
A Deep-ConvLSTM Collision Prediction Model for
Manipulators in Dynamic Environment

Chang Liu, Wansong Liu, Zhu Chen, and Minghui Zheng∗

Mechanical and Aerospace Engineering Department, University at Buffalo,
Buffalo, NY14260, USA (e-mail: {cliu57, wansongl, zhuchen,

mhzheng}@buffalo.edu)

Abstract:
Obstacle avoidance is one of the fundamental problems in human-robot collaboration (HRC) studies.
The close proximity between robots and human usually leaves robots a short period of time to re-plan a
safe motion, especially when facing non-static obstacles. Therefore, to identify collisions in advance and
mitigate the computational efforts regarding robot motion re-planning, this paper proposes a network-
based stop-go algorithm that uses only images capturing the states of the robot arm and a non-static
obstacle without accessing any robot dynamics. In particular, a deep convolutional long-short-term
memory (ConvLSTM) neural network is first developed to learn the spatial features of images, and
predict both the robot arm and the non-static obstacle states five steps in advance. Next, the predictions
are set back to the robot arm so that the robot arm would halt the current task when a potential future
collision is identified. Eventually, the robot arm resumes the task after the non-static obstacle is clear.
Extensive numerical studies have been conducted to validate the effectiveness of the proposed trajectory
prediction scheme in presence of obstacles.

Keywords: Manipulator, ConvLSTM, Obstacle avoidance, Deep neural network

1. INTRODUCTION

Robot arms have gained growing attention for supporting hu-
man workers in collaborative tasks, particularly in the intelli-
gent manufacturing field. The collaborative tasks, e.g., weld-
ing (Wang et al. (2018, 2019)), assembling (Roveda et al.
(2021)), and disassembling (Lee et al. (2022a,b)), typically
require robots and human to share a confined workspace. To en-
sure the effectiveness and safety of human-robot collaboration
(HRC), human workers are usually considered as obstacles to
be avoided, and robots must constantly monitor the workspace,
assess the collision risk, and, if necessary, re-plan a safe motion.

Studies about static obstacle autonomous avoidance have been
well developed in the last two decades, e.g., Rybus (2018); HE
et al. (2017). In addition, when executing collaborative tasks,
robots also need to be capable of avoiding the sudden entry of
human workers (i.e., non-static obstacles) in real-time. Various
robot planning algorithms have been developed to find feasible
paths or motions for robots from a start position to a target
position and inherently embrace obstacle avoidance. Duchoň
et al. (2014) and Daniel et al. (2010) applied grid methods to
discretize the robot task space into a grid that contains free
nodes and obstacle nodes, and only searched the robot path
based on free nodes. Additionally, Ratliff et al. (2009) and
Schulman et al. (2014) formulated the robot path planning into
optimization problems and included the obstacle avoidance as a
constraint that needs to be satisfied. Furthermore, Kavraki et al.
(1996) and LaValle et al. (1998) developed sampling-based path

⋆ ∗ Corresponding author.
⋆⋆ This work was supported by the U.S. National Science Foundation under
Grant No.2026533.

planning algorithms, i.e, PRM and RRT, to randomly generate
robot configurations and only connect the configurations which
are safe for the robot. What’s more, Karaman and Frazzoli
(2010, 2011) proposed RRT* and PRM* to turn the sampled
robot trajectories to be asymptotically optimal while they are
subject to high computational cost.

Human workers still may face the physical injury risk since
the instant collision detection leaves limited time for baseline
planners or planning algorithms of robots to re-plan a safe
motion. Furthermore, it may be too late for the robot to fully
stop in time to protect humans, especially when considering
the dynamic constraints of motors (De Luca et al. (2006)).
Therefore, it is no surprise that extensive attention has been paid
to accurately detecting human presence (Sajedi et al. (2022))
and forecasting human motion in HRC such that the potential
future collision can be identified. Liu and Liu (2020) utilized
a recurrent neural network (RNN) to predict the human wrist
position when conducting tasks and applied inverse kinematics
to calculate the full arm’s future motion. Dinh et al. (2015) used
a minimum-jerk model to predict human motion and integrated
the predicted motion into the obstacle avoidance of a robot arm.
Liu et al. (2022) employed RNNs and the human arm dynamic
model to forecast the human motion of reaching screwdrivers.
Li et al. (2021) developed a directed acyclic graph neural
network to predict the human states and shown the effectiveness
of the prediction in a real human-robot interaction scenario.

Potential collisions between robots and human workers are
identified using the prediction of the obstacle. The baseline
planner or planning algorithms can re-plan the path or motion
of robots based on the obstacle prediction to ensure the task
execution and human worker’s safety, e.g., Mainprice et al.
(2015) and Park et al. (2013). Actually, such a re-planning poses

1

the requirement of the computational efficiency since collision-
free configurations of robots are changing based on non-static
obstacles. To reduce the computational cost of re-planning
when facing obstacles, Mainprice and Berenson (2013); Luo
and Berenson (2015) first computed a set of robot trajectories as
candidates offline, then selected robot trajectories online based
on the predicted obstacle’s position. Furthermore, Zhao and
Pan (2018) provided high-quality initial robot trajectories to the
developed online planning framework to reduce the possibility
of expensive re-planning.

The re-planning when facing obstacles is an inevitable process
in the aforementioned approaches, and robots must adapt to
the re-panned motion to prevent collisions from obstacles. In
this paper, we propose a stop-go algorithm using networks
to detect potential future collisions and avoid the re-planning
process when facing a non-static obstacle. First, the workspace
states including the robot arm, the non-static obstacle, the
start position, and the target position are converted to 2D
images. Then, a convolutional LSTM network is developed as a
prediction model based on the converted images. In particular,
a convolutional filter is employed to extract the positional
information of objects in images as feature sequences, and a
long-short-term memory with peephole connection structure
is applied to learn the temporal dependences of the extracted
feature sequences. Next, the collision risk is evaluated based on
the position of the future robot arm and obstacle predicted by a
convolutional long-short-term memory (ConvLSTM) network.
Eventually, the robot arm would freeze if a future collision is
identified and resume the original trajectory after the obstacle
is clear. The proposed algorithm only uses images capturing
the workspace without accessing any robot dynamics, and can
detect the potential collision and reserve the originally planned
robot trajectory.

The remainder of this paper is organized as follows. Section 2
introduces the ConvLSTM neural network. Section 3 describes
the details of the generation of the manipulator configuration
using forward kinematics. Section 4 presents the numerical
validation details. Section 5 concludes this paper and discusses
future plans.

2. NEURAL NETWORKS BASICS

2.1 Long-short-term memory

As introduced in Greff et al. (2016), Long Short-Term Memory
(LSTM) is one of the special recurrent neural networks (RNN)
architectures, and it is stable, reliable, and performs well on
long term sequential data.

Fig. 1 shows the framework of standard LSTM with peephole
connection used in Gers et al. (2002) which is also one of the
most popular fully connected LSTM structures. The symbol
ct represents the cell in the LSTM structure, and it indicates
a collector of the state information. It is controlled by self-
parameterized gates. When a new input is injected into the cell,
if input gate it is open, the state information will be recognized
and written. When forget gate ft is on, the past state status ct−1
might be forgotten. The final state is represented by ht and ot is
the output gate. W indicates the weight matrix, ht−1 indicates
previous hidden output and xt is the current input. bi,b f ,bc, and
bo are the bias of different gates.

The numerical model of peephole LSTM is illustrated as fol-
lows.

Forget
gate

Input
gate

Output
gate

c(𝑡 − 1)

ℎ(𝑡 − 1)

𝑥(𝑡)

𝑓(𝑡)
𝑖(𝑡)

𝑐̃(𝑡)
𝑜(𝑡)

ℎ(𝑡)

𝑐(𝑡)

ℎ(𝑡)

Peepholes

Peepholes
Fig. 1. LSTM architecture with a peephole connection.

it = σ (Wxixt +Whiht−1 +Wci ◦ ct−1 +bi)

ft = σ
(
Wx f xt +Wh f ht−1 +Wc f ◦ ct−1 +b f

)
ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 +bc)

ot = σ (Wxoxt +Whoht−1 +Wco ◦ ct +bo)

ht = ot ◦ tanh(ct)

(1)

The symbol ◦ indicates Hadamard product, and this product is
explained in Eq. (2) where A and B are two matrices with same
dimension.

(A◦B)i j = (A⊙B)i j = (A)i j(B)i j (2)

Traditional LSTM cells used to only depend on previous hidden
output ht−1 without being directly connected with cell states.
It will cause information loss which will decrease the perfor-
mance of neural networks. In Gers and Schmidhuber (2000),
the peephole connection is used to allow the gates to connect the
past state status ct−1 which can significantly solve this problem
and improve the performance.

2.2 ConvLSTM

The standard LSTM with peephole connection structure based
on Eq. (1) focuses on sequential data. As mentioned in Kalch-
brenner et al. (2015), it contains all the useful sequential data
from the input state to the output state transitions, but it doesn’t
include the spatial information. To incorporate the spatial rela-
tionship between the manipulator and obstacle, the workspace
including the manipulator and obstacle is converted to 2D im-
ages and a convolutional LSTM structure introduced in Shi
et al. (2015) has been applied to extract spatial information
from images using a convolutional operator ∗. Fig. 2 shows
the state relationships in ConvLSTM network. As mentioned
inSainath et al. (2015), the convolutional operate is used in
the state-state and the input-state transitions. The images de-
scribing the movements of the manipulator and obstacle can be
transferred to sequential data. ConvLSTM determines the fu-
ture manipulator joint values by the current input and previous
states from its neighbors.

The numerical model of ConvLSTM is introduced as Eq. (3).
All the variables in ConvLSTM are the same as standard
LSTM.

2

𝐻𝑡+1, 𝐶𝑡+1

𝐻𝑡 , 𝐶𝑡

𝐻𝑡−1, 𝐶𝑡−1

𝑋𝑡+1

𝑋𝑡

Fig. 2. State relationships in ConvLSTM neural network, Con-
vLSTM determines the future state by the the current input
and previous states from its neighbours.

it = σ (Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦Ct−1 +bi)

ft = σ
(
Wx f ∗Xt +Wh f ∗Ht−1 +Wc f ◦Ct−1 +b f

)
Ct = ft ◦Ct−1 + it ◦ tanh(Wxc ∗Xt +Whc ∗Ht−1 +bc)

f ot = σ (Wxo ∗Xt +Who ∗Ht−1 +Wco ◦Ct +bo)

Ht = ot ◦ tanh(Ct)

(3)

Compared to Eq. (3), the convolution operator ∗ replaces a part
of the Hadamard operator ◦ in Eq. (2) The traditional LSTM
layers become ConvLSTM layers. As introduced in Zhang et al.
(2017), the 2D images are transformed into sequential data
which contains the temporal and spatial information. ConvL-
STM is able to deal with sequential image data and predict
the future states of this sequence. In addition, we apply two
ConvLSTM layers to construct the neural network to deal with
the sequential images in this paper.

2.3 Distance calculation

As shown in Fig. 3, there are three possible relationships
between the obstacle defined as a point P and robot arm AB.
The minimum distances between the obstacle and the robot arm
in 3 different situations will be PC, PA, and PB. The projection−→
AC can be calculated with Eq. (4).

−→
AC =

(
−→
AP ·−→AB)

|−→AB|2
·−→AB =

(
−→
AP ·−→AB)

|−→AB|
·
−→
AB

|−→AB|
. (4)

We set r = (
−→
AP·−→AB)
|−→AB|2

, when 0 < r < 1, and the minimum distance

is |−→CP| in Fig. 3 (a). The distance from the obstacle position P
to the robot arm AB can be calculated with Eq. (5).

|−→CP|=
√

|−→AP|2 −|−→AC|2 (5)

When r < 0, the minimum distance will be |−→AP| in Fig. 3 (b).
The distance can be considered as |−→BP| in Fig. 3 (c) when r > 1.

3. NUMERICAL DATA GENERATION AND NETWORK
TRAINING

3.1 Manipulator configuration generation

To train the neural network with sufficient manipulator con-
figuration data, we need all possible end-effector’s positions
and each end-effector’s position needs to have multiple cor-
responding manipulator configurations. To this end, the De-
navit–Hartenberg (DH) transformation matrix shown in Eq. (6)

Fig. 3. Three possible C points: point C is the projection of the
obstacle P over the robot arm which is denoted by line
segment AB.

is applied to calculate all feasible end-effector positions based
on forward kinematics.

Ai =

cosθi −sinθi cosαi sinθi sinαi ai cosθi
sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinαi cosαi di
0 0 0 1

 (6)

where the symbol d is the offset along the previous z axis
to the common normal. Common normal in robotics is the
perpendicular line between two non-intersecting joint axes. The
angle θ is about the previous z axis from the old x axis to the
new x axis, and α is the angle about common normal which is
from the old z axis to the new z axis. And a represents the length
of the common normal.

Furthermore, the manipulator end-effector’s position is calcu-
lated based on the following equation:

Te =
q

∏
i=1

Ai (7)

where the translation part of Te is the end-effector’s position
and q is the number of manipulator joints. The interval of the
joint angle θ is defined as ω during the forward kinematics
calculation. The joint angle combinations that lead to the same
end-effector’s position within a task space error tolerance β

are stored together into a cell. Multiple end-effector-position-
based cells construct a database which could provide multiple
manipulator configurations for a single end-effector’s position.

3.2 Data generation

We propose a 3-link robot arm with 3-DOF to generate the
stop-go data used for training in this paper. The length of the
manipulator model links is 0.6m, 0.55m, and 0.5m, separately.
The joint change interval ω in database construction is 3o,
and the end-effector’s error tolerance β is 0.01m. To regulate
the manipulator working pattern, we set the workspace of the
robot arm end-effector from -0.8m to 2m in both x and y
directions, and we only choose the end-effector positions within
this workspace range.

The start and target position of a task sequence is randomly
selected from the database constructed by forward kinematics
such that we could randomly select the corresponding manip-
ulator configuration of the start and end states. Particularly,
the minimum distance between the start and target positions
is defined as 0.3m. In addition, we aim to collect not only the
manipulator’s states but also the manipulator’s reactions facing

3

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Initial position Target position Obstacle

Fig. 4. Sample images of one task sequence: three links of the
manipulator model are represented with different colors,
and the first link is fix on the origin.

a non-static obstacle during the execution of a task sequence.
Therefore, the obstacle is also considered in the data generation
process. The obstacle is continuously moving despite the robot
arm is moving or not. The obstacle’s movement route is defined
as a highly non-linear ode function to simulate real-time human
activity. The data generation details are illustrated in Algorithm
1.

We split one task sequence equally into 20 small steps then
execute each step one by one. In this paper, we aim to en-
able the manipulator to stop 5 steps in advance to avoid the
collision with the obstacle, considering only one step leaves
too short time for the manipulator to take actions. As shown in
Eq. (5), we calculate the minimum distances D1,D2,D3,D4,D5
between the robot arm and obstacle in the next 5 steps. If any
calculated minimum distance is less than the safety distance
that is 0.15m, the manipulator would stop and stay at the cur-
rent place. The minimum distances keep changing due to the
continuous movement of the obstacle. The manipulator is re-
quired to wait until the distance satisfies the minimum distance
requirement, then it can resume the designed moving route. In
this case, the robot arm would move at least 20 steps to reach the
end-effector’s target position. To regulate the amount of data,
we also set the maximum waiting steps is 40, which means the
total steps to finish the whole movement cannot exceed 60.

In summary, firstly, we obtain continuously 550 task sequences
totally and the target position of the current task sequence is
the start position of the next task sequence. In addition, the
start and end positions of each task sequence are different since
the end-effector’s position is randomly selected. Moreover, for
each task sequence, at least 20 continuous workspace states in-
cluding the manipulator and non-static obstacle are generated,

and the manipulator may stop multiple times since the obstacle
moves randomly and continuously.

Algorithm 1 Data Generation algorithm
Inputs:
1. Initial a feasible end-effector position Pinit .
2. Randomly select a corresponding joint angle combination
Binit = [I1, I2, I3] from the constructed database.
3. Desired number of task moving sequence Nts = 550.
4. Initial sequence index i = 1.
while i < Nts do

1. Randomly select a feasible target end-effector position as
Pend .
2. Randomly select a corresponding joint angle combina-
tion Bend = [J1,J2,J3] from the constructed database.
3. Joint varieties in this sequence Bse = Bend - Binit .
4. Divide the moving sequence into 20 small steps, each
moving step joint change interval γ = Bse/20.
5. Robot arm position set at the current time step Pt , obstacle
position at the current time step Ot , joint angle combination
at the next time step Bt+1 = Bt + γ .
while Pt+1 ̸=Pend do

6. Get the next five steps robot arm position set Pt+1 to
Pt+5 using forward kinematic and the obstacle position
Ot+1 to Ot+5.
7. Calculate distance between robot arm and obstacle
for next 5 steps using Eq. (5), the minimum distance as
d.
while d ≤ 0.15m do

8. Robot arm stay at same position, obstacle contin-
uous moving.

end
9. Robot arm moves to Pt+1 based on Bt+1.

end
10. Pinit=Pend
11. Finish current sequence and i = i+1

end

3.3 Image specification

The generated workspace states based on the stop-go algorithm
is transformed into sequential images. We use the transformed
images as the inputs of the neural network. We set the image
axes scales from -0.8m to 2m in both x and y directions.
Fig. 4 shows a few sample images generated using stop-go
algorithm, and each sub-figure shows the manipulator state
and the obstacle’s position. Three lines with different colors
indicate the three links of the manipulator model, the red
dot represents the initial end-effector’s position, the blue dot
stands for the target end-effector’s position, and the green dot
is the moving obstacle. Note that the obstacle does not move
continuously in Fig. 4 since we select only 9 samples from one
task sequence.

3.4 Network setting

As mentioned before, we aim to utilize the ConvLSTM neural
network to predict the future manipulator’s states such that
a potential future collision could be avoided. For each task
sequence, every 5 continuous images will be the input sequence
of the network. To reduce the training cost, the resolution of
each image is re-sized to (128,128). We set the output of the
ConvLSTM network to be the manipulator’s future joint angles

4

Read
images and

resize it.

ConvLSTM
layer

MaxPooling
layer

ConvLSTM
layer

MaxPooling
layerLSTM layerDense layer

Next 5 steps
joint angle

combination

Input

Output

Fig. 5. Neural network structure.

considering as mentioned in Kelly et al. (2006), the control of
a real manipulator is based on the joint space. In addition, the
size of the network output is (5, 3) where 5 and 3 indicate 5
prediction steps and 3 manipulator joins, separately. Therefore,
for one task sequence with K total images, it would generate
K−4 sets of input and output sequences used for training.

Fig. 5 shows the neural network structure. The first ConvLSTM
layer has 16 filters and its kernel size is (3,3). The second
ConvLSTM layer is set to have 1 filter and the same kernel
size as the first one. Both Maxpooling layers have the same
pool size as (2,2). We choose 430 task sequences to train
the network, 70 task sequences to validate during the training
process, and another new 50 task sequences are used to test the
performance of the well-trained network. During the training,
the hyperparameters are tuned by adam optimizer, and the mean
absolute error is defined as the loss function.

4. NUMERICAL STUDIES

4.1 Prediction results using test dataset

In this subsection, we briefly discuss the prediction accuracy of
the trained ConvLSTM network. The total loss was set as the
mean absolute error (MAE) function since the accuracy of the
prediction depends on how close the predicted data is compared
with the real-time data instead of relying on the variance of the
prediction result. The total loss when the training is complete
for 500 iterations is 0.06. The well-trained network is capable of
forecasting the future manipulator’s states using the test dataset.
Fig. 7, Fig. 8, and Fig. 9 show the comparisons between each
predicted joint angle and its ground truth data. We add the
prediction results of 50 task sequences together. In addition, we
only reserve the first step’s prediction when constructing three
comparison figures.

In summary, the well-trained neural network model can suc-
cessfully predict manipulator joint angles’ next change se-
quence. The robot arm’s future states can be generated by using
forward kinematics. After validating the prediction accuracy,
the next step is to see if the stop-go algorithm can be imple-
mented well when the manipulator future states predicted by
the neural network are incorporated.

4.2 Obstacle avoidance test results

The main difference between the data generation and the nu-
merical test is that the well-trained neural network is utilized
to generate the next 5 steps manipulator states. Moreover, the
predicted manipulator states are used to calculate the minimum
safe distance from the predicted obstacle’s position. Note that
when using the neural network, the current manipulator state
and obstacle’s position need to be converted to a 2D image in
real-time such that the observed workspace states represented
by images can be squished to the well-trained prediction model

and get the prediction results. The prediction process details
are introduced in Fig. 6. Furthermore, the observed workspace
images are updated recursively. The stop-go test details are
illustrated in Algorithm 2.

Algorithm 2 Stop-go Test Algorithm
Inputs:
1. 5 observed workspace images describing the manipulator and
obstacle states
2. The current end-effector position Ec and target position as
Pend .
Initialization: Transfer the 5 steps moving data into images as
an input sequence.
while Distance(Ec, Pend) ≥ 0.01m do

1. Put first 5 images as an input sequence into neural
networks.
2. Predict the next five joint angles combination.
3. Use predicted next 5 steps robot arm’s position compare
with the future obstacle’s position, minimum distance as d.
if d ≥ 0.15m then

4. Robot arm and obstacle move to next position, Pt =
Pt+1, and generate new workspace image.

else
5. Robot arm stay at same position, obstacle continuous
moving, and generate new workspace image.

end
6. Select the last observed 4 images, and combine the new
plotted image to generate the new input sequence for next
step prediction.

end

Fig. 10 demonstrates the scenario where the robot arm stops
moving after detecting a potential future collision. Considering
a collision between the predicted robot arm and obstacle states
is detected, the robot arm stops in advance shown in Fig. 10
(c). After several steps, the obstacle moves away from the robot
arm, there is no risk between the robot arm and the obstacle
after Fig. 10 (g), and the robot arm resumes reaching the target
point. Note that, to better show the results, some frames are
skipped between Fig. 10 (e) and Fig. 10 (f). The neural network
can predict the next 5 trajectories of the manipulator and
obstacle to successfully avoid the non-static obstacle during the
validation using different task sequences from the test dataset.

5. CONCLUSIONS

This paper proposed a ConvLSTM-network-based stop-go al-
gorithm that allows a 3-DOF manipulator model to avoid po-
tential future collisions. In particular, we train a ConvLSTM
network to predict the future manipulator joint angles. Since
the training data is generated based on stop-go algorithm, the
prediction manipulator states from the well-trained ConvLSTM
network also consider the obstacle’s position. For example,
from Fig. 7, Fig. 8, and Fig. 9, we can find that the pre-
diction data matches the real-time world data not simply in
the continuous moving condition, it also matches well when
the manipulator stops moving due to avoiding obstacle. These
actions are shown in the figures as the short horizontal lines
within the whole movement sequence. Moreover, by observing
5 sample images, the neural network is capable of providing the
future manipulator states during the whole task sequence. The
manipulator model successfully stops when a future collision
is detected, and resumes the original moving route when the
obstacle has no threat.

5

Task sequences Images of one task sequence Prediction

ConvLSTM
network

Fig. 6. The prediction process: test dataset includes multiple task sequences, each task sequence includes multiple images
describing all the manipulator states from the start position to the target position, ConvLSTM network predicts the future
manipulator joint angles for 5 steps, and the prediction is converted to 5 images to give a better illustration.

0 200 400 600 800 1000 1200 1400
-2

-1

0

1

2

J
o
in

t
1
 A

n
g
le

 i
n
 R

a
d
is

Predict Data

Real Data

Fig. 7. The real trajectory and its prediction for joint #1.

0 200 400 600 800 1000 1200 1400
-3

-2

-1

0

1

2

3

J
o
in

t
2
 A

n
g
le

 i
n
 R

a
d
is

Predict Data

Real Data

Fig. 8. The real trajectory and its prediction for joint #2.

0 200 400 600 800 1000 1200 1400
-3

-2

-1

0

1

2

3

J
o
in

t
3
 A

n
g
le

 i
n
 R

a
d
is

Predict Data

Real Data

Fig. 9. The real trajectory and its prediction for joint #3.

There are two potential future work directions based on this
paper. The first direction is to guarantee human safety in real
HRC applications by using the same stop-go algorithm to real
3D industrial robots like 6-DOF universal robots UR series,
SCARA robots, and Cartesian robots. By adding 3D cameras
or multiple 2D cameras, it is possible to generate the whole
manipulator working and moving map. Once we can get this
kind of moving map, we can transfer the information generated
by images into the neural network and make the network
learn. With the development of image processing, especially
it can deal with large dimension images. This technology can
significantly improve the accuracy of data with the growing of
large RAM in a computer.

The second direction is that by the improvement of training data
sets amount, the accuracy of manipulator trajectory prediction
can be increased to a higher level. When we want to use the
neural network as a base of artificial intelligence, it can follow
the prediction result as a direction of movement. This is a way
to tell the manipulator how to move followed by its mind, but
this method has a lot of constraints. The most important is
the errors of prediction can be accumulated, which will make
the whole manipulator go to an unpredictable position. We
need to add more constraints to regulate the manipulator like
using more sensors, cameras, and emergency stop functions to
make it go back to the right route. But this required a much
more intelligent neural network as a core for the manipulator
like using reinforcement learning and transfer learning. These
deep neural networks can consider more about the working
environment and human safety in order to work with a human.
Another question is that the manipulator is designed to assist
human as a partner. But when it has its own artificial intelligent
policy of moving, we cannot guarantee the human can fully
trust the manipulator as a partner to finish a task. Human
movement can be unpredictable due to a low level of trust when
working with the manipulator.

REFERENCES

Daniel, K., Nash, A., Koenig, S., and Felner, A. (2010). Theta*:
Any-angle path planning on grids. Journal of Artificial
Intelligence Research, 39, 533–579.

De Luca, A., Albu-Schaffer, A., Haddadin, S., and Hirzinger,
G. (2006). Collision detection and safe reaction with the
dlr-iii lightweight manipulator arm. In 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
1623–1630. IEEE.

6

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 10. Real movement test result: the red dot is the start position, the blue dot is the target position, the joints of the robot arm are
represented with black dots, the base of the robot arm is fixed on (0,0) point, the current and predicted states of the robot arm
are represented by lines with the corresponding gradient colors, the gradient green dots indicate the obstacle, and the frames
with red dash squares show that the robot arm stops when the future collision is identified.

7

Dinh, K.H., Oguz, O., Huber, G., Gabler, V., and Wollherr, D.
(2015). An approach to integrate human motion prediction
into local obstacle avoidance in close human-robot collabo-
ration. In 2015 IEEE International Workshop on Advanced
Robotics and its Social Impacts (ARSO), 1–6. IEEE.

Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico,
T., and Jurišica, L. (2014). Path planning with modified a
star algorithm for a mobile robot. Procedia Engineering, 96,
59–69.

Gers, F.A. and Schmidhuber, J. (2000). Recurrent nets that
time and count. In Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks. IJCNN
2000. Neural Computing: New Challenges and Perspectives
for the New Millennium, volume 3, 189–194. IEEE.

Gers, F.A., Schraudolph, N.N., and Schmidhuber, J. (2002).
Learning precise timing with lstm recurrent networks. Jour-
nal of machine learning research, 3(Aug), 115–143.

Greff, K., Srivastava, R.K., Koutnı́k, J., Steunebrink, B.R., and
Schmidhuber, J. (2016). Lstm: A search space odyssey.
IEEE transactions on neural networks and learning systems,
28(10), 2222–2232.

HE, Z., HE, Y., and Zeng, B. (2017). Obstacle avoidence path
planning for robot arm based on mixed algorithm of artifi-
cial potential field method and rrt. Industrial Engineering
Journal, 20(2), 56.

Kalchbrenner, N., Danihelka, I., and Graves, A. (2015). Grid
long short-term memory. arXiv preprint arXiv:1507.01526.

Karaman, S. and Frazzoli, E. (2010). Incremental sampling-
based algorithms for optimal motion planning. Robotics
Science and Systems VI, 104(2).

Karaman, S. and Frazzoli, E. (2011). Sampling-based algo-
rithms for optimal motion planning. The international jour-
nal of robotics research, 30(7), 846–894.

Kavraki, L.E., Svestka, P., Latombe, J.C., and Overmars, M.H.
(1996). Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE transactions on
Robotics and Automation, 12(4), 566–580.

Kelly, R., Davila, V.S., and Perez, J.A.L. (2006). Control
of robot manipulators in joint space. Springer Science &
Business Media.

LaValle, S.M. et al. (1998). Rapidly-exploring random trees: A
new tool for path planning.

Lee, M.L., Behdad, S., Liang, X., and Zheng, M. (2022a).
Task allocation and planning for product disassembly with
human–robot collaboration. Robotics and Computer-
Integrated Manufacturing, 76, 102306.

Lee, M.L., Liu, W., Behdad, S., Liang, X., and Zheng, M.
(2022b). Robot-assisted disassembly sequence planning with
real-time human motion prediction. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, to appear.

Li, Q., Chalvatzaki, G., Peters, J., and Wang, Y. (2021). Di-
rected acyclic graph neural network for human motion pre-
diction. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), 3197–3204. IEEE.

Liu, R. and Liu, C. (2020). Human motion prediction using
adaptable recurrent neural networks and inverse kinematics.
IEEE Control Systems Letters, 5(5), 1651–1656.

Liu, W., Liang, X., and Zheng, M. (2022). Dynamic model in-
formed human motion prediction based on unscented kalman
filter. IEEE/ASME Transactions on Mechatronics. doi:
10.1109/TMECH.2022.3173167.

Luo, R. and Berenson, D. (2015). A framework for unsuper-
vised online human reaching motion recognition and early

prediction. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2426–2433. IEEE.

Mainprice, J. and Berenson, D. (2013). Human-robot col-
laborative manipulation planning using early prediction of
human motion. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 299–306. IEEE.

Mainprice, J., Hayne, R., and Berenson, D. (2015). Predicting
human reaching motion in collaborative tasks using inverse
optimal control and iterative re-planning. In 2015 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
885–892. IEEE.

Park, C., Pan, J., and Manocha, D. (2013). Real-time
optimization-based planning in dynamic environments using
gpus. In 2013 IEEE International Conference on Robotics
and Automation, 4090–4097. IEEE.

Ratliff, N., Zucker, M., Bagnell, J.A., and Srinivasa, S. (2009).
Chomp: Gradient optimization techniques for efficient mo-
tion planning. In 2009 IEEE International Conference on
Robotics and Automation, 489–494. IEEE.

Roveda, L., Magni, M., Cantoni, M., Piga, D., and Bucca, G.
(2021). Human–robot collaboration in sensorless assem-
bly task learning enhanced by uncertainties adaptation via
bayesian optimization. Robotics and Autonomous Systems,
136, 103711.

Rybus, T. (2018). Obstacle avoidance in space robotics: Review
of major challenges and proposed solutions. Progress in
Aerospace Sciences, 101, 31–48.

Sainath, T.N., Vinyals, O., Senior, A., and Sak, H. (2015). Con-
volutional, long short-term memory, fully connected deep
neural networks. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 4580–
4584. IEEE.

Sajedi, S., Liu, W., Eltouny, K., Behdad, S., Zheng, M., and
Liang, X. (2022). Uncertainty-assisted image-processing
for human-robot close collaboration. IEEE Robotics and
Automation Letters, 7(2), 4236–4243.

Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H.,
Pan, J., Patil, S., Goldberg, K., and Abbeel, P. (2014). Motion
planning with sequential convex optimization and convex
collision checking. The International Journal of Robotics
Research, 33(9), 1251–1270.

Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., and
Woo, W.c. (2015). Convolutional lstm network: A machine
learning approach for precipitation nowcasting. Advances in
neural information processing systems, 28, 802–810.

Wang, C., Zheng, M., Wang, Z., Peng, C., and Tomizuka, M.
(2018). Robust iterative learning control for vibration sup-
pression of industrial robot manipulators. Journal of Dy-
namic Systems, Measurement, and Control, 140(1), 011003.

Wang, Q., Cheng, Y., Jiao, W., Johnson, M.T., and Zhang, Y.
(2019). Virtual reality human-robot collaborative welding: a
case study of weaving gas tungsten arc welding. Journal of
Manufacturing Processes, 48, 210–217.

Zhang, K., Zuo, W., Gu, S., and Zhang, L. (2017). Learning
deep cnn denoiser prior for image restoration. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, 3929–3938.

Zhao, X. and Pan, J. (2018). Considering human behavior in
motion planning for smooth human-robot collaboration in
close proximity. In 2018 27th IEEE International Sympo-
sium on Robot and Human Interactive Communication (RO-
MAN), 985–990. IEEE.

8

