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Development and Implementation of an AI-Embedded 
and ROS-Compatible Smart Glove System in Human-

Robot Interaction 

Abstract—Robotics technology is being widely used for an 
array of tasks in today’s evolving markets. Human-robot 
collaboration is inevitable which leads to the need for safe, 
untroublesome, and easy-to-produce products. A smart glove has 
capabilities to collect data concerning its wearer’s movements by 
the use of sensors. Motivated by this, in this study, we develop an 
AI-embedded and ROS-compatible smart glove system to realize 
real-time human-robot interaction in collaborative tasks. To allow 
the robot to intelligently learn and predict new human intentions 
for human-robot interaction, we propose an Extreme Learning 
Machine (ELM)-based human gesture understanding approach 
using the data from a set of strip and force sensors embedded in 
the smart glove and effectively run it through ROS. Three typical 
baseline gestures are conjured for ELM training purposes and fed 
into the algorithm with an appended label and corresponding 
sensor data. The developed system and proposed approach are 
validated in real-world human-robot collaborative tasks with 
efficiency and success. This work can also serve as a catalyst for 
the implementation of many important robot-supported 
applications such as healthcare and daily assistance for senior 
groups. Future work of this study is also discussed. 

Keywords—smart glove, artificial intelligence (AI), human-
robot interaction, robot operating system (ROS), sensors, machine 
learning 

I. INTRODUCTION 
Human-robot interaction relies on the robots’ seamless 

interpretation of human actions. Robots that work with humans 
need to be equipped with the ability to dynamically make 
decisions when differentiated tasks are presented to them [1-3]. 
This can be encouraged by developing systems with the purpose 
of tracking and interpreting user input so that robots can be 
programmed with appropriate corresponding reactions [4-8]. A 
smart glove has capabilities to collect data concerning its 
wearer’s movements by the use of sensors [9, 10]. This data is 
then able to be processed and used to categorize the user input 
into a set of known gestures. The recognition of different hand 
gestures has the potential to be used in a variety of human-robot 
collaborative tasks, including medical procedures, product 
assembly, object hand-over, and kinaesthetic communication 
[11-15]. As more human hand movements are introduced, 
machine learning algorithms can be employed to recognize 
possible new gestures through the sensor data. A library of 
human hand movements has applications in equipping the robot 
with intention prediction competencies which it can employ in 

real-time and without the need for the programming of its every 
action [16]. Such measures allow for the successful execution of 
human-robot interactions to which the robot can efficiently adapt. 

Previous work has recorded efforts to enhance human-robot 
collaboration by studying human input in a given situation and 
shaping robots’ actions based on it. Cakmak et. al. investigated 
the role of nonverbal communication in facilitating human-
robot interaction in an assembly line setting.  This was observed 
to have an effect on the way robots perform tasks involving 
giving objects to humans [17]. Another study that focused on 
such interactions was conducted by Aleotti et. al., who used 
Kinect body tracking technology to make a robot assess the 
most human-friendly way in which it could act [18]. The Kinect 
method detected when a human hand was holding an object, 
although the system was designed to track the placement of a 
handover object relative to the hand of its recipient, rather than 
independently evaluating the various motions made by the 
human hand. Yacoub et. al. used a Random Forest algorithm to 
have a robot’s actions mimic those of humans [19]. The system 
relied on Force/Torque sensor data to program the moves made 
by robots in co-manipulative settings. The study has 
applications limited to situations where humans and robots 
simultaneously work on a task. Cohen et. al. created an 
interface that employed intention prediction methods. This 
system relied on the close monitoring of human actions to 
foresee the user’s next choice [16]. As the system operates 
without assigning values to human movements, it requires a 
given amount of interaction with a user before starting to make 
decisions. Yu et. al. used the Lyapunov theory to aid in the 
filling in of unstable output from robots [20]. The robots subject 
to this experiment were equipped with torque sensors, and 
computers were used to approximate data such as the velocity 
of the robots’ movements. The study was conducted using a 
system compatible with Baxter Robot Operating System SDK 
(RSDK). Yahya et. al. shortened the average training time for 
several robots learning how to complete a task. The study relied 
on a modified version of Guided Policy Search algorithms to 
reduce issues caused by processing the data from the robots [21].  

Different from the above research efforts, in this study, we 
develop an AI-embedded and ROS-compatible smart glove system 
to realize real-time human-robot interaction in collaborative 
tasks. To combat the gap in real-time and intelligent gesture 
recognition techniques for human-robot interaction, we propose 
an Extreme Learning Machine (ELM)-based human gesture 
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understanding approach using the data from a set of strip and 
force sensors embedded in the smart glove and effectively run 
it through ROS. To achieve this, three typical baseline gestures 
are conjured for ELM training purposes and fed into the 
algorithm with an appended label and corresponding sensor 
data. This is considered offline data as it is pre-processed and 
not fed in real-time. The ultimate goal is to have the trained 
ELM recognize in real-time gestures being performed by the 
user of the smart glove system and in turn interact with robots 
based on the results of the model. After the initial training, a 
ROS subscriber node embedded within the ELM would begin 
receiving online data from a ROS publisher script. The trained 
algorithm would be equipped enough to output its prediction of 
the gesture being motioned by the user. The predicted human 
intentions would be used in human-robot interaction via another 
ROS node. The developed system and proposed approach are 
validated in real-world human-robot collaborative tasks with 
efficiency and success. This work can also serve as a catalyst 
for the implementation of many important use cases. With the 
ROS embedded feature, this ELM technique is easily 
modifiable for use in various practical applications. The 
contributions of this work can be summarized as: (1) We develop 
an easy-to-use smart glove system, which is compatible with 
ROS and can be used for real-time human-robot interaction; (2) 
An AI-embedded human gesture understanding approach is 
proposed to allow the robot to intelligently learn and predict 
new human intentions for human-robot interaction. 

 
Fig. 1. The smart glove system. 

II. SYSTEM DEVELOPMENT 

A. System Overview 
As shown in Fig. 1, the smart glove system consists of a 

force-sensitive resistor  (FSR) [22] (Fig. 1(a)) and a set of Spark 
Fun flex sensors [23] (Fig. 1(b)) integrated into a glove. The 
sensors sit flush with the assistance of another glove overtop. 
The FSR is sewn over the thumb and the strip sensors on top of 
the hand over the pointer and middle fingers. Although the unit 
for the flex sensors includes a controller breakout, jumper 
cables were soldered directly into the board’s pins for ease of 
use, as presented on the right side of Fig. 1. The force sensor 
used is an Interlink model with its two extended pins can be 
directly placed into a breadboard. Nonetheless, this would 
render it unusable in a glove system. As such, the FSRs were 
connected via female jumper cables to the Arduino 
microcontroller. The Arduino Mega2560 used has 54 digital 
input/output pins, 16 analog inputs, and 4 serial ports [24]. With 
this board, communication between the sensors is achieved, 

allowing the smart glove system’s sensors to output data. The 
system is easy to use and construct. After attaching all 
components and with the correct software, the user can begin to 
see in the terminal the output of data from the sensors.   

B. Flex Sensor 
On one of the sides of the flex sensor, there is a print done 

with a polymer ink that has conductive particles embedded in 
it. For example, when the sensor is straight, its resistance is 
decreased. On the other hand, when the sensor is bent the 
resistance will be increased. The sensing information when the 
sensors are bent is calculated via the resistance as: 

Vo-flex = Vcc*(R/(R + Rflex) )                          (1) 

where Vo-flex is the output voltage, VCC is the input voltage, R is 
the resistance of the pull-down resistor, and Rflex is the 
resistance between the ink and the particles.  

As shown in Fig. 2, the Qwicc Flex Sensor [23], which is a 
durable more permanent solution to the traditional and fragile 
flex sensors seen on the market, is used in our smart glove 
system development. The controller integrated with the sensor 
keeps the solder points isolated to minimize breakage although 
spaced pins are available for soldering and/or use of a 
breadboard. The controller is two flex sensors joined at the head 
via a board. The board gives access to four pins: a 3.3-volt 
power supply, GND, SDA, and an SCL pin. Communication to 
the controller is enacted via an onboard ADS1015 ADC to I2C 
chip [23]. Connecting the sensor to a microcontroller can be 
achieved either with the proprietary Qwiic cable into the 
controller's breakout or through solder points found at the head. 

 
Fig. 2. The flex sensor used in our smart glove system [23]. 

C. Force Sensor 
We used a Force Sensitive Resistor (FSR) on the thumb of 

our smart glove system to track when a user wearing the glove 
applied pressure to the sensor, as presented in Fig. 3. The sensor 
is constructed of two flexible, semiconducting silicon wafers 
conjoined by an adhesive. The part that detects the applied 
force, known as the active area, consists of an interlocking 
electrode pattern and is cushioned by the substrate layers. Upon 
the application of force onto the electrodes of the FSR’s active 
area, the resistance level drops from its baseline state [22]. The 
acquired information when force is applied on the sensor is 
estimated via the resistance as: 

Vo-FSR = Vcc*(R/(R + RFSR) )                          (2) 

where Vo-FSR is the output voltage, VCC is the input voltage, R 
is the resistance of the pull-down resistor, and RFSR is the 
resistance of the force sensitive resistor. In the process of data 
collection, the object placed on the active, sensing area of the 
sensor is a human thumb. Measures were taken in ensuring 
consistency in the sensor reading between each placement of 
the human user’s thumb on the sensor. For example, the human 

(a) (b)



user’s thumb evenly places at the center of the sensor each time 
and avoids the adhesive-bound borders of the active area. 

 
Fig. 3. The force sensor used in our smart glove system [22]. 

D. Software Architecture 
Fig. 4 depicts the baseline software architecture designed 

for the smart glove system. The sensors simultaneously 
communicate with the Arduino board loaded with data 
collection code to output onto one line of data from the two 
sensors. Note, since the strip sensors are, in actuality, two 
conjoined sensors, its output is two pieces of data, one for each 
finger. From there, a ROS Publisher node listens for the 
conjoined data and the subscriber node written within the ELM 
receives said data. The trained ELM model accepts this data as 
its new test case and begins gesture recognition in real-time. 

 
Fig. 4. Software architecture of the smart glove system. 

Fig. 5 shows the extended software architecture for the 
smart glove system as applied to a collaborative robot. The 
architecture takes the original model and adds additional 
publisher and subscriber ROS nodes. In other words, after the 
trained ELM model categorizes the data subscribed from the 
microcontroller and sensors into gestures, it publishes its 
classifications and the additional subscriber node within an 
external python script acknowledges it. From here, the 
collaborative robot in conjunction with the control program 
performs the required action based on the gesture being 
performed in real-time. 

 
Fig. 5. Extended software architecture of the smart glove system. 

E. Robot Operating System 
The Robot Operating System suite was used in our study 

and was run on Ubuntu 20.04. ROS functions as a link between 
the raw sensor data and the controls that cause a robot to 
complete a set of given tasks [25-27]. ROS is a versatile body 
for prototype robotics software, which is compatible with 
several multiple languages and can be used with different hosts 
in a network rather than being restricted to the control of a 
single main server. ROS contains the algorithms necessary for 
the robot to function in the form of nodes which can freely 
exchange information with one another. Additional software 
distributed by ROS can be installed and added to the system in 
the form of individual packages.  A standard ROS package is 
constructed from a directory that is accompanied by a listing of 
the package dependencies [25]. The broad applications of the 
ROS operating system were favorable in our study, as the smart 
glove system spans a variety of different configurations and 
real-world applications. 

III. GESTURE RECOGNITION USING ELM 
In machine learning, neural networks are a subset of 

learning that mimic the biological network system of the brain. 
Extreme Learning Machine (ELM) is an algorithm for single-
hidden layer feedforward neural networks (SLFNs) with 
random hidden nodes [28-31]. This algorithm provides simpler 
learning methods that in turn lead to faster training times and 
good performance.  

In ELM, the input layer is randomly assigned weights. In 
turn, the output weights are typically calculated using the least-
squares (LS) solution. ELM operates much faster than its 
gradient-based competitors such as back propagation (BP) 
because of the lack of iteration in the learning process [30-32]. 
This is what makes ELM extremely fast and useful for many 
real-world applications, especially in the field of robotics. 

The training methodology for ELM is straightforward. 
Given training set N = (𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑖𝑖), where 𝑥𝑥𝑖𝑖 = [𝑥𝑥𝑖𝑖1 , 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑖𝑖]𝑇𝑇 ∈
𝑅𝑅𝑛𝑛  and 𝑡𝑡𝑖𝑖 = [𝑡𝑡𝑖𝑖1, 𝑡𝑡𝑖𝑖2, … 𝑡𝑡𝑖𝑖𝑖𝑖]𝑇𝑇 ∈ 𝑅𝑅𝑚𝑚,  activation function g(x), 
and hidden node quantity Ñ, the learning method via ELM is 
described as follows [31, 33]: 

(1) Creation of input weight 𝑤𝑤𝑖𝑖  and bias 𝑏𝑏𝑖𝑖 within [-1,1] range 
using activation functions; 

(2) Compute the hidden layer output matrix H; 
(3) Compute the output weight 𝛽𝛽 where 𝛽𝛽 =  𝐻𝐻†𝑇𝑇, where 𝐻𝐻† is 

the generalized inverse of the output matrix H. 

After the implementation of the learning method, the 
prediction result will be calculated from the maximum elements 
of 𝑦𝑦𝑖𝑖 =  𝐻𝐻𝛽𝛽𝑘𝑘 , 𝑘𝑘 = 1,2, …𝐶𝐶. C denoting the number of classes. 

For our application, the sigmoid activation function was 
chosen although any activation function is acceptable 
dependent on the task and data at hand. The model originally 
returned an accuracy score for both the training and testing 
stages. At its peak, the model reached a nearly 94% accuracy 
rate. At this stage, it was ready to replace its testing case with 
the real-time ROS node’s data. Instead of returning success 
rates, the model will display the label of the gesture it believes. 
In other words, it will output the results of its prediction model. 
As such, gesture recognition is achieved. 
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IV. RESULTS AND ANALYSIS 

A. Experimental Setup 
The experimental platform was formed by our developed 

smart glove system and a workstation ThinkStation P520. The 
goal was to have the trained ELM algorithm recognize in real 
time the gestures a user of the smart glove system was exerting. 
For this experiment, three users demonstrated the three gestures 
(relaxed, fist, and pinch, as shown in Fig. 6) 50 times each and 
one at a time. The trained algorithm would output the gesture it 
believes is being displayed and the overseer would monitor 
activity from the model. 

 
Fig. 6. Relax, fist, and pinch gestures. 

There exists a large number of hand gestures humans 
conduct daily. When deciding on the gestures to be chosen for 
this experiment, it was imperative to keep in mind the objective 
of the project and its potential future uses. Ultimately, the three 
typical gestures chosen were a relaxed state, a fist, and a pinch 
as seen above in Fig. 6. Although future works can easily 
include more. 

Gesture 0, the resting palm, consists of minimal to no bent 
of the strip sensors and no applied force to the FSR. Although 
strip sensors measure the bend of the finger, it's best practice to 
not try and spread the fingers too far either as it can slightly 
alter results in the data stream. Gesture 1 is a standard fist. For 
control purposes, the thumb with its attached FSR sensor rested 
outside of the fist as clearly seen in Fig. 7. The final gesture 
demonstrates a pinching motion modified so that one or both of 
the pointer and middle fingers are acceptable. 

B. Gesture Recognition Results and Analysis  
Table I shows the accuracy rates of our gesture recognition 

experiment for the right-hand glove. Three different users 
modeled the gestures and the ELM model’s results were 
recorded for every 50 predictions per gesture. The machine was 
most confident with classifying gestures 1 and 2, fist and pinch, 
respectively. For user one, the ELM recognized accurately a fist 
gesture approximately 91.33% of the time. For the other users, 
it yielded 100% accuracy. Furthermore, gesture 2, the pinch, 
was the most accurate at 100% accuracy for all three users. The 
relaxed gesture, on the other hand, produced poorer results. At 
its best, the ELM accurately classified a relaxed state roughly 
72.92% of the time. This is in contrast to a 52.62% accuracy 
rate for its worst case. 

Some explanations for these varying results could lie within 
the definition of a neutral hand gesture. For this experiment, the 
participants were instructed to relax their hands and have 
minimal to no movement. As a matter of fact, for some this 
meant nearly straight fingers and for others a slight bend to the 

hand was visible. Although visibly minuscule, this distinction 
could lead to varying data points from the strip sensors 
specifically that could lead to errors in the model. A possible 
solution could be to modify the gesture itself or train the model 
with more data from different users. This way, the model can 
be better equipped to recognize the relaxed hand gesture for 
different users. 

Table I. Gesture recognition results. 

 

V. APPLICATION IN HUMAN-ROBOT INTERACTION 

A. Task Design 
We validated the developed smart glove system in a human-

robot interactive context, which includes a collaborative robot, 
the smart glove, a target object, and a shared workspace. The 
robot used was the Franka Emika Panda, which is a robotic arm 
with 7-Degrees of Freedom (DoF) [27, 34]. It is a robot that is 
equipped with safety features that enable it to work closely with 
humans in a cooperative environment. During the experiment 
we tested 3 main cases: 

(1) Controlling the gripper of the collaborative robot through 
the smart glove; 

(2) Robot learning from the glove user to pick up an object; 
(3) Receiving an object delivered from the collaborative robot. 

B. Results and Analysis 
Fig. 7 presents the user who controls the gripper of the 

collaborative robot through our developed smart glove system. 
When the user’s hand is relaxed, the smart glove recognizes this 
gesture state using the trained ELM model and tells the robot 
via ROS. As shown in the first picture in Fig. 7, the robot opens 
its gripper. In addition, once the pinch gesture is done, the robot 
closes its gripper based on the received gesture information 
from the smart glove. This kind of application would allow the 
user wearing the smart glove to control the picking and 
dropping of an object in human-robot collaborative tasks such 
as product co-assembly.     

 
Fig. 7. Controlling the gripper of the collaborative robot through the smart 

glove. 

Fig. 8 shows the results of the robot learning from the glove 
user to pick up an object. When the user’s hand is pinching an 
object, the collaborative robot successfully moves to pick up a 
similar object from in front of it through the gesture recognition 



results of the smart glove. This application would allow the user 
to control the collaborative robot and have it perform the same 
actions of the glove user in robot-assisted teleoperating tasks 
such as remote-healthcare and remote-surgeries. 

 
Fig. 8. Robot learning from the glove user to pick up an object. 

In Fig. 9, when the user’s hand is receiving an object 
delivered by the collaborative robot, the robot would release the 
object. Indicating that it receives the user’s gesture information 
that the smart glove has secured the object and it is safe to 
release it. This application would allow the smart glove to work 
in a collaborative environment with the robot such as human-
robot hand-over tasks in smart manufacturing.  

 
Fig. 9. Receiving an object delivered from the collaborative robot. 

After implementing the experiment and testing the three 
typical cases. We found that the model was reliable in regard to 
detecting the pinch gesture and controlling the robot was simple 
and straightforward. However, we noticed that using the smart 
glove with the robotic arm can lead to multiple different 
uncertainties due to using the smart glove as a standalone 
device. If the smart glove was implemented alongside other 
technologies such as a web camera and video processing would 
lead to a more fluent and accurate interaction in the human-
robot team.  

VI. CONCLUSIONS AND FUTURE WORK  
In this study, we have developed an AI-embedded and ROS-

compatible smart glove system to realize real-time human-robot 
interaction in collaborative tasks. We have proposed an Extreme 
Learning Machine (ELM)-based human gesture understanding 
approach using the data from a set of strip and force sensors of 
the smart glove and effectively run it through ROS. Three 
typical baseline gestures have been designed and used for ELM 
training and validation. The developed system and proposed 
approach have been implemented in real-world human-robot 
collaborative tasks with efficiency and success. To achieve a 
higher accuracy of human gesture recognition for human-robot 
interaction, we will continue to optimize the ELM training with 

more collected data from diverse human users in our future 
work. In addition, we will conduct more user studies to evaluate 
the performance of the developed smart glove system in human-
robot interactive contexts. 
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