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Abstract—Distributed storage systems must store large amounts
of data over long periods of time. To avoid data loss due to device
failures, an [n, k] erasure code is used to encode k data symbols
into a codeword of n symbols that are stored across different
devices. However, device failure rates change throughout the life of
the data, and tuning n and k according to these changes has been
shown to save significant storage space. Code conversion is the
process of converting multiple codewords of an initial [nI , kI ] code

into codewords of a final [nF , kF ] code that decode to the same
set of data symbols. In this paper, we study conversion bandwidth,
defined as the total amount of data transferred between nodes
during conversion. In particular, we consider the case where the
initial and final codes are MDS and a single initial codeword is
split into several final codewords (kI = λF kF for integer λF

≥ 2),
called the split regime. We derive lower bounds on the conversion
bandwidth in the split regime and propose constructions that
significantly reduce conversion bandwidth and are optimal for
certain parameters.

An extended version of this paper is available at [1].

I. INTRODUCTION

Distributed storage systems use erasure codes to store large

amounts of data reliably and without excessive storage over-

head [2]–[5]. An [n, k] erasure code encodes k symbols of

data into a codeword with n symbols, which are then stored

in different storage devices. If the code is maximum-distance-

separable (MDS), then the full data can be decoded even after

n− k concurrent device failures.

Data in distributed storage systems is usually stored over

long periods of time. Kadekodi et al. [6] showed that the failure

rate of devices can significantly change over this time and that

tuning the parameters n and k to adjust to these changes results

in significant savings in storage space. In most cases, this tuning

requires changing n and k simultaneously due to practical

system constraints [6]. Other reasons to change n and k include

adapting to changes in data popularity or space availability.

Whenever n and k are changed, all the data that is already

encoded must be modified to conform to the newly chosen

parameters. The default approach to performing this change

is to read all the data (decoding if necessary), re-encode with

the new n and k, and write back to the storage devices. This

results in very high consumption of cluster resources [6], such

as network bandwidth, IO, and CPU, which can overwhelm

the cluster for periods of several days.

The code conversion problem, introduced in [7], provides

a theoretical framework to study the problem of efficiently
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Fig. 1: Example of code conversion from code [nI , kI ] to code

[nF , kF ]. Each color denotes a different codeword. Conversion

bandwidth is defined as the total amount of data read or written

during conversion, i.e. (γR + γW ).

changing the code parameters for already encoded data. Code

conversion is the process of changing multiple (already en-

coded) codewords of an initial code of parameters [nI , kI ]
to multiple codewords of a final code of parameters [nF , kF ]
(Fig. 1). Let rI := nI −kI and rF := nF −kF . The main goal

of the study of code conversion [7]–[9] is to design the initial

and final codes, as well as a conversion procedure, which can

convert encoded data more efficiently than the default approach,

for given parameters (nI , kI ;nF , kF ). Codes designed for this

purpose are referred to as convertible codes. The initial work on

convertible codes [7], [8] addressed this challenge by focusing

on the access cost of conversion, defined as the number of code

symbols that are either read or written during conversion. In [7],

[8], the authors showed that access cost can be significantly

reduced compared to the default approach.

In [9], the authors introduced convertible codes optimized for

another important metric: network bandwidth. Here, the cost

of conversion is measured in terms of conversion bandwidth,

defined as the total amount of data transferred between nodes

during conversion, which is divided into read conversion band-

width (γR) and write conversion bandwidth (γW ). The work [9]

focused exclusively on a parameter regime known as the merge

regime, which consists of conversions that merge multiple

codewords together (i.e. kF = λIkI for integer λI ≥ 2), and

showed that conversion bandwidth can be significantly reduced

compared to both the default approach and the codes that

optimize the access cost of conversions.

In this paper, we study optimizing the conversion bandwidth

for another important regime called the split regime, wherein

a single initial codeword is split into final codewords, i.e.

kI = λF kF for some integer λF ≥ 2. In particular, we derive

lower bounds on the conversion bandwidth of codes in the split

regime, and we propose constructions that match those bounds.
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and rF := (nF − kF ). Let m := (mi ∈ Fq)
αkI

i=1 be the data

to be encoded, and let mi := (m(i−1)kFα+j)
αkF

j=1 be the data

associated with final codeword i ∈ [kF ]. A split conversion

from initial code CI to final CF is a procedure that takes CI(m)
as input and outputs {CF (mi) | i ∈ [λF ]}. Our objective is to

design the codes (CI , CF ) and an efficient conversion procedure

for the given parameters (nI , kI = λF kF ;nF , kF ).
During conversion, there are three types of symbols: 1) un-

changed symbols, which are the initial symbols that are retained

in one of the final codewords (this does not require conversion

bandwidth because the symbol does not move); 2) retired

symbols, which are the remaining initial symbols that are not

unchanged; and 3) new symbols, which are the remaining final

symbols that are not unchanged. During conversion information

is downloaded from unchanged and retired symbols, and then

used to construct the new symbols.

Convertible codes that have the maximum number of un-

changed symbols are called stable. Intuitively, more unchanged

symbols imply fewer new symbols, which requires reading and

writing less data when creating the new symbols. Therefore,

to simplify our analysis we focus only on stable convertible

codes: with kF unchanged symbols per final codeword [8].

D. Other related work

Several works have studied problems that can be regarded

as special cases of code conversion: [12], [13] studied the

bandwidth required by the addition of extra parities to an MDS

code (kI = kF and nI < nF ); [14] describes two pairs of non-

MDS codes that can be converted back and forth; [15] studies a

problem in distributed matrix multiplication where parameters

are changed via local re-encoding. Another related problem is

the scaling problem [16]–[28], which consists of converting

each codeword of an [n, k, α] code, into a codeword of an

[n + s, k + s, kα/(k + s)] code for given integer s. In other

words, the amount of data in each codeword is kept constant,

but the data is distributed across a different number of devices.

III. CONVERSION BANDWIDTH OF THE SPLIT REGIME

In this section we analyze the conversion bandwidth required

by MDS convertible codes in the split regime, i.e., the case

where kI = λF kF for some integer λF ≥ 2.

In order to obtain a lower bound on the conversion bandwidth,

we model split conversion as an information flow problem.

In this model, we represent the flow of information during

conversion as a DAG with edges with variable capacity that

represent the transfer of data between nodes. Our objective

is to set the capacity of edges in a way that minimizes the

conversion bandwidth, while ensuring that the flow conditions

necessary for conversion are met.

One challenge is that, as we will show, the bound we obtain

through information flow is not achievable in general.1 This

bound is not achievable in general because retired symbols con-

tain data that is associated with more than one final codeword.

1Split conversion corresponds to a multi-source multicast problem. In
this case (unlike the single-source case) the information flow bound is not
necessarily tight with respect to coding [29].
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Fig. 3: Information flow graph of split conversion. For clarity,

each unchanged symbol is drawn twice, in order to show the

initial configuration of the system in the top row of nodes, and

the final configuration in the bottom row of nodes. The edges

with a red mark depict a graph cut.

Thus, in order to make use of these symbols during conversion,

we must also download enough data from unchanged symbols

to remove the “interference” from other final codewords. To

this end, we introduce a conjecture and derive from it a lower

bound which, as we show in §IV, is achievable.

A. Information flow

We model the conversion process using the graph (see Fig. 3)

composed by the following nodes:

• source s, representing the whole data m ∈ F
αkI

q ;

• the set Ui for i ∈ [λF ], representing the unchanged symbols

of final codeword i;
• the set R representing retired symbols;

• the set Ni for i ∈ [λF ], representing the new symbols of

final codeword i;
• data collectors ti for i ∈ [λF ] that represent the decoders

for each final codeword;

• a central node c that computes the new symbols;

• a sink t collecting the data for all final codewords (i.e. m).

Let (u, v, x) denote and edge from node u to node v with

capacity x ≥ 0. Nodes are connected by the following edges:

• {(s, x, α) | x ∈
⋃

i Ui ∪R}, representing the data stored in

the initial symbols;

• {(x, c, β1) | x ∈
⋃

i Ui} representing the data downloaded

from unchanged symbols;

• {(x, c, β2) | x ∈ R}, representing the data downloaded from

retired symbols;

• {(c, x, α) | x ∈
⋃

i Ni}, representing the data written to the

new symbols;

• {(x, ti, α) | x ∈ Vi} for Vj ⊆
⋃

i(Ui ∪Ni) such that |Vj | =
kF for j ∈ [λF ], representing decoding of final codeword i;

• {(ti, t, αk
F ) | i ∈ [λF ]}, representing the collection of all

the decoded data.

In this paper, we focus on stable codes (see §II-C). Therefore,

we have that |Ui| = kF , |R| = rI , and |Ni| = rF (i ∈ [λF ]).
The total conversion bandwidth γ will be given by the total
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size of the information communicated between nodes during

conversion, which corresponds to the following equation:

γ := γR + γW ,

where γR := λF kFβ1 + rIβ2 and γW := λF rFα.
(1)

We refer to γR as the read conversion bandwidth and to γW as

the write conversion bandwidth. Our objective is to set (β1, β2)
to minimize γ while ensuring an information flow of size αkI

(the size of the data m) is feasible. Since γW is constant with

respect to (β1, β2), our analysis will focus on γR.

Note that our model assumes a uniform amount of data

downloaded from unchanged symbols and retired symbols.

This is without loss of generality, since any stable convertible

code with non-uniform downloads, can be made uniform by

repeating the code a sufficient number of times and rotating

the assignment of symbols to nodes with each repetition.

Our first lemma expresses the constraint which arises from

considering the cut shown in Fig. 3.

Lemma 1: For all stable MDS (nI , kI = λF kF ;nF , kF )
convertible code:

λF min{rF , kF }α ≤ λF min{rF , kF }β1 + rIβ2. (2)

Proof: For each j ∈ [λF ], consider a sink tj that connects

to all symbols in a final codeword but a set Sj ⊆ Uj of size

min{kF , rF }. Consider the cut defined by {s}∪
⋃λF

j=1 Sj ∪R.

This cut yields (2) after simplification.

Using (1), we can show that when rF ≥ kF , no savings in

conversion bandwidth are possible over the default approach.

Corollary 2: When rF ≥ kF , we have γR ≥ λF kFα.

In other words, the default approach has optimal conversion

bandwidth when rF ≥ kF . For this reason, we will only focus

on the case rF < kF .

To obtain a lower bound on γ, we will minimize it subject

to (2) with β1 and β2 as variables.

Lemma 3: Assume rF < kF . Then, the value of γ is

minimized subject to (2) when:

β1 = max

{

1−
rI

λF rF
, 0

}

α, β2 = min

{

1,
λF rF

rI

}

α.

Proof sketch: Note that β2 offers the better “bang for the

buck” for satisfying (2), because each unit of β2 contributes

rI costing rI , while each unit of β1 contributes λF rF costing

λF kF . Thus, it is intuitively better to increase β2 first as much

as possible and necessary. Then, we set β1 to satisfy (2).

By replacing into (1), we obtain the following lower bound.

Theorem 4: For all stable MDS (nI , kI = λF kF ;nF , kF )
convertible code:

γR ≥

{

λFkFα− rIαmax
{

kF

rF
− 1, 0

}

if rI ≤ λFrF ,

λF min{rF , kF }α otherwise.

This bound shows that there is potential for conversion band-

width savings when kF > rF , because the bound is strictly

lower than the default approach (λF kFα) in this region. Unfor-

tunately, this bound is not always achievable, as we see next.

For example, suppose we have have a stable convertible code

with kF > rF , rI = λF rF and that we set β1 = 0 and β2 = α.

This assignment satisfies Theorem 4 (and it leads to a feasible

flow in Fig. 3). However, as shown by previous work on access

cost of conversion [8], it is not possible to perform conversion

in this case by accessing fewer than (λF −1)kF +rF symbols.

Furthermore, it can be shown that any assignment that makes

β1 > 0 necessarily leads to a higher conversion bandwidth

than the lower bound of Theorem 4. The fundamental problem

in this case is that to create new symbols for a particular

final codeword we need to remove the interference from all

other final codewords. This is not possible if the conversion

procedure does not access a sufficient number of symbols.

For this reason, we introduce the following conjecture, which

lower bounds the amount of data that needs to be downloaded

from unchanged symbols based on the above intuition.

Conjecture 5: In the information flow model presented

in this section, for all stable MDS (nI , kI = λF kF ;nF , kF )
convertible code we must have:

λFβ1 ≥ (λF − 1)β2. (3)

We incorporate this constraint into the minimization of γ and

obtain a different solution, which limits the amount of data

downloaded from retired symbols when rI > rF .

Lemma 6: Assume rF < kF . Then, the minimum value

of γ subject to (2) and (3) is achieved by Lemma 3 when

rI < rF , and otherwise by:

β1 =
(λF − 1)rFα

(λF − 1)rF + rI
, β2 =

λF rFα

(λF − 1)rF + rI
.

Proof sketch: By (3), we set β2 = min
{

α, λF

λF
−1

β1

}

.

We then set β1 in order to satisfy (2). When rI < rF , (3) is

not tight, and we thus obtain the same values that Lemma 3.

Otherwise, we obtain the stated values of β1 and β2.

By replacing back into (1), we obtain the following lower

bound based on Conjecture 5.

Theorem 7: If Conjecture 5 holds, then for all (nI , kI =
λF kF ;nF , kF ) convertible code with rI ≥ rF and rF ≤ kF :

γR ≥ λF rFα
(λF − 1)kF + rI

(λF − 1)rF + rI
.

As we shall see in §IV, the proposed constructions achieve the

combination of the lower bounds of Theorems 4 and 7. Thus,

we finish this section by comparing the conversion bandwidth

of our approach with that of the default approach and existing

convertible codes optimized for access cost [8]. Since in all

approaches the write conversion bandwidth is equal (λF rFα),

we focus on the read conversion bandwidth. Table I includes

the expressions for the read conversion bandwidth of different

approaches. Figure 2 plots the lower bounds on read conversion

bandwidth relative to the default approach for some example

parameters. These results show that our approach can achieve

significant savings in conversion bandwidth with respect to the

default approach and access-optimal convertible codes.
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