
This paper is included in the Proceedings of the
16th USENIX Symposium on Operating Systems

Design and Implementation.
July 11–13, 2022 • Carlsbad, CA, USA

978-1-939133-28-1

Open access to the Proceedings of the

16th USENIX Symposium on Operating

Systems Design and Implementation

is sponsored by

Tiger: Disk-Adaptive Redundancy
Without Placement Restrictions

Saurabh Kadekodi, Google; Francisco Maturana and Sanjith Athlur,

Carnegie Mellon University; Arif Merchant, Google; K. V. Rashmi

and Gregory R. Ganger, Carnegie Mellon University

https://www.usenix.org/conference/osdi22/presentation/kadekodi

Tiger: Disk-Adaptive Redundancy Without Placement Restrictions

Saurabh Kadekodi∗

Google

Francisco Maturana∗

Carnegie Mellon University

Sanjith Athlur

Carnegie Mellon University

Arif Merchant

Google

K. V. Rashmi

Carnegie Mellon University

Gregory R. Ganger

Carnegie Mellon University

Abstract

Large-scale cluster storage systems use redundancy (via

erasure coding) to ensure data durability. Disk-adaptive

redundancy—dynamically tailoring the redundancy scheme

to observed disk failure rates—promises significant space

and cost savings. Existing disk-adaptive redundancy systems,

however, pose undesirable constraints on data placement, par-

titioning disks into subclusters that have homogeneous failure

rates and forcing each erasure-coded stripe to be entirely

placed on the disks within one subcluster. This design in-

creases risk, by reducing intra-stripe diversity and being more

susceptible to unanticipated changes in a make/model’s fail-

ure rate, and only works for very large storage clusters fully

committed to disk-adaptive redundancy.

Tiger is a new disk-adaptive redundancy system that effi-

ciently avoids adoption-blocking placement constraints, while

also providing higher space-savings and lower risk relative to

prior designs. To do so, Tiger introduces the eclectic stripe,

in which redundancy is tailored to the potentially-diverse

failure rates of whichever disks are selected for storing that

particular stripe. With eclectic stripes, pre-existing placement

policies can be used while still enjoying the space-savings

and robustness benefits of disk-adaptive redundancy. This

paper introduces eclectic striping and Tiger’s design, includ-

ing a new mean-time-to-data-loss (MTTDL) approximation

technique and new approaches for ensuring safe per-stripe

settings given that failure rates of different devices change

over time. In addition to avoiding placement constraints, eval-

uation with logs from real-world clusters shows that Tiger

provides better space-savings, less bursty IO for changing

redundancy schemes, and better robustness (due to increased

risk-diversity) than prior disk-adaptive redundancy designs.

1 Introduction

“A Tiger never changes its stripes”, but can it be made to?

In this context, the Tiger is a cluster storage system and its

stripes are the erasure coded data that is placed across multiple

disks in order to ensure data reliability. In today’s cluster

*Equal contribution

(a) Conventional

cluster storage

(b) Pacemaker

(subcluster-based)

(c) Tiger

(this paper)

Figure 1: Stripe placements and configurations in different erasure

coding systems: Disks of same color have similar annualized failure

rates (AFRs), with red being least reliable (highest AFR), then blue,

then green. Rectangles represent stripes with shorter stripes having

higher redundancy. Conventional one-scheme-fits all designs (1a)

impose no placement restrictions, but make no distinction of disk

AFRs and therefore overprotect much of the data—all stripes use

the widest redundancy scheme, shown as 2-wide for illustration.

Pacemaker (1b) and Tiger (1c) tailor redundancy based on disk AFRs,

resulting in different stripe widths in the illustration, and thereby

reduce storage overhead. Pacemaker does this with rigid AFR-based

subcluster boundaries, whereas Tiger requires no such boundaries.

storage systems, most of the data reliability is via erasure

coding [13, 21, 37, 40, 50, 58].

Conventionally, a single cluster-wide redundancy scheme

is selected for each data corpus (or for all data corpuses) [11,

14, 15, 21, 33]. This approach fails to account for the disk-

reliability heterogeneity present in modern storage clusters,

which consist of hundreds-of-thousands of hard disk drives

(HDDs or just "disks") of multiple makes/models deployed at

different times. This forces conventional storage clusters to

use excessive redundancy (wasting capacity, and thus money

and energy) to guarantee data safety, given that different disks

have different failure rates. Absent other information, redun-

dancy schemes are usually chosen to be safe for stripes fully

stored on the least reliable disks (e.g., Fig. 1a). Recent re-

search has showed that adapting redundancy scheme selection

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 413

to the observed failure rates of specific disks can reduce the

space (=cost) overhead of redundancy by up to 20% [23].

Existing disk-adaptive redundancy designs [24, 25], how-

ever, face several significant adoption hurdles. At their core,

these designs rigidly partition a storage cluster into sub-

clusters of disks (called redundancy groups or Rgroups)

that have similar failure rates, so they can use a subcluster-

wide redundancy scheme tailored to meet the required data

reliability target (e.g., Fig. 1b). Key adoption hurdles in-

clude: (1) Since each stripe must be entirely within a sin-

gle Rgroup, this subcluster-based design can interfere with

other data placement considerations, such as enhancing risk-

diversity by spreading data across fault domains and different

makes/models/batches of disks. Indeed, many of the Rgroups

consist of a single make/model. (2) To provide reasonable

degrees of performance and reconstruction speed scalability,

subclusters must be sizable, making these designs only suit-

able for very large storage clusters. (3) When failure rates rise

for a given make/model, as it ages, the redundancy scheme

for an entire Rgroup (potentially 100s of PBs) may need

to change to maintain target data reliability levels—all at

once. The Pacemaker design [24] proposes to predict such

changes and start them early, but they need to predict a month

or more in advance to avoid reliability problems given the

huge amount of data being transitioned, which is inherently a

risky proposition. (4) The subcluster-based designs assume

full adoption of disk-adaptive redundancy, not allowing for

selective adoption for some data corpuses but not for others.

We present Tiger, a disk-adaptive redundancy system that

eliminates the placement constraints posed by subcluster-

based disk-adaptive redundancy designs while providing

equal or greater benefits. Tiger’s core new abstraction is

the eclectic stripe, in which disks of different AFRs can

be used to store a stripe that has redundancy tailored to the

set of AFRs for those disks. In terms of placement flexibil-

ity, eclectic stripes are identical to stripes in conventional

(non-disk-adaptive redundancy) designs. But, unlike conven-

tional stripes, eclectic stripes do not conservatively assume the

worst-case AFR for all disks. Instead, with eclectic stripes,

the redundancy scheme is dynamically set for each stripe

based on the AFRs of the chosen disks (e.g., Fig. 1c). Tiger’s

eclectic stripe approach avoids all the adoption hurdles dis-

cussed above, while simultaneously increasing the effective-

ness (higher space-savings) and robustness (lower burstiness

of urgent transition IO) of disk-adaptive redundancy.

Efficiently incorporating the proposed new abstraction of

eclectic stripes is challenging due to multiple reasons. Tiger

introduces several new design elements to overcome these

challenges. First, calculating the exact reliability in terms

of mean-time-to-data-loss (MTTDL) of a stripe can be pro-

hibitively expensive, since accounting for different failure

rates can lead to an exponential number of states in the tradi-

tional Markov chain reliability model. To address this, we pro-

vide a novel approximation technique that speeds up MTTDL

calculation by 2-4 orders of magnitude while always pre-

serving accuracy of over 95%, and on average over 99.5%.

Second, while disks for a stripe can be chosen based on pre-

existing placement policies, the chosen disks may not form an

adequately-reliable stripe for a planned redundancy scheme,

since the reliability is dependent on the chosen disks’ AFRs.

Tiger uses an AFR-aware stripe-width-reduction policy to

quickly achieve sufficient reliability. Third, disk AFRs change

over time [25], which can require changing the redundancy

schemes of some eclectic stripes. Keeping track of AFRs for

each stripe and triggering the redundancy schemes can signif-

icantly increase the overhead for metadata and background

operations. Tiger introduces an eclectic volume abstraction

to reduce metadata overhead and make identification of re-

quired changes efficient. It also introduces policies to reduce

transition IO: the IO involved with enacting changes to stripe

redundancy schemes.

Evaluating the feasibility and efficacy of eclectic stripes

requires analysis of long-term effects on huge storage clusters.

We evaluate Tiger using the same logs as used to evaluate

Pacemaker [24], enabling an apples-to-apples comparison.

These logs contain all disk-deployment, failure, and decom-

missioning events from four production storage clusters: three

160K–450K-disk Google clusters and a ≈110K-disk cluster

used for the Backblaze Internet backup service [3]. Simula-

tion driven by production logs allows us to analyze reliability,

space usage, and redundancy maintenance traffic for multiple

clusters each with over 100K disks and over multiple years,

which would be infeasible otherwise as part of a research

setup. For all four clusters, Tiger provides equal or better

space-savings than Pacemaker, while requiring at most 0.5%

of daily IO bandwidth for transition IO. More importantly,

the transition IO is both less bursty, in terms of when it is

needed, and less urgent, in terms of how unsafe an unsafe

stripe might be if the scheme transition were delayed. For in-

stance, in response to a tiny rise in AFR (< 0.25%) for disks

of a given make/model, Pacemaker would need 196% of the

total IO bandwidth from each of those disks in order to make

the data safe—to avoid stealing more than 5% of IO band-

width for transition IO, Pacemaker would have to know to

start 40 days in advance—but Tiger would need <1.6% even

for a 1% AFR increase because of the diversity of its eclectic

stripes. And, most importantly, Tiger exhibits significantly

better risk-diversity, stemming from removing placement con-

straints and allowing differently-reliable disks (and hence

disks of different makes/models) to belong to the same stripe.

For example, even with random selection of disks for each

stripe, most of Tiger’s eclectic stripes span most of a cluster’s

make/models; Pacemaker’s strict Rgroup boundaries disallow

use of more than one make/model for most stripes.

Contributions. In this paper, we make four main contribu-

tions. First, we introduce eclectic stripes as a tool for realizing

disk-adaptive redundancy without the placement restrictions

posed by prior designs. Second, we present a reliability model

414 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and its approximation to efficiently calculate the MTTDL of

eclectic stripes. A surprising outcome is that a homogeneous

stripe with the same scheme and average disk AFR as an eclec-

tic stripe is less reliable! Third, we present the design and

architecture of Tiger, the first disk-adaptive redundancy sys-

tem for supporting and efficiently managing eclectic stripes.

Fourth, we evaluate Tiger and compare it to the state-of-the-

art, using logs from four large real-world storage clusters,

demonstrating its effectiveness in realizing disk-adaptive re-

dundancy without prior designs’ adoption challenges and with

greater space-savings and lower risk.

2 Background and Motivation

We first provide a primer on data redundancy done using

erasure coding followed by the gist and importance of disk-

adaptive redundancy. We then describe the problems with

existing disk-adaptive redundancy systems, which is the mo-

tivation for this paper.

Erasure Coding for data durability. Modern storage

clusters often comprise of hundreds-of-thousands of disks

of multiple make/models deployed over time. The sheer scale

of the storage clusters makes disk failures a common occur-

rence [15], which necessitates some form of redundancy to

ensure data durability and availability. While replication is

popular for availability of hot data, erasure coding (a more

space-efficient alternative to replication) is more common for

the durability of colder data, which forms the majority of the

stored data. In erasure coding (EC), data is split into k chunks,

and n− k parity chunks are subsequently generated to form a

stripe with n chunks. Each chunk is stored on a separate disk.

This k-of-n EC scheme (also called “redundancy scheme”)

can withstand up to n−k failures with a storage overhead of n
k
.

Any k chunks of an n-chunk stripe are sufficient to construct

the original data.

Reliability Metrics: MTTDL and AFR. The reliabil-

ity of a stripe is determined by its mean-time-to-data-

loss (MTTDL). A stripe’s MTTDL is calculated using a

continuous-time Markov chain shown in the left side of

Fig. 3. Each state represents the number of simultaneously

lost chunks in a stripe. The MTTDL is the mean time to

reach state DL (where n− k+1 chunks are simultaneously

lost) from state 0; this is when data is irrecoverably lost. This

model assumes a homogeneous stripe, where all disks fail

with the same rate λ. Downward transitions denote failures,

which happen with a rate of λ times the number of available

chunks, while upward transitions denote repairs, which hap-

pen with a fixed rate µ. Failure rates are commonly expressed

as an annualized failure rate (AFR), which is defined as the

expected fraction of failed disks in a year, assuming that failed

disks are replaced and the disk population remains fixed.

Disk-adaptive redundancy. Storage clusters have con-

ventionally been using a one-scheme-fits-all redundancy

scheme by assuming that all disks fail similarly. Prior work

has shown that disk AFRs are highly correlated with their

vintage [26, 35]. With modern clusters having a mix of

disk makes/models/batches, there can be over an order of

magnitude difference between AFRs of different groups of

disks [25]. Additionally, over their lifetime, disk AFRs fol-

low a “bathtub curve” with multiple failure regimes: infancy

(high AFR) followed by useful life with potentially multiple

phases (piecewise linear phases with low AFR that increases

gradually) and finally wearout (high AFR) [24].

Disk-adaptive redundancy capitalizes on differences in disk

AFRs and dynamically tailors data redundancy to observed

disk failure rates [23]. Disk-adaptive redundancy systems take

into account various constraints including the reconstruction

costs when making the decision of a target stripe width to

adapt to. Specifically, wide schemes are used only when a

stripe’s average AFR is low enough to keep the reconstruc-

tion cost contained below a configured limit. More generally,

wide stripes provide cost savings in terms of smaller storage

overhead at the cost of higher reconstruction costs and higher

degraded mode reads. We know from conversing with archi-

tects of large-scale storage clusters that the cost of the excess

byte footprint matters more than the cost of excess IO re-

quired in the context of redundancy, given existing workloads.

This is especially so since, in general, large-scale capacity-tier

storage cluster workloads tend to be cold (have low IO/s per

byte). Additionally, cold data experiences fewer reads, and

therefore has very few costly degraded mode reads. Back-

blaze is an example where, for archival data that has low IO

access rates, administrators have publicly confirmed use of

wide redundancy schemes such as 17-of-20 [4]. By using

more space-efficient redundancy schemes during low AFR

regimes, disk-adaptive redundancy can provide substantial

space-savings (> 20%) in clusters with over 100K disks.

Prior disk-adaptive redundancy systems. Two disk-

adaptive redundancy systems have been proposed in the lit-

erature: HeART [25] and Pacemaker [24]. In HeART, the

authors propose a tool to statistically learn the AFRs of dif-

ferent disk groups and identify change-points for safe redun-

dancy transitions. By transitioning to an encoding scheme

with minimum storage overhead that still meets the target

MTTDL, HeART was able to obtain ≈ 20% space-savings

when tailoring erasure codes, and≈ 33% space-savings when

tailoring replication. Although lucrative, HeART overlooked

an important practical hurdle in performing disk-adaptive

redundancy: transition overload, i.e. the IO overhead of per-

forming redundancy transitions. Crippling transition overload

when thousands of disks require simultaneous redundancy

transitions forms the basis for Pacemaker [24]. The gist of

Pacemaker is to convert urgent redundancy transitions into

schedulable ones by making conservative predictions of the

rise in AFR and proactively issuing redundancy transitions.

This allows the transition overload to be spread out over time,

such that it can be completed within tolerable IO limits with-

out compromising data safety.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 415

4. Retain key benefits of disk-adaptive redundancy. Dy-

namic redundancy adaptation at a low transition IO cost;

continuously providing adequate reliability; providing space-

savings by using more space-efficient redundancy schemes

in low-AFR regimes are the key benefits of disk-adaptive

redundancy. Any proposed disk-adaptive redundancy system

should strive to maintain these benefits.

5. Ensure an adoption-friendly design. Apart from place-

ment restrictions, existing disk-adaptive redundancy system

designs require that the entire cluster commits entirely to per-

form disk-adaptive redundancy, or it cannot gain any of its

benefits. Moreover, only the very large-scale storage clusters

can use existing disk-adaptive redundancy designs, whereas

the small and medium sized clusters are outside their scope.

High emphasis on usability and showcasing a way for easy

adoption of disk-adaptive redundancy in existing storage clus-

ters of all shapes and sizes is an important design challenge.

4 Mechanisms to enable eclectic stripes

In this section, we address the two main challenges of eclectic

stripes: their reliability and their management.

4.1 Interpreting reliability of eclectic stripes

We first shed light on key takeaways from our study of the

reliability of eclectic stripes and then provide the detailed

theory and the associated analysis.

Calculating MTTDL of eclectic stripes is efficient and

accurate. The exact calculation of the MTTDL of an eclec-

tic stripe is computationally expensive. We provide a novel

approximation that provides the MTTDL with over 99.5%

accuracy (on average), and always provides over 95% accu-

racy in our tests. In practice, a difference of 5% in MTTDL

typically translates into a difference of around 0.1% AFR for

a homogeneous stripe, which is negligible. The exact MTTDL

calculation and the approximation are detailed in §4.1.1, 4.1.2.

Eclectic stripes are more reliable than homogeneous

stripes. When comparing the MTTDL of an eclectic stripe

with a homogeneous stripe having the same EC scheme and

same avg. AFR, the MTTDL of the eclectic stripe is always

higher than the MTTDL of the corresponding homogeneous

stripe for typical system parameters (§4.2, Fig. 4).

Eclectic stripes are robust to AFR changes of individ-

ual disks. The MTTDL of the eclectic stripes does not react

abruptly to the increase in AFR of a few disks. Compared to

the conventional approach of treating stripes as homogeneous

with AFR equal to the maximum AFR in the stripe, MTTDL

of eclectic stripes react very gradually to AFR changes.

Eclectic stripes are more robust to AFR misestimations.

Due to the nature of empirical data, any system that measures

AFR has to estimate it. Since the AFRs of different disk

make/models are estimated independently, it is unlikely that

there will be simultaneous underestimation of the AFR of

Figure 3: Left: Classic Markov chain model for the MTTDL of

a 2-of-4 homogeneous stripe. Right: Markov chain model for the

MTTDL of a 2-of-4 eclectic stripe.

every disk in an eclectic stripe, and hence the impact of esti-

mation errors is smaller (Fig. 5) and may even cancel each

other out. Furthermore, disk-adaptive redundancy systems are

made even more robust against misprediction by the use of

confidence intervals. Thus, eclectic stripes are more robust to

AFR misestimations compared to homogeneous stripes.

4.1.1 Exact MTTDL calculation is costly

Using a Markov chain model to calculate the MTTDL of

storage systems is a classic approach [16]. A generalization

of this approach helps us take into account disks with different

failure rates. Consider an EC stripe of a k-of-n scheme, placed

over n disks with failure rates λi(i ∈ [n]) and a disk repair rate

of µ. The state of the system is given by an n-length vector

s = (s0, . . . ,sn) with si = 1 if disk i has failed, and si = 0

otherwise (i ∈ [n]). The state space is given by states (si)
n
i=1

such that the total number of failure ∑
n
i=0 si is at most the

number of parities n− k, and a data loss state labeled DL.

Therefore, the total number of states is 1+∑
n−k
i=0

(

n
i

)

. The rate

of transition from state s to s′ is defined as:

• λi if si = 0,s′i = 1, and s j = s′j for i 6= j (ith disk fails),

• µ if si = 1,s′i = 0, and s j = s′j for i 6= j (ith disk repaired),

• ∑
n
i=1(1− si)λi if ∑

n
i=1 si = n− k and s′ = DL (any disk

fails when n− k disks have failed and are not repaired).

The MTTDL is defined as the mean time to state DL from the

initial state 0 = (0, . . . ,0).
Given the values of n,k,(λi)

n
i=1, and µ, one can compute

the MTTDL by using the standard approach of solving a sys-

tem of equations. However, this approach is not tractable, due

to the exponential explosion on the number of states with

respect to n− k (see Fig. 3 to compare conventional Markov

chain with that of an eclectic stripe). For example, the Markov

chain of a 10-of-14 eclectic stripe has 1472 states, compared

to 6 states in the case of a 10-of-14 homogeneous stripe.

Reasoning about this model can be hard too, since it is not

directly clear how disk AFRs affect MTTDL. Furthermore,

this approach tends to be numerically unstable, which makes

obtaining precise MTTDLs hard. We find that computing a

single MTTDL using this approach with realistic parameters

can take up to several seconds using the Mathematica 12

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 417

the reliability of an eclectic stripe with AFRs (λi)
n
i=1, the disks

in the homogeneous stripe have to be more reliable on average,

i.e., λ < ∑
n
i=1 λi/n. The difference, however, becomes small

when the ratio n/k is small, or the range of AFRs is small.

Fig. 5 shows the reliability of an eclectic stripe when the

AFR of a single disk in the eclectic stripe varies in the range

1–30%. This experiment shows that eclectic stripes provide

a dampening effect against AFR rises of a small number of

devices in two ways: (1) a small number of devices have a

smaller impact on the average AFR of the stripe (slope of the

dashed line), and (2) the convex shape of the curve shows that

the eclectic stripe is even more reliable than a homogeneous

stripe with the same scheme and average AFR.

Checking if a stripe is safe: Typically, a minimum level

of reliability is set in the cluster by setting a MTTDL threshold

that all stripes must satisfy in order to be deemed safe. Given

the results presented in this section, we now describe a simple

method to determine whether a stripe is safe. We define the

critical AFR of a k-of-n scheme and MTTDL threshold θ as

the highest AFR that disks in a homogeneous k-of-n stripe can

attain while still having an MTTDL of at least θ. The critical

AFRs for the different schemes that are used in a system can

be precomputed and stored. Then, a simple andx efficient way

of checking whether an eclectic stripe under some scheme is

safe is to check whether the average AFR in the stripe is less

than the critical AFR for that scheme. Since an eclectic stripe

is at least as reliable as a homogeneous stripe with the same

scheme and average AFR, if the stripe passes this check, then

we can be certain that the stripe is safe. If the stripe does not

pass the check, then it may be unsafe, which can determined

by computing its MTTDL. This test can help greatly reduce

the amount of work needed in checking whether stripes are

still safe, and it also provides a simple way of understanding

the reliability of eclectic stripes.

4.3 Eclectic Volumes

Disk AFR changes may trigger redundancy transitions. Prior

designs performed disk-adaptive redundancy at the disk level.

Thus, if a disk’s AFR changed, either all or none of the stripes

on that disk required a redundancy transition. With eclectic

stripes, each disk may store chunks of stripes with different

reliabilities. An AFR change might only require redundancy

transitions for a subset of those stripes. With millions of eclec-

tic stripe chunks being stored on each disk, a linear search

through all of them for each AFR change is impractical.

An eclectic volume is a collection of eclectic stripes that use

the same EC scheme and are stored on the same set of disks.

A disk can contain multiple volume fragments identified by

their globally unique volume ID. Each disk maintains a map

of stripe ID to eclectic volume ID. Since each eclectic volume

spans the exact same disks, whenever a disk’s AFR changes,

Tiger only needs to check whether the EC scheme used for

each of the disk’s constituent volumes still meets the required

Figure 6: Architecture of Tiger. The blue boxes correspond to

Tiger’s components. The gray boxes correspond to existing compo-

nents in cluster storage system architecture and components present

in existing disk-adaptive redundancy systems.

MTTDL target. There is no need to check the reliability of

each of the individual eclectic stripes within a volume since

they are all identically reliable. The details of how Tiger

manages eclectic volumes is described in §5.3.

Eclectic volumes prove to be efficient only if they represent

a large number of eclectic stripes. Therefore, in Tiger the

default size of an eclectic volume is set to 1 TeraByte (TB).

This way, even though Tiger performs reliability monitoring

at the volume granularity it ensures that each eclectic stripe is

always sufficiently reliable.

5 Design and working of Tiger

Tiger is a practical disk-adaptive redundancy system designed

to overcome the challenges described in §3. Fig. 6 shows the

architectural components of Tiger (colored boxes) and how

they interact with existing cluster storage system components

and common disk-adaptive redundancy components.

5.1 Data flow in Tiger

We overview Tiger by explaining the lifecycle of eclec-

tic stripes. An eclectic stripe is created via the Eclectic

Stripe Allocator (ESAllocator), which identifies a set of

disks and the corresponding scheme on which this data is

to be stored. The ESAllocator uses the existing and unmod-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 419

ified data placement policy to obtain a set of disks. That

placement policy uses whatever knowledge designers choose

(e.g., available freespace, load balance, and fault domain

constraints) in selecting the set of disks. The ESAllocator

then queries the Eclectic Stripe Manager’s MTTDL Engine

(ESMTTDLEngine) with the AFRs of the chosen disks, and

a stripe configuration, to verify that the planned stripe’s

MTTDL meets the required target MTTDL. If it does not,

the ESAllocator boosts the MTTDL by changing the stripe

configuration until an appropriately safe redundancy scheme

is found. §5.2 details this process.

Once created, the ESAllocator passes the stripe to the Eclec-

tic Volume Manager (EVManager, see §5.3) to either add the

stripe to an existing volume, or create a new volume which

will contain the new stripe. The Eclectic Volume Health In-

spector (EVHInspector) continuously monitors the reliability

of the eclectic volume by querying the change point detector,

which identifies significant AFR changes in the data from the

AFR curve learner. The AFR curve learner, change point de-

tector and the rate limiter can be reused without change from

any existing disk-adaptive redundancy system*. In reaction

to a significant AFR change (rise or fall), the EVHInspector

alerts the EVManager, which fetches the eclectic stripe meta-

data from the EVDirectory and provides both the AFR change

and the metadata to the Eclectic Stripe Reorganizer (ESReor-

ganizer; see §5.2). The ESReorganizer includes techniques to

efficiently perform redundancy transitions. If eclectic stripes

must change, the ESReorganizer consults the ESAllocator in

forming them. Non-urgent redundancy transitions (when the

target MTTDL is not at risk of being violated) are throttled by

the rate limiter in order to not overwhelm the storage cluster.

Tiger’s stripe-by-stripe disk-adaptive redundancy approach

enables incremental adoption by allowing data to be stored

either as an eclectic stripe or a homogeneous stripe. This is in

contrast to subcluster-based designs that are all-or-nothing.

5.2 The Eclectic Stripe Manager

The Eclectic Stripe Manager (ESManager) handles construc-

tion, maintenance and reorganization of eclectic stripes.

Constructing eclectic stripes In the absence of an exist-

ing eclectic volume that has space (described later in §4.3),

the ESAllocator asks the existing data placement policy for

disks to store each new eclectic stripe. Since that placement

policy is unaware of disk-adaptive redundancy, it may return

a set of disks whose AFRs produce an MTTDL that either

fails to meet or far exceeds the target MTTDL. Algorithm 1

describes the process to build a space-efficient, yet adequately

reliable eclectic stripe.

To give itself flexibility, ESAllocator asks the placement

policy to provide a set of disks for the maximum-width-

allowed stripe (e.g., 33 for 30-of-33). The ESAllocator then

*Tiger reuses the Ruptures change-point detection library [47, 48], the

AFR curve-learner and the rate-limiter from HeART [25] and Pacemaker [24].

Algorithm 1

θMTTDL← target MTTDL

nmax← max{n | (n,k) ∈ schemes}
(d1, . . . ,dnmax

)← nmax randomly sampled devices

for (n,k) ∈ schemes in order of increasing n/k do

if MTTDL(n,k,(d1, . . . ,dn))≥ θMTTDL then return (n,k)

queries the ESMTTDLEngine with the provided disks and

its planned scheme to get the MTTDL value. If the MTTDL

does not meet the target MTTDL, ESAllocator discards a

disk from the set and increases the redundancy of the corre-

sponding scheme (e.g., 29-of-32 instead of 30-of-33) to boost

the stripe’s MTTDL, repeating this process until sufficient

MTTDL is achieved. This process is guaranteed to terminate,

since the least space-efficient scheme in a storage cluster must

meet the target MTTDL. Moreover, by iterating from the most

space-efficient scheme allowed, the algorithm terminates at

the most space-efficient scheme for the provided disks.

Ensuring reliability amid disk failures. The reliability

of each eclectic stripe is a function of the AFRs on the disks

on which it is stored. So, when a disk fails, the reconstructed

data cannot simply be placed on a randomly chosen disk,

since its AFR might be high enough to cause the eclectic

stripe’s MTTDL to exceed the target. Recall, from §4.2, that

the critical AFR of an EC scheme is the highest AFR that

a homogeneous stripe of that scheme can reliably support,

and a simple way to test that an eclectic stripe is safe is to

check that its average AFR is below the critical AFR for its

EC scheme. Therefore, we can ensure that reliability will be

preserved if we choose a disk that keeps the average AFR of

the affected stripes under their respective critical AFRs.

When a disk in Tiger fails, the EVManager is notified. This

triggers a lookup in the EVDirectory for eclectic stripes whose

chunks need to be reconstructed. The EVManager forwards

the list of chunks to the ESReorganizer. For each stripe, the

ESReorganizer asks the ESAllocator for disks to replace the

failed disks, providing the critical AFR for the stripe. The

ESAllocator returns suitable disks, if they are found, other-

wise, it allocates (one or more) new eclectic stripes and moves

the prior stripe’s data (including any reconstructed data) to

the new stripes. Finding sufficiently reliable disks to store

the reconstructed data results in lower transition IO than allo-

cating new eclectic stripes, since the latter involves moving

data of disks that did not fail. After the reconstruction process

(whether or not new eclectic stripes are formed), ESReorga-

nizer informs the EVManager of the changes, which then

updates the EVDirectory accordingly.

Dealing with AFR changes over time A disk’s AFR is

not constant throughout its lifetime [9, 10, 23, 56]. In addition

to building and maintaining eclectic stripes, ESManager must

also ensure that data is kept safe when a disk’s AFR changes.

Ensuring data reliability with increasing AFRs. The EV-

Manager monitors AFR by querying the change point detector.

420 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Whenever the AFR rises, the EVManager identifies any eclec-

tic volumes whose data is at a risk of becoming under-reliable.

It alerts the ESReorganizer, with the necessary stripe metadata

of such stripes, which calls the ESAllocator with the current

and previous disk AFR values and the number of chunks that

need reallocation onto safer disks.

As with failed data reconstruction, ESAllocator prefers

finding suitable disk alternates whose AFRs are less than or

equal to previous AFRs values of the disks whose AFRs rose.

If ESAllocator cannot find suitable disks, new eclectic stripes

are formed and data is moved, as described previously.

Reducing data over-protection with reducing AFRs. When

a disk’s AFR decreases, there is no reliability threat to the

data stored on that disk, but there may be an opportunity to

reduce redundancy and obtain space-savings.

The simplest way (that also entails no transition IO cost) of

reducing a stripe’s redundancy is by deleting excess parities*.

However, deleting parities is rarely an option for two reasons.

First, most storage clusters have a minimum requirement on

the number of parities per stripe, set by the system administra-

tor. Second, adding/deleting a parity has a much higher impact

on the MTTDL value of a stripe than adding/deleting a data

chunk— deleting even a single parity usually makes the stripe

miss the target MTTDL. When ESReorganizer receives meta-

data of possibly over-redundant stripes from the EVManager,

it queries the ESMTTDLEngine whether reducing parities is

feasible and, if so, enacts the change.

When deleting parities is not an option, there are two addi-

tional ways redundancy can be reduced. First, the ESAllocator

could find candidate disks with AFR higher than the current

disk’s AFR, but low enough that the mean AFR is below the

stripe’s critical AFR. This method is cost-effective, since it

involves only reading and writing those chunks that are on

over-protected disks. Second, if the ESAllocator cannot find

suitable disks, it performs new stripe allocations if it can find

a new eclectic stripe with lower storage overhead. Although

re-allocation has a high IO overhead (since it involves copy-

ing data over to the new stripe), it is not urgent when lowering

redundancy and can be throttled by the rate limiter without

putting any data at risk.

The eclectic stripe reorganizer (ESReorganizer). The

ESReorganizer uses several techniques to ensure adequate

reliability and provide maximum space-savings.

At any given time, the ESReorganizer might be dealing with

multiple eclectic stripes seeking possible changes. ESReorga-

nizer processes requests in priority of maintaining reliability:

failed data reconstruction, then near-risk stripes that need to

increase their redundancy, then requests of decommissioning

disks to move data off of them, and then stripes seeking a

redundancy reduction. It processes eclectic stripes that are

requesting reduction in redundancy in descending order of

their storage overhead.

*Deleting parities may not work reducing redundancy of non-MDS codes.

5.3 The Eclectic Volume Manager

The EVManager is responsible for creating, maintaining and

monitoring the health of eclectic volumes. Recall (from §4.3)

that an eclectic volume (typically in TBs) contains hundreds-

of-thousands of eclectic stripes (typically in MBs). Along

with health, the EVManager maintains usage statistics (e.g.,

freespace and load) for each eclectic volume.

Constructing and populating eclectic volumes. Similar

to how ESManager manages eclectic stripes, EVManager

dynamically creates and destroys eclectic volumes. The con-

struction of the first eclectic stripe forces the creation of the

first eclectic volume on the same set of disks that are cho-

sen by the ESAllocator. When creating subsequent eclectic

stripes, the ESAllocator first queries the EVManager to check

if there are eclectic volumes that are conducive for storing

new stripes. The EVManager does this by maintaining ca-

pacity and load-balancing metrics for each eclectic volume.

Thus, the EVManager also avoids hot-spotting within eclectic

volumes by spreading hot data evenly across multiple eclec-

tic volumes. Once the target eclectic volume is identified,

the set of disks comprising the eclectic volume are returned

to the ESAllocator. If there is no space available, the ESAl-

locator gets a new set of disks from the placement policy

which causes EVManager to create a new eclectic volume

atop those disks. Tiger’s eclectic volumes operate similar to

Ceph’s placement groups [51].

The Eclectic Volume Directory. Recall from §4.3 that

eclectic volumes are simply a logical grouping of all the eclec-

tic stripes with the same redundancy scheme on the same set

of disks. Each eclectic volume has a unique entry in the EVDi-

rectory and stored against the eclectic volume ID are the disks

on which the eclectic volume is stored. In addition, the EVDi-

rectory also contains a mapping from disk serial number to

list of volume IDs whose fragments are stored on that disk.

Note that the size of this metadata is very small. With TB-

sized volume fragments, even a 100K disk storage cluster

with 20TB disks will have an EVDirectory less than 100MB.

The tiny size of the EVDirectory also implies that it is

unlikely to be a bottleneck. The EVDirectory will typically

be queried and updated whenever disks fail, or their AFR

increases significantly (in order to fetch the eclectic volumes

IDs stored on the affected disks). It might also be queried to

fulfill an allocation request in order to get the disks on which

an eclectic volume is stored, if the eclectic-volume-to-disks

mapping is not cached. Even a cluster with 500K disks has at

most a few hundred disk failures in a day and typically not

more than 10 makes/models, thus limiting the EVDirectory

updates to less than 1000 per day. Although allocations are

more frequent, caching can filter most queries for them, and

their rate is also much lower than the rate of file metadata

lookups in a cluster with billions of files. And, if necessary,

traditional metadata scaling techniques can be employed to

prevent EVDirectory from becoming a bottleneck.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 421

6-of-9 14-of-17
22-of-25

30-of-33
Redundancy schemes

(increasing space-efficiency)

0

50

100
Vi

ab
le

 d
isk

s (
%

)

Tiger
Pacemaker

(a) Backblaze

6-of-9 14-of-17
22-of-25

30-of-33
Redundancy schemes

(increasing space-efficiency)

0

50

100

Vi
ab

le
 d

isk
s (

%
)

Tiger
Pacemaker

(b) Google Cluster 1

6-of-9 14-of-17
22-of-25

30-of-33
Redundancy schemes

(increasing space-efficiency)

0

50

100

Vi
ab

le
 d

isk
s (

%
)

Tiger
Pacemaker

(c) Google Cluster 2

6-of-9 14-of-17
22-of-25

30-of-33
Redundancy schemes

(increasing space-efficiency)

0

50

100

Vi
ab

le
 d

isk
s (

%
)

Tiger
Pacemaker

(d) Google Cluster 3

Figure 7: Placement constraints posed by Tiger compared to Pacemaker by observing the percentage of the disk fleet that is viable for the

different redundancy schemes. Tiger has lower placement constraints than Pacemaker. Tiger has over >75% disks being viable for all four

clusters for all scheme configurations. Pacemaker’s placement constraints are more pronounced in Google clusters since they are mostly

step-deployed. This results in strict Rgroup boundaries disallowing disks from different makes/models being a part of the same Rgroup.

Reacting to failures and AFR changes. The EVHInspec-

tor continuously polls the change point detector and the clus-

ter metadata service to gather information about disk failures

and significant AFR changes. For all significant changes, the

EVHInspector reconfirms the MTTDL of the affected vol-

umes by querying the ESMTTDLEngine with the changed

AFRs. Even though it is technically not a stripe, a EVDirec-

tory has all information required to calculate the reliability

of an eclectic volume, viz. the AFRs of the disks on which

the volume resides, and the redundancy scheme configuration.

Due to its small metadata footprint, EVHInspector can check

the health of billions of stripes by checking the reliability of

only thousands of eclectic volumes.

Whenever a disk fails, or a disk’s AFR increases, the

EVHInspector looks up the EVDirectory to find the volumes

affected due to this failure / AFR rise. If the disk in question is

alive, the volume manager queries the disk to obtain the stripe

IDs belonging to that volume ID. If the disk has failed, the

EVHInspector queries other disks of that particular eclectic

volume and gathers the stripe IDs from them. Note that all

disks storing a particular eclectic volume have the same list of

eclectic stripe IDs in common (but they also each may have

other stripes as well from non-overlapping eclectic volumes).

The EVHInspector then forwards the list of stripe IDs to

the ESReorganizer along with the updated and previous AFR

information and the action to be taken (reconstruct data, in-

crease redundancy or reduce redundancy). On performing the

appropriate task, the ESReorganizer communicates the meta-

data changes back to the EVManager, and the EVManager

subsequently reflects it in the EVDirectory. For reconstruction

and increase in redundancy, if a replacement disk is found,

and has enough capacity to accommodate all chunks of the

failed disk / disks whose AFR has increased, the eclectic

volume of all constituting eclectic stripes after the operation

remains the same. For redundancy reductions, or in case of

not finding a replacement disk, or not finding one with enough

capacity, the eclectic stripes depart from their original eclectic

volume (unlike Ceph’s placement groups) since they will now

be stored on potentially different subset of disks.

6 Evaluation of Tiger

We now evaluate how Tiger performs on real-world data, and

show how it fulfills the challenges laid out in §3. Tiger is eval-

uated using real-world deployment and failure logs from four

production clusters at two different organizations (Google and

Backblaze). Each cluster has a multi-year lifetime and disks

from multiple makes/models/batches. Backblaze uses trickle-

deployed disks. These disks are added to the cluster every few

days in the tens or hundreds. Google Cluster 2 and Cluster 3

have step-deployed makes/models where disks are introduced

into the cluster in large batches of tens-of-thousands of disks

within a very short span of time. Google Cluster 1 is a mix of

step- and trickle-deployed disks.

The highlights of our evaluation are (1) Tiger significantly

lowers placement restrictions posed by Pacemaker (existing

state-of-the-art disk-adaptive redundancy system); (2) Tiger’s

eclectic stripes provide much higher risk-diversity compared

to Pacemaker; (3) Tiger is closer to the target MTTDL, and

thus more efficient than existing disk-adaptive redundancy ap-

proaches; (4) Tiger outperforms Pacemaker in space-savings

while keeping the average transition IO <= 0.5% and peak

transition IO < 5% of cluster IO bandwidth and (5) Tiger’s

eclectic stripes are less sensitive to rising AFR and provide

better data safety.

6.1 Tiger enables flexible data placement

We capture the flexibility in data placement by measuring

the percentage of the disk fleet that is considered viable for

storing data using a particular redundancy scheme. The vi-

ability is decided by whether the data stored on those disks

will meet the target MTTDL. The X-axis in Fig. 7a shows

the various schemes that can be supported in each storage

cluster*. For estimating Tiger’s viable disk candidates, we

perform a Monte-Carlo simulation on specific days in each

*The narrowest scheme is set to 6-of-9 and widest is set to 30-of-33.

Schemes with higher width have lower redundancy since the number of

parities are kept the same. This is based on reference to prior work [24, 25],

and also on the basis of communication with storage administrators of large-

scale cluster storage systems at various organizations.

422 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

6-of-9
14-of-17

22-of-25
30-of-33

Redundancy schemes
(increasing space-efficiency)

0

50

100

Ri
sk

 d
iv

er
sit

y
(%

)

Tiger
Pacemaker

(a) Backblaze risk-diversity

6-of-9
14-of-17

22-of-25
30-of-33

Redundancy schemes
(increasing space-efficiency)

0

50

100

Ri
sk

 d
iv

er
sit

y
(%

)

Tiger
Pacemaker

(b) Google Cluster 1 risk-diversity

6-of-9
14-of-17

22-of-25
30-of-33

Redundancy schemes
(increasing space-efficiency)

0

50

100

Ri
sk

 d
iv

er
sit

y
(%

)

Tiger
Pacemaker

(c) Google Cluster 2 risk-diversity

6-of-9
14-of-17

22-of-25
30-of-33

Redundancy schemes
(increasing space-efficiency)

0

50

100

Ri
sk

 d
iv

er
sit

y
(%

)

Tiger
Pacemaker

(d) Google Cluster 3 risk-diversity

Figure 8: Risk-diversity achieved by Tiger over three large-scale cluster storage systems. All three plots are average risk-diversity measurements

taken over 5 days spread equally over the lifetime of the clusters. Pacemaker due its Rgroup based design has much lower risk-diversity

compared to Tiger, more evident in Fig. 8c and 8d which are entirely step-deployed clusters.

of the cluster’s lifetime. We allocate 1000 eclectic stripes by

picking disks uniformly at random and check how many of the

possible schemes can use the chosen disks. For Pacemaker,

we bin the disks by AFRs to mimic Rgroups and measure the

ratio of the population of the Rgroups to the entire disk fleet.

Tiger has almost all disks available for allocation for any

scheme in Google Clusters 1 and 3 (Figs. 7b, 7d), whereas in

Backblaze and Google Cluster 2 (Figs. 7a, 7c) at most 25%

disks are deemed not viable for the widest schemes (beyond

22-of-25). When a large fraction of disks of the cluster have a

high AFR (as is the case with Backblaze and Google Cluster

2 for the chosen dates), formation of eclectic stripes ends

up with mostly high AFR disks. In such situations, Tiger

cannot employ a very space-efficient redundancy scheme.

Pacemaker’s strict Rgroup boundaries, on the other hand, limit

all disks in an Rgroup to a single scheme that may not be very

wide. Therefore, for Pacemaker, all clusters see a significant

drop in viable disks as the width increases.

6.2 Tiger achieves high risk-diversity

Risk-diversity of a stripe is directly proportional to the number

of unique makes/models participating in that stripe. If all

makes/models in the storage cluster have representation in

the stripe, its risk-diversity is defined to be 100%. A 0% risk-

diversity implies that there were no disks in the cluster that

could be used for the particular scheme. The setup used for

evaluating risk-diversity is a Monte-Carlo simulation, where

100 stripes were allocated for each scheme configuration by

choosing disks uniformly at random. For Tiger, we measure

risk-diversity by capturing the average number of unique disk

makes/models on which the chunks of an eclectic stripe are

stored for each stripe configuration. For Pacemaker, we again

bin the disks by AFR to form Rgroups, and count the unique

number of makes/models within each Rgroup. We take the

average of this simulation performed on five equally spaced

days in the cluster lifetime to get an overall sense of risk-

diversity of both systems.

Tiger significantly outperforms Pacemaker in providing

high risk-diversity. Fig. 8 captures the risk-diversity achieved

by Tiger vs Pacemaker. Since Tiger has no partitioning of

disks, all disks of any make/model are viable for allocating

any scheme. The minimum risk-diversity achieved by Tiger is

60% across all four clusters, that too for the narrowest scheme

(6-of-9) for Backblaze (Fig. 8a) and Google Cluster 1 (Fig. 8b)

clusters. Both these clusters have seven makes/models, and

it is unlikely that seven out of nine chunks will be across

different makes/models. As the stripe width increases, Tiger’s

risk-diversity also improves. Entirely step-deployed clusters,

Google Cluster 2 (Fig. 8c) and Google Cluster 3 (Fig. 8d)

have four and three makes/models respectively. Tiger achieves

perfect risk-diversity for all possible schemes in those clus-

ters. For Pacemaker, it is more likely that clusters where all

makes/models are trickle-deployed will have a better risk-

diversity because multiple makes/models can be a part of the

same Rgroup so long as their AFRs are in the same range,

for e.g. Backblaze (Fig. 8a). Nevertheless, even clusters with

all trickle-deployed disks do not see perfect (or even good)

risk-diversity since different makes/models are deployed at

different times, and they go through different phases of life at

different dates. Risk-diversity is poorer for Pacemaker in clus-

ters with step-deployed makes /models as seen in Figs. 8c and

8d. This is because Rgroups and steps have a 1:1 mapping

and each step only contains disks of a single make/model.

The reason Pacemaker has 100% risk-diversity for 30-of-33 is

because when averaging over multiple days (5 for this experi-

ment), all makes/models on some date belonged to an Rgroup

with the 30-of-33 redundancy scheme.

6.3 Tiger adapts redundancy efficiently

The efficacy of disk-adaptive redundancy performed by Tiger

is evaluated using three metrics. First, we discuss the MTTDL

distribution of data stored using Tiger. Subsequently, using

the same four clusters used by Pacemaker we evaluate the

resulting space-savings obtained by Tiger because of disk-

adaptive redundancy, and finally we measure the IO overhead

needed to perform necessary redundancy transitions. For fair

comparison, when evaluating Tiger, we employ the same con-

figurations (such as the IO constraints and permitted redun-

dancy schemes) and tools (such as the AFR curve learner and

the change-point detector) that are used in Pacemaker.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 423

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0

10

20

30

Sp
ac

e
sa

vi
ng

s (
%

) Tiger
Pacemaker

(a) Backblaze space-savings

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0

10

20

30

Sp
ac

e
sa

vi
ng

s (
%

) Tiger
Pacemaker

(b) Google Cluster 1 space-savings

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0

10

20

30

Sp
ac

e
sa

vi
ng

s (
%

) Tiger
Pacemaker

(c) Google Cluster 2 space-savings

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0

10

20

30

Sp
ac

e
sa

vi
ng

s (
%

) Tiger
Pacemaker

(d) Google Cluster 3 space-savings

Figure 9: Space-savings achieved by Tiger for disk-adaptive redundancy simulated on four production clusters compared to Pacemaker over

conventional one-scheme-fits-all redundancy approaches. Figs. 9a–9d show that across all clusters with different maximum stripe width

configurations, Tiger provides up to 5% higher average space-savings compared to Pacemaker.

0
500

Conventional
mean AFR scheme
(Overhead=1.1)

(a)

0
250

Conventional
max AFR scheme
(Overhead=1.5)

(b)

0

2500

Fr
eq

ue
nc

y

Pacemaker
(Overhead=1.2)

(c)

13 14 15 16 17 18 19 20
log10(MTTDL in days)

0
1000 Tiger

(Overhead=1.1)(d)

Figure 10: Comparison of MTTDL distributions for different ap-

proaches. We form 10000 random stripes for each approach using

the AFRs from Google Cluster 1 (notice the different scales in the

Y-axis). In a conventional system, a single scheme is chosen for all

stripes based on the average AFR (a) or maximum AFR (b). (c) In

Pacemaker, stripes must reside within an Rgroup, and the scheme

depends on the Rgroup. (d) In Tiger, the scheme for each stripe is

chosen based on the AFRs in the stripe. The dashed vertical line

denotes the target MTTDL.

Tiger’s achieves tight reliability. Storage clusters have to

ensure that all data in the cluster always meets a specified

target level of reliability typically specified as a MTTDL value.

Tiger’s target MTTDL is set as the lowest acceptable MTTDL

in the system. This is calculated using the MTTDL of the most

conservative homogeneous stripe possible (6-of-9) having the

maximum possible AFR (16%). These settings are borrowed

from Pacemaker’s evaluation for a fair comparison with Tiger.

Fig. 10 shows a comparison in the distribution of stripe

MTTDL with different approaches to redundancy selection

for a specific day in Google Cluster 1. Fig. 10(a) shows con-

ventional systems choosing the redundancy scheme based on

the avg. AFR, which results in small storage overhead, but

puts a big fraction of the stripes at risk. Fig. 10(b) shows

conventional systems that choose the redundancy scheme on

the basis of max AFR. Although all stripes are sufficiently

protected, the storage overhead is the highest among all four

alternatives. Fig. 10(c) shows Pacemaker where the different

MTTDL clusters represent different Rgroups with different

redundancy schemes. Pacemaker achieves good reduction

in storage overhead, and keeps all stripes above the target

MTTDL. In fact, some Rgroups (with higher MTTDL values)

are too over-protected and denote lost opportunities for space-

savings. Finally, Fig. 10(d) shows Tiger’s MTTDL distribu-

tion. Despite all its eclectic stripes being above the MTTDL

threshold, Tiger has least storage overhead.

Tiger achieves attractive space-savings. Akin to Pace-

maker, by dynamically tailoring redundancy to disk AFRs,

Tiger’s eclectic stripes can use more space-efficient redun-

dancy schemes to meet the required MTTDL target. Fig. 9

shows that Tiger achieves equal or better average space-

savings compared to Pacemaker in all four clusters. For

Google Clusters 1, 2 and 3 (Figs. 9b, 9c, 9d), the highly

cost-efficient redundancy transitions of Pacemaker allows a

large step-deployed make/model to spend more time in lower

redundancy. This boosts Pacemaker’s overall space-savings

for these clusters and prevents Tiger from surpassing it easily.

In the Backblaze cluster (Figs. 9a), the reason for Tiger

achieving better space-savings is because eclectic stripes al-

low high AFR disks to be mixed with low AFR disks and

yet use an optimized redundancy scheme. In Pacemaker, high

AFR disks cannot be mixed with other disks, resulting in

lower space-savings. In the Backblaze cluster, all the seven

makes/models are trickle-deployed. This results in a non-

trivial fraction of disks constantly being in high-AFR regimes

of infancy or wearout. While Pacemaker is forced to use the

default, most conservative redundancy scheme on these disks,

Tiger can use these disks for more space-efficient redundancy

schemes by combining them with other, more robust disks. As

a result, Tiger is able to achieve up to 5% higher space-savings

compared to Pacemaker.

Tiger has very low IO overhead. Fig. 11 shows the IO

overhead comparison between Pacemaker and Tiger. Al-

though both systems are capped at 5% and in general require

very low IO (compared to background tasks such as scrubbing

that requires ≈ 7% [5]), our evaluation shows that Tiger can

achieve all its benefits with an average IO bandwidth required

for redundancy transitions of at most 0.5%. In an absolute

sense, Tiger’s low IO overhead is mainly attributed to Tiger’s

efficient redundancy transitions for an AFR rise (detailed in

§5.2), where Tiger moves the potentially risky chunk from

424 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Fig. 12 shows that Tiger is robust to AFR rises in any

make/model in a cluster, there could be bulk failure scenarios

where large fraction of the disks in the cluster fail together.

On such occasions, any system (including Tiger) that depends

on redundancy will suffer from potential data loss unless the

system includes cross-cluster redundancy.

A cluster with a single step-deployed make/model. Sup-

pose a cluster had only one make/model, deployed in a step-

deployed manner (note: we have not come across such an

example for the large clusters targeted): there would be no

diversity to exploit and all disks of the cluster would undergo

redundancy transitions together. Not only would this produce

bursty IO, but also will potentially result in a capacity crunch

(when increasing redundancy). Such clusters would either

need to keep some space unutilized to account for the bulk

redundancy-increasing transitions, or will need to make provi-

sions to add more disks to the cluster before the redundancy-

increasing transitions are issued.

7 Additional Related Work

The closest related works, HeART and Pacemaker, are dis-

cussed in §2 together with other background. Additional re-

lated works can be divided into works that study the reliabil-

ity of disks and distributed storage, and systems that manage

multiple EC schemes and transitions between them. One es-

sential part of disk-adaptive redundancy is the monitoring

of disk AFRs, which are used by Tiger to assess the relia-

bility of stripes. Many works have studied the behavior of

disk AFRs and their impact on distributed storage reliabil-

ity [5, 8, 18, 22, 26, 34, 35, 41–44]. Also, multiple works have

studied the prediction of disk AFRs based on different fea-

tures [1, 17, 27, 32, 45, 49, 59].

Many existing distributed storage systems allow for multi-

ple EC schemes to coexist in the same cluster [11, 14]. There

are systems that propose choosing different EC schemes for

different data [46,55]. The problem of transitioning data from

one EC scheme to another has been widely studied in the Cod-

ing Theory literature, with many works studying its cost, as

well as proposing special code designs that reduce the cost of

transitions [20, 28–31, 36, 38, 39, 53–55, 57, 60]. Such designs

could be used with Tiger, though our evaluations indicate that

transition IO is not a significant problem.

8 Conclusion

Tiger enables disk-adaptive redundancy without the place-

ment restrictions and associated problems that plague prior de-

signs. Tiger’s eclectic stripes tailor redundancy to whichever

disks are chosen for each stripe. Our evaluations indicate that

it reduces risk in two major ways: by increasing disk-type

diversity in stripes and by reducing burstiness of transition

IO urgency. Taken together, Tiger makes disk-adaptive redun-

dancy practical for adoption in real storage clusters.

9 Acknowledgements

We thank our shepherd Gala Yadgar and the anonymous re-

viewers for their valuable feedback and suggestions. We ex-

tend special thanks to Larry Greenfield and numerous other

researchers and engineers at Google. This research is sup-

ported in part by NSF grants CNS1956271 and CNS1901410.

We also thank the members and companies of the PDL Con-

sortium (Amazon, Google, HPE, Hitachi, IBM, Intel, Meta,

Microsoft, NetApp, Oracle, Pure Storage, Salesforce, Sam-

sung, Seagate, Two Sigma, Western Digital) and VMware for

their interest, insights, feedback, and support.

A Derivation of approximation of MTTDL of

eclectic stripes

In order to approximate the MTTDL of an eclectic stripe, we

will assume that the stripe can be repaired in the data loss

state and we will approximate the MTTDL as the mean time

between visits to the data loss state. In particular, we will

analyze the stripe as an alternating renewal process. Let As

be the stripe availability (i.e., the fraction of the time that the

stripe is not in the data loss state), µs be the repair rate in the

data loss state, and λs the stripe data loss rate. As described

above, the MTTDL is approximately λ−1
s . For an alternating

renewal process, we have that:

As =
µs

µs +λs

⇐⇒
1

λs

=
As

µs(1−As)
(2)

The repair rate in the data loss state is simply the number of

failed disks in that state:

µs = (n− k+1)µ. (3)

We assume that each disk in the stripe fails independently

from the rest, and that it is repaired with rate µ if it fails. Then,

in steady state, disk i is available with probability:

Ai =
µ

µ+λi

. (4)

Let P(j) be the probability that we find the stripe in a state

where exactly j disks are available in the stripe. Since there

are no states with more than n− k+1 failed disks, we have

that:

P(j) =
Q(j)

Q(k−1)+ · · ·+Q(n)
, for k−1≤ j ≤ n, (5)

where Q(j) is the probability that exactly j disks are avail-

able. Since disks are independent, Q(j) is equal to a Poisson-

binomial distribution, with probabilities (Ai)
n
i=1. Given this,

426 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the availability of stripe is given by:

As = P(k)+ · · ·+P(n). (6)

Thus, we have:

1

λs

=
Q(k)+ · · ·+Q(n)

µ(n− k+1)Q(k−1)
≈

1

µ(n− k+1)Q(k−1)
. (7)

Where the approximation comes from the fact that Q(n)≈ 1

because µ≫maxi λi and thus all Ai are close to 1.

In summary, we have that:

MTTDL≈
1

µ(n− k+1)Q(k−1)
. (8)

References

[1] Preethi Anantharaman, Mu Qiao, and Divyesh Jadav.

Large Scale Predictive Analytics for Hard Disk Remain-

ing Useful Life Estimation. In IEEE International Con-

ference on Big Data, 2018.

[2] John E Angus. On computing MTBF for a k-out-of-n:

G repairable system. IEEE Transactions on Reliability,

37(3):312–313, 1988.

[3] Backblaze. Disk Reliability Dataset. https://www.

backblaze.com/b2/hard-drive-test-data.html,

2013-2018.

[4] Backblaze. Erasure coding used by Backblaze. https:

//www.backblaze.com/blog/reed-solomon/, 2013-

2018.

[5] Lakshmi N Bairavasundaram, Garth R Goodson,

Shankar Pasupathy, and Jiri Schindler. An analysis of

latent sector errors in disk drives. In ACM SIGMETRICS

Performance Evaluation Review, 2007.

[6] Werner Ehm. Binomial approximation to the Poisson

binomial distribution. Statistics & Probability Letters,

11(1):7–16, 1991.

[7] Nosayba El-Sayed, Ioan A Stefanovici, George

Amvrosiadis, Andy A Hwang, and Bianca Schroeder.

Temperature management in data centers: Why some

(might) like it hot. In Proceedings of the 12th ACM

SIGMETRICS/PERFORMANCE joint international

conference on Measurement and Modeling of Computer

Systems, pages 163–174, 2012.

[8] Jon Elerath. Hard-disk drives: The good, the bad, and

the ugly. Communication of ACM, 2009.

[9] Jon G Elerath. AFR: problems of definition, calculation

and measurement in a commercial environment. In

IEEE Reliability and Maintenance Symposium (RAMS),

2000.

[10] Jon G Elerath. Specifying reliability in the disk drive

industry: No more MTBF’s. In IEEE Reliability and

Maintenance Symposium (RAMS), 2000.

[11] Erasure code Ceph Documentation. https:

//docs.ceph.com/docs/master/rados/

operations/erasure-code/, (accessed Septem-

ber 25, 2019).

[12] Manuel Fernández and Stuart Williams. Closed-form

expression for the Poisson-binomial probability density

function. IEEE Transactions on Aerospace and Elec-

tronic Systems, 46(2):803–817, 2010.

[13] Daniel Ford, François Labelle, Florentina I Popovici,

Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie

Grimes, and Sean Quinlan. Availability in Globally

Distributed Storage Systems. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI),

2010.

[14] Apache Software Foundation. HDFS Erasure

Coding. https://hadoop.apache.org/docs/

r3.0.0/hadoop-project-dist/hadoop-hdfs/

HDFSErasureCoding.html, 2017 (accessed November

5, 2020).

[15] S. Ghemawat, H. Gobioff, and S.T. Leung. The Google

file system. In ACM SIGOPS Operating Systems Review,

2003.

[16] Garth Alan Gibson. Redundant disk arrays: Reliable,

parallel secondary storage. PhD thesis, University of

California, Berkeley, 1991.

[17] Greg Hamerly, Charles Elkan, et al. Bayesian ap-

proaches to failure prediction for disk drives. In In-

ternational Conference on Machine Learning (ICML),

2001.

[18] Eric Heien, Derrick Kondo, Ana Gainaru, Dan LaPine,

Bill Kramer, and Franck Cappello. Modeling and toler-

ating heterogeneous failures in large parallel systems. In

ACM / IEEE High Performance Computing Networking,

Storage and Analysis (SC), 2011.

[19] Yili Hong. On computing the distribution function for

the Poisson binomial distribution. Computational Statis-

tics & Data Analysis, 59:41–51, 2013.

[20] Yuchong Hu, Xiaoyang Zhang, Patrick P. C. Lee, and

Pan Zhou. Generalized optimal storage scaling via net-

work coding. In IEEE International Symposium on

Information Theory (ISIT), 2018.

[21] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus,

Brad Calder, Parikshit Gopalan, Jin Li, Sergey Yekhanin,

et al. Erasure Coding in Windows Azure Storage. In

USENIX Annual Technical Conference (ATC), 2012.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 427

[22] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and

Arkady Kanevsky. Are disks the dominant contributor

for storage failures?: A comprehensive study of storage

subsystem failure characteristics. ACM Transactions on

Storage (TOS), 2008.

[23] Saurabh Kadekodi. DISK-ADAPTIVE REDUNDANCY:

tailoring data redundancy to disk-reliability heterogene-

ity in cluster storage systems. PhD thesis, Carnegie

Mellon University, 2020.

[24] Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram

Subramanya, Juncheng Yang, KV Rashmi, and Gre-

gory R Ganger. PACEMAKER: Avoiding heart attacks

in storage clusters with disk-adaptive redundancy. In

USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2020.

[25] Saurabh Kadekodi, K V Rashmi, and Gregory R Ganger.

Cluster storage systems gotta have HeART: improving

storage efficiency by exploiting disk-reliability hetero-

geneity. In USENIX File and Storage Technologies

(FAST), 2019.

[26] Ao Ma, Rachel Traylor, Fred Douglis, Mark Chamness,

Guanlin Lu, Darren Sawyer, Surendar Chandra, and

Windsor Hsu. RAIDShield: characterizing, monitoring,

and proactively protecting against disk failures. ACM

Transactions on Storage (TOS), 2015.

[27] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca

Schroeder. Proactive error prediction to improve stor-

age system reliability. In USENIX Annual Technical

Conference (ATC), 2017.

[28] Francisco Maturana, V. S. Chaitanya Mukka, and K. V.

Rashmi. Access-optimal linear MDS convertible codes

for all parameters. In IEEE International Symposium on

Information Theory (ISIT), 2020.

[29] Francisco Maturana and K. V. Rashmi. Bandwidth cost

of code conversions in distributed storage: Fundamen-

tal limits and optimal constructions. arXiv preprint

arXiv:2008.12707, 2020.

[30] Francisco Maturana and K. V. Rashmi. Convertible

codes: new class of codes for efficient conversion of

coded data in distributed storage. In Innovations in The-

oretical Computer Science Conference, (ITCS), 2020.

[31] Sara Mousavi, Tianli Zhou, and Chao Tian. Delayed

parity generation in MDS storage codes. In IEEE In-

ternational Symposium on Information Theory (ISIT),

2018.

[32] Joseph F Murray, Gordon F Hughes, and Kenneth

Kreutz-Delgado. Hard drive failure prediction using

non-parametric statistical methods. In Springer Artifi-

cial Neural Networks and Neural Information Process-

ing (ICANN/CONIP, 2003.

[33] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul

Sikaria, Pavel Zakharov, Abhinav Sharma, Mike Shuey,

Richard Wareing, Monika Gangapuram, Guanglei Cao,

et al. Facebook’s tectonic filesystem: Efficiency from ex-

ascale. In 19th {USENIX} Conference on File and Stor-

age Technologies ({FAST} 21), pages 217–231, 2021.

[34] David A Patterson, Garth Gibson, and Randy H Katz. A

case for redundant arrays of inexpensive disks (RAID).

In ACM International Conference on Management of

Data (SIGMOD), 1988.

[35] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André

Barroso. Failure Trends in a Large Disk Drive Popula-

tion. In USENIX File and Storage Technologies (FAST),

2007.

[36] Brijesh Kumar Rai, Vommi Dhoorjati, Lokesh Saini, and

Amit K. Jha. On adaptive distributed storage systems. In

IEEE International Symposium on Information Theory

(ISIT), 2015.

[37] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,

Dhruba Borthakur, and Kannan Ramchandran. A hitch-

hiker’s guide to fast and efficient data reconstruction in

erasure-coded data centers. ACM Special Interest Group

on Data Communication (SIGCOMM), 2014.

[38] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar. En-

abling node repair in any erasure code for distributed

storage. In IEEE International Symposium on Informa-

tion Theory (ISIT), 2011.

[39] KV Rashmi, Nihar B Shah, and Kannan Ramchan-

dran. A piggybacking design framework for read-and

download-efficient distributed storage codes. IEEE

Transactions on Information Theory, 2017.

[40] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dim-

itris Papailiopoulos, Alexandros G Dimakis, Ramkumar

Vadali, Scott Chen, and Dhruba Borthakur. Xoring ele-

phants: Novel erasure codes for big data. In Interna-

tional Conference on Very Large Data Bases (VLDB),

2013.

[41] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill.

Understanding latent sector errors and how to protect

against them. ACM Transactions on Storage (TOS),

2010.

[42] Bianca Schroeder and Garth A Gibson. Disk failures in

the real world: What does an MTTF of 1,000,000 hours

mean to you? In USENIX File and Storage Technologies

(FAST), 2007.

428 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[43] Bianca Schroeder and Garth A Gibson. Understanding

failures in petascale computers. In Journal of Physics:

Conference Series. IOP Publishing, 2007.

[44] Sandeep Shah and Jon G Elerath. Disk drive vintage

and its effect on reliability. In IEEE Reliability and

Maintenance Symposium (RAMS), 2004.

[45] Brian D Strom, SungChang Lee, George W Tyndall,

and Andrei Khurshudov. Hard disk drive reliability

modeling and failure prediction. IEEE Transactions on

Magnetics, 2007.

[46] Eno Thereska, Michael Abd-El-Malek, Jay J Wylie,

Dushyanth Narayanan, and Gregory R Ganger. Informed

data distribution selection in a self-predicting storage

system. In IEEE International Conference on Auto-

nomic Computing (ICAC), 2006.

[47] Charles Truong, Laurent Oudre, and Nicolas Vayatis.

A review of change point detection methods. In

arXiv:1801.00718v1 [cs.CE], 2018.

[48] Charles Truong, Laurent Oudre, and Nicolas Vayatis.

ruptures: change point detection in python. In

arXiv:1801.00826v1 [cs.CE], 2018.

[49] Yu Wang, Eden WM Ma, Tommy WS Chow, and Kwok-

Leung Tsui. A two-step parametric method for failure

prediction in hard disk drives. IEEE Transactions on

industrial informatics, 2014.

[50] Hakim Weatherspoon and John D Kubiatowicz. Erasure

coding vs. replication: A quantitative comparison. In

Springer International Workshop on Peer-to-Peer Sys-

tems (IPTPS), 2002.

[51] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE

Long, and Carlos Maltzahn. Ceph: A scalable, high-

performance distributed file system. In USENIX Sympo-

sium on Operating Systems Design and Implementation

(OSDI), 2006.

[52] Wolfram. Wolfram Mathematica.

https://www.wolfram.com/mathematica.

[53] Si Wu, Zhirong Shen, and Patrick P. C. Lee. Enabling

I/O-efficient redundancy transitioning in erasure-coded

KV stores via elastic Reed-Solomon codes. In 39th

Symposium on Reliable Distributed Systems, SRDS 2020,

Shanghai, China, September 21-24, 2020, 2020.

[54] Si Wu, Yinlong Xu, Yongkun Li, and Zhijia Yang. I/O-

efficient scaling schemes for distributed storage systems

with CRS codes. IEEE Transactions on Parallel and

Distributed Systems, 2016.

[55] Mingyuan Xia, Mohit Saxena, Mario Blaum, and

David A. Pease. A tale of two erasure codes in HDFS.

In USENIX File and Storage Technologies (FAST), 2015.

[56] Jimmy Yang and Feng-Bin Sun. A comprehensive re-

view of hard-disk drive reliability. In IEEE Reliability

and Maintenance Symposium (RAMS), 1999.

[57] Xiaoyang Zhang, Yuchong Hu, Patrick P. C. Lee, and

Pan Zhou. Toward optimal storage scaling via network

coding: from theory to practice. In IEEE Conference on

Computer Communications, (INFOCOM), 2018.

[58] Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno

Thereska, and Dushyanth Narayanan. Does erasure cod-

ing have a role to play in my data center. Microsoft

research MSR-TR-2010, 52, 2010.

[59] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin Zheng.

Predicting disk failures with HMM-and HSMM-based

approaches. In Springer Industrial Conference on Data

Mining (ICDM), 2010.

[60] Weimin Zheng and Guangyan Zhang. Fastscale: accel-

erate RAID scaling by minimizing data migration. In

USENIX File and Storage Technologies (FAST), 2011.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 429

