketches: A universal sketch can
estimate any summary statistic that belongs to a broad class
of functions, known as Stream-PolyLog [32, 33, 72]. We denote
each function in Stream-PolyLog, as G-sum= }.g(f;), where f;
is the frequency of the j-th unique element in the input stream
Smn and g is a function defined over f;. If g is monotonically
increasing and upper bounded by O(f;*), then G-sum can be
computed by a single universal sketch with polylogarithmic

memory. Universal sketch provides e-additive error guar-
antees to Stream-PolyLog and demonstrates better memory-
accuracy tradeoffs than the composition of custom sketches
when estimating multiple statistics from Stream-PolyLog in
practice [72]. Key statistics of interest can be formulated via
a suitable G-sum € Stream-PolyLog. Such examples include:
a-Heavy Hitters (f; > aZf;), L1-Norm (2 f;), L2-Norm (2f?)
Entropy (-3 £ log L"), and Cardinality (|(fi.....fi'}|). Note that
there are many other summary statistics that can be esti-
mated by combining statistics, such as standard deviation,
histograms, mean, or median. A statistic that cannot be di-
rectly estimated by Hypra-sketch is quantiles.

The basic building block of universal sketches are L2-Heavy
Hitter (HH) sketches e.g., Count-sketch [75]. Each count-
sketch maintains r¢g arrays of wes counters each, rcs pairwise-
independent hash functions and a max-heap keeping track of
the top-k Heavy Hitters in the sketch; When updating each
count-sketch with a new data item, the sketch updates a ran-
domly located counter in every row based on the correspond-
ing hash index to keep track of that data item’s frequency. The
top-k HH heap is subsequently updated to reflect the addi-
tion of the new item. A universal sketch consists of L layers of
count-sketches. Each count sketch applies an independent 0-1
hash function hjc o, 1) to theinput data stream to sub-sample at
every layer (from the previous layer). These layers then track
the heavy hitters, i.e., the important contributors to the G-sum.

The intuition here is that the layered structure of universal
sketch is designed for sampling representative elements with
diverse frequencies and these elements can be used to esti-
mate G-sum with bounded errors. If only one layer of heavy
hitter sketch were used, the estimations would lack represen-
tatives from less frequent elements. The heavy-hitters at each
layer are processed iteratively from the bottom layer to the
top and the recursively aggregated result is used to compute
the desired statistic. This is an unbiased estimator of G-sum
with bounded additive errors (Theorem 1).

THEOREM 1 ([33, 72]). Given a stream S, , let us consider
a Universal Sketch US with L= O(logn) layers. If each layer
of US provides an (eys, dus)-L2 error guarantee, then US can
estimate any G-sum function G € Stream-Polylog to within a
(1xeys) factor with probability 1-8ys. Satisfying a (eus, Sus)-
L2 error guarantee requires O(logn) Count-Sketch instances
with wes =O(e[_]§) columns and rcs =0 (logde) rows.

4.4 The HyDpra-sketch Algorithm

Combining these ideas gives us the Hypra-sketch algorithm.

(1) Updating Hypra-sketch: Updating Hypra-sketch
with a data record, xj =< dyj, dyj, ...,dpj, mj > is a three-
step process. At the first, “fan-out” stage, we compute the
O(2P) subpopulations {Q;,...,Q,p} that x; belongs in. Note
that while O(2P) is an exponential term, it is exponential to
the number of dimensions D and, thus, significantly smaller

than the total number of subpopulations Q, which is exponen-
tial to the cardinality of values in each dimension. Then, we
map each Q; to r universal sketches instances using r pairwise-
independent hash functions hgco,r) : Qi — [0,w). For the k* h
row, the index of the universal sketch to update USy is the
hash of Q; using hash function hj. Last, we update each USy
with the metric value m;.

(2) Querying Hypra-sketch: Hypra-sketch’s querying
algorithm takes as input a statistic g and an aggregation Q; i.e.,
the aggregation to estimate g on. Querying consists of 2 steps.
The first involves identifying the set of r universal sketch in-
stances { USy } that Q; maps to. Then g is estimated from each
USk, and the median value of these estimations is returned.

Given this basic algorithm, we now focus on formally prov-
ing that Hypra-sketch offers rigorous accuracy guarantees
and that it is usable in practice.

4.5 Accuracy Guarantees
Theorem 2 states the accuracy bounds of Hypra-sketch.

THEOREM 2. Let us assume that each Universal Sketch US
can approximate the G-sum, for a monotone function g within a
(1+€eys)-factor with probability 1—-S8ys > 1/2. Further, let Gs be
the G-sum applied to the stream S and G; when applied to the
target subpopulation Q;. Then HYypra-sketch withw=0(e™!)
columns andr =0 (logd™) rows, for user defined parameters
€, 0, provides an estimate G; that with probability 1-6 satisfies:

Gi(1—€ys) < G; < Gi(1+€ys) +e- Gs (1)

Proor. To bound the error of our algorithm, we analyze
the frequency vector f; of the stream of elements mapped
to each Universal Sketch instance US; = h;(Q;), where Q; is
the queried subpopulation. The frequencies of all m; € Q; are
guaranteed to appear in fj, since the UPDATE algorithm of §4.4
maps them to US;.

Let Q={Q;....,} denote all groups in the input stream S, and
let Q;= {Q;c €Q|hj(Qr)= hj(Q,-)} denote the set of groups
mapped to US;. That is, Gs =X, e 2my e & (fme)-

The quantity which we wish to estimate is G; = 3¢9, &(fm).
i.e, the g-sum of the group Q;, while the US; processes all
groups in Q; and thus approximates 2.0, cq; %m0, 9(fm) =
G; + ZQkEQj\{Qi} kaEQk g(fmk) For all j € {0,...,?’—1}, de-
note by G; ; the estimate of US;, and denote the noise added
by the other groups as Nj =20, cq\ (0} Zmic0 9 (fmi)- No-
tice that, since any group in Q \ {Q;} has a probability of
1/w of being in Qj, its expectation satisfies that: E[N;] =

openn{0;} Lm0y 9 (fmp) 3 . ,
Qen{oi) - <0 U < %.Therefore, according to Markov’s

inequality, for any c e R*, Pr[N; > ¢c- %] <1/c. Next, by the
correctness of the universal sketch, we have that,

Pr[G;; ¢ [(Gi+N;)(1-€us),(Gi+N;) (1+eus)] < bus.
Since g is part of G-sum € Stream-PolyLog, it must be mono-
tone, and thus N; > 0. This means that with probability of at

least 1—8ys—1/c both Gy € [Gi(1—€us),(Gi+N;) (1 +€us)]
and Nj <c- % simultaneously hold, and thus

—— c
Gi(1—-eys) < Gij < Gi(1+eys) + ;(1 +€us)Gs. (2)

Therefore, we pick w=c- (1+¢eys) ¢! and a ¢ value such
that 1-8ys—1/c¢>1/2, to get that
Pr[Gi(l—eUS) S’;S Gi(1+eU5)+e-Gg] >1/2
Recall that the algorithm’s query sets G; = median jé—; and
that the r rows are i.i.d. and thus a Chernoff bound yields

Pr[Gi(l—eUS) < éi < G,~(1+6U5)+e-GS] >1-4. 0O

Takeaways: We note the following from Theorem 2. The error
bounds of HYDRA-sketch are tunable based on the choice of its
configuration parameters that control (¢, §) and (eys, Sus). In
addition, the upper error bound is additive, which means that
it will allow for loose error bounds in cases where €- Gs ~ G;.
We discuss these takeaways in more detail below.

4.6 Hypra-sketch configuration
W

Count Sketch Array Count Sketch HH Heap§

HydraSketch Universal Sketch
Figure 9: HYpra-sketch structure and configuration parameters.

We now focus on techniques to tune Hybra-sketch’s pa-
rameters. As illustrated in Figure 9, HYypRA-sketch has six con-
figuration parameters: two parameters (r and w) define the
structure of the sketch arrays and additional four (L, wcs, rcs,
and k) determine the inner structure of the Universal Sketches.
The choice of configuration parameters of Hypra-sketch af-
fects its empirical accuracy and memory footprint. For in-
stance, larger w and r values ensure better estimation accu-
racy but require more memory.

It is often useful to reason about the relative error of the
estimation; rephrasing Theorem 2, we can write:
G-

Pr >1-4.

—€Us <

1
<eyste-—
: Us G;

and thus

Gi-Gi

Pr

Gs
) S6U5+e-a] >1-4.
That is, we have that with probability 1-4, the relative error
is at most eys+e€- % Since eys, €, and Gg are determined by
the configuration and not a specific subpopulation, we get
that the relative error bound is looser if G; is small. Intuitively,
if a subpopulation is very small, the noise we get from the
colliding subpopulations may be larger than its own statistics.

With that in mind, we consider a quantity Gp;, that denotes
the minimal G-sum for which we want to guarantee some
relative error, e.g., of 20%, with a high probability, e.g., 90%.
This means that for any subpopulation with a higher G-sum,
the error is upper bounded by eys+e- % This allows us to
derive configuration heuristics for Hypra-sketch as follows:

Controlling the probability of error bounds holding: From
Theorem 2, for the error bound of our example to hold with
90% probability, 1—5=0.9 and, hence, §=0.1. This translates
to r = 3. Similarly, from Theorem 1, a universal sketch will
estimate any G-sum function within an eyg factor with prob-
ability 1—-Jys. For probability 90%, dys=0.1 and, thus, res = 3.

Minimizing upper error bound: To minimize the upper
error bound of Hypra-sketch, we need to minimize E =
€ys+e % under amemory constraint, O (M) = wXx wys. From
Theorems 1 and 2, we know that € ~ 1/w and eys = 1/+/wys.
This allows us to minimize E for w and wyg as follows:

1. Solving for eys: Given the memory constraint, we can
write E=€eys+ ————. Minimizing E over eys gives us:

MGmineUS

3 ZGS MGmin 2/3

€Us= S wys=0(———)7". ®3)
MGmin GS
2. Solving for e: Similarly, we can write E= ﬁ +e Gfin .
Minimizing over € gives:
-2/3 2/3
2VMGs VMGs
e=|— > w=0 (4)
Gmin min

Controlling remaining universal sketch parameters: Last,
we configure the levels (L) maintained in each universal sketch
instance and the number of heavy keys (k) needed to store at
eachlevel’sheavy hitter heap. From Theorem 1, L=O (lognys),
where nys is the average number of distinct subpopulations
summarized at a universal sketch. For the value of k, we em-
pirically set its lower bound to k=Q(1/ 6?]5)' For eys=0.1, this
translates to k =~ 100.

Let us now see how we can use these guidelines in practice.
As an example, let us assume we want the relative error of
estimation to not exceed 0.2 with 90% probability for subpop-
ulations where G;/Gs > 1073. Thus, Gpin =1073- Gs. Let us

S

also assume that eys=€- 5=~ =0.1. From Eq. (3), we can get

an estimate of memory needed, M ~ 10° needed. Note that
here M measures “units of wys” i.e., counters. Thus, eys=0.1
and wys = ©(102). From O (M) = w- wys, we can further see
that also w=0(10?).

In §6, we show that these strategies can achieve near opti-
mal tradeoffs. We acknowledge that implementing this work-
flow assumes that the operator has some prior knowledge
about the workload i.e., a rough estimate of the number of
subpopulations. We believe this is not an unreasonable re-
quirement in many practical settings.

5 IMPLEMENTATION

This section discusses our implementation of HYDRA and
practical performance challenges we faced. Our prototype of
Hypra-sketch can be found (anonymized) in [2].

Baseline Implementation and Workflow: We implement
Hypra’s workflow (§3) on top of Apache Spark [99] as Spark’s
extensibility allowed us to easily prototype design alterna-
tives. However, Hypra’s workflow can easily fit into different
analytics frameworks e.g., Druid [96].

Data ingestion happens at the worker nodes. Each worker
node splits its input into ~64MB partitions, allocates one
Hypra-sketch instance per partition and updates it with that
partition’s data. We implement these and HyDra-sketch in-
stances as Spark RDDs. To allocate appropriately configured
Hypra-sketch instances, workers rely on configuration man-
ifests distributed by the frontend node.

As aresult of splitting input data into smaller batches, each
worker node maintains multiple instances of Hypra-sketch.
The design of HYDRA enables sketch merging due to the
well-known linearity property of frequency-based sketches.
Therefore, during data ingestion, worker nodes merge HYDRA-
sketch instances of fully ingested partitions until HYDRA is
left with one Hypra-sketch instance to query. For sketch
merging, we use Spark’s “treeAggregation” module [13], thus
mitigating the risk of performance bottlenecks.

Query estimation involves both the frontend and the worker
nodes. The operator inputs the desired queries and the fron-
tend then generates a query plan for the worker nodes to
execute. Estimation results are collected at the frontend node.

An accuracy-improving heuristic: Recall from §4.4 that af-
ter Q; is mapped to a universal sketch, that sketch only stores
the frequencies of metric values m;. This design, however,
does not keep track of which subpopulation Q; each m; maps
to. As a result, a universal sketch will return the same estima-
tions for all subpopulations whose data it stores. Our heuristic
is simple: Instead of updating each universal sketch with m;,
we can use a more fine-grained key, i.e., the concatenation of
the metric value and its corresponding subpopulation. This
way, heavy hitter heaps will maintain heavy counts for each
(Qi, m;) pair and will be able to differentiate between them.

Implementation optimizations: To further reduce the sys-
tem’s runtime, we introduce a few optimizations:

(1) One Large Hash per (Q;, m;) Pair: Updating HYDRA-
sketch (Q;, m;) requires O(rx L) hash computations, r to iden-
tify the universal sketches to update and up to L per universal
sketch. We reduce the number of hashes to O (1) by computing
one large 128-bit hash and breaking it down into substrings
of variable lengths and treating each substring as a separate
hash. Prior analysis [47, 67] shows that different substrings
from the same long hash provide sufficient independence.

(2) One Layer Update: In prior universal sketching imple-
mentations, the algorithm keeps a heap to track frequent keys
per layer. For each datapoint update, the universal sketching
needs to update two of its layers on average. In Hypra-sketch,
we follow [97] and update only the lowest sampled layer per
datapoint. This technique reduces the layers updated to one
per datapoint, while providing an equivalent implementation.

(3) Heap-only sketch merge Merging two HyDRA-sketch
instances involves iterating over two 2D universal sketches
arrays HS' and HS? and merging each pair (HS, ,, HSZ).
This means iterating over the universal sketch la};ers, sum-
ming up corresponding counters, recomputing the heavy
elements and re-populating the heavy hitter heaps. How-
ever, we find that we can only merge the heavy hitter heaps

instead of all counters.

6 EVALUATION

We now evaluate HYDRA using real-world and synthetic datasets.
We provide a sensitivity analysis of our design, and evaluate
our configuration strategies and optimizations. In summary:

1. HyprA offers < 10sec query latencies and are 7-20x
smaller than existing analytics engines.

2. HyDRA offers <5% mean errors (combined across statis-
tics) with 90% probability for a broad set of summary
statistics at 1/10 of the $ cost of exact analytics engines.

3. Thanks to HYDRA’s sub-linear (to the number of sub-
populations) memory scaling, HYDRA achieves close to
an order of magnitude improvement in operational cost
compared to the best exact analytics baseline.

4. HYprA’s sketch configuration strategies ensure near-
optimal memory-accuracy tradeoffs.

5. HYDRA’s performance optimizations improve end-to-
end system runtime by 45% compared to a deployment
that uses the basic Hypra-sketch design.

6.1 Experimental Methodology

Setup: We evaluate HYDRA on a 20-node cluster of m5.xlarge
(4CPU - 16GB memory>) AWS servers [1]. We allocate 3 CPUs
for HYyprA and its input data is CSV files that are streamed
from AWS S3. We configure HyDRA-sketch using the heuris-
tics of §4.6 to ensure a conservative lower error bound of -10%
(i.e., eys=0.1) and upper bound of 20% with 90% probability
for Gpin/Gs =2-107%. We also use the performance optimiza-
tions of §5. While these bounds are conservative, they ensure
amemory footprint of < 100MB per Hypra-sketch instance;
our results show that the actual errors were much smaller.

Datasets: We use two real-world datasets and a synthetic
trace. Each dataset maps to a different usecase. First, we use
CAIDA flow traces [4] collected at a backbone link of a Tier1l
US-based ISP. The total trace is up to 130GB in initial size
and flow data can be clustered in up to approximately 5.6M

SInpractice, we observe that nodes have ~10-11GB of available main memory.

subpopulations Q;. Given that we analyze m; metric values
per subpopulation, this dataset contains up to 506M distinct
(Qi, mj) pairs. Second, we use a real-world trace of video
session summaries corresponding to one major US-based
streaming-video provider. The size of the video-QoE trace
is approximate 5GB, with data that we cluster in up to 700k
subpopulations and up to 25M (Q;,m;) pairs. Third, we gener-
ate synthetic traces following Zipf distribution with varying
skewness (e.g., 0.7 to 0.99).

Summary statistics: We evaluate HYDRA’s accuracy using
L1/L2norms, entropy and cardinality i.e., statistics that map to
the queries described in §2. For each subpopulation, we com-
pute the precise value of each statistic as ground truth and then
estimate the relative error with respect to HYDRA’s accuracy.

Evaluation baselines: For our experiments, we compare
HyDRA against several baselines: From the space of precise an-
alytics we compare with: (1) Spark-SQL: This is a traditional
SQL implementation where incoming data record is stored as
arow inone (logical) data table. At estimation time, we create a
Key-Value store, where the keys are distinct subpopulations Q;
and the values are lists of metric values m; per subpopulation;
(2) Spark-KV: Here, we summarize incoming data at inges-
tion time and maintain a Key-Value store where the keys are
distinct (Q;, m;) pairs and the values are their respective fre-
quency counts; (3) Druid: This is similar to Spark-KV but uses
Druid’s data roll-up feature to generate the key-value store.

From the space of approximate analytics engines, we com-
pare against: (1) Uniform Sampling: We implement 10%
uniform sampling at ingestion time and then apply the Spark-
KV approach to the sub-sampled data that contains ~ 82M
distinct (Q;, m;) pairs; (2) VerdictDB [81]: We deploy Ver-
dictDB on Amazon Redshift and use the default nodes of that
service (20 dc2.large nodes, each with 2CPU, 15GB memory
and 160GB NVMe-SSD as storage) as backend SQL engine.
VerdictDB builds offline samples, so we create hash based
sample tables for cardinality metric and uniform sample ta-
bles for L1 and L2 norm. We set sampling rate = 1% for both
sample tables. VerdictDB does allow entropy estimations. (3)
One Universal Sketch per subpopulation.

6.2 End-to-End Evaluation of HyDRA

To evaluate HYDRA end-to-end we investigate whether the
system meets operators’ requirements as outlined in §2. To
that end, we investigate three questions:

What is HYDRA’s operating cost compared to our base-
lines? We measure the normalized query estimation $ cost
for 4 statistics for the CAIDA dataset (130GB, 5.6M subpopu-
lations, 506 distinct (Q;,m;) pairs). We estimate their normal-
ized cost as VerdictDB on Amazon Redshift constrained us to
specific servers with a different pricing model.

Figure 1 depicts HYDRA’s cost-accuracy tradeoff. HYDRA’s
costis ~2 orders of magnitude smaller than that of Spark-SQL.

—— Upper 20% Bound
—— Lower -10% Bound
== Gmin/Gs

—— Upper 20% Bound
—— Lower -10% Bound
== Gmin/Gs

—— Upper 20% Bound
—— Lower -10% Bound
- Gmin/Gs

—— Upper 20% Bound
—— Lower -10% Bound
- Gmin/Gs

Error (%)
Error (%)

Error (%)

Error (%)

_ 4
6%00 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Subpopulation Size G;/Gs

72(900 0.02 0.04 0.06 008 0.10 0.12 0.14
Subpopulation Size G;/Gs

(a) L2-Norm.

(b) Entropy.

|
0000 0.002 0.604 0.006 0.008 0.010 0.012 ~0.000

Subpopulation Size G;/Gs

0.005 0.010 0.015
Subpopulation Size G;/Gs

(d) Cardinality.

0.020

(c) L1-Norm.

Figure 10: Error distribution for different data subpopulations forYDRA (blue) and uniform sampling (orange). Red lines indicate the error threshold.

40 Error bound

L2

Entropy

L1
Cardinality

30

20

1|

Estimation Error (%)

.

T

il _

T

=

T—=

AppSetl AppSet2 AppSet3 AppSet4

AppSet
Figure 11: HYDRA s estimation error for the CAIDA dataset.

That is because Spark-SQL processes the entire dataset at
query time and because estimation happens at the frontend
node. HYDRA’s estimation cost is also an order of magnitude
lower than Druid’s that uses data summaries created at inges-
tion. However, as we will see later, Druid’s ingestion is very
inefficient. The best performing, precisely accurate, baseline
is Spark-KV that produces frequency counts for the result-
ing 506 KV-pairs at ingestion time and uses that for statistics
estimation. Spark-KV is ~7x more expensive than HYDRA.

Regarding approximate analytics baselines, we observe
that VerdictDB, while very accurate (~98% mean accuracy
for 1% sampling, exhibits large estimation times, comparable
to worst-case estimation times in the original VerdictDB pa-
per [81]. When normalized by server cost, VerdictBD’s cost
is comparable to Spark-SQL. HYDRAs operational cost is on
par with a sampling approach that uniformly samples 10% of
all data but whose error can be very large. Perhaps surpris-
ingly, the 10% baseline exhibits higher cost. This is because
this baseline still needs to process ~ 82M KV pairs and still
requires more memory than HyDRA. In the case of the smaller
video-QoE dataset (not shown due to lack of space), HYDRA is
only 3% cheaper than Spark-SQL and approximately as costly
as Spark-KV. This smaller gap is due to the smaller size of the
dataset. In §6.3, we look at the empirical runtime and memory
requirements that explain the observed cost results.

Does HYDRrA enable interactive query latencies? Figure 12
illustrates HYDRA’s runtime as a function of the dataset size
and the number of data subpopulations for the CAIDA dataset.
We can see that HYDRA’s query time is ~11sec for 5.6 mil-
lion data subpopulations, almost one order of magnitude (7x)
smaller than that of Spark-KV. We find this to be an acceptable
query latency for a framework that is configured to period-
ically run estimations on streaming data (e.g., every minute)
and large volumes of subpopulations. Due to the centralized

10

statistics estimation of Spark-SQL, execution would fail for
datasetsizeslarger than 30GB. However, even for a small input,
the querying latency of Spark-SQL is ~2 orders of magnitude
larger than HYDRA’s. Druid’s ingestion would prematurely
terminate for dataset sizes >60GB because the framework (a)
indexes data upon ingestion and (b) is optimized for reads over
writes [7]. We did not focus on improving Druid’s ingestion.

Is HYDRA accurate and general across summary statis-
tics? To evaluate HYDRA’s accuracy and generality, we look
at the accuracy of four different sets containing different num-
bers of summary statistics. Figure 11 depicts the boxplot of
empirical estimation error for each statistic. Positive error
values indicate overestimation errors and negative error val-
ues indicate underestimation. For all application sets HYDRA
operates under the same resource budget and configuration
as described previously. We find that estimating multiple sum-
mary statistics does not incur accuracy reduction, compared
to when individual statistics are estimated. This highlights
HyDRrA’s generality, which is enabled by the fact that informa-
tion maintained in the universal sketches is statistic-agnostic
and is equally used for multiple statistics of interest. HYDRA’s
median estimation error is almost 0 for the L2-norm, -5.7% and
-5.5% for entropy and L1 norm respectively and 9.8% for cardi-
nality estimation. We can observe that the estimated errors are
well within the accuracy threshold that we set. However, for
cardinality, we observe a higher median and variance in error
values. This is due to a large concentration of G;’s near Gy,ip.
Recall from the discussion of §4.6 that HYDRA’s error is loosest
when G; = Gy, and this allows for higher error variance.

Figure 10 corroborates this observation by depicting the
distribution of estimation error values for all summary sta-
tistics as a function of the subpopulation’s normalized G-sum
i.e., G;/ Gs. Note that for values of G;/Gs ~ G/ Gs the vari-
ance of empirical error becomes larger as that is the region
where the error is allowed to approach our worst-case error
bound. Cardinality estimation using one universal sketch per
subpopulation yields estimations with < 7% error. The figure
also compares Hydra with uniform sampling and highlights
the high variance in error that sampling exhibits. We observe
the same behavior for the video-QoE dataset with a mean
error across statistics of ~6%.

10°

Time (s)
o
2

10!

X
\
\
)

102

T\
\

10!

0 50 100

4

Hydra Ingest
Spark KV Ingest
Druid Ingest
Sampling Ingest
VerdictDB Ingest

Spark SQL
Hydra Query
Spark KV Query
Druid Query
Sampling Query
VerdictDB Query

6
Dataset Size (GB) Data Subpopulations (Millions)

Figure 12: Runtime for CAIDA Dataset
6.3 Detailed Analysis of Hypra-sketch

First, we compare HyDRA-sketch’s memory footprint to that of
our baselines. Second, we show that our configuration strate-
gies converge to a near optimal configuration with respect to
memory and runtime. Lastly, we show that our performance
optimizations reduce HYDRA’s runtime by 45%.

Memory Footprint vs. Subpopulations: Figure 13 shows
memory footprint as a function of the number of subpop-
ulations monitored for the CAIDA dataset. HyDRA follows
the theoretically-expected sub-linear memory scaling as the
dataset size and subpopulations increase. Indeed, while we
observe that for smaller datasets, a Spark-KV implementation
might be preferable in terms of memory footprint (as the size
of the sketch instances might even exceed that of the input),
this trend is very quickly reversed. This is an observation that
is also confirmed for the video-QoE dataset.

[—— Spark SQL
—&— Druid

/ "
£ o~
’e e
[il
0 25 50 75 100 125

Dataset Size (GB)

Figure 13: Memory footprint per dataset size and subpopulation.
VerdictDB numbers do not expose memory utilizations.

HYDRA !
—+— Univ.Sketch/Subpopulation

—~
—

—— Uniform Sampling
—— Spark KV

[
o
O

-
o
=

Memory Footprint (MB)
=
o

-
o
~

1 2 3 4 5
Data Subpopulations (Millions)

Configuration Heuristics: Figure 14 depicts the relation-
ship between the memory footprint of HyprA-sketch and its
estimation error for different configurations. The estimation
error of the figure is that of the L1-Norm of the CAIDA dataset.
The optimal configurations simultaneously minimize the es-
timation error and Hypra-sketch memory footprint (marked
with red stars). The orange diamond configuration is the sug-
gested configuration based on the configuration strategies
discussed in §4. Thus, our strategies result in a configuration
comparable to the optimal configurations. This observation
holds across all summary statistics and datasets.

11

22.5 '.’.'. o HYDRA Configurations
°®, * Optimal Configuration
20.0 M . . Heuristic Configuration
Ty ° hd % % o |® °
175 - . . .
K150 -
S
t12.5
w . . L]
10.0 —o'e
e o o
7.5
0 %, ° L ° P
. . J " L Lad ° Ld
5.0 *okh S . . e .
50 100 150 200 250 300 350 400
Memory (MB)

Figure 14: HYpRrA's configuration strategies are close to optimal

Analysis of Performance Optimizations: Figure 15 depicts
the cumulative improvement in HYyDRA’s performance using
the performance optimizations of §5. Each datapoint corre-
sponds to a different HyDrA-sketch configuration (the Pareto
frontier of Figure 14) and we run each configuration twice,
once for the basic Hypra-sketch design and once with the
performance optimizations. The performance optimizations
further reduce the memory footprint of Hypra-sketch and
the total system runtime. Table 2 captures HYDRA’s runtime
reduction after each performance optimization. The baseline
is HYyprA without optimizations and, overall, we see a total
performance improvement of 45%.

Baseline Heap-only | One Hash | One Layer
Merge Update
100% [92% | 64% [55%

Table 2: Runtime improvements with performance optimizations

e Basic Design Optimized Design

307
L] L]

—_ ° L) * L)
X 20 % %
’5 °] o0
= 10 * oo < ° "
w °® e e g ’

0 0 200 400 600 150 200 250

Memory (MB) Total Runtime (s)

Figure 15: Comparison of the Pareto frontiers of basic and the
optimized HYDRA-sketch implementation for the same configurations.

Skewness of Dataset: Figure 16 highlights the difference in
estimation accuracy for two synthetic datasets generated with
a zipfian distribution. The subpopulations are samples from
a zipfian distribution with parameters « = 0.7 and @ = 0.99
respectively (a value of & = 0 indicates a perfectly uniform
distribution). Our experiment confirms our intuition that the
more skewed dataset ensures a better (memory, error) trade-
off. In practice, many real-world datasets are skewed and thus
can benefit from being analyzed by HYDRA.

7 RELATED WORK

MapReduce-based Analytics Frameworks: There are var-
ious analytics frameworks that are based on the MapReduce
paradigm [51, 85]. Dryad [61] introduced the concept of user-
defined functions in general DAG-based workflows. Apache

30— & a=07 a=0.99
& »
. . L] * [}
320 o "¢ o S o
8 é-f.,"'. 0 . Y orcE
S . S wcee o0 o >
ut_| Rhe . ¢) _
10 v Ouyd'..ol ~t.o »e® . & ome o -y e
0 0 250 500 750 1000 1250 40 100

60 80
Memory (MB) Total Runtime (s)
Figure 16: Impact of data skewness on HYDRA s memory footprint
and runtime. We use a synthetic dataset where subpopulation sizes

are sampled from a Zipfian distribution with parameter a.

Drill and Impala [68] are limited to SQL variants. Apache
Spark [99] leverages a DAG-based execution engine and treats
unbounded computation as micro-batches. Apache Flink [35]
enables pipelined streaming execution for batched and stream-
ing data, offers exactly-one semantics and supports out-of-
order processing. HYDRA could be built on top of Apache Flink.

Stream Processing Frameworks: This line of research fo-
cuses on the architecture of stream processing systems, an-
swering questions about out-of-order data management, fault
tolerance, high-availability,load management, elasticity etc. [10,
11, 15, 21, 23, 27, 35, 60, 66, 76]. Fragkoulis et al. analyze the
state of the art of stream processing engines [48].

High-dimensional Data Cubes: Data cubes have been an
integral part of online analytics frameworks and enable pre-
computing and storing statistics for multidimensional aggre-
gates so that queries can be answered on the fly. However,
data cubes suffer from the same scalability challenges as Hy-
DRA. Prior works have focused on mechanisms to identify the
most frequently queried subsets of the data cube and opti-
mize operations that are performed only on a small subset of
dimensions at a time [52, 56, 57, 69, 71].

Data Aggregations: The aggregation-based queries that
we discussed in §2 appear in multiple streaming data sys-
tems [20, 26, 31, 44, 55, 83, 96] that motivate HYDRA. Many of
the above frameworks enable approximate analytics but do
not fully satisfy operators’ requirements as outlined in §2.

Sampling-based Approaches: Multiple analytics frame-
works use sampling to provide approximate estimations [18,
37,78, 92]. BlinkDB [20] builds stratified samples on its input
to reduce query execution time given specific storage budgets.
STRAT [38] also uses stratified sampling but instead builds a
single sample. SciBORQ [86] builds biased samples based on
past query results but cannot provide accuracy guarantees.

Online Aggregation: Online Aggregation frameworks [58,
70, 80] continuously refine approximate answers at runtime.
In these frameworks, it is up to the user to determine when
the acceptable level of accuracy is reached and to terminate
estimation. Naturally, this approach is unsuitable for multidi-
mensional telemetry that needs to estimate multiple statistics
across data subpopulations.

12

DataSummaries: Data “synopses” (e.g., wavelets, histograms,
sketches, etc.) have been extensively used for data analyt-
ics [19, 34, 43, 53, 62, 72, 91, 93]. These data summaries can
either be lossless or lossy and they aim at providing efficiency
for multidimensional analytics. However, these approaches
are tailored to narrow set of estimation tasks. Gan et al. de-
velop a compact and efficiently mergeable quantile sketch for
multidimensional data [50].

Several prior efforts explore nested sketches as a solution
to the multidimensional distinct counting problem [41, 88, 89,
94]. The CountMin Flajolet-Martin (CM-FM) replaces each
integer counter of count-min sketch with a distinct counting
sketch [41]. The CM-FM, while making a step in the right
direction for multidimensional analytics, is limited both in
terms of the generality and accuracy guarantees it offers [88].
Prior work by Ting et al. also targets on cardinality estimation
in multidimensional data [88, 89] but focuses on improving
the sketch error bounds. Similar to HYDRA, they observe that
in distinct counting sketches, accuracy guarantees depend
on the characteristics of the underlying data. Their key ob-
servation is that the distribution of errors in each counter
can be empirically estimated from the sketch itself. By first
estimating this distribution, count estimation becomes a sta-
tistical estimation and inference problem with a known error
distribution. However, computing such error distributions,
is computationally heavy in streaming settings as it involves
computing maximum likelihood estimators.

8 DISCUSSION AND FUTURE WORK

HyDRA ensures coverage across subpopulations and accuracy
guarantees with good resource utilization for subpopulations
whose G; >= G,j,. It is up to the operator to determine Gyyjp.
We believe that this is more versatile than pre-selecting spe-
cific subpopulations for which accuracy guarantees should
apply. Given a G;,, threshold, Hypra self-selects the subset
of important subpopulations.

Hypra opens up avenues for future work. For example, an
open question is how to enable dynamic sketch reconfigu-
ration given changing workloads or operator goals. Also, a
more system-oriented avenue would involve investigating
the applicability of HYDRA in the context of in-band network
telemetry as part of programmable network elements [77].

9 CONCLUSIONS

Today’s large-scale services require interactive estimates of
different statistics across subpopulations of their multidimen-
sional datasets. However, the combinatorial explosion of sub-
populations makes it hard to offer multidimensional analytics
at a reasonable cost to the operator. In this work, we propose
HyYDRA, a sketch-based framework that leverages HyDRA-
sketch to summarize data streams in sub-linear memory to
the number of subpopulations. We show that HYDRA is an
order of magnitude more efficient in than existing analytics
engines while ensuring interactive estimation times.

REFERENCES

(1]

(16

=

(17

—

(18

=

(19]

[20

=

[21]

[22]

[23

=

[24]

Amazon AWS EC2 pricing . https://aws.amazon.com/ec2/pricing/
on-demand/.

Anonymized HYDRA repository. https://anonymous.4open.science/r/
HYDRA-F8FD/README.md.

Approximate Algorithms in Apache spark: Hyperloglog
and Quantiles. https://databricks.com/blog/2016/05/19/
approximate-algorithms-in-apache-spark-hyperloglog-and-quantiles.
html.

CAIDA Network Flow Traces. https://www.caida.org/catalog/datasets/
overview/.

CAIDA Trace. https://www.caida.org/catalog/datasets/monitors/
passive-equinix-nyc/.

Conviva - Real-time Streaming Video Intelligence.
conviva.com/.

Druid Ingestion Performance. https://stackoverflow.com/questions/
54578482/druid-parquet-poor-ingestion-performance#54580535.
EBS Service Event in the Tokyo Region. https://aws.amazon.com/
message/56489/.

EC2 DNS Resolution Issues in the Asia Pacific Region. https://aws.
amazon.com/message/74876/.

IBM Streams. https://www.ibm.com/cloud/streaming-analytics.
Kafka Streams. https://kafka.apache.org/documentation/streams/.
Kafka tops 1 trillion messages per day at
linkedin. https://www.datanami.com/2015/09/02/
kafka-tops- 1-trillion-messages-per-day-at-linkedin/.

Spark treeAggregate and treeReduce. https://github.com/apache/spark/
pull/1110.

SURUS - Anomaly detection at Netflix. https://netflixtechblog.com/
rad-outlier-detection-on-big-data-d6b0494371cc.

D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. The
design of the borealis stream processing engine. In Cidr, volume 5,
pages 277-289, 2005.

L. Abraham, J. Allen, O. Barykin, V. Borkar, B. Chopra, C. Gerea, D. Merl,
J. Metzler, D. Reiss, S. Subramanian, et al. Scuba: Diving into data at
facebook. Proceedings of the VLDB Endowment, 6(11):1057-1067, 2013.
S. Acharya, P. B. Gibbons, and V. Poosala. Congressional samples for
approximate answering of group-by queries. In Proceedings of the 2000
ACM SIGMOD international conference on Management of data, pages
487-498, 2000.

S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The aqua
approximate query answering system. In Proceedings of the 1999
ACM SIGMOD international conference on Management of data, pages
574-576,1999.

P.K. Agarwal, G. Cormode, Z. Huang,]. M. Phillips, Z. Wei, and K. Yi.
Mergeable summaries. ACM Transactions on Database Systems (TODS),
38(4):1-28, 2013.

S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
Blinkdb: queries with bounded errors and bounded response times on
very large data. In Proceedings of the 8th ACM European Conference
on Computer Systems, pages 29-42, 2013.

T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman,
R.Lax, S. McVeety, D. Mills, P. Nordstrom, and S. Whittle. Millwheel:
Fault-tolerant stream processing at internet scale. Proceedings of the
VLDB Endowment, 6(11):1033-1044, 2013.

N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. In Proc. of ACM STOC, 1996.
A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani,
U. Srivastava, and J. Widom. Stream: The stanford data stream
management system. In Data Stream Management, pages 317-336.
Springer, 2016.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, et al. Spark sql: Relational

https://www.

13

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

data processing in spark. In Proceedings of the 2015 ACM SIGMOD
international conference on management of data, pages 1383-1394, 2015.
A. Asta. Observability at twitter: technical overview, part i, 2016, 2016.
P. Bailis, E. Gan, S. Madden, D. Narayanan, K. Rong, and S. Suri. Mac-
robase: Prioritizing attention in fast data. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages 541-556, 2017.
M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker.
Fault-tolerance in the borealis distributed stream processing system.
In Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, pages 13-24, 2005.

R. B. Basat, G. Einziger, M. Mitzenmacher, and S. Vargaftik. Faster and
more accurate measurement through additive-error counters. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications, pages
1251-1260. IEEE, 2020.

R. B. Basat, G. Einziger, M. Mitzenmacher, and S. Vargaftik. Salsa:
self-adjusting lean streaming analytics. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pages 864-875. IEEE, 2021.

R. Ben Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard.
Constant time updates in hierarchical heavy hitters. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication,
pages 127-140, 2017.

L. Braun, T. Etter, G. Gasparis, M. Kaufmann, D. Kossmann, D. Widmer,
A. Avitzur, A. Iliopoulos, E. Levy, and N. Liang. Analytics in motion:
High performance event-processing and real-time analytics in the
same database. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 251-264, 2015.

V. Braverman and S. R. Chestnut. Universal sketches for the frequency
negative moments and other decreasing streaming sums. arXiv preprint
arXiv:1408.5096, 2014.

V. Braverman and R. Ostrovsky. Zero-one frequency laws. In
Proceedings of the forty-second ACM symposium on Theory of computing,
pages 281-290, 2010.

C. Buragohain and S. Suri. Quantiles on streams., 2009.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink: Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, 36(4), 2015.

R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. Scope: easy and efficient parallel processing of massive
data sets. Proceedings of the VLDB Endowment, 1(2):1265-1276, 2008.
V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3):15:1-15:58, July 2009.

S. Chaudhuri, G. Das, and V. Narasayya. Optimized stratified sampling
for approximate query processing. ACM Transactions on Database
Systems (TODS), 32(2):9-es, 2007.

S. Chaudhuri, B. Ding, and S. Kandula. Approximate query processing:
No ssilver bullet. In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 511-519, 2017.

X. Chen, S. Landau-Feibish, M. Braverman, and J. Rexford. Beaucoup:
Answering many network traffic queries, one memory update at a time.
In Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, pages 226—-239, 2020.

J. Considine, M. Hadjieleftheriou, F. Li, J. Byers, and G. Kollios. Robust
approximate aggregation in sensor data management systems. ACM
Transactions on Database Systems (TODS), 34(1):1-35, 2009.

G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for
massive data: Samples, histograms, wavelets, sketches. Foundations
and Trends in Databases, 4(1-3):1-294, 2012.

G. Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms,
55(1):58-75, 2005.

C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope:
A stream database for network applications. In Proceedings of the 2003
ACM SIGMOD international conference on Management of data, pages

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://anonymous.4open.science/r/HYDRA-F8FD/README.md
https://anonymous.4open.science/r/HYDRA-F8FD/README.md
https://databricks.com/blog/2016/05/19/approximate-algorithms-in-apache-spark-hyperloglog-and-quantiles.html
https://databricks.com/blog/2016/05/19/approximate-algorithms-in-apache-spark-hyperloglog-and-quantiles.html
https://databricks.com/blog/2016/05/19/approximate-algorithms-in-apache-spark-hyperloglog-and-quantiles.html
https://www.caida.org/catalog/datasets/overview/
https://www.caida.org/catalog/datasets/overview/
https://www.caida.org/catalog/datasets/monitors/passive-equinix-nyc/
https://www.caida.org/catalog/datasets/monitors/passive-equinix-nyc/
https://www.conviva.com/
https://www.conviva.com/
https://stackoverflow.com/questions/54578482/druid-parquet-poor-ingestion-performance#54580535
https://stackoverflow.com/questions/54578482/druid-parquet-poor-ingestion-performance#54580535
https://aws.amazon.com/message/56489/
https://aws.amazon.com/message/56489/
https://aws.amazon.com/message/74876/
https://aws.amazon.com/message/74876/
https://www.ibm.com/cloud/streaming-analytics
https://kafka.apache.org/documentation/streams/
https://www.datanami.com/2015/09/02/kafka-tops-1-trillion-messages-per-day-at-linkedin/
https://www.datanami.com/2015/09/02/kafka-tops-1-trillion-messages-per-day-at-linkedin/
https://github.com/apache/spark/pull/1110
https://github.com/apache/spark/pull/1110
https://netflixtechblog.com/rad-outlier-detection-on-big-data-d6b0494371cc
https://netflixtechblog.com/rad-outlier-detection-on-big-data-d6b0494371cc

—

—

—

=

647-651, 2003.

M. Durand and P. Flajolet. Loglog counting of large cardinalities. In
European Symposium on Algorithms, pages 605-617. Springer, 2003.
A.Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True.
Deriving traffic demands for operational ip networks: Methodology and
experience. IEEE/ACM Transactions On Networking, 9(3):265-279, 2001.
P. Flajolet and G. N. Martin. Probabilistic counting algorithms for
data base applications. Journal of computer and system sciences,
31(2):182-209, 1985.

M. Fragkoulis, P. Carbone, V. Kalavri, and A. Katsifodimos. A survey
on the evolution of stream processing systems. arXiv preprint
arXiv:2008.00842, 2020.

E. Gan, P. Bailis, and M. Charikar. Coopstore: Optimizing precomputed
summaries for aggregation. Proceedings of the VLDB Endowment,
13(12):2174-2187, 2020.

E. Gan,]. Ding, K. S. Tai, V. Sharan, and P. Bailis. Moment-based
quantile sketches for efficient high cardinality aggregation queries.
arXiv preprint arXiv:1803.01969, 2018.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 29-43, 2003.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data mining
and knowledge discovery, 1(1):29-53, 1997.

M. Greenwald and S. Khanna. Space-efficient online computation of
quantile summaries. ACM SIGMOD Record, 30(2):58-66, 2001.

A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger. Sonata: Query-driven streaming network telemetry. In
Proceedings of the 2018 conference of the ACM special interest group on
data communication, pages 357-371, 2018.

A. Hall, A. Tudorica, F. Buruiana, R. Hofmann, S.-I. Ganceanu, and
T. Hofmann. Trading off accuracy for speed in powerdrill. 2016.

[56] J.Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg

cubes with complex measures. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, pages 1-12, 2001.

V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data
cubes efficiently. Acm Sigmod Record, 25(2):205-216, 1996.

[58] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In

Proceedings of the 1997 ACM SIGMOD international conference on
Management of data, pages 171-182, 1997.

D. N. Hill, H. Nassif, Y. Liu, A. Iyer, and S. Vishwanathan. An efficient
bandit algorithm for realtime multivariate optimization. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1813-1821, 2017.

[60] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker,

and S. Zdonik. High-availability algorithms for distributed stream
processing. In 21st International Conference on Data Engineering
(ICDE’05), pages 779-790. IEEE, 2005.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, pages 5972, 2007.

J. Jestes, K. Yi, and F. Li. Building wavelet histograms on large data
in mapreduce. arXiv preprint arXiv:1110.6649, 2011.

J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and H. Zhang.
Cfa: A practical prediction system for video qoe optimization. In
Proceedings of the 13th Usenix Conference on Networked Systems Design
and Implementation, NSDI'16, pages 137-150, Berkeley, CA, USA, 2016.
USENIX Association.

J. Jiang, V. Sekar, I. Stoica, and H. Zhang. Shedding light on the
structure of internet video quality problems in the wild. In Proceedings
of the ninth ACM conference on Emerging networking experiments and
technologies, pages 357-368. ACM, 2013.

[65] R.Johari, P. Koomen, L. Pekelis, and D. Walsh. Peeking at a/b tests:

Why it matters, and what to do about it. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1517-1525, 2017.

S.J. Kazemitabar, U. Demiryurek, M. Ali, A. Akdogan, and C. Shahabi.
Geospatial stream query processing using microsoft sql server streamin-
sight. Proceedings of the VLDB Endowment, 3(1-2):1537-1540, 2010.

A. Kirsch and M. Mitzenmacher. Less hashing, same performance:
building a better bloom filter. In European Symposium on Algorithms,
pages 456—467. Springer, 2006.

M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi,
J. Erickson, M. Grund, D. Hecht, M. Jacobs, et al. Impala: A modern,
open-source sql engine for hadoop. In Cidr, volume 1, page 9, 2015.

L. V. Lakshmanan, J. Pei, and J. Han. Quotient cube: How to summarize
the semantics of a data cube. In VLDB 02: Proceedings of the 28th Interna-
tional Conference on Very Large Databases, pages 778-789. Elsevier, 2002.
F.Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online aggregation via
random walks. In Proceedings of the 2016 International Conference on
Management of Data, pages 615-629, 2016.

X. Li, J. Han, and H. Gonzalez. High-dimensional olap: A minimal
cubing approach. In Proceedings of the Thirtieth international conference
on Very large data bases-Volume 30, pages 528-539, 2004.

Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One
sketch to rule them all: Rethinking network flow monitoring with
univmon. In Proceedings of the 2016 ACM SIGCOMM Conference, pages
101-114, 2016.

Q.Ma and P. Triantafillou. Dbest: Revisiting approximate query process-
ing engines with machine learning models. In Proceedings of the 2019
International Conference on Management of Data, pages 1553-1570, 2019.
S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis. Dremel: interactive analysis of web-scale datasets.
Proceedings of the VLDB Endowment, 3(1-2):330-339, 2010.

G. T. Minton and E. Price. Improved concentration bounds for
count-sketch. In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 669-686. SIAM, 2014.

D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi.
Naiad: a timely dataflow system. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pages 439-455, 2013.
H. Namkung, Z. Liu, D. Kim, V. Sekar, P. Steenkiste, G. Liu, A. Li,
C. Canel, A. A. Philip, R. Ware, et al. Sketchlib: Enabling efficient
sketch-based monitoring on programmable switches. NSDIL

C. Olston, E. Bortnikov, K. Elmeleegy, F. Junqueira, and B. Reed.
Interactive analysis of web-scale data. In CIDR. Citeseer, 2009.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin:
a not-so-foreign language for data processing. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data,
pages 1099-1110, 2008.

N. Pansare, V. Borkar, C. Jermaine, and T. Condie. Online aggregation
for large mapreduce jobs. Proceedings of the VLDB Endowment,
4(11):1135-1145, 2011.

Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb: Universalizing
approximate query processing. In Proceedings of the 2018 International
Conference on Management of Data, pages 1461-1476, 2018.

T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and
K. Veeraraghavan. Gorilla: A fast, scalable, in-memory time series
database. Proceedings of the VLDB Endowment, 8(12):1816-1827, 2015.
A.Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman. Aggregation
and degradation in jetstream: Streaming analytics in the wide area.
In 11th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 14), pages 275-288, 2014.

A.Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani. Fast
monitoring of traffic subpopulations. In Proceedings of the 8th ACM
SIGCOMM conference on Internet measurement, pages 257-270, 2008.
K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In 2010 IEEE 26th symposium on mass storage

=

=

systems and technologies (MSST), pages 1-10. Ieee, 2010.

L. Sidirourgos, M. L. Kersten, P. A. Boncz, et al. Sciborq: scientific data
management with bounds on runtime and quality. In CIDR, volume 11,
pages 296-301, 2011.

A. Thusoo,]J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: a warehousing solution
over a map-reduce framework. Proceedings of the VLDB Endowment,
2(2):1626-1629, 2009.

D. Ting. Count-min: optimal estimation and tight error bounds using
empirical error distributions. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages
2319-2328, 2018.

D. Ting. Approximate distinct counts for billions of datasets. In
Proceedings of the 2019 International Conference on Management of Data,
pages 69-86, 2019.

M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis.
Seedb: Efficient data-driven visualization recommendations to support
visual analytics. In Proceedings of the VLDB Endowment International
Conference on Very Large Data Bases, volume 8, page 2182. NIH Public
Access, 2015.

[91] J.S. Vitter and M. Wang. Approximate computation of multidimen-

sional aggregates of sparse data using wavelets. Acm Sigmod Record,
28(2):193-204, 1999,

L. Wang, R. Christensen, F. Li, and K. Yi. Spatial online sampling and
aggregation. Proceedings of the VLDB Endowment, 9(3):84-95, 2015.

[93] Z.Wei, G.Luo, K. Yi, X. Du, and J.-R. Wen. Persistent data sketching.

In Proceedings of the 2015 ACM SIGMOD international conference on
Management of Data, pages 795-810, 2015.

Q. Xiao, S. Chen, M. Chen, and Y. Ling. Hyper-compact virtual esti-
mators for big network data based on register sharing. In Proceedings
of the 2015 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, pages 417-428, 2015.

Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang. Worm origin
identification using random moonwalks. In 2005 IEEE Symposium on
Security and Privacy (S&P’05), pages 242-256. IEEE, 2005.

F.Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli. Druid:
Areal-time analytical data store. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pages 157-168, 2014.
M. Yang, J. Zhang, A. Gadre, Z. Liu, S. Kumar, and V. Sekar. Joltik:
enabling energy-efficient” future-proof” analytics on low-power
wide-area networks. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, pages 1-14, 2020.
M. Yu, L. Jose, and R. Miao. Software defined traffic measurement
with opensketch. In 10th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 13), pages 29-42, 2013.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, et al. Apache spark:
a unified engine for big data processing. Communications of the ACM,
59(11):56-65, 2016.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Motivating Scenarios
	2.2 Requirements and Goals
	2.3 Prior Work and Limitations

	3 Hydra: System Overview
	4 Hydra Detailed Design
	4.1 Background on Sketching
	4.2 Tackling Subpopulation Explosion
	4.3 Enabling Multiple Statistics
	4.4 The Hydra-sketch Algorithm
	4.5 Accuracy Guarantees
	4.6 Hydra-sketch configuration

	5 Implementation
	6 Evaluation
	6.1 Experimental Methodology
	6.2 End-to-End Evaluation of Hydra
	6.3 Detailed Analysis of Hydra-sketch

	7 Related work
	8 Discussion and Future Work
	9 Conclusions
	References

