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Abstract

The theory of reinforcement learning has focused on two fundamental problems: achieving
low regret, and identifying ε-optimal policies. While a simple reduction allows one to apply
a low-regret algorithm to obtain an ε-optimal policy and achieve the worst-case optimal rate,
it is unknown whether low-regret algorithms can obtain the instance-optimal rate for policy
identification. We show this is not possible—there exists a fundamental tradeoff between
achieving low regret and identifying an ε-optimal policy at the instance-optimal rate.

Motivated by our negative finding, we propose a new measure of instance-dependent
sample complexity for PAC tabular reinforcement learning which explicitly accounts for
the attainable state visitation distributions in the underlying MDP. We then propose and
analyze a novel, planning-based algorithm which attains this sample complexity—yielding a
complexity which scales with the suboptimality gaps and the “reachability” of a state. We
show our algorithm is nearly minimax optimal, and on several examples that our instance-
dependent sample complexity offers significant improvements over worst-case bounds.

1. Introduction

Two of the most fundamental problems in Reinforcement Learning (RL) are regret mini-
mization, and PAC (Probably Approximately Correct) policy identification. In the former
setting, the goal of the agent is simply to play actions that collect sufficient reward in an
online fashion, while in the latter, the goal of the agent is to explore their environment in
order to identify an ε-optimal policy with probability 1− δ.

These objectives are intimately related: for an agent to achieve low-regret they must
play “good” policies, and therefore can solve the PAC problem as well. Indeed, in the worst
case, optimal performance can be achieved by the “online-to-batch” reduction: running a
worst-case optimal regret algorithm for K episodes, and averaging its chosen policies (or
choosing one at random) to make a recommendation. In this paper, we ask if online-to-batch
is all there is to PAC learning. Focusing on the non-generative tabular setting, we ask

Does the online-to-batch reduction yield tight instance-dependent guarantees
in non-generative, tabular PAC reinforcement learning? Or, are there other
algorithmic principles and measures of sample complexity that emerge in the
PAC setting but are absent when studying regret?

c© 2022 A. Wagenmaker, M. Simchowitz & K. Jamieson.



Wagenmaker Simchowitz Jamieson

Mirroring recent developments in the regret setting which obtain instance-dependent regret
guarantees, we approach this question from an instance-dependent perspective, and seek to
develop instance-dependent PAC guarantees.

Our focus on the non-generative setting brings to light the role of exploration in learning
good policies. The majority of low-regret algorithms rely on playing actions they believe
will lead to large reward (the principle of optimism) and only explore enough to ensure
they do not overcommit to suboptimal actions. While this is sufficient to balance the
exploration-exploitation tradeoff and induce enough exploration to obtain low regret, as we
will see, when the goal is simply exploration and no concern is given for the online reward
obtained, much more aggressive exploration can be used to efficiently traverse the MDP and
learn a good policy. Hence, in addressing our question above, we aim to understand more
broadly what are the most effective exploration strategies for traversing an unknown MDP
when the goal is to learn a good policy.

1.1. Our Contributions

We demonstrate the importance of non-optimistic planning via three main contributions:

• New measure of instance-dependent complexity. We propose a novel, fully instance-
dependent measure of complexity for MDPs, the gap-visitation complexity :

C(M, ε) :=

H∑

h=1

inf
π

max
s,a

min

{
1

wπ
h(s, a)∆h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2

}
+

H2|OPT(ε)|
ε2

where here wπ
h(s, a) is the probability of visiting (s, a) at step h under policy π, ∆h(s, a)

is a measure of the suboptimality of choosing action a at state s and step h, Wh(s) is the
maximum reachability of state s at step h, and OPT(ε) is the set of all “near-optimal”
state-action tuples. We show that C(M, ε) is no larger than the minimax optimal PAC
rate, and that in some cases, C(M, ε) is equivalent to the instance-optimal complexity.

• A novel planning-based algorithm. We propose and analyze a computationally efficient
planning-based algorithm, Moca, which returns an ε-optimal policy with probability
at least 1 − δ after Õ(C(M, ε) · log 1/δ) episodes, for finite δ > 0 and ε > 0. Rather
than relying on optimism to guarantee exploration, it employs an aggressive exploration
strategy which seeks to reach states of interest as quickly as possible, coupling this with a
Monte Carlo estimator and action-elimination procedure to identify suboptimal actions.

• Insufficiency of online-to-batch. We show, through several explicit instances, that low-
regret algorithms cannot achieve our proposed measure of complexity, and indeed can do
arbitrarily worse. This shows that optimistic planning does not suffice to attain sharp
instance-dependent PAC guarantees in tabular reinforcement learning.

A Motivating Example. Consider the MDP in Figure 1. In state s0, action a1 is optimal
and transitions to state s1 with probability 1− p and state s2 with probability p. Action
a2 is suboptimal and transitions to state s2 with probability 1. To learn a good policy, we
need to identify the optimal action in both s1 and s2. An optimistic or low-regret algorithm
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will primarily play a1 in s0, as this action is optimal, and it will therefore only reach s2
approximately O(pK) times. It follows that a low-regret algorithm will take at least Ω( 1

p∆2
2
)

episodes to learn the optimal action in s2. In contrast, we could instead play a2 in s0,
collecting less reward but learning the optimal action in s2 in only Ω( 1

∆2
2
) episodes. For

small p, this could be arbitrarily better. The following result makes this formal, illustrating
that for identifying good policies in MDPs, existing low-regret and optimistic approaches
can be highly suboptimal, and more intentional exploration procedures are needed.

Proposition 1 (Informal) On the example in Figure 1, any low-regret algorithm must

run for at least K ≥ Ω
( log 1/δ

∆2
1

+ log 1/δ
p∆2

2

)
episodes to identify the optimal policy, while Moca

will terminate and output the optimal policy after only K ≤ O
( log 1/δ

∆2
1

+ log 1/δ
∆2

2

)
episodes.

s0

s2

s1

r(s0, a1) = 1

r(s0, a2) = 0

P(s2 |s0, a2) = 1

P(s1 |s0, a1) = 1 − p

P(s2 |s0, a1) = p

r(s2, a1) = 0.5 + Δ2

r(s2, a2) = 0.5

r(s1, a1) = 0.5 + Δ1

r(s1, a2) = 0.5

Action a1

Action a2

Figure 1: A motivating example

We stress that our goal in this work is not to
match the δ → 0 scaling of the optimal instance-
dependent lower bound for (ε, δ)-PAC, but rather to
obtain an instance-dependent complexity that cap-
tures the finite-time difficulty of learning an ε-optimal
policy, and scales with an intuitive notion of MDP
explorability, as in the example above. Even in the
much simpler bandits setting, hitting the instance-
optimal rate usually requires algorithms that “track”
the optimal allocation, which can typically only be ac-
complished in the aforementioned δ → 0 limit, making
such algorithms impractical in practice (Garivier and
Kaufmann, 2016). In contrast to this approach, we
focus on the non-asymptotic regime, avoiding mixing-
time and tracking arguments, and seeking to instead
obtain “practical” instance-dependence.

2. Related Work

The literature on PAC RL is vast and dates back at least two decades (Kearns and Singh,
2002; Kakade, 2003). We cannot do it justice here so we review only the most relevant works.

Minimax (ε, δ)-PAC Bounds. The vast majority of work has focused on minimax sample
complexities that hold for any tabular MDP with bounded rewards (Lattimore and Hutter,
2012; Dann and Brunskill, 2015; Azar et al., 2017; Dann et al., 2017, 2019; Ménard et al.,
2020). In addition, a PAC guarantee can be obtained from any low-regret algorithm using
an online-to-batch conversion. If an algorithm has a regret bound of O(

√
CK), one can

obtain an ε-optimal policy with probability 1− δ after K ≥ C
ε2δ2

episodes, allowing low-regret
algorithms such as (Jin et al., 2018; Zhang et al., 2020b) to solve the PAC problem as well.
See (Jin et al., 2018; Ménard et al., 2020) for a more in-depth discussion of this approach.

Instance-Dependent Regret Bounds for Episodic MDPs. Optimistic planning al-
gorithms have been shown to obtain gap-dependent regret bounds that scale as log(K) ·∑

s,a,h
1

∆h(s,a)
(Simchowitz and Jamieson, 2019; Xu et al., 2021; Dann et al., 2021). Using
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the online-to-batch conversion, this gives a PAC guarantee scaling as
∑

s,a,h
1

∆h(s,a)·ε
· 1
δ2
. Ok

et al. (2018) propose an algorithm that achieves instance-optimal regret, though it is not
computationally efficient and asymptotic, T →∞. The algorithm of Zanette and Brunskill
(2019), Euler, achieves a first-order style regret bound of

√
SAKmin{Q?H, G2}, where

Q? and G2 are problem-dependent quantities.

Towards Instance-Dependent PAC Learning. To date, only several works have de-
rived instance-dependent PAC bounds in the non-generative setting. Jonsson et al. (2020)
obtains a complexity that scales as the Q-value gap for the first time step but exponentially
in H . Marjani et al. (2021) study the problem of best-policy identification (ε = 0), and obtain
an instance-dependent complexity, yet their results are asymptotic (δ → 0). Wagenmaker
et al. (2021) provide an instance-optimal (ε, δ)-PAC algorithm, to our knowledge the only
such result, yet their result holds only in certain classes of continuous state MDPs.

Generative Model Setting. In the simpler generative model setting, the agent can query
any s and a and observe the next state and reward. Many minimax-style guarantees have
been developed in this setting (Azar et al., 2013; Sidford et al., 2018; Agarwal et al., 2020;
Li et al., 2020). Recently, several instance-dependent results have been shown (Zanette
et al., 2019; Marjani and Proutiere, 2020; Khamaru et al., 2020, 2021). Most relevant is the
work of Zanette et al. (2019) which proposes the Bespoke algorithm and achieves a sample

complexity of
∑

s,a
log(1/δ)

max{ε2,∆(s,a)2}
. Note that this always scales at least as Ω(S/ε2).

Lower Bounds. We are unaware of any instance-dependent lower bound for (ε, δ)-PAC
for MDPs. However, it is straightforward to obtain lower bounds for exact best policy
identification (ε = 0) (Marjani and Proutiere, 2020; Marjani et al., 2021), though such lower
bounds are uninterpretable solutions to non-convex optimization problems. Furthermore, at
present no algorithm is known to hit the best policy identification lower bound.

3. Preliminaries

Notation. We let [N ] = {1, 2, . . . , N}. 4(X ) denotes the set of probability distributions
over a set X . Eπ[·] denotes the expectation over the trajectories induced by policy π and
Pπ[·] denotes the probability measure induced by π. We let & refer to inequality up to
absolute constants, and let O(·) hide absolute constants, and Õ(·) hide absolute constants
as well as poly log terms. In general, we use log to denote the base 2 logarithm.

Markov Decision Processes. We study finite-horizon, time inhomogeneous Markov
Decision Processes (MDPs) given by the tupleM = (S,A, H, {Ph}Hh=1, P0, {Rh}Hh=1). Here
S is the set of states (S := |S|), A the set of actions (A := |A|), H the horizon, Ph :
S ×A → 4(S) the transition kernel at step h, P0 ∈ 4(S) the initial state distribution, and
Rh : S ×A → 4([0, 1]) the reward distribution, with rh(s, a) = E[Rh(s, a)]. We assume that
{Ph}Hh=1, P0, and {Rh}Hh=1 are all initially unknown to the learner.

An episode is a trajectory {(sh, ah, Rh)}Hh=1 where s1 ∼ P0, sh+1 ∼ Ph(·|sh, ah), and
Rh ∼ Rh(sh, ah). After H steps, the MDP restarts and the process repeats. A policy π is a
mapping from states to actions: π : S × [H ]→4(A). πh(a|s) denotes the probability that π
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chooses a at (s, h). If for all (s, h), πh(a|s) = 1 for some a, we say π is a deterministic policy
and denote πh(s) the action it chooses at (s, h). Otherwise we say π is a stochastic policy.

Given a policy π, the Q-value function, Qπ : S ×A× [H ]→ [0, H], denotes the expected
reward obtained by playing action a in state s at time h, and then playing π for all subsequent
time. Formally, it is defined as

Qπ
h(s, a) := Eπ

[∑H
h′=hRh′(sh′ , ah′)|sh = s, ah = a

]
.

We also define the value function, V π : S × [H] → [0, H], as V π
h (s) := Qπ

h(s, πh(s)). The
Q-function satisfies the Bellman equation:

Qπ
h(s, a) = rh(s, a) +

∑
s′Ph(s

′|s, a)V π
h+1(s

′).

We let V π
H+1(s) = 0 and Qπ

H+1(s, a) = 0. We define the optimal Q-function as Q?
h(s, a) :=

supπ Q
π
h(s, a), V

?
h (s) := supπ V

π
h (s), and let π? denote an optimal policy. V π

0 :=
∑

s P0(s)V
π
1 (s)

denotes the value of a policy, the expected reward it will obtain, and V ?
0 := supπ V

π
0 .

Suboptimality Gaps. Critical to our analysis is the concept of a suboptimality gap:

∆h(s, a) := V ?
h (s)−Q?

h(s, a).

In words, ∆h(s, a) denotes the suboptimality of taking action a in (s, h), and then playing the
optimal policy henceforth. We let ∆π

h(s, a) := maxa′ Q
π
h(s, a

′)−Qπ
h(s, a) and ∆min(s, h) :=

mina:∆h(s,a)>0∆h(s, a). For action a with Q?
h(s, a) = maxa′ Q

?
h(s, a

′), we define ∆h(s, a) :=
∆min(s, h), so that ∆h(s, a) is always non-zero. Throughout the remainder of the body, we
make the following assumption:

Assumption 3.1 (Unique Optimal Actions) For each (s, h), there exists a unique
action, a, such that Q?

h(s, a) = maxa′ Q
?
h(s, a

′)—each state has a unique optimal action.

This assumption is purely for notational convenience—all our results hold for MDPs with
multiple optimal actions at each state, as we show in the appendix. Finally, we introduce
the idea of a state-action visitation distribution. We define

wπ
h(s, a) := Pπ[sh = s, ah = a], wπ

h(s) := Pπ[sh = s].

Note that wπ
h(s, a) = πh(a|s)wπ

h(s). We denote the maximum reachability of (s, h) by
Wh(s) := supπ w

π
h(s), the maximum probability with which we could hope to reach (s, h).

PAC Reinforcement Learning Problem. In this work we study PAC RL. Formally,
in PAC RL, the goal is to, with probability 1− δ, identify a policy π̂ such that

V ?
0 − V π̂

0 ≤ ε (3.1)

using as few episodes as possible. We say that a policy satisfying (3.1) is ε-optimal and
that an algorithm which returns a policy satisfying (3.1) with probability at least 1− δ is
(ε, δ)-PAC. Note that our goal is to find a single policy not a distribution over policies1.

1. That is, we want to find some policy π̂ such that V ?
0 − V π̂

0 ≤ ε, not a distribution over policies λ ∈ 4(Π)
such that V ?

0 −
∑

π∈Π λπV
π
0 ≤ ε. Note that returning a single policy is the standard goal of PAC RL

found in the literature.
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4. Instance-Dependent PAC Policy Identification

Before stating our main result, we introduce our new notion of sample complexity for MDPs.

Definition 4.1 (Gap-Visitation Complexity) For a given MDPM, we define the gap-
visitation complexity as:

C(M, ε) :=
H∑

h=1

inf
π

max
s,a

min

{
1

wπ
h(s, a)∆h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2

}
+

H2|OPT(ε)|
ε2

.

where the infimum is over all policies, both deterministic and stochastic, and:

OPT(ε) :=
{
(s, a, h) : ε ≥Wh(s)∆h(s, a)/3

}
.

We also define the best-policy gap-visitation complexity as:

C?(M) :=

H∑

h=1

inf
π

max
s,a

1

wπ
h(s, a)∆h(s, a)2

.

Since wπ
h(s, a) = πh(a|s)wπ

h(s), as long as wπ
h(s) > 0 for some π, we can always choose our

policy such that all actions are supported and wπ
h(s, a) > 0 for all a2. Recall that we have

defined ∆h(s, a) so that ∆h(s, a) > 0 for all (s, a, h), implying that as ε→ 0, |OPT(ε)| → 0.
Given this new notion of sample complexity, we are now ready to state our main result.

Theorem 2 There exists an (ε, δ)-PAC algorithm, Moca, which with probability at least
1− δ terminates after running for at most

C(M, ε) ·H2cε log
1
δ +

Clot(ε)
ε

episodes and returns an ε-optimal policy, for lower-order term Clot(ε) = poly(S,A,H, log 1
ε , log

1
δ )

and cε = poly log(SAH/ε). Furthermore, if ε < ε? := min{mins,a,hWh(s)∆h(s, a)/3,
2H2Smins,hWh(s)}, Moca terminates after at most

C?(M) ·H2cε? log
1
δ +

Clot(ε?)
ε?

episodes and returns π?, the optimal policy, with probability 1− δ.

In addition, Moca is computationally efficient with computational cost scaling polynomially
in problem parameters. In Section 6, we provide a sketch of the proof of Theorem 2 and
state the definition Moca. The full proof is deferred to Appendix C.

2. Here, we adopt the convention that, in the trivial case Wh(s) = 0 (and thus wπ
h(s, a) = 0), Wh(s)2

wπ

h
(s,a)ε2

evaluates to 0.
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4.1. Interpreting the Complexity

Intuitively, the first term in the gap-visitation complexity quantifies how quickly we can
eliminate all actions at least ε/Wh(s)-suboptimal for all s and h, given that we must explore
in our particular MDP. For a given s and h, if we play policy π for K episodes, we will
reach (s, h) on average wπ

h(s)K times. Thus, if we imagine that there is a bandit at (s, h), to
eliminate action a will require that we run for at least 1

wπ
h(s,a)∆h(s,a)2

episodes. The following

result makes this rigorous—up to H factors, a complexity of O(C?(M) · log 1/δ), which
Moca achieves, cannot be improved on in general for best-policy identification.

Proposition 3 Fix some S > 1, A > 1, H > 1, h̄ ∈ [H], transition kernels {Ph}h̄−1
h=1, and

gaps {gap(s, a)}s∈[S],a∈[A−1] ⊆ (0, 1/2)SA. Then there exists some MDPM with S states, A
actions, horizon H, transition kernel Ph for h ≤ h̄− 1, and gaps

∆h̄(s, a) = gap(s, a), ∀s ∈ S, a ∈ A, a 6= π?
h̄(s), ∆h(s, a) ≥ 1, ∀s ∈ S, a ∈ A, h 6= h̄,

such that any (0, δ)-PAC algorithm with stopping time Kδ requires:

EM[Kδ] & inf
π

max
s,a

1
wπ

h̄
(s,a)∆h̄(s,a)

2 · log 1
2.4δ .

In this instance, as ∆h(s, a) ≥ 1 for h 6= h̄, assuming {Ph}h̄−1
h=1 is chosen such that Wh(s) is

not too small for each s and h ≤ h̄, we will have that C?(M) = O(infπ maxs,a
1

wπ
h̄
(s,a)∆h̄(s,a)

2 ),

so Proposition 3 implies that we must have EM[Kδ] ≥ Ω(C?(M) · log 1/δ), matching the
upper bound given in Theorem 2 up to H factors.

The second term in C(M, ε), H2|OPT(ε)|/ε2, captures the complexity of ensuring that,
after eliminating ε/Wh(s)-suboptimal actions, sufficient exploration is performed to guarantee
the returned policy is ε-optimal. While this will be no worse than H3SA/ε2, it could be
much better, if in our MDP the number of (s, a, h) with ∆h(s, a) . ε/Wh(s) is small (note
that since ∆h(s, a) ≥ ∆min(s, h) by definition, OPT(ε) will only contain states for which
the minimum non-zero gap is less than ε/Wh(s)). We next obtain the following bounds on
C(M, ε), providing an interpretation of C(M, ε) in terms of the maximum reachability, and
illustrating C(M, ε) is no larger than the minimax optimal complexity. This implies Moca

is nearly worst-case optimal, matching the lower bound of Ω(SAH2

ε2
· log 1/δ) from Dann and

Brunskill (2015) up to H and log factors3.

Proposition 4 The following bounds hold:

1. C(M, ε) ≤ H3SA
ε2

2. C(M, ε) ≤∑H
h=1

∑
s,amin{ 1

Wh(s)∆h(s,a)2
, Wh(s)

ε2
}+ H2|OPT(ε)|

ε2

3. C(M, ε) ≤∑H
h=1

∑
s,a

1
εmax{∆h(s,a),ε}

+ H2|OPT(ε)|
ε2

.

3. This lower bound is for the stationary setting. As noted in Ménard et al. (2020), one would expect a lower

bound of Ω(SAH3

ε2
· log 1/δ) in the non-stationary setting, implying Moca is H2 off the lower bound.
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In the special case of multi-armed and contextual bandits, the gap-visitation complexity
simplifies considerably.

Proposition 5 IfM is a multi-armed bandit, then

C(M, ε) =
∑

amin
{

1
∆(a)2

, 1
ε2

}
, C?(M) =

∑
a

1
∆(a)2

.

Furthermore, ifM is a contextual bandit, then

C?(M) = max
s

1
W (s)

∑
a

1
∆(s,a)2

.

The values given here are known to be the optimal problem-dependent constants for both
best arm identification and (ε, δ)-PAC for multi-armed bandits (Kaufmann et al., 2016;
Degenne and Koolen, 2019). To our knowledge, the lower bound for best-policy identification
in contextual bandits has never been formally stated, yet it is obvious it will take the form of
C?(M) given here. It follows that in the special cases of multi-armed bandits and contextual
bandits, Moca is instance-optimal, up to logarithmic factors and lower-order terms.

Several additional interpretations of the gap-visitation complexity are given in Ap-
pendix A.2. The above results show that the gap-visitation complexity cleanly interpolates
between the worst-case optimal rate for (ε, δ)-PAC, and, in certain MDPs, the instance-
optimal rate for best-policy identification. In between these extremes, it captures an
intuitive sense of instance-dependence. As we will show in the following section, this
instance-dependence can offer significant improvements over worst-case optimal approaches.

Remark 4.1 (Comparison to Marjani et al. (2021)) Our notion of best-policy gap-
visitation complexity is closely related to the measure of complexity introduced in Marjani
et al. (2021), though they study the infinite-horizon, discounted case. Notably, however, their
analysis only considers best-policy identification (ε = 0) and is purely asymptotic (δ → 0),
while ours holds for δ > 0 and ε > 0. Further, our best-policy gap-visitation complexity offers
a non-trivial improvement over their complexity, scaling as (minsw

π
h(s, a)∆min(s, h)

2)−1

instead of (mins∆min(s)
2 ·minsw

π(s, π?(s)))−1 which Marjani et al. (2021) obtains.

Remark 4.2 (Dependence on log 1/δ) While the leading term in the sample complexity
of Moca only scales as log 1/δ, the lower order term scales as a suboptimal log3 1/δ.
These additional factors of log 1/δ are due to the regret-minimization algorithm used in
the exploration procedure we employ. We show in Remark D.2 that it can be improved to
log 1/δ · log log 1/δ and leave completely removing the suboptimal δ scaling for future work.

Remark 4.3 (Improving H Dependence) As noted above, Moca attains a worst-case
H dependence that is a factor of H2 worse than the lower bound. Our analysis relies on
Hoeffding’s inequality to argue about the concentration of our estimate of Qπ̂

h(s, a). Rather
than depending on the variance of the next-state value function, our confidence interval
therefore depends on H2, an upper bound on the variance. If desired, we could instead employ
an empirical Bernstein-style inequality (Maurer and Pontil, 2009), which would allow us to
replace this H2 scaling with the variance of the reward obtained from playing a at (s, h) and
then playing π̂. We believe that this modification may allow us to refine the H dependence
of Moca. As the focus of this work is obtaining an instance-dependent complexity, we leave
the details of this for future work.
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5. Low-Regret Algorithms are Suboptimal for PAC

Using our instance-dependence complexity, we next show that running a low-regret algorithm
and applying an online-to-batch conversion can be very suboptimal for PAC RL. We first
define a low-regret algorithm and our learning protocol:

Definition 5.1 (Low-Regret Algorithm) We say an algorithm R is a low-regret algo-
rithm if it has expected regret bounded as Regret(K) =

∑K
k=1 ER[V

?
0 − V πk

0 ] ≤ C1K
α + C2,

for some constants C1, C2, α ∈ (0, 1), and where πk is the policy R plays at episode k.

Protocol 5.1 (Low-Regret to PAC) We consider the following procedure:

1. Learner runs R satisfying Definition 5.1 for K episodes, collects data DR(K).

2. Using DR(K) any way it wishes, the learner proposes a (possibly stochastic) policy π̂.

Note that the setting considered in Proposition 1 is precisely that considered here. We
now present an additional instance class where any learner following Protocol 5.1 with a low
regret algorithm R is provably suboptimal.

Instance Class 5.1 Given a number of states S ∈ N, consider an MDP with horizon
H = 2, S states, and S + 1 actions, defined as in Figure 2.

s0

s1

Action a⋆

Action ai

s2

sS

P(s1 |s0, a1) = 1

P(s1 |s0, a⋆) =
2−1

1 − 2S

P(s2 |s0, a⋆) =
2−2

1 − 2S

P(sS |s0, a⋆) =
2−S

1 − 2S

P(s2 |s0, a2) = 1

P(sS |s0, aS) = 1

r(s0, ai) = 0, i ∈ [S]

r(sj, ai) = 0.1, i, j ∈ [S]

r(s0, a⋆) = 1

r(sj, a⋆) = 0.9, j ∈ [S]

Figure 2: MDP from Instance
Class 5.1

Similar to the example considered in Proposition 1,
here a? is the optimal action in every state, yet in state
s0, taking action ai is much more informative. The
following result shows that this structure results in
poor performance for low-regret algorithms.

Proposition 6 (Informal) For the MDP in Instance
Class 5.1 with S states and small enough ε, to find an
ε-optimal policy with probability 1−δ any learner execut-
ing Protocol 5.1 with a low-regret algorithm satisfying
Definition 5.1 must collect at least Ω(S log 1/δ

ε ) episodes.
In contrast, on this example C?(M) = O(S2) and
ε? = 1/3, so, for ε ≤ 1/3, with probability 1− δ, Moca

terminates and output π? in Õ(poly(S)) episodes.

In particular, this example shows that there is an ex-
ponential separation between low-regret algorithms and
Moca. For exponentially small ε, learning the optimal
policy following Protocol 5.1 takes Ω̃(2S) samples, yet
Moca finds the optimal policy in Õ(poly(S)) samples.

Proposition 6 implies that the true complexity of finding a good policy is often much
smaller than the complexity of finding a good policy given that we explore to minimize
regret. The key piece in this example, and the example of Proposition 1, is that the optimal
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action in the initial state is very uninformative—if we want to learn the optimal action in
a subsequent state, we should not take the optimal action in the initial state, but should
instead take an action that leads us to the subsequent state with high probability. Nearly
all existing works rely on algorithms which play policies which converge to a good policy.
For instance-dependent PAC RL, instead of playing good policies, our examples show that
an algorithm ought to explore efficiently, possibly taking very suboptimal actions in the
process, ultimately recommending a good policy. This shortcoming of greedy algorithms
motivates our design of Moca, where we seek to incorporate this insight.

While it is known that low-regret algorithms are minimax optimal for PAC RL, these
instances show that running a low-regret algorithm and then an online-to-batch procedure is
suboptimal by an arbitrarily large factor for PAC RL. We conclude that minimax optimality
is far from being the complete story for PAC RL, and that if our goal is to simply identify a
good policy, we can do much better than running a low-regret algorithm.

Remark 5.1 (Performance of Optimistic Algorithms) Optimistic algorithms that rely
on standard bonuses will also achieve low regret. This implies that recent works specifically
targeting PAC bounds such as (Dann et al., 2019; Ménard et al., 2020), which rely on
optimism, will also fail to hit the optimal instance-dependent rate, or a rate of O(C(M, ε)).
In addition, even works such as Xu et al. (2021) which do not explicitly rely on the principle
of optimism and do not have known O(Tα)-style regret bounds can also be shown to fail on
our examples as they only take actions which may be optimal.

6. Algorithm and Techniques

We turn now to the definition of our algorithm, Moca, and sketch out the proof of Theorem 2.
A full algorithm definition is given in Appendix A.3 and detailed proof in Appendix C.

6.1. Compounding Errors

In a standard multi-armed bandit, the value of a particular action is determined solely by
the environment. However, in an MDP, the value of an action depends not only on the
environment, but also on the actions the learner chooses to play in subsequent steps. If we
run a policy π̂ after reaching some (s, h), though we may be able to identify the optimal
action to play at (s, h) given that we then play π̂, if π̂ is suboptimal, this action may also
be suboptimal. The following result, a refinement of the celebrated performance-difference
lemma (Kakade, 2003), is a key piece in our analysis, allowing us to effectively handle this
compounding nature of errors, and may be of independent interest.

Proposition 7 Assume that for each h and s, π̂ plays an action which is εh(s)-suboptimal
with respect to π̂. That is, maxaQ

π̂
h(s, a)−Qπ̂

h(s, π̂h(s)) ≤ εh(s). Then the suboptimality of

π̂ is bounded as: V ?
0 − V π̂

0 ≤
∑H

h=1 supπ
∑

sw
π
h(s)εh(s).

Proposition 7 shows it is sufficient to learn actions that perform well as compared to the best
actions one could take given that π̂ is played in subsequent steps. This observation motivates
the basic premise of our algorithm: we treat every state as an individual bandit, and run an
action elimination-style algorithm at each state (Even-Dar et al., 2006) to shrink εh(s).

10
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6.2. Efficient Exploration

By Proposition 7, (s, h) adds at most supπ w
π
h(s)εh(s) = Wh(s)εh(s) to the total subopti-

mality. If we play the policy achieving wπ
h(s) = Wh(s) for K episodes, we will reach (s, h)

O(Wh(s)K) times. It follows that we need K & Ω( 1
Wh(s)εh(s)2

) to learn an εh(s)-optimal

action at (s, h). If we set εh(s) ∼ ε/Wh(s), the suboptimality of our policy will be propor-

tional to ε and we only need K & Ω(Wh(s)
ε2

): the difficulty of reaching a state is balanced by
the fact that hard-to-reach states do not contribute significantly to the suboptimality.

Navigating the MDP by Grouping States. Naively performing the above strategy
results in a worst-case sample complexity suboptimal in its dependence on S. To overcome
this, we propose an exploration procedure which groups states—rather than exploring states
individually, it seeks to reach any number of states which are “nearby”, in the sense that a
single policy may reach any of them with similar probability.

To make this practical, we take inspiration from the “reward-free” algorithm of Zhang et al.
(2020a), itself inspired by the classical Rmax algorithm (Brafman and Tennenholtz, 2002).
We create an augmented reward function which gives a reward of “1” to any (s, a) we wish to
visit, and “0” otherwise. We then run a (variance-sensitive) regret minimization algorithm,
Euler (Zanette and Brunskill, 2019), on this modified reward function to generate a set
of policies that can effectively traverse the MDP to visit the desired states. The resulting
algorithm, Learn2Explore, takes as input some X ⊆ S × A, the (s, a) pairs we wish to
visit, and returns a partition {Xj}j of X , a collection of policies {Πj}j , and values {Nj}j
satisfying the following guarantee:

Theorem 8 (Performance of Learn2Explore, informal) With high probability, the par-
tition {Xj}j returned by Learn2Explore satisfies supπ

∑
(s,a)∈Xj

wπ
h(s, a) ≤ 2−j+1. Moreover,

the policy classes Πj are such that, by executing a single trajectory of each π ∈ Πj once, we
visit every (s, a) ∈ Xj at least 1

2Nj times with high probability, where

Nj = O
(
S3A2H4 log3 1

δ/|X\ ∪
j−1
j′=1 Xj′ |

)
, |Πj | = O(2jS3A2H4 log3 1/δ)

Furthermore, Learn2Explore terminates after at most poly(S,A,H, log 1
δε) · 1ε episodes.

In other words, the sets Xj are groupings of “nearby” states that are increasingly difficult to
reach, and the sets Πj give a policy cover which navigates to each (s, a) ∈ Xj . If we wish
to collect n samples from each (s, a) ∈ Xj , it will only require running for O(|Πj |n/Nj) =

O(2j |X\ ∪j−1
j′=1 Xj′ | · n) ≤ O(2jSAn) episodes.

6.3. Eliminating Suboptimal Actions

Moca-SE, our primary subroutine, combines both of these insights to eliminate suboptimal
actions and determine an ε-optimal π̂. Moca-SE proceeds backwards in h, first learning
near-optimal actions in every (s,H), which gives us π̂H . More generally, at step h, given
some policy {π̂h′}Hh′=h+1, we take an action a and then play {π̂h′}Hh′=h+1. The total reward

obtained, a Monte Carlo rollout of {π̂h′}Hh′=h+1, is an unbiased estimate of Qπ̂
h(s, a). Using

these rollouts to estimate Qπ̂
h(s, a), we eliminate actions suboptimal with respect to π̂.

11
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Algorithm 1 Monte Carlo Action Elimination - Single Epoch (Moca-SE(ε, δ, FinalRound))

1: input: tolerance ε, confidence δ, final round flag FinalRound

2: for each (s, h) do // loop over all s, h to learn maximum reachability

3: Attempt to reach (s, h), set Ŵh(s) to estimate of Wh(s)

4: set `ε ← dlog H
ε e, π̂h(s)← arbitrary action, A0

h(s)← A, Zh ← reachable states
5: for h = H,H − 1, . . . , 1 do // loop over horizon

6: for i = 1, 2, . . . , dlog 64
H2Sε

e do // loop over estimated maximum reachability

7: Zhi ← {s ∈ Zh : Ŵh(s) ∈ [2−i, 2−i+1]}
8: for ` = 1, . . . , `ε do // loop over tolerance ε`
9: ε` ← H2−`, Z`

hi ← {(s, a) : s ∈ Zhi, a ∈ A`−1
h (s), |A`−1

h (s)| > 1}
10: Run Learn2Explore to collect Õ(H2Ŵh(s)

2/ε2` ) samples from ∀(s, a) ∈ Z`
hi

11: For all s ∈ Zhi, remove actions from A`−1
h (s) that are O(ε`/Ŵh(s))-suboptimal

12: if FinalRound is true then // ensure π̂ ε-optimal
13: Z`ε+1

h ← {(s, a) : s ∈ Zh, a ∈ A`ε
h (s), |A`ε

h (s)| > 1}
14: Run Learn2Explore to collect Õ(H42−2j(s)/ε2) samples from ∀(s, a) ∈ Z`ε+1

h ,
where 2−j(s) is the “group reachability” of s

15: For all s ∈ Zh, remove actions from A`ε
h (s) that are Õ(2jε/H)-suboptimal.

16: else
17: A`ε+1

h (s)← A`ε
h (s) for all s ∈ Zh

18: Set π̂h(s) to any action in A`ε+1
h (s) for all s ∈ Zh

19: return π̂, maxs,h |A`ε+1
h (s)|

Proposition 7 then allows us to relate the local suboptimality of an action, maxaQ
π̂
h(s, a)−

Qπ̂
h(s, π̂h(s)), to the global suboptimality of π̂. Critical to making this procedure efficient,

we apply Learn2Explore to reach states for which we have not identified the optimal
action. The following results show that this procedure is able to efficiently eliminate
ε`/Wh(s) = H2−`/Wh(s)-suboptimal actions and that its complexity is bounded by a
quantity reminiscent of C(M, ε).

Lemma 6.1 (Informal) With high probability, any a ∈ A`
h(s) satisfies ∆h(s, a) .

ε`
Wh(s)

.

Lemma 6.2 (Informal) With high probability, for a given value of h and i, the number
of episodes the loop over ` on Line 8 collects is at most

Õ
(
H2 inf

π
max
s∈Zhi

max
a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2

})
. (6.1)

Proof Sketch We first call Learn2Explore with input set X = Z`
hi. Let X `

hij denote the

partition of Z`
hi returned. To collect Õ(H2Ŵh(s)

2/ε2`) samples from each (s, a) ∈ X `
hij ,

Theorem 8 implies that it suffices to run for approximately Õ(2j |X `
hij | · H2Ŵh(s)

2/ε2`)

episodes; implying a total complexity of Õ(∑j 2
j |X `

hij | ·H2Ŵh(s)
2/ε2` ). Theorem 8 also gives

sup
π

min
(s,a)∈X `

hij

|X `
hij |wπ

h(s, a) ≤ sup
π

∑
(s,a)∈X `

hij
wπ
h(s, a) ≤ 2−j+1.
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Rearranging this gives that

2j |X `
hij | . inf

π
max

(s,a)∈X `
hij

1

wπ
h(s, a)

.

Using that Ŵh(s) ≈Wh(s), and since actions in stage ` are only active if ∆h(s, a) .
Wh(s)

ε`
,

we see that Õ(∑j 2
j |X `

hij | ·H2Ŵh(s)
2/ε2` ) can be bounded by (6.1).

6.4. Putting Everything Together: Moca

Algorithm 2 MOnte Carlo Action Elimination (Moca)

1: input: tolerance ε, confidence δ
2: for m = 1, . . . , dlog(H/ε)e − 1 do
3: π̂m, MaxOpt← Moca-SE(H2−m, δ

36m2 , false)
4: if MaxOpt = 1 then π̂m is optimal, return π̂m

5: return Moca-SE(ε, δ
36dlog(H/ε)e2

, true)

Our main algorithm, Moca, calls Moca-SE multiple times with geometrically decreasing
tolerance ε′. When run with ε′ < ε it sets FinalRound = false. If Moca-SE is able to
identify the optimal action in each (s, h), thereby identifying π?, Moca simply terminates
and output π?. However, if this does not occur, on the final call to Moca-SE, when ε′ ← ε,
we set FinalRound = true, which triggers an additional round of exploration necessary
to guarantee π̂ is ε-optimal. Critically, while in the first stage we only sample (s, a) in
proportion to the maximum reachability of s, in this stage we sample each (s, a) in proportion
with the reachability of the partition containing (s, a). Combining Theorem 8 with our choice
for the number of samples taken in this final round, we obtain the following guarantees.

Lemma 6.3 (Informal) Any a ∈ A`ε+1
h (s) satisfies ∆π̂

h(s, a) ≤ O( ε
H·2−j(s)+1 ), where j(s)

denotes the index of the partition returned by Learn2Explore which contains s.

Lemma 6.4 (Informal) If Moca-SE is run with FinalRound = true, the procedure within
the if statement on Line 12 terminates after at most Õ(H4|Z`ε+1

h |/ε2) episodes.

Using Lemma 6.1, one can show that ∪hZ`ε+1
h ⊆ OPT(ε), so

∑
h |Z`ε+1

h | ≤ |OPT(ε)|. A
simple calculation combining Lemma 6.3 and Proposition 7 gives that this exploration is
sufficient to guarantee π̂ is ε-optimal.

Lemma 6.5 (Informal) With high probability, if Moca-SE is run with FinalRound =
true, it returns a policy π̂ which is ε-optimal.

Proof Sketch By Proposition 7, we can bound the suboptimality of π̂ as:

V ?
0 − V π̂

0 ≤
∑H

h=1 sup
π

∑
sw

π
h(s)εh(s) ≤

∑H
h=1

∑
j sup

π

∑
s∈X `ε+1

hj
wπ
h(s)εh(s).
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By Lemma 6.3, εh(s) ≤ ε
H·2−j+1 for all s ∈ X `ε+1

hj . By Theorem 8, supπ
∑

s∈X `ε+1
hj

wπ
h(s) ≤ 2−j .

Thus, the above is bounded as
∑H

h=1

∑
j

ε
H·2−j+1 · 2−j . ε, which proves the result.

7. Conclusion

In this work, we proposed a new instance-dependent measure of complexity for PAC RL,
the gap-visitation complexity, showed that our algorithm, Moca, hits this complexity,
and, through several examples, showed that running a low-regret procedure cannot be
instance-optimal for PAC RL. Our work opens several interesting directions for future work.

• While the gap-visitation complexity takes into account the maximum reachability of a
given state, it does not take into account how easily a given state may be reached by a
near-optimal policy. One could imagine an MDP where some state, s, is easily reached
by a suboptimal policy but is never visited by near-optimal policies. In this case, a
PAC algorithm need not learn a good action in this state to return an ε-optimal policy,
yet Moca currently would do so. We believe that this idea—weighting states during
exploration not by their maximum visitation but by their visitation from near-optimal
policies—could be incorporated into our current framework, but leave the details of
this to future work.

• Neither this work nor Marjani et al. (2021) hit the true instance-optimal lower bound
which, as shown in Marjani et al. (2021), is the solution to a non-convex optimization
problem even for best-policy identification. The above discussion suggests that C(M, ε)
is not in general the instance-dependent lower bound, though Proposition 3 and
Proposition 5 show that in certain cases it does match the instance-dependent lower
bound. Relating C(M, ε) to the true lower bound in general and developing algorithms
that hit the lower bound would both be interesting directions for future work.

• By running an algorithm that achieves gap-dependent logarithmic regret (such as
Simchowitz and Jamieson (2019)) and performing an online-to-batch conversion, one
can obtain a PAC sample complexity of

O
( ∑

s,a,h:∆h(s,a)>0

1

∆h(s, a)ε
· 1
δ2

)
. (7.1)

While Proposition 4 shows that Moca achieves a similar complexity, albeit with a
log 1/δ scaling, it must also pay for the |OPT(ε)|

ε2
term, which could dominate the 1

∆h(s,a)ε

term. We believe removing this term (or showing it is necessary) and obtaining a
sample complexity of the form (7.1) but that scales instead with log 1/δ is an important
step in understanding the true complexity of PAC reinforcement learning.

Acknowledgements

The work of AW is supported by an NSF GFRP Fellowship DGE-1762114. MS is generously
supported by an Open Philanthropy AI Fellowship. The work of KJ was funded in part by
the AFRL and NSF TRIPODS 2023166.

14



Beyond No Regret: Instance-Dependent PAC Reinforcement Learning

References

Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-based reinforcement learning with a
generative model is minimax optimal. In Conference on Learning Theory, pages 67–83.
PMLR, 2020.
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Appendix A. Full Algorithm Description and Complexity

We turn now to providing several additional interpretations of the gap-visitation complexity
in Appendix A.2, and a full description of Moca in Appendix A.3. First, however, we
relax the assumption that each state has a unique optimal action, Assumption 3.1, in
Appendix A.1.

A.1. Non-Unique Optimal Actions

Towards relaxing Assumption 3.1, we construct an effective gap, ∆̃h(s, a), which coincides
with ∆h(s, a) for states where the optimal action is unique, but could be 0 for states where
the optimal action is non-unique. Formally, the effective gap is defined as follows:

∆̃h(s, a) :=





∆h(s, a) a is a suboptimal action

∆min(s, h) a is the unique action at s, h for which ∆h(s, a) = 0

0 a is a non-unique action at s, h for which ∆h(s, a) = 0.

We can then define the gap-visitation complexity in terms of the effective gap:

C(M, ε) :=
H∑

h=1

inf
π

max
s,a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2

}
+

H2|OPT(ε)|
ε2

.

for:

OPT(ε) :=
{
(s, a, h) : ε ≥Wh(s)∆̃h(s, a)/3

}
.

Note that this definition coincides with the definition of C(M, ε) given in Definition 4.1 in
the case when optimal actions are unique in each state. Theorem 2 holds identically with this
modified definition of the gap-visitation complexity, as do Proposition 4 and Proposition 5.

Note that the best-policy gap-visitation complexity does not have a natural analogue in
the case when some state has a non-unique optimal action. As the best-policy gap-visitation
complexity corresponds to the complexity of finding the optimal policy, and as it is not
possible to guarantee the optimal action has been found if there are multiple optimal actions,
in the case of best-policy identification, we still assume that the MDP has unique optimal
actions in each state.

For the remainder of the appendix, we will consider MDPs that may not have unique
optimal actions, and as such, will use the effective gap throughout.

A.2. Interpreting C(M, ε)

Proposition 9 The gap-visitation complexity, C(M, ε), satisfies

C(M, ε) =

H∑

h=1

inf
π

max
s

1

wπ
h(s)

∑

a

min

{
1

∆̃h(s, a)2
,
Wh(s)

2

ε2

}
+

H2|OPT(ε)|
ε2

.
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Furthermore, whenM has unique optimal actions, the best-policy gap-visitation complexity,
C?(M), satisfies

C?(M) =
H∑

h=1

inf
π

max
s

1

wπ
h(s)

∑

a:∆h(s,a)>0

1

∆h(s, a)2
.

Proof Consider the optimization

min
λ∈4(X)

max
x∈X

ax/λx.

It is easy to see that

∑

x∈X

ax = min
λ∈4(X)

max
x∈X

ax/λx

and the optimal λ is

λ∗
x =

ax∑
x′∈X ax′

.

For any policy π, we will have that
∑

a πh(a|s) = 1, and πh(a|s) must be a valid distribution
over a. This implies that wπ

h(s, a) = wπ
h(s)πh(a|s). Now fix π for steps h′ = 1, . . . , h − 1,

then it follows that

inf
πh

max
s,a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2

}
= inf

πh

max
s

1

wπ
h(s)

max
a

1

πh(a|s)
min

{
1

∆̃h(s, a)2
,
Wh(s)

2

ε2

}
.

Now for a given s, we can use that wπ
h(s) is independent of πh and apply our above calculation

to get that

inf
πh

1

wπ
h(s)

max
a

1

πh(a|s)
min

{
1

∆̃h(s, a)2
,
Wh(s)

2

ε2

}
=

1

wπ
h(s)

∑

a

min

{
1

∆̃h(s, a)2
,
Wh(s)

2

ε2

}
.

As the maximum over s is over a finite set and πh(·|s) can be chosen independently of πh(·|s′)
for any s 6= s′, we have that

inf
πh

max
s

1

wπ
h(s)

max
a

1

πh(a|s)
min

{
1

∆̃h(s, a)2
,
Wh(s)

2

ε2

}
= max

s

1

wπ
h(s)

∑

a

min

{
1

∆̃h(s, a)2
,
Wh(s)

2

ε2

}
.

Since taking an inf over π is equivalent to taking an inf over {πh′}h−1
h′=1 and πh, we can take

the inf of this over {πh′}h−1
h′=1 to get

inf
π

max
s,a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2

}
= inf

π
max

s

1

wπ
h(s)

∑

a

min

{
1

∆̃h(s, a)2
,
Wh(s)

2

ε2

}
.

The same line of reasoning can be used to obtain the expression for C?(M).
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Proposition 10 We can bound

C(M, ε) ≤
H∑

h=1

inf
π

max
s,a

4

wπ
h(s, a)∆̃

ε
h(s, a)

2 + ε2

SA

where

∆̃ε
h(s, a) :=




∆̃h(s, a)

ε
Wh(s)

< ∆̃h(s,a)
3

ε/H ε
Wh(s)

≥ ∆̃h(s,a)
3

.

Proof Let OPTh(ε) = {(s, a) : ∆̃h(s, a)Wh(s)/3 ≤ ε} so that OPT(ε) = ∪hOPTh(ε). We
can always bound |OPTh(ε)| ≤ SA, and furthermore,

H2|OPTh(ε)|
ε2

= min

{
H2

1/|OPTh(ε)| · ε2
,
H2SA

ε2

}

(a)
= inf

λ∈4(OPTh(ε))
max

(s,a)∈OPTh(ε)
min

{
H2

λsaε2
,
H2SA

ε2

}

≤ inf
π

max
(s,a)∈OPTh(ε)

min

{
H2

wπ
h(s, a)ε

2
,
H2SA

ε2

}

(b)

≤ inf
π

max
(s,a)∈OPTh(ε)

2H2

wπ
h(s, a)ε

2 + ε2

SA

where (a) follows since the optimal distribution will simply place a mass of 1/|OPTh(ε)| on
each (s, a) ∈ OPTh(ε), and (b) follows since min{ 1a , 1b} = 1

max{a,b} ≤ 1
a/2+b/2 .

Consider the distribution π′ which is a mixture of distribution π 1/2 of the time, and
the distribution πsh 1/(2SA) of the time, where πsh is the distribution which achieves

wπsh

h (s) = Wh(s). In other words, we will have wπ′

h (s, a) ≥ wπ
h(s, a)/2 + Wh(s)/(2SA).

Given this, we can bound

inf
π

max
s,a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2

}

≤ inf
π

max
s,a

min

{
2

wπ
h(s, a)∆̃h(s, a)2 +Wh(s)∆̃h(s, a)2/SA

,
2Wh(s)

2

wπ
h(s, a)ε

2 +Wh(s)ε2/SA

}

≤ inf
π

[
max

(s,a)∈OPTh(ε)c

2

wπ
h(s, a)∆̃h(s, a)2 +Wh(s)∆̃h(s, a)2/SA

+ max
(s,a)∈OPTh(ε)

2

wπ
h(s, a)ε

2 + ε2/SA

]
.

If (s, a) ∈ OPTh(ε)
c, then ∆̃h(s, a)Wh(s) > 3ε, so Wh(s)∆̃h(s, a)

2 ≥ 3∆̃h(s, a)ε ≥ ε2. Thus,
we can bound the above as

≤ inf
π

[
max

(s,a)∈OPTh(ε)c

2

wπ
h(s, a)∆̃h(s, a)2 + ε2/SA

+ max
(s,a)∈OPTh(ε)

2

wπ
h(s, a)ε

2 + ε2/SA

]
.

The result then follows combining this with the bound on H2|OPTh(ε)|
ε2

given above, and using

the definition of ∆̃ε
h(s, a).
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Proposition 11 We can bound

C(M, ε) ≤
∑

s,a,h

1

εmax{∆̃h(s, a), ε}
+

H2|OPT(ε)|
ε2

.

Proof This follows from Proposition 9 and noting that

min

{
1

Wh(s)∆̃h(s, a)2
,
Wh(s)

ε2

}
≤ min

{
1√

Wh(s)∆̃h(s, a)
,

√
Wh(s)

ε

}
·
√
Wh(s)

ε

≤ min

{
1

∆̃h(s, a)ε
,
1

ε2

}
.

Proof [Proof of Proposition 4] Let πsh denote the policy that achieves wπsh

h (s) = Wh(s).
Consider the state visitation distribution:

w′
h(s) =

∑
s′ w

πs′h

h (s) ·∑amin
{

1

Wh(s′)∆̃h(s′,a)2
, Wh(s

′)
ε2

}

∑
s′,amin

{
1

Wh(s′)∆̃h(s′,a)2
, Wh(s′)

ε2

} .

Since the set of state visitations realizable on a given MDP is convex and for any realizable
state distribution there exists a policy with that state distribution by Proposition 12, and
since w′

h is a convex combination of state visitation distributions, it follows that there exists
some policy π̃ such that w′

h(s) = wπ̃
h(s). Furthermore, by definition,

wπ̃
h(s) ≥

wπsh

h (s) ·∑amin
{

1

Wh(s)∆̃h(s,a)2
, Wh(s)

ε2

}

∑
s′,amin

{
1

Wh(s′)∆̃h(s′,a)2
, Wh(s′)

ε2

} = Wh(s) ·
∑

amin
{

1

Wh(s)∆̃h(s,a)2
, Wh(s)

ε2

}

∑
s′,amin

{
1

Wh(s′)∆̃h(s′,a)2
, Wh(s′)

ε2

} .

Thus, since π̃ is a feasible policy, using the expression for C(M, ε) given in Proposition 9, it
follows that

C(M, ε) =
H∑

h=1

inf
π

max
s

1

wπ
h(s)

∑

a

min

{
1

∆̃h(s, a)2
,
Wh(s)

2

ε2

}
+

H2|OPT(ε)|
ε2

≤
H∑

h=1

∑

s,a

min

{
1

Wh(s)∆̃h(s, a)2
,
Wh(s)

ε2

}
+

H2|OPT(ε)|
ε2

.

To obtain the first bound, we use the second bound to get

C(M, ε) ≤
∑

s,a,h

H2Wh(s)

ε2
≤ H3SA

ε2

and use that |OPT(εtol)| ≤ SAH.

Proof [Proof of Proposition 5] This follows directly from Proposition 9.
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A.3. Full Algorithm Description

We turn now to the full definition of our algorithm, Moca.

A.3.1. Learn2Explore Overview

Algorithm 3 Learn2Explore

1: function Learn2Explore(active set X ⊆ S×A, step h, confidence δ, sampling confidence
δsamp, tolerance εL2E)

2: if |X | = 0 then return {(∅, ∅, 0, 0)}dlog(1/εL2E)ej=1

3: for j = 1, . . . , dlog(1/εL2E)e do
4: Kj ← Kj(δ/dlog(1/εL2E)e, δsamp) as defined in (D.1), Mj ← |X |, Nj ← Kj/(4|X | ·

2j)
5: Xj ,Πj ← FindExplorableSets(X , h, δ,Kj , Nj)
6: X ← X\Xj

7: return {(Xj ,Πj , Nj ,Mj)}dlog(1/εL2E)ej=1

8:

9: function FindExplorableSets(active set X ⊆ S ×A, step h, confidence δ, epochs to
run K, samples to collect N)

10: Set r1h(s, a)← 1 for (s, a) ∈ X and 0 otherwise, N(s, a, h)← 0, Y ← ∅, Π← ∅, j ← 1
11: for k = 1, 2, . . . ,K do

// Euler is as defined in Zanette and Brunskill (2019)

12: Run Euler on reward function rjh, get trajectory {(skh, akh, h)}Hh=1 and policy πk
13: N(skh, a

k
h)← N(skh, a

k
h) + 1, Π← Π ∪ πk

14: if N(skh, a
k
h) ≥ N , (skh, a

k
h) ∈ X , and (skh, a

k
h) 6∈ Y then

15: Y ← Y ∪ (skh, a
k
h)

16: rj+1
h (s, a)← 1 for (s, a) ∈ X\Y and 0 otherwise

17: j ← j + 1
18: Restart Euler
19: return Y,Π

Learn2Explore is the backbone of our sample collection procedure and is called both in
Line 4 of Moca-SE as well as in CollectSamples. We provide a full analysis of Learn2Explore
in Appendix D.

A.3.2. Moca-SE Overview

Given this formal description of Learn2Explore, we are ready to formally describe the
Moca-SE (single-epoch Moca) procedure. Assume that we run Moca-SE with tolerance
ε and confidence δ. We begin by calling Learn2Explore on Line 4, which allows us to
form an estimate of Wh(s), the maximum reachability of (s, h). This in turn allows us
to determine which states are efficiently reachable. We let Zh denote the set of all such
efficiently reachable states at stage h: Wh(s) ≥ ε

2H2S
, ∀s ∈ Zh. All other states have little
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Algorithm 4 Monte Carlo Action Elimination - Single Epoch (Moca-SE(ε, δ, FinalRound))

1: input: tolerance ε, confidence δ, final round flag FinalRound

2: initialize εexp ← ε
2H2S

, Zh ← ∅, ιexp = dlog 1
εexp
e

3: for each (s, h) do // loop over all s, h to learn maximum reachability

4: {(X sh
j ,Πsh

j , N sh
j )}ιexpj=1 ← Learn2Explore({(s, a)}, h, δ

SH , 12 , εexp) for arbitrary a ∈ A
5: if X sh

j = {(s, a)} for j ∈ [ιexp] then Ŵh(s)←
Nsh

j

2|Πsh
j |

= 1
16·2j

, Zh ← Zh ∪ {s}

6: set ιε ← dlog 64
H2Sε

e, ιδ ← log SAHιε(`ε+1)
δ , `ε ← dlog H

ε e, π̂h(s) ← arbitrary action,
A0

h(s)← A.
7: for h = H,H − 1, . . . , 1 do // loop over horizon

8: for i = 1, 2, . . . , ιε do // loop over estimated maximum reachability

9: Zhi ← {s ∈ Zh : Ŵh(s) ∈ [2−i, 2−i+1]}
10: for ` = 1, . . . , `ε do // loop over tolerance ε`
11: ε` ← H2−`, Z`

hi ← {(s, a) : s ∈ Zhi, a ∈ A`−1
h (s), |A`−1

h (s)| > 1}
12: n`

ij ← 218H2ιδ
22iε2`

, γ`ij ← 2iε`
28

for j = 1, . . . , ιε

13: D
`
hi, {X `

hij}ιεj=1 ← CollectSamples(Z`
hi, {n`

ij}ιεj=1, h, π̂,
δ

Hιε`ε
,
εexp
32 )

14: {A`
h(s)}s∈Zhi

← EliminateActions(Z`
hi, {X `

hij}ιεj=1,D
`
hi, {A`−1

h (s)}s∈Zhi
, h, {γ`ij}ιεj=1)

15: if FinalRound is true then // ensure π̂ ε-optimal
16: Z`ε+1

h ← {(s, a) : s ∈ Zh, a ∈ A`ε
h (s), |A`ε

h (s)| > 1}
17: n`ε+1

j ← 64H4ιδι
2
ε2

2(−j+1)

ε2
, γ`ε+1

j ← ε
4Hιε2−j+1 for j = 1, . . . , ιε

18: D
`ε+1
h , {X `ε+1

hj }ιεj=1 ← CollectSamples(Z`ε+1
h , {n`ε+1

j }ιεj=1, h, π̂,
δ
H ,

εexp
32 )

19: {A`ε+1
h (s)}

s∈Z`ε+1
h
← EliminateActions(Z`ε+1

h , {X `ε+1
hj }ιεj=1,D

`ε+1
h ,

{A`ε
h (s)}s∈Z`ε+1

h
, h, {γ`ε+1

j }ιεj=1)

20: else
21: A`ε+1

h (s)← A`ε
h (s) for all s ∈ Zh

22: Set π̂h(s) to any action in A`ε+1
h (s) for all s ∈ Zh

23: return π̂, maxs,h |A`ε+1
h (s)|

effect on the performance of any policy and can henceforth be ignored. The following claim
shows that our estimate of Wh(s) is in fact accurate for s ∈ Zh.

Claim A.1 (Informal) If running Moca-SE, with high probability Ŵh(s) ≤ Wh(s) ≤
32Ŵh(s) for all s ∈ Zh.

We then proceed to our main loop over h in Line 7. For a fixed h, we loop over i and
form the partition Zhi which contains all s ∈ Zh with Ŵh(s) ∼ 2−i. We then proceed to our
action elimination procedure and loop over ` ∈ N, where we eliminate actions at tolerance
ε` = H2−`. For each such `, we define Z`

hi ⊆ S ×A as the set of (s, a) for s ∈ Zhi, and a we
have not yet determined are ε`−1/Wh(s)-suboptimal. We next run CollectSamples on Z`

hi

and seek to collect n`
ij = O(H2/(22iε2` )) = O(H2Wh(s)

2/ε2` ) from each (s, a) ∈ Z`
hi.

Note that every (s, a) ∈ Z`
hi has similar maximum reachability Wh(s) ∼ 2−i, determined

by index i. Nevertheless, as outlined in Section 6.1, to obtain the proper scaling in S,
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we may still need to group states in a way that allows nearby states to be explored
effectively. Calling Learn2Explore in CollectSamples does just this, efficiently traversing
the MDP to guarantee enough samples are collected from all states in tandem. After running
CollectSamples, we run EliminateActions to eliminate suboptimal actions, yielding a set
of candidate ε`/Wh(s)-suboptimal actions for each (s, h), denoted A`

h(s).

The FinalRound flag. Single-episode Moca is called multiple times by our main algorithm
(Algorithm 5), each with geometrically decreasing tolerance ε. For all but the smallest such
ε, Moca-SE is run with FinalRound = false, and terminates after the previously described
loop over h, i, ` terminates. The last call to Moca-SE constitutes the “final round”, where we
set FinalRound = true; this calls CollectSamples and EliminateActions one more time
for each h.

While the loop with the FinalRound = false is able to eliminate suboptimal actions, it
does not shrink the action set enough to guarantee that the returned policy is ε-optimal.
In particular, while each (s, h) pair upon entering this final-round loop is sub-optimal
by at most εh(s) = O(ε/Wh(s)), Proposition 7 suggests that we actually need εh(s) ≤
O(ε/H · supπ

∑
s′∈X wπ

h(s
′)). To remedy this, FinalRound = true invokes a final step to

ensure the latter bound holds. Critically, while in the previous step we only sampled (s, a)
in proportion with Wh(s)

2, the individual maximum reachability of that state, in this step
we sample each (s, a) in proportion with the reachability of the partition containing (s, a).
This subtlety is indispensable for attaining our instance-dependent sample complexity.

In other words, after forming our set Z`ε+1
h of active states and actions correspond-

ing to the minimal error-resolution index ` = `ε (from the previous argument, this will
only contain states we have not determined the optimal action for and actions that sat-
isfy ∆h(s, a) ≤ 3ε

2Wh(s)
) and partitioning it into {X `ε+1

hj }j by calling Learn2Explore, we

seek to collect O(H42−2j/ε2) from every (s, a) ∈ X `ε+1
hj . By Theorem 8, X `ε+1

hj satisfies

supπ
∑

(s,a)∈X `ε+1
hj

wπ
h(s, a) ≤ 2−j+1, so sampling (s, a) O(H42−2j/ε2) times means we sample

it in proportion to its group reachability squared.

A.3.3. Moca Overview

Algorithm 5 MOnte Carlo Action Elimination (Moca)

1: input: tolerance εtol, confidence δtol
2: A0

h(s)← A for all s, h
3: for m = 1, . . . , dlog(H/εtol)e − 1 do
4: εtol(m) ← H2−m, δtol(m) ← δtol

36m2

5: π̂m, MaxOpt← Moca-SE(εtol(m), δtol(m), false)
6: if MaxOpt = 1 then
7: return π̂m

8: π̂, MaxOpt← Moca-SE(εtol,
δtol

36dlog(H/εtol)e2
, true)

9: return π̂

We turn now to our main algorithm, Moca. Moca takes as input a tolerance εtol and
confidence δtol. Were our goal simply to find an εtol-optimal policy, from the above argument
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we could call Moca-SE with tolerance εtol and FinalRound = true. However, if εtol is
small enough that Moca-SE identifies the optimal action in every state, this may result
in overexploring—since once we have identified the optimal action in every state we can
terminate and output the optimal policy. To remedy this, we instead call Moca-SE with
exponentially decreasing tolerance and FinalRound = false. If it returns a set of actions
for every s, h with |Ah(s)| = 1, we can guarantee we have identified the optimal policy, and
simply terminate without overexploring. Note also in this stage, since FinalRound = false,
we do not pay for the Õ(H4

ε2
|Z`ε+1

h |) term. If this condition is never met, we simply call
Moca-SE a final time at the end with FinalRound = true to ensure the policy we return is
εtol-optimal.

A.3.4. Helper Function Descriptions

Algorithm 6 Moca Helper Functions

1: function CollectSamples(active set X , allocation {nj}dlog 1/εcsej=1 , step h, policy π̂, tol-
erance δcs, precision εcs)

2: {(Xj ,Πj , Nj)}dlog 1/εcsej=1 ← Learn2Explore(X , h, δcs, δcs
dlog 1/εcsemaxj nj

, εcs), D← ∅
3: for j = 1, . . . , dlog 1/εcse do
4: for π ∈ Πj do
5: Run π for T = d2nj/Nje times up to level h, then play π̂

6: Collect reward rollouts D← D ∪ {sth, ath, Q̊
π̂,t
h (sth, a

t
h) :=

∑H
h′=hR

t
h′}Tt=1

7: return D, {Xj}dlog 1/εcsej=1

8:

9: function EliminateActions(active set X , partition {Xj}kj=1, dataset D, active actions

{Ah(s)}s∈Z , level h, thresholds {γj}kj=1)
10: for (s, a) ∈ X do
11: Nh(s, a)←

∑
(sth,a

t
h,Q̊

π̂,t
h (sth,a

t
h))∈D

I{(sth, ath) = (s, a)}
12: Q̂π̂

h(s, a)← 1
Nh(s,a)

∑
(sth,a

t
h,Q̊

π̂,t
h (sth,a

t
h))∈D

I{(sth, ath) = (s, a)} · Q̊π̂,t
h (sth, a

t
h)

13: for j = 1, . . . , k do
14: for s s.t. ∃a with (s, a) ∈ Xj do
15: j(s)← argmaxj′ j

′ s.t. ∃a′, (s, a′) ∈ Xj′

16: Ah(s)← {a ∈ Ah(s) : maxa′∈Ah(s) Q̂
π̂
h(s, a

′)− Q̂π̂
h(s, a) ≤ γj(s)}

17: return {Ah(s)}s∈Z

Description of CollectSamples. CollectSamples takes as input a set X ⊆ S × A,
an allocation {nj}j , a timestep h, and a policy π̂. In short, CollectSamples first calls
Learn2Explore on X to obtain a partition {Xj}j , and then reruns the policies returned by
Learn2Explore enough times to ensure that every (s, a) ∈ Xj is reached at least nj times at

timestep h. After reaching (s, a, h), π̂ is played, to obtain a Monte Carlo estimate Q̊π̂,t
h (s, a)

of Qπ̂
h(s, a). CollectSamples then returns the data collected and the partition returned by

Learn2Explore.
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Description of EliminateActions. EliminateActions takes as input a set X ⊆ S ×A,
a partition of this set {Xj}j , a dataset D generated by CollectSamples, a set of active
actions {Ah(s)}s, a timestep h, and a threshold {γj}j . For each (s, a) ∈ X , it forms an
estimate of Qπ̂

h(s, a) from the rollouts in D. Given these estimates, for s such that there
exists a with (s, a) ∈ Xj , it removes actions from Ah(s) that are more than γj(s)-suboptimal.

Appendix B. MDP Technical Results

Proof [Proof of Proposition 7] This is a direct consequence of Lemma B.1 since we can
apply this lemma to get that, for arbitrary π′,

V ?
0 − V π̂

0 =
∑

s

P0(s)(V
?
1 (s)− V π̂

1 (s)) =
∑

s

wπ′

1 (s)(V ?
1 (s)− V π̂

1 (s)) ≤
H∑

h=1

sup
π

∑

s

wπ
h(s)εh(s)

where we note that wπ′

1 (s) = Pπ′ [s1 = s] = P0(s).

Lemma B.1 Assume that for each h and s, π̂ plays an action which satisfies

max
a

Qπ̂
h(s, a)−Qπ̂

h(s, π̂h(s)) ≤ εh(s). (B.1)

Then for any h and π′,

∑

s

wπ′

h (s)(V ?
h (s)− V π̂

h (s)) ≤
H∑

h′=h

sup
π

∑

s

wπ
h′(s)εh′(s).

Proof We proceed by backwards induction. The base case, h = H, is trivial. Assume that
at level h, for any π,

∑

s

wπ
h(s)(V

?
h (s)− V π̂

h (s)) ≤
H∑

h′=h

sup
π′

∑

s′

wπ′

h′ (s′)εh′(s′)

and that at level h− 1, for each s (B.1) holds. By definition,

V ?
h−1(s)− V π̂

h−1(s) = Q?
h−1(s, π

?
h−1(s))−Qπ̂

h−1(s, π̂h−1(s))

= Q?
h−1(s, π

?
h−1(s))−Qπ̂

h−1(s, π
?
h−1(s)) +Qπ̂

h−1(s, π
?(s))−max

a
Qπ̂

h−1(s, a)

+ max
a

Qπ̂
h−1(s, a)−Qπ̂

h−1(s, π̂h−1(s)).

Clearly, Qπ̂
h−1(s, π

?(s))−maxaQ
π̂
h−1(s, a) ≤ 0 and by assumption maxaQ

π̂
h−1(s, a)−Qπ̂

h−1(s, π̂h−1(s)) ≤
εh−1(s). Furthermore,

Q?
h−1(s, π

?
h−1(s))−Qπ̂

h−1(s, π
?
h−1(s)) =

∑

s′

Ph−1(s
′|s, π?

h−1(s))(V
?
h (s

′)− V π̂
h (s′)).
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Then, for any π,

∑

s

wπ
h−1(s)(V

?
h−1(s)− V π̂

h−1(s)) ≤
∑

s

wπ
h−1(s)εh−1(s)

+
∑

s

∑

s′

wπ
h−1(s)Ph−1(s

′|s, π?
h−1(s))(V

?
h (s

′)− V π̂
h (s′))

=
∑

s

wπ
h−1(s)εh−1(s) +

∑

s

wπ′

h (s)(V ?
h (s)− V π̂

h (s))

≤
H∑

h′=h−1

sup
π′

∑

s′

wπ′

h′ (s′)εh′(s′)

where the last inequality follows by the inductive hypothesis and we have used that

∑

s

wπ
h−1(s)Ph−1(s

′|s, π?
h−1(s)) = wπ′

h (s′).

where π′
h′(s) = πh′(s) for all h′ ≤ h− 2 and π′

h′(s) = π?
h′(s) for h′ ≥ h− 1. The conclusion

then follows.

Lemma B.2 Assume that

sup
π

∑

s′

wπ
h(s

′)(V ?
h (s

′)− V π̂
h (s′)) ≤ ε and sup

π

∑

s′

wπ
h+1(s

′)(V ?
h+1(s

′)− V π̂
h+1(s

′)) ≤ ε.

Then, for any s,

|∆h(s, a)−∆π̂
h(s, a)| ≤ ε/Wh(s).

Proof By definition,

|∆h(s, a)−∆π̂
h(s, a)| = |V ?

h (s)−Q?
h(s, a)− (max

a′
Qπ̂

h(s, a
′)−Qπ̂

h(s, a))|

≤ max{|V ?
h (s)−max

a′
Qπ̂

h(s, a
′)|, |Qπ̂

h(s, a)−Q?
h(s, a)|}.

where the last inequality follows since

V ?
h (s)−Q?

h(s, a)− (max
a′

Qπ̂
h(s, a

′)−Qπ̂
h(s, a)) ≤ V ?

h (s)−max
a′

Qπ̂
h(s, a

′)

and

−(V ?
h (s)−Q?

h(s, a)− (max
a′

Qπ̂
h(s, a

′)−Qπ̂
h(s, a))) ≤ Q?

h(s, a)−Qπ̂
h(s, a).

Now,

V ?
h (s)−max

a′
Qπ̂

h(s, a
′) = V ?

h (s)−Qπ̂
h(s, π̂h(s)) +Qπ̂

h(s, π̂h(s))−max
a′

Qπ̂
h(s, a

′)

≤ V ?
h (s)− V π̂

h (s)
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where the inequality follows since, by definition, V π̂
h (s) = Qπ̂

h(s, π̂h(s)) and Qπ̂
h(s, π̂h(s))−

maxa′ Q
π̂
h(s, a

′) ≤ 0. By assumption,

sup
π

∑

s′

wπ
h(s

′)(V ?
h (s

′)− V π̂
h (s′)) ≤ ε

and furthermore, for any s,

sup
π

∑

s′

wπ
h(s

′)(V ?
h (s

′)− V π̂
h (s′)) ≥Wh(s)(V

?
h (s)− V π̂

h (s))

so it follows that |V ?
h (s)− V π̂

h (s)| ≤ ε/Wh(s). By definition,

Q?
h(s, a)−Qπ̂

h(s, a) =
∑

s′

Ph(s
′|s, a)(V ?

h+1(s
′)− V π̂

h+1(s
′))

so

Wh(s)(Q
?
h(s, a)−Qπ̂

h(s, a)) =
∑

s′

Ph(s
′|s, a)Wh(s)(V

?
h+1(s

′)− V π̂
h+1(s

′))

≤ sup
π

∑

s′

wπ
h+1(s

′)(V ?
h+1(s

′)− V π̂
h+1(s

′))

where the inequality follows since V ?
h+1(s

′) ≥ V π̂
h+1(s

′), and since

Ph(s
′|s, a)Wh(s) = P[sh+1 = s′|sh = s, ah = a]Pπ[sh = s] = Pπ′ [sh+1 = s′, sh = s] ≤ Pπ′ [sh+1]

where π denotes the policy achieving Pπ[sh = s] = Wh(s) and π′ plays π up to h and then
π′
h(s) = a. Thus, if supπ

∑
s′ w

π
h+1(s

′)(V ?
h+1(s

′)− V π̂
h+1(s

′)) ≤ ε, rearranging the inequalities
gives the result.

We are aware of several works which obtain the following result for non-episodic MDPs
(Zimin and Neu, 2013; Puterman, 2014), but present the result for episodic MDPs for
completeness.

Proposition 12 Fix some MDPM. Then:

1. The set of valid state-action visitation distributions onM is convex.

2. For any valid state-action visitation distribution onM, there exists some policy which
realizes it.

Proof The set of valid state-action visitation distributions, W, is defined as

W :=
{
w ∈ [0, 1]SAH : ∃π ∈ Π s.t. wh(s, a) = πh(a|s) ·

∑

s′,a′

Ph−1(s|s′, a′)wh−1(s
′, a′), ∀h ≥ 1,

w0(s, a) = π0(a|s)P0(s),
∑

s,a

wh(s, a) = 1, ∀h ≥ 0
}
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where here Π = 4(A)SH .

Fix some state-action visitation distributions w,w′ ∈ W, and let π and π′ denote their
correponding policies as above. Furthermore, denote wh(s) =

∑
awh(s, a) (and similarly for

w′). Our goal is to show that for any t ∈ [0, 1], w̃ = (1 − t)w + tw′ ∈ W. First, we show
that there exists some policy π̃ such that

(1− t)w0(s, a) + tw′
0(s, a) = π̃0(a|s)P0(s).

Note that we can take π̃0(a|s) = (1− t)π0(a|s) + tπ′
0(a|s), since

((1− t)π0(a|s) + tπ′
0(a|s))P0(s) = (1− t)w0(s, a) + tw′

0(s, a).

By construction, for any h ≥ 1,

w̃h(s) =
∑

a

w̃h(s, a) = (1− t)
∑

a

wh(s, a) + t
∑

a

w′
h(s, a) = (1− t)wh(s) + tw′

h(s).

Furthermore, since w is a valid state-action distribution,

wh(s) =
∑

s′,a′

Ph−1(s|s′, a′)wh−1(s
′, a′)

and similarly for w′. Let π̃h(a|s) = w̃h(s, a)/w̃h(s) (where we define 0/0 = 0), and note that
this is a valid distribution since by definition

∑
a w̃h(s, a) = w̃h(s). Then,

w̃h(s, a) = π̃h(a|s)w̃h(s)

= π̃h(a|s)((1− t)wh(s) + tw′
h(s))

= π̃h(a|s)
∑

s′,a′

Ph−1(s|s′, a′)((1− t)wh−1(s
′, a′) + tw′

h−1(s
′, a′))

= π̃h(a|s)
∑

s′,a′

Ph−1(s|s′, a′)w̃h−1(s
′, a′)

where the last equality follows by the definition of w̃h−1. The other constraints are trivial to
verity, so w̃ ∈ W. This proves the first result.

For the second result, take some w ∈ W , and let πh(a|s) = wh(s, a)/wh(s). By definition
this is a valid distribution. Furthermore, it trivially holds that wπ

0 (s, a) = w0(s, a). Assume
that wπ

h−1(s, a) = wh−1(s, a) for all (s, a). By definition and the inductive hypothesis,

wπ
h(s, a) = πh(a|s)

∑

s′,a′

Ph−1(s|s′, a′)wπ
h−1(s

′, a′)

= πh(a|s)
∑

s′,a′

Ph−1(s|s′, a′)wh−1(s, a)

= πh(a|s)wh(s)

= wh(s, a),

which proves the second result.
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Appendix C. Proof of Theorem 2

In this section we give a formal proof of Theorem 2.

Notation. Throughout the proof, we let εtol denote the tolerance and δtol the confidence
given as an input to Moca, and ε = εtol(m) and δ = δtol(m) the tolerance and confidence
given as an input to Moca-SE at epoch m of Moca, respectively. For convenience, we will
also define ε0 = H. For a single call of Moca-SE, we will use the following notation:

• For a given h, i, and `, consider the call to CollectSamples on Line 13, and let
{X `

hij}ιεj=1 denote the partition returned by calling Learn2Explore on Line 2 of

CollectSamples. Similarly, let {Π`
hij}ιεj=1 and {N `

hij}ιεj=1 denote the policies and
minimum number of samples returned by Learn2Explore, respectively.

• For a given h, consider the call to CollectSamples on Line 18, and let {X `ε
hj}ιεj=1

denote the partition returned by calling Learn2Explore on Line 2 of CollectSamples.
As before, let {Π`ε+1

hj }ιεj=1 and {N `ε+1
hj }ιεj=1 denote the policies and minimum number

of samples.

Good Events. We next define the good events, which we will assume hold throughout
the remainder of the proof.

First, let Eexp be the event on which, for all calls to Moca-SE simultaneously:

• For every h = 1, . . . , H , i = 1, . . . , ιε, ` = 1, . . . , `ε, we collect at least n`
i1 samples from

each (s, a) ∈ Z`
hi. Furthermore, ∪ιεj=1X `

hij = Z`
hi and X `

hij satisfy

sup
π

∑

(s,a)∈X `
hij

wπ
h(s, a) ≤ 2−j+1.

• For every h = 1, . . . , H, if Moca-SE is run with FinalRound = true, then we collect
at least n`ε+1

j samples from each (s, a) ∈ X `ε+1
hj . Furthermore, ∪ιεj=1X `ε+1

hj = Z`ε+1
h and

X `ε+1
hj satisfies

sup
π

∑

(s,a)∈X `ε+1
hj

wπ
h(s, a) ≤ 2−j+1.

• Ŵh(s) ≤Wh(s) ≤ 32Ŵh(s) for all s ∈ Zh.

• Following Line 7 of Moca-SE, Zh satisfies, for all h,

sup
π

max
s∈Zc

h

wπ
h(s) ≤

ε

2H2S
.

Next, let Eest be the event on which, for all calls to Moca-SE,

|Q̂π̂
h,`(s, a)−Qπ̂

h(s, a)| ≤
√

H2ιδ

Nhi`
h (s, a)

, ∀(s, a) ∈ Z`
hi, ∀h ∈ [H], i ∈ [ιε], ` ∈ [`ε]
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|Q̂π̂
h,`ε+1(s, a)−Qπ̂

h(s, a)| ≤
√

H2ιδ

N
h(`ε+1)
h (s, a)

, ∀(s, a) ∈ Z`ε
h , ∀h ∈ [H]

where Q̂π̂
h,`(s, a) is the estimate of Qπ̂

h(s, a) formed on Line 12 of EliminateActions,

Nhi`
h (s, a) is the number of samples collected from (s, a, h) at iteration (h, i, `), and Q̂π̂

h,`ε+1(s, a)

and N
h(`ε+1)
h (s, a) are the analogous quantities for the sampling done if FinalRound = true.

We can think of Eexp as the event on which we explore successfully—we reach every state
the desired number of times—and Eest the event on which we estimate correctly—our Monte
Carlo estimates of Qπ̂

h(s, a) concentrate. The following lemma shows that these events hold
with high probability.

Lemma C.1 If we run Moca, P[Eexp ∩ Eest] ≥ 1− δtol.

Proof [Proof Sketch] That Eest holds is simply a consequence of Hoeffding’s inequality
since Qπ̂

h(s, a) will be in [0, H] almost surely. That Eexp holds is a direct consequence of the
correctness of our exploration procedure, as described in Appendix D. We give the full proof
of this result in Appendix C.4.

C.1. Correctness of Moca-SE.

We next establish that the policy returned by Moca-SE run with tolerance ε and FinalRound

= true is ε-optimal. To this end, we first show that any action in the active set, A`
h(s), will

satisfy a certain suboptimality bound.

Lemma C.2 (Formal Statement of Lemma 6.1 and Lemma 6.3) On the event Eest∩
Eexp, if Moca-SE is run with tolerance ε, for any h ∈ [H] and ` ∈ [`ε + 1], if |A`

h(s)| = 1,
then for a ∈ A`

h(s),

max
a′

Qπ̂
h(s, a

′)−Qπ̂
h(s, a) = 0.

Furthermore, if |A`
h(s)| > 1, ` ≤ `ε, and s ∈ Zhi for some i, then any a ∈ A`

h(s) satisfies

∆h(s, a) ≤
3ε`

2Wh(s)
.

Finally, if |A`ε+1
h (s)| > 1 and s ∈ Zh, then any a ∈ A`ε+1

h (s) satisfies

∆π̂
h(s, a) ≤

ε

2Hιε · 2−j(s)+1

where j(s) = argmaxj j s.t. ∃a′, (s, a′) ∈ X `ε+1
hj .

Proof We first claim that the optimal action with respect to π̂ must always be active.

Claim C.3 On the event Eest ∩ Eexp, for any h, s, and ` ∈ [`ε + 1], we will have that
â?h(s) ∈ A`

h(s) where â?h(s) = argmaxaQ
π̂
h(s, a).
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We prove this claim in Appendix C.4. By construction, we will always have that
|A`

h(s)| ≥ 1. If |A`
h(s)| = 1, from Claim C.3 it follows that A`

h(s) = {â?h(s)}, and thus
maxa′ Q

π̂
h(s, a

′)−Qπ̂
h(s, a) = 0.

Assume then that |A`
h(s)| > 1, ` ≤ `ε, and s ∈ Zhi. The result is trivial when ` = 0,

since in this case ε` = H, and we will always have ∆h(s, a) ≤ H,Wh(s) ≤ 1. On the event
Eexp, for all i ∈ [ιε] we will collect at least n`

i1 = 218 · 2−2iH2ιδ/ε
2
` samples from (s, a) for

each a ∈ A`
h(s), and on Eest we will then have that

|Q̂π̂
h,`(s, a)−Qπ̂

h(s, a)| ≤
√

H2ιδ

n`
i1

= 2iε`/2
9.

Thus, for any a ∈ A`
h(s), we have

max
a′∈A`

h(s)
Q̂π̂

h,`(s, a
′)− Q̂π̂

h,`(s, a) ≥ max
a′∈A`

h(s)
Qπ̂

h(s, a
′)−Qπ̂

h(s, a)− 2 · 2iε`/29

= max
a′

Qπ̂
h(s, a

′)−Qπ̂
h(s, a)− 2 · 2iε`/29

where the equality follows since â?h(s) ∈ A`
h(s). It follows that if

∆π̂
h(s, a) = max

a′
Qπ̂

h(s, a
′)−Qπ̂

h(s, a) ≥ 4 · 2iε`/29

then

max
a′∈A`

h(s)
Q̂π̂

h,`(s, a
′)− Q̂π̂

h,`(s, a) ≥ 2 · 2iε`/29.

so the exit condition on Line 16 for EliminateActions is met for our choice of γ`ij = 2iε`/2
8

(note that in this case, since γ`ij is the same for all `, Line 15 has no effect), and therefore

a 6∈ A`+1
h (s). Thus, any a ∈ A`+1

h (s) must satisfy

∆π̂
h(s, a) ≤ 2iε`/2

7.

By construction, we will have that Ŵh(s) ∈ [2−i, 2−i+1] and on Eexp, Ŵh(s) ≤ Wh(s) ≤
32Ŵh(s). Thus, we can upper bound

∆π̂
h(s, a) ≤ 2iε`/2

7 ≤ 2ε`

Ŵh(s)27
≤ 32 · 2ε`

Wh(s)27
=

ε`
2Wh(s)

.

Finally, the following claim, proved in Appendix C.4, allows us to relate ∆π̂
h(s, a) to ∆h(s, a):

Claim C.4 On the event Eest ∩ Eexp, for any (s, a, h), we will have |∆π̂
h(s, a)−∆h(s, a)| ≤

ε/Wh(s).

Applying Claim C.4, we can lower bound ∆π̂
h(s, a) ≥ ∆h(s, a) − ε/Wh(s) ≥ ∆h(s, a) −

ε`/Wh(s). Rearranging this gives the second conclusion.
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The argument for the third conclusion is similar to the preceding argument. However,
we now have the extra subtlety that for a 6= a′ with a, a′ ∈ A`ε

h (s), we may collect a

different number of samples from (s, a) and (s, a′) since it’s possible that (s, a) ∈ X `ε+1
hj and

(s, a′) ∈ X `ε+1
hj′ for j 6= j′. Denote

j(s) = argmax
j

j s.t. ∃a, (s, a) ∈ X `ε+1
hj .

Note that, on Eexp, we are guaranteed that there exists some j ∈ [ιε] such that (s, a) ∈ X `ε+1
hj

so j(s) is always well-defined. We can repeat the above argument, but now we can only
guarantee that

|Q̂π̂
h,`ε+1(s, a)−Qπ̂

h(s, a)| ≤
√√√√H2ιδ

n`ε+1
j(s)

=
ε

8Hιε2−j(s)+1
.

since we can only guarantee we collect n`ε+1
j(s) samples from each (s, a), a ∈ A`ε

h (s). It again
follows that if

∆π̂
h(s, a) ≥ 4 · ε

8Hιε2−j(s)+1

then

max
a′∈A`ε

h (s)
Q̂π̂

h,`ε+1(s, a
′)− Q̂π̂

h,`ε+1(s, a) ≥ 2 · ε

8Hιε2−j(s)+1
.

As this is precisely the elimination criteria used in EliminateActions, it follows that a will
be eliminated. Thus, all a ∈ A`ε+1

h (s) must satisfy

∆π̂
h(s, a) ≤ 4 · ε

8Hιε2−j(s)+1

which gives the third conclusion.

Lemma C.2 and the definition of Eexp then let us prove that Moca returns an ε-optimal
policy.

Lemma C.5 (Formal Statement of Lemma 6.5) On the event Eest∩Eexp, if Moca-SE

is run with tolerance ε and FinalRound = true, then the policy π̂ returned by Moca-SE is
ε-suboptimal.

Proof Proposition 7 gives that, if π̂ satisfies maxaQ
π̂
h(s, a)−Qπ̂

h(s, π̂h(s)) ≤ εh(s) for all h
and s, then π̂ is at most

H∑

h=1

sup
π

∑

s

wπ
h(s)εh(s) (C.1)

suboptimal. When running Algorithm 4, for a particular h every state s can be classified in
one of three ways:
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• s 6∈ Zh: In this case, on Eexp we will have supπ w
π
h(s) ≤ ε/(2H2S) and εh(s) ≤ H.

• s ∈ Zh and |A`ε+1
h (s)| = 1: In this case, by Lemma C.2, since π̂ only takes actions

that are in A`ε+1
h (s), we will have εh(s) = maxaQ

π̂
h(s, a)−Qπ̂

h(s, π̂h(s)) = 0.

• s ∈ Zh, |A`ε+1
h (s)| > 1: Then we can apply Lemma C.2 to get

εh(s) = max
a′

Qπ̂
h(s, a

′)−Qπ̂
h(s, π̂h(s)) ≤

ε

2Hιε · 2−j(s)+1

Let X̃j = {s : j(s) = j} and note that {s ∈ Zh : |A`ε+1
h (s)| > 1} ⊆ ∪ιεj=1X̃j since, on Eexp,

for every s satisfying s ∈ Zh, |A`ε+1
h (s)| > 1, we will have (s, a) ∈ Z`ε+1

h for some a, so we

must have that (s, a) ∈ X `ε+1
hj for some j ∈ [ιε]. Furthermore, by definition of j(s), if s ∈ X̃j ,

then (s, a) ∈ X `ε+1
hj for some a. Then, plugging all of this into Equation (C.1), on Eexp,

H∑

h=1

sup
π

∑

s

wπ
h(s)εh(s) ≤

H∑

h=1

sup
π

ιε∑

j=1

∑

s∈X̃j

wπ
h(s)εh(s) +H

H∑

h=1

sup
π

∑

s∈Zc
h

wπ
h(s)

≤ ε

2Hιε

H∑

h=1

sup
π

ιε∑

j=1

∑

s∈X̃j

wπ
h(s)2

j(s)−1 +H
H∑

h=1

sup
π

∑

s∈Zc
h

wπ
h(s)

(a)

≤ ε

2Hιε

H∑

h=1

ιε∑

j=1

2j−1 sup
π

∑

(s,a)∈X `ε+1
hj

wπ
h(s, a) +H

H∑

h=1

sup
π

∑

s∈Zc
h

wπ
h(s)

≤ ε

2Hιε

H∑

h=1

ιε∑

j=1

2j−12−j+1 +H
H∑

h=1

∑

s∈Zc
h

ε

2H2S

≤ ε

where (a) holds since for s ∈ X̃j , j(s) = j, and since we can always choose π so that πh(s) = a
so wπ

h(s, a) = wπ
h(s). It follows that π̂ is at most ε-suboptimal.

C.2. Sample Complexity

We turn now to establishing a bound on the sample complexity of Moca. We first bound
the complexity of a single call to CollectSamples.

Lemma C.6 CollectSamples(Z`
hi, {n`

ij}ιεj=1, h, π̂,
δ

Hιε`ε
,
εexp
32 ) terminates in at most

cH2ιδιε
ε2`

ιε∑

j=1

2j
∑

(s,a)∈X `
hij

Wh(s)
2 +

poly(S,A,H, log 1/δ, log 1/ε)

ε

episodes and CollectSamples(Z`ε+1
h , {n`ε+1

j }ιεj=1, h, π̂,
δ
H ,

εexp
32 ) terminates in at most

cH4ιδι
2
ε

ε2
|Z`ε+1

h |+ poly(S,A,H, log 1/δ, log 1/ε)

ε

episodes.
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Proof Recall that εexp = ε
2H2S

. The complexity of CollectSamples(Z`
hi, n

`
i , h, π̂,

δ
Hιε`ε

, ε
64H2S

)
can be bounded by the sum of the complexity of calling Learn2Explore to learn a set of
exploration policies, and the complexity of playing these policies to collect samples. By
Theorem 13, we can bound the complexity of calling Learn2Explore by

CK( δ
Hιε`ε

, δsamp, ιε)
256H2S

ε

where δsamp = δ
Hιε`ε

· 1
ιε maxj n`

ij

≤ δε2`
217H3ιδι2ε`ε

. As shown in Appendix D, CK( δ
Hιε`ε

, δsamp, ιε)

is poly(S,A,H, log 1/ε, log 1/δ), so this entire term is poly(S,A,H,log 1/ε,log 1/δ)
ε .

Since rerunning the policies in Π`
hij yields at least N

`
hij/2 samples from each (s, a) in X`

hij ,

if we desire n`
ij samples from each (s, a), the complexity of running the policies returned by

Learn2Explore in order to collect the desired samples is clearly given by

ιε∑

j=1

|Π`
hij |d2n`

ij/N
`
hije.

By the construction of Π`
hij and definition of N `

hij given in Learn2Explore, we have that

|Π`
hij | = 2jCK( δ

Hιε`ε
, δsamp, j), N `

hij =
|Π`

hij |
4M `

hij2
j
.

where M `
hij =

∑ιε+1
j′=j |X `

hij′ | and X `
hi(ιε+1) = Z`

hi\ ∪ιεj=1 X `
hij . As we are on Eexp, Z`

hi =

∪ιεj=1X `
hij , so |X `

hi(ιε+1)| = 0. It follows that the complexity can be upper bounded as

ιε∑

j=1

|Π`
hij |d2n`

ij/N
`
hije ≤ 8

ιε∑

j=1

2jM `
hijn

`
ij +

ιε∑

j=1

2jCK( δ
Hιε`ε

, δsamp, j)

≤ 8

ιε∑

j=1

2jM `
hijn

`
ij + 2ιε+1CK( δ

Hιε`ε
, δsamp, ιε)

= 8
217H2ιδ
22iε2`

ιε∑

j=1

2jM `
hij + 2ιε+1CK( δ

Hιε`ε
, δsamp, ιε)

The term 2ιε+1CK( δ
Hιε`ε

, δsamp, ιε) is
poly(S,A,H,log 1/ε,log 1/δ)

ε by definition of ιε and CK . Fur-
thermore,

ιε∑

j=1

2jM `
hij =

ιε∑

j=1

2j
ιε∑

j′=j

|X `
hij′ | ≤ ιε

ιε∑

j=1

2j |X `
hij |.

We can therefore bound

217H2ιδ
22iε2`

ιε∑

j=1

2jM `
hij ≤

cH2ιδιε
ε2`

ιε∑

j=1

2j−2i|X `
hij |.
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Finally, using that on Eexp Wh(s) ≥ Ŵh(s), and that all (s, a) ∈ X `
hij have a value of Ŵh(s)

within a factor of 2 of every other, we can upper bound 2−i ≤ 4Wh(s) for any (s, a) ∈ X `
hij .

This completes the proof of the first claim.

The second claim follows similarly. By the same argument as above, we can upper bound
the sample complexity of calling CollectSamples(Z`ε+1

h , {n`ε+1
j }ιεj=1, h, π̂,

δ
H ,

εexp
32 ) as

ιε∑

j=1

|Π`ε+1
hj |d2n`ε+1

j /N `ε+1
hj e+ poly(S,A,H, log 1/ε, log 1/δ)

ε

≤ 8

ιε∑

j=1

2jM `ε+1
hj n`ε+1

j +
poly(S,A,H, log 1/ε, log 1/δ)

ε

(a)
= cH4ιδι

2
ε

ε2

ιε∑

j=1

2−jM `ε+1
hj +

poly(S,A,H, log 1/ε, log 1/δ)

ε

(b)

≤ cH4ιδι
2
ε

ε2
|Z`ε+1

h |+ poly(S,A,H, log 1/ε, log 1/δ)

ε

where (a) follows by our setting of n`ε+1
j and (b) follows since M `ε+1

hj ≤ |Z`ε+1
h |. The second

conclusion follows.

Using this, we show our main sample complexity lemma.

Lemma C.7 (Formal Statement of Lemma 6.2) On the event Eest∩Eexp, for a given
h and i, the loop over ` on Line 10 of Moca-SE will take at most

cH2ιδι
2
ε`ε infπ

max
s∈Zhi

max
a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2

}

episodes. Furthermore, the total complexity of calling Moca-SE with FinalRound = false is
bounded by:

H2cιδι
3
ε`ε ·

H∑

h=1

inf
π

max
s,a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2

}
+

poly(S,A,H, log 1/ε, log 1/δ)

ε

for a universal constant c.

Proof With FinalRound = false, the complexity of Moca-SE is given by the complexity
incurred calling Learn2Explore on Line 4 and calling CollectSamples on Line 13. By
Theorem 13 and since we call Learn2Explore at most SH times, we can bound the complexity
of calling Learn2Explore by

poly(S,A,H, log 1/ε, log 1/δ)

ε
.

Next, we turn to upper bounding the sample complexity of Learn2Explore. We can lower
bound

|X `
hij | sup

π
min

(s,a)∈X `
hij

wπ
h(s, a) ≤ sup

π

∑

(s,a)∈X `
hij

wπ
h(s, a).
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so, on Eexp, 2j ≤ 2(|X `
hij | supπ min(s,a)∈X `

hij
wπ
h(s, a))

−1. Plugging this into the bound given

in Lemma C.6, we can bound the leading term in the sample complexity of a single call to
CollectSamples as

cH2ιδιε
ε2`

ιε∑

j=1

2j
∑

(s,a)∈X `
hij

Wh(s)
2 ≤ cH2ιδιε

ε2`

ιε∑

j=1

1

|X `
hij | supπ min(s,a)∈X `

hij
wπ
h(s, a)

∑

(s,a)∈X `
hij

Wh(s)
2

(a)

≤ cH2ιδιε
ε2`

ιε∑

j=1

inf
π

max
(s,a)∈X `

hij

Wh(s)
2

wπ
h(s, a)

≤ cH2ιδι
2
ε

ε2`
inf
π

max
j∈{1,...,ιε}

max
(s,a)∈X `

hij

Wh(s)
2

wπ
h(s, a)

where (a) holds since all s ∈ X `
hij have values of Ŵh(s) within a constant factor of each

other, and since on Eexp Ŵh(s) ≤Wh(s) ≤ 32Ŵh(s), which together imply that

max
s∈X `

hij

Wh(s) ≤ c min
s∈X `

hij

Wh(s).

If (s, a) ∈ X `
hij , then we must have that (s, a) ∈ Z`

hi since X `
hij ⊆ Z`

hi, and, by the definition

of Z`
hi, a ∈ A`−1

h (s) and |A`−1
h (s)| > 1. Lemma C.2 gives that any a ∈ A`−1

h (s) satisfies

∆h(s, a) ≤ 3ε`−1/(2Wh(s)). Since |A`−1
h (s)| > 1, it follows there exists a, a′, a 6= a′, such

that

∆h(s, a) ≤ 3ε`−1/(2Wh(s)) and ∆h(s, a
′) ≤ 3ε`−1/(2Wh(s)).

Thus, if (s, a) ∈ X `
hij ,

1
4ε2`

= 1
ε2`−1

≤ 9
4Wh(s)2∆h(s,a)2

and 1
4ε2`

= 1
ε2`−1

≤ 9
4Wh(s)2∆h(s,a′)2

,

which implies 1
4ε2`
≤ 9

4Wh(s)2 max{∆h(s,a)2,∆h(s,a′)2}
. Note that max{∆h(s, a)

2,∆h(s, a
′)2} ≥

∆̃h(s, a)
2 since if ∆h(s, a) = 0, we will have max{∆h(s, a)

2,∆h(s, a
′)2} = ∆h(s, a

′)2, so either
a is the unique optimal action at (s, h), in which case ∆h(s, a

′) ≥ ∆min(s, h) = ∆̃h(s, a), or
there are multiple optimal actions, in which case ∆h(s, a

′) ≥ 0 = ∆̃h(s, a). Thus,

cH2ιδι
2
ε

ε2`
inf
π

max
j∈{1,...,ιε}

max
(s,a)∈X `

hij

Wh(s)
2

wπ
h(s, a)

≤ cH2ιδι
2
ε infπ

max
j∈{1,...,ιε}

max
(s,a)∈X `

hij

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2
`

}

≤ cH2ιδι
2
ε infπ

max
(s,a)∈Z`

hi

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2
`

}
.

Summing over ` and using that for all (s, a) ∈ Z`
hi, s ∈ Zhi, proves the first conclusion.

Summing over i, and h gives

H∑

h=1

ιε∑

i=1

cH2ιδι
2
ε`ε infπ

max
s∈Zhi,a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2

}
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≤ cH2ιδι
3
ε`ε

H∑

h=1

inf
π

max
s,a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2

}
.

This proves the result.

Finally, we bound the complexity of calling Moca-SE with FinalRound = true.

Lemma C.8 (Formal Statement of Lemma 6.4) On the event Eest∩Eexp, if Moca-SE

is called with FinalRound = true, the procedure within the if statement on Line 15 will
terminate after collecting at most

cH4ιδι
2
ε

ε2
|Z`ε+1

h |+ poly(S,A,H, log 1/δ, log 1/ε)

ε

episodes. Furthermore, the total complexity of calling Moca-SE with FinalRound = true is
bounded by:

H2cιδι
3
ε`ε · C(M, ε) +

poly(S,A,H, log 1/ε, log 1/δ)

ε

for a universal constant c.

Proof The only additional samples taken when running Moca-SE with FinalRound = true

as compared to running it with FinalRound = false is incurred by calling CollectSamples

on Line 18 of Moca-SE. Thus, the total complexity can be bounded by adding the complexity
bound from Lemma C.7 to this additional cost.

In particular, by Lemma C.6, this additional call of CollectSamples will require at most

cH4ιδι
2
ε

ε2
|Z`ε+1

h |+ poly(S,A,H, log 1/δ, log 1/ε)

ε

episodes to terminate, from which the first conclusion follows. We can repeat the argument
from the proof of Lemma C.7 to get that Z`ε+1

h ⊆ W`ε+1
h , where we define W`ε

h := {(s, a) :
s ∈ Zh, ∃a′ 6= a,max{∆h(s, a),∆h(s, a

′)} ≤ 3ε`ε−1/(2Wh(s))}. However, note that ε`ε−1 ≤
2ε, and the condition ∃a′ 6= a,max{∆h(s, a),∆h(s, a

′)} ≤ 3ε`ε−1/(2Wh(s)) implies ∆̃h(s, a) ≤
3ε`ε−1/(2Wh(s)). It follows that

W`ε+1
h ⊆

{
(s, a) : ∆̃h(s, a) ≤ 3ε/Wh(s)

}
=: OPT(ε, h)

Summing over h gives the result.

C.3. Proof of Theorem 2

We are finally ready to complete the proof of Theorem 2.

Proof [Proof of Theorem 2] Note that P[Eest ∩Eexp] ≥ 1− δ by Lemma C.1. We will assume
for the remainder of the proof that this event holds.
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Case 1: εtol ≥ min{mins,a,hWh(s)∆̃h(s, a)/3, 2H
2Smins,hWh(s)}. In this case, that the

policy returned is εtol-optimal is guaranteed by Lemma C.5 since the final call to Moca-SE is
run with FinalRound = true. To bound the sample complexity, we can then simply combine
Lemma C.7 and Lemma C.8, which gives that the total sample complexity is bounded as
(using that εtol(m) ≥ εtol and that δtol(m) ≥ δtol/(36dlogH/εtole2) =: δ′):

dlogH/εtole−1∑

m=1

H2cιδtol(m)
ι3εtol(m)

`εtol(m)
·

H∑

h=1

inf
π

max
s,a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2
tol(m)

}

+H2cιδtol(m)
ι3εtol`εtol ·

H∑

h=1

inf
π

max
s,a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2
tol

}

+
cH4ιδtolι

2
εtol
|OPT(εtol)|

ε2tol
+
dlogH/εtole · poly(S,A,H, log 1/εtol, log 1/δtol)

εtol
.

This can be upper bounded as

dlogH/εtole ·H2cιδ′ι
3
εtol

`εtol ·
H∑

h=1

inf
π

max
s,a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2
tol

}

+
cH4ιδ′ι

2
εtol
|OPT(εtol)|
ε2tol

+
poly(S,A,H, log 1/εtol, log 1/δtol)

εtol
.

This and the definition of C(M, ε) gives the first conclusion of Theorem 2.

Case 2: εtol < min{mins,a,hWh(s)∆̃h(s, a)/3, 2H
2Smins,hWh(s)}. As we showed in the

proof of Lemma C.8, we will have that Z`ε+1
h ⊆ OPT(ε, h). Therefore, if for all (s, a),

∆̃h(s, a) > 3ε/Wh(s), we will have that |Z`ε+1
h | = 0, which implies that for every s ∈ Zh,

|A`ε
h (s)| = 1. Furthermore, on Eexp, we will have that Zh = S × A if ε

2H2S
< minsWh(s). If

each of these conditions hold for all h, then the returned sets A`ε+1
h (s) will satisfy |A`ε+1

h (s)|
for all s and h.

It follows then that if εtol < min{mins,a,hWh(s)∆̃h(s, a)/3, 2H
2Smins,hWh(s)}, either

εtol(m) < min{mins,a,hWh(s)∆̃h(s, a)/3, 2H
2Smins,hWh(s)} for some m, in which case the

above condition will be met, and the termination criteria on Line 6 of Moca will be satisfied,
or

εtol(m) ≥ min{min
s,a,h

Wh(s)∆̃h(s, a)/3, 2H
2Smin

s,h
Wh(s)},

and Moca will reach the final call of Moca-SE with FinalRound = true. In the former case,
letting m̄ denote the value of m at which Moca terminates, the total sample complexity
will be bounded as, using the same argument as in Case 1,

m̄∑

m=1

H2cιδtol(m̄)
ι3εtol(m̄)

`εtol(m̄)
·

H∑

h=1

inf
π

max
s,a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2
tol(m)

}

+
m̄ · poly(S,A,H, log 1/εtol(m̄), log 1/δtol(m̄))

εtol(m̄)
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≤ m̄H2cιδtol(m̄)
ι3εtol(m̄)

`εtol(m̄)
·

H∑

h=1

inf
π

max
s,a

min

{
1

wπ
h(s, a)∆̃h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ε

2
tol(m̄)

}

+
poly(S,A,H, log 1/εtol(m̄), log 1/δtol(m̄))

εtol(m̄)

and note that εtol(m̄−1) ≥ min{mins,a,hWh(s)∆̃h(s, a)/3, 2H
2Smins,hWh(s)}, since we did

not terminate at round m̄−1, implying that εtol(m̄) ≥ 2min{mins,a,hWh(s)∆̃h(s, a)/3, 2H
2Smins,hWh(s)}.

Note also that δtol(m̄) =
δ

36 log2 εtol(m̄)
, so we can also bound

log 1/δtol(m̄) ≤ O(log 1/δtol + log log(2min{min
s,a,h

Wh(s)∆̃h(s, a)/3, 2H
2Smin

s,h
Wh(s)})).

Together these give the bound stated in Theorem 2.

In the latter case, when we do not terminate early at Line 6, the same sample complexity
bound applies but with εtol(m̄) replaced by εtol, since if |Z`ε+1

h | = 0, the final call to
CollectSamples in Line 18 of Moca-SE will not collect any samples. As before, in this case
we can lower bound

εtol ≥ 2min{min
s,a,h

Wh(s)∆̃h(s, a)/3, 2H
2Smin

s,h
Wh(s)}

from which the bound follows.

It remains to show that π̂ = π?. This follows inductively from Lemma C.2 since
if |A`

H(s)| = 1, this implies that for a ∈ A`
H(s), a = π?

H(s). Then if we assume that
π̂h′(s) = π?

h′(s) for all s and h′ > h, if |A`
h(s)| = 1 this implies that for a ∈ A`

h(s), a = π?
h(s)

since, by Lemma C.2, in this case

max
a′

Qπ̂
h(s, a

′)−Qπ̂
h(s, a) = 0

but Qπ̂
h(s, a

′′) = Q?
h(s, a

′′). Thus, it follows that π̂ = π?, which completes the proof.

C.4. Proofs of Additional Lemmas and Claims

Proof [Proof of Lemma C.1] Eest holds. That Eest holds with probability 1− δtol/2 follows

directly from Hoeffding’s inequality and a union bound, since Q̊π̂,t
h (sth, a

t
h) ≤ H almost surely.

In particular, note that for any given call to Moca-SE, we will form at most SAHιε(`ε + 1)
estimates of Qπ̂

h(s, a). By Hoeffding’s inequality and our choice of ιδ, that each of these
estimates concentrates as given on Eest then holds with probability

1− SAHιε(`ε + 1) · δ

SAHιε(`ε + 1)
= 1− δ.

With our choice of δtol(m) =
δtol
36m2 , union bounding over this holding for each call to Moca-SE,

we then have that Eest holds with probability at least

1−
dlogH/εe∑

m=1

δtol
36m2

≥ 1− δtol
2

,

which is the desired result.
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Eexp holds. We show that the desired events hold for a single call of Moca-SE, then union
bound over all calls to Moca-SE to get the final result. Let Emexp denote the event on which
all conditions of Eexp hold for the mth call to Moca-SE.

Assume that we run Moca-SE with tolerance εtol(m) and confidence δtol(m). Let Esh
L2E

denote the success event of calling Learn2Explore on Line 4, Ehi`
L2E

denote the success event
of calling Learn2Explore in the call to CollectSamples at iteration (h, i, `) on Line 13,
and Eh

L2E
the success event of calling Learn2Explore in the call to CollectSamples on

Line 18. By Theorem 13 and the confidence with which we call Learn2Explore, we have
that P[Esh

L2E
] ≥ 1 − δtol(m)/SH, P[Ehi`

L2E
] ≥ 1 − δtol(m)/(Hιε`ε), and P[Eh

L2E
] ≥ 1 − δtol(m)/H.

Union bounding over these events, and using that there are at most Hιε`ε indices (h, i, `),
we get that the event

(∩s,hEshL2E) ∩ (∩Hh=1 ∩ιεi=1 ∩`ε`=1Ehi`L2E
) ∩ (∩Hh=1EhL2E)

holds with probability at least 1− 3δtol(m).

That

sup
π

∑

(s,a)∈X `
hij

wπ
h(s, a) ≤ 2−j+1

for j ∈ [ιε], is a direct consequence of Ehi`
L2E

holding, and similarly that

sup
π

∑

(s,a)∈X `ε+1
hj

wπ
h(s, a) ≤ 2−j+1

holds for j ∈ [ιε], is a direct consequence of Eh
L2E

. In addition, that

sup
π

max
s∈Zc

h

wπ
h(s) ≤

ε

2H2S

holds for all h is immediate on ∩s,hEshL2E.
On the event Ehi`

L2E
, if we run the policies returned by Learn2Explore for some j ∈

{1, . . . , ιε}, Π`
hij , Theorem 13 and our choice of δsamp gives that we will collect at least

1
2N

`
hij samples from each (s, a) ∈ X `

hij with probability at least 1 − δtol(m)/(Hι2ε`εn
`
i1).

As CollectSamples runs each policy d2n`
i1/N

`
hije times, it follows that we will collect at

least d2n`
i1/N

`
hije · 12N `

hij ≥ n`
i1 samples from each (s, a) ∈ X `

hij with probability at least

1 − δtol(m)/(Hι2ε`εn
`
i1) · d2n`

1i/N
`
hije ≥ 1 − 3δtol(m)/(Hι2ε`ε). Union bounding over this for

each h, i, ` and j ∈ [ιε] gives that with probability at least 1− 3δtol(m), we collect at least

n`
i1 samples from each (s, a) ∈ X `

hij . The same argument gives that with probability at least

1− 3δtol(m) we collect at least n`ε+1
j samples from each (s, a) ∈ X `ε+1

hj , j = 1, . . . , ιε, h ∈ [H].

Relating Ŵh(s) to Wh(s). It remains to show that Ŵh(s) ≤ Wh(s) ≤ 32Ŵh(s) for all
s ∈ Zh, ∪ιεj=1X `

hij = Z`
hi, and ∪ιεj=1X `ε+1

hj = Z`ε+1
h .

We first show Ŵh(s) ≤ Wh(s) ≤ 32Ŵh(s). Consider running Learn2Explore with
X = {(s, a)} for arbitrary a and assume that X sh

j is the returned partition containing (s, a).

By Theorem 13, on Esh
L2E

we will have that

Wh(s) ≤ 2−j+1
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and, furthermore, that with probability at least 1/2, if we rerun all policies in Πsh
j returned

by Learn2Explore, we will obtain at least N sh
j /2 = |Πsh

j |/(8|X |2j) = |Πsh
j |/(8 · 2j) samples

from (s, a, h).

Let X be a random variable which is the count of total samples collected in (s, a, h) when
running πk ∈ Πsh

j . Then Markov’s inequality and the above property of Πsh
j gives

1

2
≤ P[X ≥ N sh

j /2] ≤ 2E[X]

N sh
j

=
2

N sh
j

∑

π∈Πsh
j

wπ
h(s, a) ≤

2|Πsh
j |

N sh
j

Wh(s) = 8 · 2jWh(s).

Rearranging this and recalling that we set Ŵh(s) = 1
16·2j

, we have that Ŵh(s) ≤ Wh(s).
However, we also have

Wh(s) ≤ 2−j+1 = 32Ŵh(s).

This proves that Ŵh(s) ≤Wh(s) ≤ 32Ŵh(s).

Now note that any s ∈ Zh has Ŵh(s) ≥ εtol(m)

32H2S
, which, combined with the above, implies

that Wh(s) ≥ εtol(m)

32H2S
. Fix (h, i, `), and note that the call to Learn2Explore in the call to

CollectSamples for index (h, i, `) uses input tolerance
εtol(m)

64H2S
. Theorem 13 then gives that,

on Ehi`
L2E

, we will have

sup
π

∑

(s,a)∈Z`
hi\(∪

ιε
j=1X

`
hij)

wπ
h(s, a) ≤

εtol(m)

64H2S
.

However, as Wh(s
′) ≤ supπ

∑
(s,a)∈Z`

hi\(∪
ιε
j=1X

`
hij)

wπ
h(s, a) for any (s′, a) ∈ Z`

hi\(∪ιεj=1X `
hij), we

will have that any (s, a) ∈ Z`
hi\(∪ιεj=1X `

hij) has Wh(s) ≤ εtol(m)

64H2S
. This is a contradiction since

we know Wh(s) ≥ εtol(m)

32H2S
for any (s, a) ∈ Z`

hi. Thus, we must have that Z`
hi\(∪ιεj=1X `

hij) = ∅
so ∪ιεj=1X `

hij = Z`
hi. The same argument shows that ∪ιεj=1X `ε+1

hj = Z`ε+1
h .

Completing the proof. We have therefore shown that P[Emexp] ≥ 1 − 9δtol(m). Union

bounding over all m, by our choice of δtol(m) =
δtol
36m2 , we have that

P[Eexp] = P[∩dlogH/εe
m=1 Emexp] ≥ 1−

dlogH/εe∑

m=1

9
δtol
36m2

≥ 1− δtol/2.

Union bounding over Eexp and Eest then gives the result.

Proof [Proof of Claim C.3] We proceed by induction. Consider some s ∈ Zhi. The base case
is trivial as A0

h(s) = A. Fix some ` ≤ `ε and assume that â?h(s) ∈ A`−1
h (s) and |A`−1

h (s)| > 1.

Then, on Eexp, we can guarantee that we will collect at least 218H2ιδ
22iε2`

samples from (s, a) for

each a ∈ A`−1
h . On the event Eest, it then follows that for each a ∈ A`−1

h (s),

|Q̂π̂
h,`(s, a)−Qπ̂

h(s, a)| ≤ 2iε`/2
9.

44



Beyond No Regret: Instance-Dependent PAC Reinforcement Learning

Thus, since by assumption â?h(s) ∈ A`−1
h (s),

max
a∈A`−1

h (s)
Q̂π̂

h,`(s, a)− Q̂π̂
h,`(s, â

?
h(s)) ≤ max

a∈A`−1
h (s)

Qπ̂
h(s, a)−Qπ̂

h(s, â
?
h(s)) + 2 · 2iε`/29

≤ 2 · 2iε`/29

= γ`ij

for any j, so the exit condition on Line 16 of EliminateActions is not met for â?h(s), and
thus â?h(s) ∈ A`

h(s). The result follows analogously if ` = `ε +1, in which case we simply use
the different values of n and γ.

Now if (s, a) 6∈ Z`
hi for all a, that means we will never remove arms from A`

h(s) again.
However, by the above inductive argument, if `′ is the last round such that (s, a) ∈ Z`′

hi for
some a, we will have that â?h(s) ∈ A`′

h (s), so it follows that s ∈ A`
h(s).

Finally, if s 6∈ Zh, then we will never remove an arm from A0
h(s), and since A0

h(s) = A,
the conclusion follows trivially.

Proof [Proof of Claim C.4] In Lemma C.5, we showed that the local suboptimality bounds
of π̂, εh(s), satisfy

H∑

h=1

sup
π

∑

s

wπ
h(s)εh(s) ≤ ε.

By Lemma B.1, it follows that for any π′ and any h,

∑

s

wπ′

h (s)(V ?
h (s)− V π̂

h (s)) ≤
H∑

h′=h

sup
π

∑

s

wπ
h′(s)εh′(s) ≤ ε.

The result then follows from Lemma B.2.

Appendix D. Learning to Explore

Define the following value:

Ki(δ, δsamp) =

⌈
2imax

{
288c2euS

2A2H(i+ 3) log(576ceuSAH(i+ 3)), 288c2euS
2A2H log

2SAH

δ
,

2048S2A2 log
4SAH

δsamp
, 256ceuS

3A2H4(i+ 9)3 log3 (512ceuSAH(i+ 9)) ,

(D.1)

128ceuS
3A2H4 log3

2SAH

δ
+ 8H log

4

δ

}⌉

=: 2iCK(δ, δsamp, i)

and note that CK(δ, δsamp, i) = poly(S,A,H, log 1/δ, log 1/δsamp, i).
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Remark D.1 The exploration procedure of FindExplorableSets is potentially quite waste-
ful as we restart Euler every time the desired number of samples for a given state is collected.
This could likely be improved on by instead running a regret-minimization algorithm that is
able to handle time-varying rewards, such as the algorithm presented in Zhang et al. (2020a).
As the focus of this work is not in optimizing the lower-order terms, we chose to instead
simply use Euler.

Theorem 13 (Formal Statement of Theorem 8) Consider running Learn2Explore

with tolerance εL2E ← ε and confidence δ and obtaining a partition Xi ⊆ S ×A and policies
Πi, i ∈ {1, 2, . . . , dlog(1/ε)e}. Let EL2E be the event on which, for all i simultaneously:

1. Sets Xi satisfy:

sup
π

∑

(s,a)∈Xi

wπ
h(s, a) ≤ 2−(i−1)

2. For any i, if all policies in Πi are each rerun once, we will collect 1
2Ni samples from each

(s, a) ∈ Xi with probability 1− δsamp, where we recall Ni = Ki(δ/dlog(1/ε)e, δsamp)/(4 ·
2i|X\ ∪i−1

i′=1 Xi′ |).

3. The remaining states, X\(∪dlog(1/ε)ei=1 Xi) satisfy,

sup
π

∑

(s,a)∈(X\(∪
dlog(1/ε)e
i=1 Xi))

wπ
h(s, a) ≤ ε.

Then P[EL2E] ≥ 1− δ. Furthermore, Algorithm 3 takes at most

CK

(
δ

dlog 1/εe , δsamp, dlog 1/εe
)

4

ε

episodes to terminate.

Proof This directly follows by induction and Lemma D.1. For i = 1, it will clearly be the
case that

sup
π

∑

(s,a)∈X

wπ
h(s, a) ≤ 2−(i−1) = 1

since
∑

s,aw
π
h(s, a) = 1 for any π and h. Now consider an epoch i and assume that

sup
π

∑

(s,a)∈X

wπ
h(s, a) ≤ 2−(i−1).

By Lemma D.1, running FindExplorableSets will produce a set Xi and policies Πi such
that

sup
π

∑

(s,a)∈Xi

wπ
h(s, a) ≤ 2−(i−1), sup

π

∑

(s,a)∈X\Xi

wπ
h(s, a) ≤ 2−i
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and rerunning every policy in Πi at once will allow us to collect at least 1
2Ni samples from

each (s, a) ∈ Xi. As X ← X\Xi, the hypothesis will then be met at the next epoch, i+ 1.
Union bounding over epochs completes the first part of the proof. That

sup
π

∑

(s,a)∈(X\(∪
dlog(1/ε)e
i=1 Xi))

wπ
h(s, a) ≤ ε

follows on this same event by Lemma D.1 and since we run until i = dlog(1/ε)e which implies
2−dlog(1/ε)e ≤ ε. Union bounding over each i gives the result.

The sample complexity bound follows by bounding

dlog(1/ε)e∑

i=1

Ki(δ/dlog 1/εe, δsamp) ≤ CK

(
δ

dlog 1/εe , δsamp, dlog 1/εe
) dlog(1/ε)e∑

i=1

2i

≤ CK

(
δ

dlog 1/εe , δsamp, dlog 1/εe
)

4

ε
.

Lemma D.1 Assume that X satisfies

sup
π

∑

(s,a)∈X

wπ
h(s, a) ≤ 2−(i−1).

Then, if FindExplorableSets(X , h, δ,Ki, Ni) returns partition Xi and policies Πi, with
probability 1− δ the returned partition Xi will satisfy

sup
π

∑

(s,a)∈Xi

wπ
h(s, a) ≤ 2−(i−1), sup

π

∑

(s,a)∈X\Xi

wπ
h(s, a) ≤ 2−i.

Furthermore, if all policies in Πi are each rerun once, we will collect 1
2Ni samples from each

(s, a, h) ∈ Xi with probability 1− δsamp.

Proof The structure of this proof takes inspiration from the proof presented in Zhang et al.
(2020a). The first conclusion is trivial since Xi ⊆ X and by our assumption on X .

We will simply denote Ki := Ki(δ, δsamp) throughout the proof. In addition, we will let
Kij denote the total number of epochs taken for fixed j, and will let mi denote the total
number of times j is incremented. Therefore,

Ki =

mi∑

j=1

Kij .

Let V ?,ij
0 denote the optimal value function on the reward function rjh at stage j of epoch i.

By our assumption on X and the definition of our reward function we can bound

V ?,ij
0 ≤ sup

π
Eπ[I{(sh, ah) ∈ X}] = sup

π

∑

(s,a)∈X

wπ
h(s, a) ≤ 2−(i−1). (D.2)
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As FindExplorableSets runs Euler, by Lemma D.4 we will have, with probability at least
1− δ, for any fixed K and j,

( K∑

k=1

V ?,ij
0 −

K∑

k=1

V k,ij
0

)
|Fj−1 ≤ ceu

√
SAHV ?,i1

0 K log
SAHK

δ
+ ceuS

2AH4 log3
SAHK

δ

(D.3)

where Fj−1 denotes the filtration of up to iteration j, and we have used that V ?,ij
0 ≤ V ?,i1

0

for all j since the reward function can only decrease as j increases. FindExplorableSets
terminates and restarts Euler if the condition on Line 14 is met, but this is a random
stopping condition. As such, to guarantee that (D.3) holds for any possible value of this
stopping time, we union bound over all values. Since FindExplorableSets runs for at most
Ki epochs, it suffices to union bound over Ki stopping times. We then have that

( K∑

k=1

V ?,ij
0 −

K∑

k=1

V k,ij
0

)
|Fj−1 ≤ 2ceu

√
SAHV ?,i1

0 K log
2SAHKi

δ
+ 8ceuS

2AH4 log3
2SAHKi

δ

with probability at least 1− δ
2SA for all K ∈ [1,Ki] simultaneously. Since mi ≤ SA, union

bounding over all j we then have that, with probability at least 1− δ/2,

mi∑

j=1

( Kij∑

k=1

V ?,ij
0 −

Kij∑

k=1

V k,ij
0

)
≤

mi∑

j=1

2ceu

√
SAHV ?,i1

0 Kij log
2SAHKi

δ
+ 8ceuS

3A2H4 log3
2SAHKi

δ

≤ 2ceu

√
S2A2HV ?,i1

0 Ki log
2SAHKi

δ
+ 8ceuS

3A2H4 log3
2SAHKi

δ

where the final inequality follows from Jensen’s inequality. Using the same calculation as in
the proof of Lemma D.4, we can bound

Eπk
[(

H∑

h=1

Rj
h(sh, ah)− V k,ij

0 )2] ≤ 4V k,ij
0

By (D.2), 4V k,ij
0 ≤ 4/2i−1, so we can apply Lemma D.5 with σ2

V = 4/2i−1, to get that, with
probability at least 1− δ/2,

∣∣∣∣∣∣

mi∑

j=1

Kij∑

k=1

H∑

h=1

Rj
h(s

j,k
h , aj,kh )−

mi∑

j=1

Kij∑

k=1

V k,ij
0

∣∣∣∣∣∣
≤

√
32Ki2−i log

4

δ
+ 2H log

4

δ
.

Putting this together and union bounding over these events, we have that with probability
at least 1− δ,

mi∑

j=1

Kij∑

k=1

H∑

h=1

Rj
h(s

j,k
h , aj,kh ) ≥

mi∑

j=1

Kij∑

k=1

V ?,ij
0 −

√
64Ki2−i log

4

δ
− 2ceu

√
S2A2HV ?,i1

0 Ki log
2SAHKi

δ
− CR
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where we denote

CR := 8ceuS
3A2H4 log3

2SAHKi

δ
+ 2H log

4

δ
.

Assume that V ?,imi
0 > 2−i. Using that the reward decreases monotonically so V ?,imi

0 ≤ V ?,ij
0

for any j ≤ mi, we can lower bound the above as

≥ 2−iKi −
√
64Ki2−i log

4

δ
− 2ceu

√
S2A2HV ?,i1

0 Ki log
2SAHKi

δ
− CR

≥ 2−iKi − 3ceu

√
S2A2H2−iKi log

2SAHKi

δ
− CR

where the second inequality follows by (D.2) and since
√
64Ki2−i log 4

δ will then be dominated

by the regret term, ceu

√
S2A2HV ?,i1

0 Ki log
2SAHKi

δ . Lemma D.2 gives

Ki ≥ 2imax

{
4CR, 144c

2
euS

2A2H log
2SAHKi

δ

}

which implies

1

4
2−iKi − CR ≥ 0

and

1

4
2−iKi − 3ceu

√
S2A2H2−iKi log

2SAHKi

δ

≥ 2i · 144c2euS2A2H log 2SAHKi
δ

4 · 2i − 3ceu

√
S2A2H2−i log

2SAHKi

δ
· 2i144c2euS2A2H log

2SAHKi

δ

= 0.

Thus, we can lower bound the above as

2−iKi − 3ceu

√
S2A2H2−iKi log

2SAHKi

δ
− CR ≥

1

2
2−iKi.

Note that we can collect a total reward of at most |X |Ni. However, by our choice of
Ni = Ki/(4|X | · 2i), we have that

|X |Ni =
1

4 · 2iKi <
1

2 · 2iKi.

This is a contradiction. Thus, we must have that V ?,imi
0 ≤ 1/2i. The second conclusion

follows from this by definition of V ?,imi
0 .

For the third conclusion, we can apply Lemma D.3. By construction, we will only add
some (s, a, h) to Xi if we visit Ni times. It follows by Lemma D.3 that, with probability
1− δsamp/(SAH), if we rerun all policies, we will collect at least

Ni −
√
8Kimax

k
wπk
h (s, a) log

4SAH

δsamp
− 4

3
log

4SAH

δsamp
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samples from (s, a, h). Note that maxk w
πk
h (s, a) ≤ 2−i by our assumption on X . Given our

choice of Ni, we can then guarantee that we will collect at least

Ki

4|X |2i −
√

8KiH

2i
log

4SAH

δsamp
− 4

3
log

4SAH

δsamp

samples. Since Ki ≥ 2048S2A2 log 4SAH
δsamp

, and |X | ≤ SA, we will have that

Ki

4|X |2i −
√

8KiH

2i
log

4SAH

δsamp
− 4

3
log

4SAH

δsamp
≥ Ki

8|X |2i =
1

2
Ni

The third conclusion follows by union bounding over every (s, a, h) ∈ Xi.

Remark D.2 (Improving lower order term to log 1/δ · log log 1/δ) In Section 4 we
noted that relying on StrongEuler instead of Euler in the exploration phase would allow
us to reduce the lower order term from log3 1/δ to log 1/δ · log log 1/δ. We briefly sketch out
that argument here.

As shown in Simchowitz and Jamieson (2019), the lower order term in StrongEuler

scales as H4SA(S∨H) log SAHK
δ ·min{log SAHK

δ , log SAH
∆min
}. This already achieves the correct

scaling in log 1/δ but unfortunately relies on an instance-dependent quantity, ∆min, which is
unknown (indeed, note that since we are running this on the MDP with reward function set
to induce exploration, ∆min here is different than the minimum gap on the original reward
function). As such, since Learn2Explore relies on knowing the regret bound of the algorithm
it is running, this bound cannot be applied directly.

Fundamentally, the lower order term arises from summing over the lower order term
in the Bernstein-style bonuses which scale as O( log 1/δ

Nh(s,a)
), where Nh(s, a) is the visitation

count of (s, a, h). Intuitively, by summing this bonus over all s, a, h and episodes K, we
can obtain a term scaling as poly(S,A,H) log(1/δ) logK. Indeed, we see that the original
proof of StrongEuler in Simchowitz and Jamieson (2019) relies on an integration lemma
which does just this (Lemma B.9). However, by modifying the proof of this lemma slightly,
we obtain a scaling in the lower-order term of log2K + logK · log 1/δ. We then apply the
observation from Lemma D.2 that x ≥ Ci(i+ 3j)j logj(C(i+ 3j)) implies x ≥ Ci logj x to
get that we need only

K & C log(1/δ) log(C log(1/δ)), K & C log2(C)

to ensure that K & C(log2K + logK · log 1/δ). It follows that using the lower order term of
StrongEuler in the definition of CR in Lemma D.1, we can guarantee that Ki ≥ 2iCR

while only requiring that Ki & log(1/δ) log(log(1/δ)). This allows us to reduce the log 1/δ
dependence in the definition of CK , which allows us to then reduce the dependence on log 1/δ
in the lower-order term of Theorem 2.
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D.1. Technical Lemmas

Lemma D.2 We will have that

Ki(δ, δsamp) ≥ 2imax

{
32ceuS

3A2H4 log3
2SAHKi(δ, δsamp)

δ
+ 8H log

4

δ
,

144c2euS
2A2H log

2SAHKi(δ)

δ

}
.

Proof Note that for any i, j > 0 and C > 0, if x ≥ Ci(i + 3j)j logj(C(i + 3j)), then
x ≥ Ci logj x since

Ci logj x = Ci logj [Ci(i+ 3j)j logj(C(i+ 3j))] ≤ Ci logj [Ci+j(i+ 3j)2j ]

≤ Ci(i+ 3j)j log[C(i+ 3j)]

= x

and, furthermore, d
dyy|y=Ci+j(max{i+j,2j})2j = 1, while

d

dy
Ci logj y|y=Ci+j(max{i+j,2j})2j =

Ci logj−1 y

y
|y=Ci+j(max{i+j,2j})2j ≤ 1

and since the derivative of poly log functions decreases monotonically.

It follows that

Ki(δ, δsamp) ≥ 2i · 256ceuS3A2H4 log3Ki(δ, δsamp)

as long as

Ki(δ, δsamp) ≥ 2i · 256ceuS3A2H4(i+ 9)3 log3 (512ceuSAH(i+ 9))

So

Ki(δ, δsamp) ≥ 2 · 2imax{128ceuS3A2H4 log3Ki(δ, δsamp), 128ceuS
3A2H4 log3

2SAH

δ
+ 8H log

4

δ
}

≥ 2i(32ceuS
3A2H4 log3

2SAHKi(δ, δsamp)

δ
+ 8H log

4

δ
)

if

Ki(δ, δsamp) ≥ max{2i · 256ceuS3A2H4(i+ 9)3 log3 (512ceuSAH(i+ 9)) , 128ceuS
3A2H4 log3

2SAH

δ
+ 8H log

4

δ
}

Similarly,

Ki(δ, δsamp) ≥ 2i · 144c2euS2A2H log
2SAHKi

δ

if

Ki(δ, δsamp) ≥ max{2i · 288c2euS2A2H(i+ 3) log(576ceuSAH(i+ 3)), 288c2euS
2A2H log

2SAH

δ
}.

The result then follows recalling the definition of Ki(δ, δsamp) given in (D.1).
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Lemma D.3 Consider a set of policies {πk}Kk=1. Assume that running each of these policies
once, we collect at least N samples from some (s, a, h). Then, if we rerun each of these
policies once, we will collect, with probability 1− δ, at least

N −
√
8Kmax

k
wπk
h (s, a) log 4/δ − 4/3 log 4/δ

samples from (s, a, h).

Proof Note that when running πk, the expected number of visits to (s, a, h) is wπk
h (s, a). By

Bernstein’s inequality, and using that I{(skh, akh) = (s, a)} ∼ Bernoulli(wπk
h (s, a)), we then

have that, with probability at least 1− δ,

∣∣∣∣∣
K∑

k=1

wπk
h (s, a)−

K∑

k=1

I{(skh, akh) = (s, a)}
∣∣∣∣∣ ≤

√
2Kmax

k
wπk
h (s, a) log 2/δ + 2/3 log 2/δ

As our first draw from the policies yielded a value of at least N , we can apply Proposition 14,
which gives that, with probability at least 1− 2δ,

K∑

k=1

I{(skh, akh) = (s, a)} ≥ N − 2
√

2Kmax
k

wπk
h (s, a) log 2/δ − 4/3 log 2/δ

The result follows.

Lemma D.4 (Lemma 3.4 of Jin et al. (2020)) If rkh is non-zero for at most one h per
episode, the regret of Euler (Zanette and Brunskill, 2019) will be bounded, with probability
at least 1− δ, as

K∑

k=1

V ?
0 −

K∑

k=1

V πk
0 ≤ ceu

√
SAHV ?

0 K log
SAHK

δ
+ ceuS

2AH4 log3
SAHK

δ

for some absolute constant ceu.

Proof The proof of this is identical to the proof of Lemma 3.4 in Jin et al. (2020) but we
include it for completeness. We therefore repeat their analysis, using an alternative upper
bound for equation (156) in Zanette and Brunskill (2019):

1

KH

K∑

k=1

Eπk

[
(

H∑

h=1

rkh − V πk
0 )2

]
≤ 2

KH

K∑

k=1

Eπk

[
(

H∑

h=1

rkh)
2 + (V πk

0 )2

]

(a)

≤ 2

KH

K∑

k=1

Eπk

[
H∑

h=1

(rkh)
2 + V πk

0

]

(b)

≤ 2

KH

K∑

k=1

Eπk

[
H∑

h=1

rkh + V πk
0

]
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=
4

KH

K∑

k=1

V πk
0

≤ 4V ?
0 /H

where (a) follows since rkh is nonzero for at most one h and (b) follows since rkh ≤ 1. Thus,
we can replace G2 in Theorem 1 of Zanette and Brunskill (2019) with 4V ?

0 . As Zanette and
Brunskill (2019) assume a stationary MDP while ours is non-stationary, we must replace S
in their bound with SH. This gives the result.

Lemma D.5 Consider some set of policies {πk}Kk=1 where πk is Fk−1 measurable. Let∑H
h=1R

k
h denote the (random) reward obtained running πk on the MDP Mk, and let V k

0

denote the value function of running πk onMk. Assume that

Eπk
[(

H∑

h=1

Rk
h − V k

0 )
2|Fk−1] ≤ σ2

V

for all k and constant σ2
V which is F0-measurable. Then, with probability at least 1− δ,

∣∣∣∣∣
K∑

k=1

H∑

h=1

Rk
h −

K∑

k=1

V k
0

∣∣∣∣∣ ≤
√

8Kσ2
V log

2

δ
+ 2H log

2

δ
.

Proof By definition, V k
0 = E[

∑H
h=1R

k
h|Fk−1] and |

∑H
h=1R

k
h − V k

0 | ≤ H almost surely. The
result then follows directly from Freedman’s Inequality (Freedman, 1975).

Proposition 14 Consider some distribution P and assume that Px∼P[x ∈ [µ− c, µ+ c]] ≥
1− δ. Then P

x,x′i.i.d.∼ P
[x ≥ x′ − 2c] ≥ 1− 2δ.

Proof

P
x,x′i.i.d.∼ P

[x ≥ x′ − 2c] = P
x,x′i.i.d.∼ P

[x′ − µ+ µ− x ≤ 2c]

≥ P
x,x′i.i.d.∼ P

[|x′ − µ|+ |µ− x| ≤ 2c]

≥ P
x
i.i.d.
∼ P

[|µ− x| ≤ c]P
x′i.i.d.∼ P

[|x′ − µ| ≤ c]

≥ (1− δ)2

≥ 1− 2δ.
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Appendix E. Proof that Low-Regret is Suboptimal for PAC

E.1. Proof of Proposition 1

Instance Class E.1 Given gap parameters ∆1,∆2 > 0 and transition probability p ∈
(0, 1/2), consider an MDP with H = S = A = 2 which always starts in state s0 and has
rewards and transitions defined as (where we drop the horizon subscript for simplicity):

P (s1|s0, a1) = 1− p, P (s2|s0, a1) = p, P (s1|s0, a2) = 0, P (s2|s0, a2) = 1

R(s0, a1) ∼ Bernoulli(1), R(s0, a2) ∼ Bernoulli(0)

R(si, a1) ∼ Bernoulli(0.5 + ∆i), R(si, a2) ∼ Bernoulli(0.5), i ∈ {1, 2}

At h = 2, we can then think of each state as simply a two-armed bandit with gap ∆i. We
assume that p < 1/2, so that 1−p can be thought of as a constant. This instance is illustrated
in Figure 1.

Proposition 15 (Formal Statement of Proposition 1) Given any MDP in Instance
Class E.1, any learner executing Protocol 5.1 which computes an optimal policy with probability
at least 1− δ must collect at least

K ≥ Ω

(
log 1/δ

∆2
1

+
log 1/δ

p∆2
2

)

episodes, as long as log 1/δ
∆2

2
≥ cmax{C2, C

1
1−α

1 p
−α
1−α }, for a universal constant c. However, on

this instance,

C?(M) ≤ O
(

1

∆2
1

+
1

∆2
2

)

and so, with probability 1 − δ, Moca will terminate in at most K ≤ Õ(C?(M) · log 1/δ)
episodes and return the optimal policy.

Proof [Proof of Proposition 15] To get the complexity bound of Moca, we apply Theorem 2
and Proposition 9. The stated complexity follows since W2(s1) = 1−p ≥ 1/2 and W2(s2) = 1,
from which the stated complexity follows directly.

Complexity of Low-Regret Algorithms. The expected regret of any algorithm is given
by

N1(s0, a2) + ∆1N2(s1, a2) + ∆2N2(s2, a2)

where we let Nh(si, aj) denote the expected number of times action aj is taken in state si at
timestep h. Our assumption on the regret implies that N1(s1, a2) ≤ C1K

α + C2.

From standard lower bounds on bandits (Theorem 4 of Kaufmann et al. (2016)), and
using that for small ∆ KL(Bernoulli(0.5)||Bernoulli(0.5 + ∆)) = Θ(∆2), to solve the bandit

in s1 with probability at least 1− δ, we must have that N2(s1) ≥ c log 1/δ
∆2

1
, and similarly, to

solve the bandit in s2, we must have that N2(s2) ≥ c log 1/δ
∆2

2
, for an absolute constant c.
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Note that N2(s1) = (1 − p)N1(s0, a1) and N2(s2) = pN1(s0, a1) + N1(s0, a2), and that
the total number of episodes run is N1(s0, a1) +N1(s0, a2). This implies that we must have

N1(s0, a1) ≥
c log 1/δ

(1− p)∆2
1

, pN1(s0, a1) +N1(s0, a2) ≥
c log 1/δ

∆2
2

.

However, since N1(s0, a2) ≤ C1K
α + C2, N1(s0, a1) must at least satisfy

pN1(s0, a1) + C1K
α + C2 ≥

log 1/δ

∆2
2

=⇒ N1(s0, a1) ≥
1

p

(
c log 1/δ

∆2
2

− C1K
α − C2

)
.

Thus, we need

K = N1(s0, a1) +N1(s0, a2) ≥ N1(s0, a1) ≥ max

{
c log 1/δ

(1− p)∆2
1

,
1

p

(
c log 1/δ

∆2
2

− C1K
α − C2

)}
.

Assume that c log 1/δ
∆2

2
≥ 2C2, then

K ≥ 1

p

(
c log 1/δ

∆2
2

− C1K
α − C2

)

implies

K ≥ 1

p

(
c log 1/δ

2∆2
2

− C1K
α

)
=⇒ 2max{pK,C1K

α} ≥ c log 1/δ

2∆2
2

.

The second expression is equivalent to

K ≥ min

{
c log 1/δ

4p∆2
2

, (
c log 1/δ

4C1∆2
2

)1/α
}

and we will have that the minimizer of this is c log 1/δ
4p∆2

2
as long as log 1/δ

∆2
2
≥ c′C

1
1−α

1 p
−α
1−α . The

result follows.

E.2. Proof for Instance Class 5.1

Instance Class E.2 (Formal Definition of Instance Class 5.1) Given a number of
states S ∈ N, consider MDP with horizon H = 2, S states, and S + 1 actions. We assume
we always start in state s0 and define our transition kernel and reward function as follows:

P (si|s0, a?) =
2−i

1− 2−S
, P (si|s0, ai) = 1, i ∈ [S]

R(s0, a
?) ∼ Bernoulli(1), R(s0, ai) ∼ Bernoulli(0), i ∈ [S]

∀i : R(si, a
?) ∼ Bernoulli(0.9), R(si, aj) ∼ Bernoulli(0.1), j ∈ [S].

Note that a? is the optimal action in every state.
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Proposition 16 (Formal Statement of Proposition 6) For the MDP in Instance Class E.2
with S states, and any

ε ∈ [2−S , cmin{C−1/α
1 (S log 1/δ)

1−α
α , C−1

2 S log 1/δ}]

where c is an absolute constant, to find an ε-optimal policy with probability 1− δ any learner
executing Protocol 5.1 with a low-regret algorithm satisfying Definition 5.1 must collect at
least

Ω

(
S log 1/δ

ε

)

episodes. In contrast, on this example C?(M) = O(S2) and ε? = 1/3, so, for ε ∈ [2−S , 1/3],
with probability 1− δ, Moca will terminate and output π? in Õ(Clot(1/3)) episodes.

Randomized to deterministic policies. Assume we are given some randomized policy
π which for every (s, h) choose action a with probability πh(a|s). Then we define the
deterministic policy π̃ given this randomized policy as

π̃h(s) = argmax
a

πh(a|s).

We will use this mapping in our lower bound.

Proof [Proof of Proposition 16] The complexity for Algorithm 5 follows directly from
Theorem 2 and Proposition 9 and since in this example we will have W2(s) = 1 for each s
and so ε? = 1/3. Furthermore, C?(M) = O(S2). The stated complexity follows.

Complexity of Low-Regret Algorithms. Let ∆KL := KL(Bernoulli(0.1)||Bernoulli(0.9)) ≈
1.76 denote the KL divergence between the reward distributions of the optimal and subopti-
mal actions at any state for h = 2, and ∆ := 0.9− 0.1 the suboptimality gap.

Assume that a policy π takes action a? in s0. Then, the total suboptimality of the policy
is given by

S∑

i=1

2−i

1− 2−S
ε2(si, π)

where ε2(si, π) denotes the suboptimality of policy π in si, i ∈ [S]. In particular, for any iε,
to guarantee our policy is ε-good we need

2−iε

1− 2−S
ε2(siε , π) ≤ ε.

By the structure of the reward in any state siε , the total suboptimality in this state will be

ε2(siε , π) = (1−
S∑

j=1

π2(aj |siε))∆
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It follows that if ε2(siε , π) < ∆/4, then we will have that π̃2(siε) = a?, where π̃ is the
deterministic policy derived from π. Choose iε = b− log2(2ε(1 − 2−S)/∆) − 1c. Then it
follows that,

2−iε

1− 2−S
(1−

S∑

j=1

π2(aj |siε))∆ ≥ 4ε(1−
S∑

j=1

π2(aj |siε))

and thus, for the policy to be ε-optimal, we must have that (1 −∑S
j=1 π2(aj |siε)) ≤ 1/4.

This implies that π̃2(siε) = a?, so we have therefore derived a deterministic policy from
our stochastic one that is optimal in (siε , 2). By Theorem 4 of Kaufmann et al. (2016), to
identify the optimal action in state siε with probability 1− δ we must have that

N2(siε) ≥
(S + 1)

∆KL
log

1

2.4δ

where N2(siε) is the expected number of samples collected in siε at h = 2. As we have
deterministically derived π̃ from π, and since π̃ will play the optimal action in siε for any
ε-optimal π, it follows that this lower bound on N2(siε) applies here.

If our low-regret algorithm has regret bounded as C1K
α + C2, then we must have that

S∑

i=1

N1(s1, ai) ≤ C1K
α + C2

since every time action ai 6= a? is taken we will incur a loss of 1. This implies that

N2(siε) ≤ C1K
α + C2 +

2−iε

1− 2−S
K

since if action a? is taken in state s1, we will only reach state siε with probability 2−iε

1−2−S .
Combining these, to ensure that the optimal action is learned in siε , we will need that

(S + 1)

∆KL
log

1

2.4δ
≤ C1K

α + C2 +
2−iε

1− 2−S
K ≤ C1K

α + C2 +
4ε

∆
K

where the second inequality follows by our choice of iε. It follows that we need

K ≥ ∆

4ε

(
(S + 1)

∆KL
log

1

2.4δ
− C1K

α − C2

)
≥ (S + 1) log 1/2.4δ

12ε
− C1K

α − C2

≥ (S + 1) log 1/2.4δ

24ε
− C1K

α

where the final inequality holds as long as (S+1) log 1/2.4δ
12ε ≥ 2C2. This implies

2max{K,C1K
α} ≥ (S + 1) log 1/2.4δ

24ε

which is equivalent to

K ≥ min

{
(S + 1) log 1/2.4δ

48ε
,

(
(S + 1) log 1/2.4δ

48C1ε

)1/α
}
.
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For

ε ≤ O
(
C

−1/α
1 (S log 1/δ)

1−α
α

)

we will have that the minimizer is the first term, and

K ≥ Ω

(
S log 1/δ

ε

)
.

Appendix F. Lower Bounds on Best Policy Identification

Lemma F.1 Consider MDPs M and M′ with the same state space S, actions space A,
horizon H, and initial state distribution P0. Fix some (s, h) ∈ S × [H], and for any a ∈ A
let νh(s, a) denote the law of the joint distribution of (s′, R) where s′ ∼ PM(·|s, a) and
R ∼ RM(s, a). Define the law ν ′h(s, a) analogously with respect toM′. For any almost-sure
stopping time τ with respect to (Fk),

∑

s,a,h

EM[N τ
h (s, a)]KL(νh(s, a), ν

′
h(s, a)) ≥ sup

E∈Fτ

d(PM(E),PM′(E))

where d(x, y) = x log x
y +(1−x) log 1−x

1−y and N τ
h (s, a) denotes the number of visits to (s, a, h)

in the τ episodes.

Proof This is the MDP analogue of Lemma 1 of Kaufmann et al. (2016) and its proof
follows identically.

Definition F.1 We say an algorithm is δ-correct if, for any MDPM∈M, we have that
M terminates at some (possibly random) episode Kδ and outputs π?, with probability at
least 1− δ.

F.1. Proof of Proposition 3

MDP Construction. Fix some h̄ ∈ [H], gaps {gap(s, a)}s∈[S],a∈[A−1] ⊆ (0, 1/2)SA, and

arbitrary transition kernels {Ph}h̄−1
h=1. For each s, fix a single a and set gap(s, a) = 0. LetM

denote the MDP with transitions {Ph}h̄−1
h=1, and for h ≥ h̄ define

Ph(s|s, a) = 1, ∀a ∈ A.

Then let the rewards be defined as follows. For all h > h̄ and all s, choose any a′ and set
Rh(s, a

′) = 1, and Rh(s, a) = 0 for all a 6= a′. For h = h̄, set

Rh(s, a) ∼ Bernoulli(3/4− gap(s, a)).
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For h < h̄, let

π?
h(s) = argmax

a

∑

s′

Ph(s
′|s, a)V ?

h+1(s
′)

where V ?
h+1(s

′) is the optimal value function at step h+ 1 (note that the MDP is now fully
specified for h′ > h so this is well-defined). Then set Rh(s, π

?
h(s)) = 1 and Rh(s, a) = 0 for

a 6= π?
h(s) (if π?

h(s) is not unique, simply choose some π? out of all π?
h(s) arbitrarily, set

Rh(s, π
?) = 1, and all other Rh(s, a) = 0).

Note that we could have just as easily encoded the gaps in the transition function and
set the rewards to be, for example, deterministic at level h̄.

Lemma F.2 The MDP constructed above has gaps which satisfy

∆h̄(s, a) = gap(s, a), ∀s ∈ S, a ∈ A, a 6= π?
h(s)

∆h(s, a) ≥ 1, ∀s ∈ S, a ∈ A, h 6= h̄

Furthermore, for each s and h > h̄, we have Wh(s) = Wh̄(s).

Proof We begin with level h̄. Since the action take at (s, h̄) does not effect the outgoing
transition, we have that, for a 6= π?

h(s),

∆h̄(s, a) = max
a′

Q?
h̄(s, a

′)−Q?
h̄(s, a) = 3/4− (3/4− gap(s, a)) = gap(s, a).

For h > h̄, we again have that the outgoing transition is not effected by the action taken, so
it follows that the gap depends exclusively on the reward function at this state. Since the
reward is set to 1 for a single action and 0 otherwise, it follows that the gaps are all 1.

For h ≤ h̄, we will have that

∆h(s, a) = max
a′

Q?
h(s, a

′)−Q?
h(s, a)

= 1 +max
a′

∑

s′

Ph(s
′|s, a′)V ?

h+1(s
′)−

∑

s′

Ph(s
′|s, a)V ?

h+1(s
′)

≥ 1.

Finally, that Wh(s) = Wh̄(s) for all s and h > h̄ follows since for all steps after h̄, state s
transitions to state s with probability 1.

Lemma F.3 On this example,

C?(M) ≤ inf
π

max
s,a

1

wπ
h̄
(s, a)∆h(s, a)2

+max
s,h

SAH

Wh(s)
.

Proof By definition,

C?(M) =
H∑

h=1

inf
π

max
s,a

1

wπ
h(s, a)∆h(s, a)2

.
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By Lemma F.2, we can bound

∑

h 6=h̄

inf
π

max
s,a

1

wπ
h(s, a)∆h(s, a)2

≤
∑

h 6=h̄

inf
π

max
s,a

1

wπ
h(s, a)

.

Consider the policy π′ which is the mixture over the policies πsh where wπsh

h (s) = Wh(s).
Then,

∑

h 6=h̄

inf
π

max
s,a

1

wπ
h(s, a)

≤
∑

h 6=h̄

max
s,a

1

wπ′

h (s, a)
≤

∑

h 6=h̄

max
s

SA

Wh(s)
≤ max

s

SAH

Wh(s)
.

Lemma F.4 On the MDP constructed above, any δ-correct algorithm will have

EM[Kδ] ≥ inf
π

max
s,a

1

6wπ
h̄
(s, a)∆h̄(s, a)

2
· log 1

2.4δ

& C?(M) · log 1

2.4δ
−max

s,h

SAH

Wh(s)
.

Proof We will apply Lemma F.1 on our MDP,M, and MDPM′ which is identical toM
except that, for some (s, a), a 6= π?

h̄
(s), we set Rh̄(s, a) ∼ Bernoulli(3/4 + α) for small α.

Note that in this case we have that the optimal policy onM andM′ differ at (s, h̄). Since
M andM′ are identical at all points but this one, we have

∑

s,a,h

EM[N τ
h (s, a)]KL(νh(s, a), ν

′
h(s, a))

= EM[N τ
h̄ (s, a)]KL

(
Bernoulli(3/4− gap(s, a)),Bernoulli(3/4 + α)

)
.

Let π?(M) denote the optimal policy on M, and π̂ denote the policy returned by our
algorithm. Let E = {π̂ = π?(M)}. Since we assume our algorithm is δ-correct, and since
the optimal policies on M and M′ differ, we have PM(E) ≥ 1 − δ and PM′(E) ≤ δ. By
Kaufmann et al. (2016), we can then lower bound

d(PM(E),PM′(E)) ≥ log
1

2.4δ
.

Thus, by Lemma F.1, we have shown that, for any (s, a), a 6= π?
h̄
(s),

EM[N τ
h̄ (s, a)] ≥

1

KL
(
Bernoulli(3/4− gap(s, a)),Bernoulli(3/4 + α)

) · log 1

2.4δ
.

For small α, we can bound (see e.g. Lemma 2.7 of Tsybakov (2009))

KL
(
Bernoulli(3/4− gap(s, a)),Bernoulli(3/4 + α)

)
≤ 6(gap(s, a)− α)2.

60



Beyond No Regret: Instance-Dependent PAC Reinforcement Learning

Taking α→ 0, we have

EM[N τ
h̄ (s, a)] ≥

1

6gap(s, a)2
· log 1

2.4δ
.

We can write EM[N τ
h̄
(s, a)] = EM[

∑τ
k=1w

πk

h̄
(s, a)] where πk denotes the policy our algorithm

played at episode k. Note that all state-visitation distributions lie in a convex set in [0, 1]SA

and that for any valid state-visitation distribution, there exists some policy that realizes
it, by Proposition 12. By Caratheodory’s Theorem, it follows that there exists some set of
policies Π with |Π| ≤ SA+1 such that, for any π and all s, a, wπ

h̄
(s, a) =

∑
π′∈Π λπ′wπ′

h̄
(s, a),

for some λ ∈ 4Π. Letting λk denote this distribution satisfying the above inequality for πk,
it follows that

EM[
τ∑

k=1

wπk

h̄
(s, a)] = EM[

τ∑

k=1

∑

π∈Π

λk
πw

π
h̄(s, a)]

=
∑

π∈Π

EM[

τ∑

k=1

λk
π]w

π
h̄(s, a)

= EM[τ ]
∑

π∈Π

EM[
∑τ

k=1 λ
k
π]

EM[τ ]
wπ
h̄(s, a).

Note that
∑

π∈Π EM[
∑τ

k=1 λ
k
π] = EM[

∑τ
k=1

∑
π∈Π λk

π] = EM[τ ] so it follows that (
EM[

∑τ
k=1 λ

k
π ]

EM[τ ] )π∈Π ∈
4Π. Thus, a δ-correct algorithm must satisfy, for all s, a and some λ ∈ 4Π,

EM[τ ] ≥ 1

6gap(s, a)2 ·∑π∈Π λπwπ
h̄
(s, a)

· log 1

2.4δ
.

Since the set of state visitation distributions is convex, and since for any state-visitation
distribution we can find some policy realizing that distribution, for any λ ∈ 4Π, it follows
that there exists some π′ such that, for all s, a,

∑
π∈Π λπw

π
h̄
(s, a) = wπ′

h̄
(s, a). So, we need,

for all s, a

EM[τ ] ≥ 1

6gap(s, a)2 · wπ′

h̄
(s, a)

· log 1

2.4δ
.

It follows that every δ-correct algorithm must satisfy

EM[τ ] ≥ inf
π

max
s,a

1

6gap(s, a)2 · wπ
h̄
(s, a)

· log 1

2.4δ
,

from which the first inequality follows. The second follows from Lemma F.3.
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