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Abstract

Langevin algorithms are gradient descent methods with additive noise. They have been used for

decades in Markov Chain Monte Carlo (MCMC) sampling, optimization, and learning. Their con-

vergence properties for unconstrained non-convex optimization and learning problems have been

studied widely in the last few years. Other work has examined projected Langevin algorithms for

sampling from log-concave distributions restricted to convex compact sets. For learning and opti-

mization, log-concave distributions correspond to convex losses. In this paper, we analyze the case

of non-convex losses with compact convex constraint sets and IID external data variables. We term

the resulting method the projected stochastic gradient Langevin algorithm (PSGLA). We show the

algorithm achieves a deviation of O(T−1/4(log T )1/2) from its target distribution in 1-Wasserstein

distance. For optimization and learning, we show that the algorithm achieves ǫ-suboptimal solu-

tions, on average, provided that it is run for a time that is polynomial in ǫ−1 and slightly super-

exponential in the problem dimension.

Keywords: Langevin Methods, Stochastic Gradient Algorithms, Non-Convex Learning, Non-

Asymptotic Analysis, Markov Chain Monte Carlo Sampling

1. Introduction

Langevin dynamics originate in the study of statistical physics (Coffey and Kalmykov, 2012), and

have a long history of applications to Markov Chain Monte Carlo (MCMC) sampling (Roberts et al.,

1996), non-convex optimization (Gelfand and Mitter, 1991; Borkar and Mitter, 1999), and machine

learning (Welling and Teh, 2011). Langevin algorithms amount to gradient descent augmented with

additive Gaussian noise. This additive noise enables the algorithms to escape saddles and local

minima. For optimization and learning, this enables the algorithms to find near optimal solutions

even when the losses are non-convex. For sampling, Langevin algorithms give a simple approach to

produce samples that converge to target distributions which are not log-concave.

Related Work. A large amount of progress on the non-asymptotic analysis of Langevin algo-

rithms has been reported in recent years. This work has two main streams: 1) unconstrained non-

convex problems and 2) constrained convex problems. These works will be reviewed below.

The bulk of the recent work on non-asymptotic analysis of Langevin algorithms has examined

unconstrained problems (Raginsky et al., 2017; Majka et al., 2020; Fehrman et al., 2020; Chen et al.,

2020; Erdogdu et al., 2018; Durmus et al., 2017; Chau et al., 2019; Xu et al., 2018; Cheng et al.,

2018; Ma et al., 2019). The basic algorithm in the unconstrained case has the form:

xk+1 = xk − η∇xf(xk, zk) +

√

2η

β
wk,
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where xk is the decision variable, zk are external random variables, wk is Gaussian noise, and η
and β are parameters. In a learning context, zk correspond to data, xk are parameters of a model,

and f(x, z) is a loss function that describes how well the model parameters fit the data. With no

Gaussian noise, wk, this algorithm reduces to stochastic gradient descent.

A breakthrough was achieved in (Raginsky et al., 2017), which gave non-asymptotic bounds in

the case that f(x, z) is non-convex in x and zk are independent identically distributed (IID). A wide

number of improvements and variations on these results have since been obtained in works such as

(Majka et al., 2020; Fehrman et al., 2020; Chen et al., 2020; Erdogdu et al., 2018; Durmus et al.,

2017; Chau et al., 2019; Xu et al., 2018; Cheng et al., 2018; Ma et al., 2019). In particular, (Chau

et al., 2019) achieves tighter performance guarantees and extends to the case that zk is a mixing

process.

For problems with constraints, most existing work focuses convex losses over compact convex

constraint sets with no external variables zk. Most closely related to our work is that of (Bubeck

et al., 2015, 2018) which augments the Langevin algorithm with a projection onto the constraint set.

Proximal-type algorithms were examined (Brosse et al., 2017). Variations on mirror descent were

examined in (Ahn and Chewi, 2020; Hsieh et al., 2018; Zhang et al., 2020; Krichene and Bartlett,

2017).

Recent work of (Wang et al., 2020) examines Langevin dynamics on Riemannian manifolds.

In this case, the losses may be non-convex, but still there are no external variables, zk. It utilizes

results from diffusion theory to give convergence with respect to Kullback-Liebler (KL) divergence.

Many of the ideas in that paper could likely be translated to the current setting. However, such KL

divergence bounds become degenerate if the algorithm is initialized as a constant value, e.g. x0 = 0.

In contrast, our work focuses on bounds in the 1-Wasserstien distance, which gives well-defined

bounds as long as the initialization is feasible for the constraints.

Contributions. This paper gives non-asymptotic convergence bounds for Langevin algorithms

for problems that are constrained to a compact convex set. In particular, we examine a general-

ized version of the algorithm examined in (Bubeck et al., 2018, 2015). As discussed above, the

existing works on constrained Langevin methods (aside from the Riemannian manifold results of

(Wang et al., 2020)) focus on convex loss functions, and none consider external random variables.

This paper examines the case of non-convex losses with IID external randomness. For the pur-

pose of sampling, it is shown that after T steps, the error from the target in the 1-Wasserstein is of

O(T−1/4(log T )1/2). For optimization and learning, this bound is used to show that the algorithm

can achieve a suboptimality of ǫ in a number of steps that is polynomial in ǫ and slightly superex-

ponential in the dimension of xk. To derive the bounds, a novel result on contractions for reflected

stochastic differential equations is derived.

2. Setup

2.1. Notation and Terminology.

R denotes the set of real numbers while N denotes the set of non-negative integers. The Euclidean

norm over Rn is denoted by ‖ · ‖.

Random variables will be denoted in bold. If x is a random variable, then E[x] denotes its

expected value and L(x) denotes its law. IID stands for independent, identically distributed. The
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indicator function is denoted by ✶. If P and Q are two probability measures over R
n, then the

1-Wasserstein distance between them with respect the Euclidean norm is denoted by W1(P,Q).

Throughout the paper, K will denote a compact convex subset of Rn of diameter D such that a

ball of radius r > 0 around the origin is contained in K. The boundary of K is denoted by ∂K. The

normal cone of K at a point x is denoted by NK(x). The convex projection onto K is denoted by

ΠK.

2.2. The Project Stochastic Gradient Langevin Algorithm

For integers k let ŵk ∼ N (0, I) be IID Gaussian random variables and let zk be IID random

variables whose properties will be described later. Assume that zi and ŵj are independent for all

i, j ∈ N.

Assume that the initial value of x0 ∈ K is independent of zi and ŵj . Then the projected

stochastic gradient Langevin algorithm has the form:

xk+1 = ΠK

(

xk − η∇xf(xk, zk) +

√

2η

β
ŵk

)

, (1)

with k an integer. Here η > 0 is the step size parameter and β > 0 is a noise parameter.

Let f̄(x) = E[f(x, z)], where the expectation is over z, which has the same distribution as zk.

We will assume that ∇xf(x, z) − ∇xf̄(x) are uniformly sub-Gaussian for each x ∈ R
n. That is,

there is a number σ > 0 such that for all α ∈ R
n, the following bound holds:

E

[

exp
(

α⊤ (∇xf(x, z)−∇xf̄(x)
)

)]

≤ eσ
2‖α‖2/2. (2)

The uniform sub-Gaussian property holds under the following conditions:

• Gradient Noise: ∇xf(x, z) = ∇xf̄(x) + z with z sub-Gaussian.

• Lipschitz Gradients and Strongly Log-Concave z: ∇xf(x, z) is Lipschitz in z and z has a

density of the form e−U(z) with ∇2U(z) � κI for all z. Here κ > 0 and the inequality is with

respect to the positive semidefinite partial order. This includes Gaussian random variables as

a special case.

• Lipschitz Gradients and Bounded z: ∇xf(x, z) is Lipschitz in z and z takes values in a

bounded set.

For learning, the last two conditions are the most useful, since they give general classes of

losses and variables for which the method can be applied. Proofs that these two conditions imply

the uniform sub-Gaussian property are given in Appendix A. A variety of more specialized cases

in which the sub-Gaussian condition holds are presented in Chapter 5 of (Vershynin, 2018). Future

work will relax the uniform sub-Gaussian assumption and the requirement of IID zk.

We assume that for each z, ∇xf(x, z) is ℓ-Lipschitz in x, i.e. ‖∇xf(x1, z) − ∇xf(x2, z)‖ ≤
ℓ‖x1−x2‖. The mean function, f̄ , is assumed to be u-smooth, so that ‖∇xf̄(x)‖ ≤ u for all x ∈ K.

The assumptions on f̄ imply that we can have u ≤ ‖∇xf̄(0)‖+ ℓD and that f̄ is u-Lipschitz.

In (Bubeck et al., 2018), the case with f̄ is convex and no zk variables is studied. It is shown

that by choosing the step size, η, appropriately, the law of xk is given approximately given by πβf̄ ,
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which is defined by

πβf̄ (A) =

∫

A e
−βf̄(x)dx

∫

K e
−βf̄(x)dx

. (3)

In this paper, we will bound the convergence of (1) to (3) in the case of non-convex f with

external random variables zk.

3. Main Results

3.1. Convergence of the Law of the Iterates

The following is the main result of the paper. It is proved in Subsection 3.4.

Theorem 1 Assume that η ≤ 1/2. There are positive constants a, c1 and c2 such that for all

integers k ≥ 4, the following bound holds:

W1(L(xk), πβf̄ ) ≤ c1e
−ηak + c2(η log k)

1/4

In particular, if η = log T
4aT and T ≥ 4, then

W1(L(xT ), πβf̄ ) ≤
(

c1 +
c2

(4a)1/4

)

T−1/4(log T )1/2.

The constants depend on the dimension of xk, n, the noise parameter, β, the Lipschitz constant,

ℓ, the diameter, D, the size of the inscribed ball r, and the smoothness constant, u. The specific

form of the constants will be derived in the proof. For applications, it is useful to know how the

constants depend on the dimension, n, and the noise parameter, β. The result below indicates that

the algorithm exhibits two distinct regimes in which convergence is fast and slow, respectively. It is

proved in Appendix D.

Proposition 2 The constants c1 and c2 grow linearly with n. If D2ℓβ < 8, then we can set

a = 4
D2β

≥ ℓ
2 , while c1 and c2 grow polynomially with respect to

(

1− D2ℓβ
8

)−2
and β−1/4. In

general, we have a positive constant c3 and a monotonically increasing polynomial p (independent

of η and β) such that for all β > 0, the following bounds hold:

a ≥ c3β exp

(

−D
2ℓβ

4

)

max {c1, c2} ≤ p(β−1/4) exp

(

3D2ℓβ

4

)

.

3.2. Application to Optimization and Learning

The following result shows that the xk can be made arbitrarily near optimal, but the required time

may be slightly super-exponential with respect to problem dimension, n. It is proved in Appendix E.

Proposition 3
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Assume that η ≤ 1/2. There is a positive constant, c5 such that for all k ≥ 4, the following

bound holds:

E[f̄(xk)] ≤ min
x∈K

f̄(x) + uW1(L(xk), πβf̄ ) +
n log(c5max{1, β})

β
.

Furthermore, there is constant, c6, such that for any ǫ > 0, ρ > 4, and ζ > 1, if β, T , and η satisfy:

β ≥ c−1
5

(

2nζ

ǫ(ζ − 1)c5e

)ζ

T ≥ 1

ǫρ

(

2ρc6
ρ− 4

)ρ/2

exp

(

13D2ℓβρ

16

)

η =
log T

4aT

then

E[f̄(xT )] ≤ min
x∈K

f̄(x) + ǫ.

The choice of β and T implies that E[f̄(xT )] is ǫ-subotimal when T is of order ecn
ζ

ǫρ for a

positive constant c.

3.3. The Auxiliary Processes Used for the Main Bound

Similar to other analyses of Langevin methods, e.g. (Raginsky et al., 2017; Bubeck et al., 2018;

Chau et al., 2019), the proof of Theorem 1 utilizes a collection of auxiliary stochastic processes that

fit between the algorithm iterates from (1) and a stationary Markov process with state distribution

given by (3).

We will embed the iterates of the algorithm into continuous time by setting xA
t = x⌊t⌋. The A

superscript is used to highlight the connection between this process and the algorithm. The Gaussian

variables ŵk can be realized as ŵk = wk+1 −wk where wt is a Brownian motion.

We will let xC
t be a continuous approximation of xA

t and we will let xM
t be a variation on the

process xC
t in which averages out the effect of the zk variables. The proof will proceed by showing

that the law of xM
t converges exponentially to (3), that xC

t has a similar law to xM
t , and that xA

t has

a similar law to xC
t . Below we make these statements more precise.

The continuous approximation of the algorithm is defined by the following reflected stochastic

differential equation (RSDE):

dxC
t = −η∇xf(x

C
t , z⌊t⌋)dt+

√

2η

β
dwt − vC

t dµ
C(t). (4)

Here −
∫ t
0 v

C
s dµ

C(s) is a bounded variation reflection process that ensures that xC
t ∈ K for

all t ≥ 0, as long as xC
0 ∈ K. In particular, the measure µ

C is such that µC([0, t]) is finite, µC

supported on {s|xC
s ∈ ∂K}, and vC

s ∈ NK(xC
s ) where NK(x) is the normal cone of K at x. Under

these conditions, the reflection process is uniquely defined and xC is the unique solution to the

Skorokhod problem for the process defined by:

yC
t = xC

0 +

√

2η

β
wt − η

∫ t

0
∇xf(x

C
s , z⌊s⌋)ds

5



LAMPERSKI

See Appendix F for more details on the Skorokhod problem.

For compact notation, we denote the Skorokhod solution for given trajectory, y, by S(y). So,

the fact that xC is the solution to the Skorokhod problem for yC will be denoted succinctly by

xC = S(yC).
The averaged version of xC

t , denoted by xM
t , where the M corresponds to “mean”, is defined

by:

dxM
t = −η∇xf̄(x

M
t )dt+

√

2η

β
dwt − vM

t dµ
M (t). (5)

Again −
∫ t
0 v

M
s dµ

M (s) is the unique reflection process that ensures that xM
t ∈ K for all twhenever

xM
0 ∈ K. By construction, xM

t satisfies the Skorokhod problem for the continuous process defined

by

yM
t = xM

0 +

√

2η

β
wt − η

∫ t

0
∇xf̄(x

M
s )ds.

See Appendix F for more details on the Skorokhod problem.

The following lemmas describe the relationships between the laws all of these processes. They

are proved in Sections 4, 6, 7 respectively.

Lemma 4 There are positive constants c1 and a such that for all t ≥ 0

W1(L(xM
t ), πβf̄ ) ≤ c1e

−ηat.

Lemma 5 Assume that xA
0 = xC

0 ∈ K and η ≤ 1/2. There is a positive constant, c7, such that for

all t ≥ 4,

W1(L(xA
t ),L(xC

t )) ≤ c7 (η log t)
1/4 .

Lemma 6 Assume that xM
0 = xC

0 ∈ K and η ≤ 1/2. There is a positive constant, c8 such that for

all t ≥ 0,

W1(L(xM
t ),L(xC

t )) ≤ c8η
1/4.

The specific form of the intermediate processes is similar to those used by Chau et al. (2019)

for unconstrained Langevin algorithms. Lemmas 4, 5, and 6 have counterparts for unconstrained

systems. While the analog of Lemma 4 is similar, the unconstrained bounds corresponding to

lemmas 5 and 6 are both of order η1/2. The bounds in this paper of (η log t)1/4 and η1/4 arise due

to properties of the reflection processes. Future work is needed to determine if these larger bounds

are tight, or if they are artifacts of the analytical methods.

Most of the rest of the paper focuses on proving lemmas 4, 5, and 6. Assuming that these

lemmas hold, the main result now has a short proof, which we describe next.

3.4. Proof of Theorem 1

Recall that xA
k = xk for all integers k ∈ N. Assume that x0 = xA

0 = xC
0 = xM

0 . The triangle

inequality followed by Lemmas 4, 5, and 6 shows that

W1(L(xk), πβf ) ≤W1(L(xA
k ),L(xC

k )) +W1(L(xC
k ),L(xM

k )) +W1(L(xM
k ), πβf )

≤ c1e
−ηak + c7 (η log k)

1/4 + c8η
1/4.

The result now follows by noting that log k ≥ 1 for k ≥ 4 setting c2 = c7 + c8. The specific bound

when η = log T
4aT arises from direct computation. �
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4. Contractions for the Reflected SDEs

In this section, we will show how the laws of the processes xC
t and xM

t are contractive with respect

to a specially constructed Wasserstein distance. By relating this specially constructed distance with

W1 we will prove Lemma 4 which states that L(xM
t ) converges to πβf exponentially with respect to

W1. The contraction will be derived by an extension of the reflection coupling argument of (Eberle,

2016) to the case of reflected SDEs with external randomness (from zk). This result may be of

independent interest.

Proposition 7 There are positive constants a and c9 such that for any two solutions, x
C,1
t and

x
C,2
t to the continuous-time RSDE, (4), their laws converge according to

W1(L(xC,1
t ),L(xC,2

t )) ≤ c9e
−ηatW1(L(xC,1

0 ),L(xC,2
0 )) (6)

To define the constants, let the natural frequency and damping ratio be given by

ωN =

√
aβ

2
and ξ =

Dℓ

4

√

β

a
. (7)

The constants can always be set to

a =
D2ℓ2β

16

(

1− tanh2
(

D2ℓβ

8

))

c9 =
eDωN ξ

cosh(DωN

√

ξ2 − 1)− ξ√
ξ2−1

sinh(DωN

√

1− ξ2)

When D2ℓβ < 8, a larger decay constant, a, can be defined by setting

a =
4

D2β

c9 =
eDωN ξ

cos(DωN

√

1− ξ2)− ξ√
1−ξ2

sin(DωN

√

1− ξ2)
.

Proof We will follow the main idea behind (Eberle, 2016). We will correlate the solutions using

reflection coupling, and then construct a distance function, h, from the coupling. Then hwill be used

to construct a Wasserstein distance for which the laws L(xC,1
t ) and L(xC,2

t ) converge exponentially.

The desired bound is found by comparing this auxiliary distance to the classical W1 distance.

Let ρt = x
C,1
t − x

C,2
t , ut = ρt/‖ρt‖ and τ = inf{t|xC,1

t = x
C,2
t }. Note that τ . The reflection

coupling between x
C,1
t and x

C,2
t is defined by:

dxC,1
t = −η∇xf(x

C,1
t , z⌊t⌋) +

√

2η

β
dwt − v

C,1
t dµC,1(t) (8a)

dxC,2
t = −η∇xf(x

C,2
t , z⌊t⌋) +

√

2η

β
(I − 2utu

⊤
t ✶(t < τ ))dwt − v

C,2
t dµC,2(t). (8b)

Here I is the n × n identity matrix. Also, ϕ1
t = −

∫ t
0 v

C,1
s dµC,1(s) and ϕ

2
t = −

∫ t
0 v

C,2
s dµC,2(s)

are the unique projection processes that ensure that respective Skorkhod problem solutions, x
C,1
t

and x
C,2
t , remain in K.

7
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The processes from (8) define a valid coupling because
∫ T
0 (I − 2usu

⊤
s ✶(s < τ ))dws is a

Brownian motion. Furthermore, for t ≥ τ , we have that x
C,1
t = x

C,2
t .

Analogous to (Eberle, 2016), we aim to construct a function h : [0, D] → R such that h(0) = 0,

h′(0) = 1, h′(x) > 0, and h′′(x) < 0 and a constant a > 0 such that eηath(‖zt‖) is a supermartin-

gale. One simplifying assumption for the construction is that we only need to define h over the

compact set [0, D], while (Eberle, 2016) requires h to be defined over [0,∞). This is due to the

fact that our solutions will be contained in K which has diameter D, while in (Eberle, 2016) the

solutions are unconstrained.

Now we will describe why the construction of such an h proves the lemma. The supermartingale

property will ensure that

E[h(‖ρt‖)] ≤ e−ηat
E[h(‖ρ0‖)] (9)

Let Wh denote that 1-Wasserstein distance corresponding to the function d(x, y) = h(‖x− y‖)
for x, y ∈ K. In other words, if P and Q are probability distributions on K and C(P,Q) is the set

of couplings between P and Q, then

Wh(P,Q) = inf
Γ∈C(P,Q)

∫

K×K
h(‖x− y‖)dΓ(x, y).

By the hypotheses on h, d(x, y) = d(y, x) ≥ 0 and d(x, y) = 0 if and only if x = y. Thus, Wh is a

valid Wasserstein distance.

Assume that Γ0 is an optimal coupling of the initial laws C(L(xC,1
0 ),L(xC,2

0 )) so that

Wh(L(xC,1
0 ),L(xC,2

0 )) =

∫

K×K
h(‖x− y‖)dΓ0(x, y).

Such a coupling exists by Theorem 4.1 of (Villani, 2008). Then using this initial coupling on the

right of (9) and minimizing over all couplings of the dynamics on the left shows that

Wh(L(xC,1
t ),L(xC,2

t )) ≤ E[h(‖ρt‖)] ≤ e−ηatWh(L(xC,1
0 ),L(xC,1

0 )). (10)

In other words, the law of the continuous-time RSDE is contractive with respect to Wh.

By the assumptions that h(0) = 0, h′(0) = 1, h′(x) > 0, and h′′(x) < 0, we have that for all

x ∈ [0, D]:

h′(D)x ≤ h(x) ≤ x.

It then follows from the definition of Wh and W1 that for all probability measures P and Q over K
that

h′(D)W1(P,Q) ≤Wh(P,Q) ≤W1(P,Q).

Combining these inequalities with (10) gives (6) with c9 = h′(D)−1.

Now we will construct h. The restriction of h to the domain of [0, D], along with the Lipschitz

bound on ∇xf will enable an explicit construction of h as the solution to a simple harmonic oscilla-

tor problem. This is in contrast to the more abstract construction in terms of integrals from (Eberle,

2016).

To ensure that eηath(‖ρt‖) is a supermartingale, we must ensure that this process is non-

increasing on average. Recall that τ is the coupling time so that eηath(‖ρt‖) = 0 for t ≥ τ .

8
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So, it suffices to bound the behavior of the process for all t < τ . In this case, we require that

non-martingale terms of d
(

eηath(‖ρt‖)
)

are non-positive. By Itô’s formula we have that

d(eηath(‖ρt‖)) = eηatηah(‖ρt‖)dt+ eηath′(‖ρt‖)d‖ρt‖+
1

2
eηath′′(‖ρt‖)(d‖ρt‖)2. (11)

Thus, the desired differential is computed from d‖ρt‖ and (d‖ρt‖)2. So, our next goal is to derive

these terms.

Let bt be the one-dimensional Brownian motion defined by dbt = u⊤
t dwt. Then for t < τ ,

dρt can be expressed as

dρt = η(∇xf(x
C,2
t , z⌊t⌋)−∇xf(x

C,1
t , z⌊t⌋))dt+

√

8η

β
utdbt + v

C,2
t dµC,2(t)− v

C,1
t dµC,1(t). (12)

Since ϕ
1
t and ϕ

2
t are bounded variation processes, the quadratic terms are given by

(dρt)(dρt)
⊤ =

8η

β
utu

⊤
t dt. (13)

If u = ρ/‖ρ‖ and ρ 6= 0, then the gradient and Hessian of ‖ρ‖ are given by

∇‖ρ‖ = ‖ρ‖−1ρ = u and ∇2‖ρ‖ = ‖ρ‖−1I − ‖ρ‖−1uu⊤. (14)

Plugging (12), (13), and (14) into Itô’s formula and simplifying gives

d‖ρt‖ = ηu⊤
t (∇xf(x

C,2
t , z⌊t⌋)−∇xf(x

C,1
t , z⌊t⌋))dt+

√

8η

β
dbt

+ u⊤
t v

C,2
t dµC,2(t)− u⊤

t v
C,1
t dµC,1(t)

≤ ηℓDdt+

√

8η

β
dbt. (15)

The simplification in the equality arises because (dρt)
⊤(∇2‖ρt‖)(dρt) = 0. The inequality uses

two simplifications. The first term on the right arises due to the Lipschitz bound on ∇xf and the

diameter bound on K. The other terms can be removed since x
C,1
t and x

C,2
t are both in K, so

that v2
t ∈ NK(x

C,2
t ) implies that (xC,1

t − x
C,2
t )⊤v2

t ≤ 0. Likewise, v1
t ∈ NK(x

C,1
t ) implies that

−(xC,1
t − x

C,2
t )⊤v1

t ≤ 0. Then since µ
1 and µ

2 are non-negative measures, the corresponding

terms are non-positive.

Note that we also have that (d‖ρt‖)2 = 8η
β dt. Plugging the bounds for d‖ρt‖ and (d‖ρt‖)2 into

(11) gives

d(eηath(‖ρt‖)) ≤
4η

β
eηat

(

aβ

4
h(‖ρt‖) +

Dℓβ

4
h′(‖ρt‖) + h′′(‖ρt‖)

)

dt+

√

8η

β
eηath′(‖ρt‖)dbt. (16)

9
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Thus, we see that a sufficient condition for eηath(‖ρt‖) to be a supermartingale is that

aβ

4
h(x) +

Dℓβ

4
h′(x) + h′′(x) = 0 (17)

for all x ∈ [0, D]. This is precisely the simple harmonic oscillator equation for natural frequency

and damping ratio defined by:

ω2
N =

aβ

4
and 2ξωN =

Dℓβ

4
.

For any positive a, the simple harmonic oscillator has a solution with h(0) = 0, and h′(0) = 1.

Lemma 14 from Appendix B gives explicit values of a that lead to h with h′(x) > 0 and h′′(x) < 0
for all x ∈ D, and gives explicit expressions for c9 = (h′(D)) in these cases. The result follows by

plugging in these values.

Note that the function f̄(x) satisfies all of the same assumptions that f(x, z) does, with the

further property that it is independent of z. As a result, Proposition 7 applies to xM
t as well. We can

use this fact to prove the exponential convergence result from Lemma 4.

Proof of Lemma 4. Lemma 19 from Appendix G implies that πβf̄ is invariant with respect to the

dynamics of the process xM .

Now, apply Proposition 7 to xM = xM,1 and xM,2 such that L(xM,2
0 ) = πβf̄ to give

W1(L(xM
t ), πβf̄ ) ≤ c9e

−ηatW1(L(xM
0 ), πβf̄ ) ≤ c9De

−ηat.

The specific form from the lemma arises because in this case L(xM,2
t ) = πβf̄ for all t ≥ 0, and also

that W1(L(xM
0 ), πβf̄ ) ≤ D, since K has diameter D. Setting c1 = c9D gives the result. �

5. A Switching Argument for Uniform Bounds

The following lemma, which is based on a method from (Chau et al., 2019), is useful for deriving

W1 bounds from L(xC
t ) that hold uniformly over time. It is proved in Appendix C.

Lemma 8 Assume that η ≤ 1/2. Let x̂ be a process such that for all 0 ≤ s ≤ t, if x̂s = xC
s then

W1(L(x̂t),L(xC
t )) ≤ g(t − s), where g is a monotonically increasing function. If x̂0 = xC

0 , then

for all t ≥ 0, we have that

W1(L(x̂t),L(xC
t )) ≤ g(η−1)

(

1 +
c9

1− e−a/2

)

We will refer to this as the “switching lemma”, as the proof follows by constructing a sequence

of processes that switch from the dynamics of x̂ to the dynamics of xC .

10
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6. Bounding the Algorithm from the Continuous RSDE

The goal of this section is to prove Lemma 5, which states that the law of the algorithm, xA
t , is close

to the law of the continuous reflected SDE, xC
t . To derive this bound, we introduce an intermediate

process xD, and show that its law is close to that of both xC and xA.

Recall the process yC defined in Subsection 3.3. For any initial xD
0 ∈ K, we define the following

iteration on the integers:

xD
k+1 = ΠK(x

D
k + yC

k+1 − yC
k ),

and set xD
t = xD

⌊t⌋ for all t ∈ R.

The process, xD, can also be interpreted as a Skorokhod solution. Indeed, let D be the dis-

cretization operator that sets D(x)t = x⌊t⌋ for any continuous-time trajectory, xt. Then, provided

that xD
0 = xC

0 , we have that xD = S(D(yC)). Recall that S corresponds to the Skorokhod solution.

See Appendix F for a more detailed explanation of this construction.

The following lemmas give the specific bounds on the differences between L(xC
t ) and L(xD

t ),
and between L(xA

t ) and L(xD
t ), respectively. They are proved in Appendix C.

Lemma 9 Assume that xD
0 = xC

0 and η ≤ 1. There are constants, c10 and c11 such that for all

t ≥ 0, the following bound holds:

W1(L(xC
t ),L(xD

t )) ≤ E
[

‖xC
t − xD

t ‖
]

≤ (η log(4max{1, t}))1/4
(

c10
√
ηt+ c11

)

The constants are given by:

c10 =

√

√

√

√2

(

u+ ℓD

2r
+

nσ√
2r

+
2n

√
2

r
√
β

)

(

n

β
+Du+ 2Dnσ

)

c11 =

√

2

(

Du+ 2nσ +
n

β

)

+D

√

u+ ℓD

2r
+

nσ√
2r

+
2n

√
2

r
√
β

Lemma 10 Assume that xA
0 = xD

0 and η ≤ 1. Then for all t ≥ 0:

W1(L(xA
t ),L(xD

t )) ≤ (η log(4max{1, t}))1/4
(

c10
√
ηt+ c11

)

((1 + ηℓ)t − 1)

Lemma 9 can be viewed as a generalization of Proposition 3.6 of Bubeck et al. (2018) to the

case of non-convex losses with external data. Similar bounds arise in both cases due to properties

of the reflection process. Note that the bound Lemma 10 is precisely that of Lemma 9, multiplied

by an extra exponentially growing term. The specific form arises because ‖xA
t −xD

t ‖ is bounded in

terms of ‖xC
t − xD

t ‖.

Now Lemma 5 can be proved by combining Lemmas 8, 9, and 10.

Proof of Lemma 5 Using the triangle inequality and Lemmas 9 and 10 gives

W1(L(xA
t ),L(xC

t )) ≤W1(L(xA
t ),L(xD

t )) +W (L(xD
t ),L(xC

t ))

≤ (η log(4max{1, t}))1/4
(

c10
√
ηt+ c11

)

(1 + ηℓ)t.

11
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Now we will utilize the switching trick from Lemma 8 to simplify the bound. Define g : [0, t] →
R by g(s) = (η log(4max{1, t}))1/4

(

c10
√
ηs+ c11

)

(1+ ηℓ)s. Then applying Lemma 8 using the

bound from g gives the desired bound:

W1(L(xA
t ),L(xC

t ))

≤ (η log(4max{1, t}))1/4 (c10 + c11) (1 + ηℓ)1/η
(

1 +
c9

1− e−a/2

)

≤ (η log(4max{1, t}))1/4 (c10 + c11) e
ℓ

(

1 +
c9

1− e−a/2

)

The second inequality uses the fact that for all η > 0,

(1 + ηℓ)1/η ≤ eℓ ⇐⇒ log(1 + ηℓ)

η
≤ ℓ

where the right inequality holds due to concavity of the logarithm.

Now, for t ≥ 4 we have log(4t) ≤ 2 log(t). So, setting

c7 = 21/4 (c10 + c11) e
ℓ

(

1 +
c9

1− e−a/2

)

gives the bound W1(L(xA
t ),L(xC

t )) ≤ c7(η log t)
1/4. �

7. Averaging Out the External Variables

Now we show that the dynamics of the continuous reflected SDE, xC , and its averaged version, xM ,

have similar laws. In particular, we will prove Lemma 6. The general strategy is similar to that of

Section 6. Namely, we devise a new process, xB that fits “between” xC and xM . Then the desired

bound is given by showing that L(xM
t ) is close to L(xB

t ) and that L(xB
t ) is close to L(xC

t ).
The new process is defined by xB = S(yB) where

yB
t = xB

0 +

√

2η

β
wt − η

∫ t

0
∇xf(x

M
s , z⌊s⌋)ds. (18)

So, we see that xB has similar dynamics to xC , but xM is used in place of xC in the drift term.

The lemmas describing the relations between L(xM
t ) and L(xB

t ) and between L(xC
t ) and

L(xB
t ) are stated below. They are proved in Appendix C.

Lemma 11 Assume that xM
0 = xB

0 and that η ≤ 1. Then is a positive constants, c12, c13, abd

c14 such that for all t ≥ 0,

W1(L(xB
t ),L(xM

t )) ≤ E
[

‖xB
t − xM

t ‖
]

≤ c12ηt
1/2 + c13η

1/2t1/4 + c14ηt
3/4

The constants are given by:

c12 = 2σ
√
n

c13 =

√

64nσD
√
2π

r

c14 =

√

128nσ
√
2π

r

(

n

β
+Du+ 2Dnσ

)

12
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Lemma 12 Assume that xC
0 = xB

0 and η ≤ 1. Then for all t ≥ 0,

W1(L(xB
t ),L(xC

t )) ≤
(

c12ηt
1/2 + c13η

1/2t1/4 + c14ηt
3/4
)

(eηℓt − 1).

To prove Lemma 11, we first bound ‖xB
t − xM

t ‖ in terms of yB
t − yM

t and the corresponding

reflection processes. Then we note that yM
t is actually the mean of yB

t , when conditioned on the

σ-algebra generated by the Brownian motion. Then we use a measure concentration argument to

bound the deviation of yB
t from yM

t . The particular form of the bound arises from the interplay

between the concentration bound and the reflection process bound. The proof of Lemma 11 is the

only place in which the uniform sub-Gaussian property is required.

The bound from Lemma 12 arises because ‖xB
t − xC

t ‖ is bounded in terms of ‖xB
t − xM

t ‖.

Proof of Lemma 6 Using the triangle inequality along with Lemmas 11 and 12 shows that

W1(L(xM
t ),L(xC

t )) ≤W1(L(xM
t ),L(xB

t )) +W1(L(xB
t ),L(xC

t ))

≤
(

c12ηt
1/2 + c13η

1/2t1/4 + c14ηt
3/4
)

eηℓt

Using Lemma 8 along with the fact that η1/2 ≤ η1/4 gives W1(L(xM
t ),L(xC

t )) ≤ c8η
1/4 with

c8 = (c12 + c13 + c14)e
ℓ

(

1 +
c9

1− e−a/2

)

.

�

8. Numerical Experiment

We utilized the projected Langevin algorithm as a means to perform Bayesian localization from

proximity sensors.

The true position of a proximity sensor, x , is assumed to lie in a square region. [−W/2,W/2]×
[−W/2,W/2]. Beacons are placed at random locations in the square region, bi, for i = 1, . . . ,m.

The sensor recieves a reading of the form yi = ‖x − bi‖ + vi from each beacon. Here vi is

Gaussian noise with zero mean and standard deviation σ .

The position is given a uniform prior over the square region and the goal is to sample from the

posterior p(x|y1, . . . ,ym). Importantly, the prior enforces that posterior samples must be drawn

from the square region, since it puts zero mass outside of the square.

The posterior sampling is solved by the projected Langevin algorithm with β = 1 applied to the

loss

f(x) = −
m
∑

i=1

log p(yi|x),

where p(yi|x) is a Gaussian density with mean ‖x − bi‖ and standard deviation σ. Indeed, when

β = 1, the Gibbs distribution is precisely the desired posterior.

Numerical results in Fig. 1 indicate that the algorithm correctly samples from the posterior. It

accurately captures the modes of the distribution and respects the constraints.1

1. Code to reproduce the figures can be found at https://github.com/AndyLamperski/

langevin-localization
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Appendix A. Transportation Cost Inequalities and the Uniform Sub-Gaussian

Property

The aim of this appendix is to show that if z satisfies a condition known as the transportation cost

inequality, then the uniform sub-Gaussian property from (2) holds. Then it will be described how

bounded random variables and some generalizations of Gaussian distributions satisfy this condition.

If P and Q are probability measures, their total variation distance is denoted by ‖P − Q‖TV

and their Kullback-Liebler divergence is denoted by KL(Q||P ) =
∫

log
(

dQ
dP (x)

)

dQ(x).

Let (Z, d) be a metric space and let Wd denote the induced Wasserstein metric. A probability

measure, P , over Z is said to satisfy the transportation cost inequality with constant c if for any

other probability measure over Z , the following bound holds:

Wd(P,Q) ≤
√

2cKL(Q||P ).

Assume that P satisfies the transportation cost inequality with constant c. Theorem 3.1 of

(Wainwright, 2019) implies that if g : Z → R is ℓ-Lipschitz and z is distributed according to P ,

then g(z)− E[g(z)] is sub-Gaussian with parameter 1√
cℓ

.

Returning to the original problem, consider functions of the form g(z) = ∂f
∂xi

(x, z). If ∇xf is

ℓ-Lipschitz with respect to z, then g(z)−E[g(z)] is sub-Gaussian with parameter 1√
cℓ

for all x ∈ K.

Thus, the uniform sub-Gaussian property holds.

It is well-known that Gaussian random variables satisfy the transportation cost inequality, with

c corresponding to the minimum eigenvalue of the inverse of the covariance matrix. More generally

say that Z = R
m, and z has a density of the form p(z) = e−U(z)/2. Assume further that ∇2U(z) �
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cI , for all z ∈ Z , where � denotes the semidefinite partial ordering and c > 0. Then Theorem

22.14 of (Villani, 2008) implies that the transportation cost inequality holds with constant c.
The next result shows that bounded random variables also satisfy the transportation cost in-

equality.

Lemma 13 Let (Z, d) be a metric space with diameter M . If P is a probability measure over Z
then the following inequality holds for any other probability measure over Z , Q:

Wd(P,Q) ≤M

√

1

2
KL(Q||P )

In other words, P satisfies the transportation cost inequality with c =M2/4.

Proof Let Γ be a coupling of P and Q. Then
∫

d(x, y)dΓ(x, y) ≤M

∫

✶(x 6= y)dΓ(x, y)

implies that the induced Wasserstein distance satisfies

Wd(P,Q) ≤M‖P −Q‖TV ≤M

√

1

2
KL(P ||Q),

where the final bound follows from Pinsker’s inequality.

Appendix B. Bounds on Simple Harmonic Oscillator Coefficients.

Lemma 14 Consider the simple harmonic oscillator

ω2
Nh(x) + 2ξωNh

′(x) + h′′(x) = 0

with

ωN =

√
aβ

2
and ξ =

Dℓ

4

√

β

a
.

and boundary condition h(0) = 0 and h′(0) = 1.

For any positive values of D, ℓ, and β if a is set to

a =
D2ℓ2β

16

(

1− tanh2
(

D2ℓβ

8

))

then h′(x) > 0 and h′′(x) < 0 for all x ∈ [0, D] and

(h′(D))−1 =
eDωN ξ

cosh(DωN

√

ξ2 − 1)− ξ√
ξ2−1

sinh(DωN

√

1− ξ2)

If D2ℓβ < 8, then a can be set to a = 4
D2β

and in this case h′(x) > 0 and h′′(x) < 0 for all

x ∈ [0, D] and

(h′(D))−1 =
eDωN ξ

cos(DωN

√

1− ξ2)− ξ√
1−ξ2

sin(DωN

√

1− ξ2)
.
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Proof We will tune a to ensure that h′(x) > 0 for all x ∈ [0, D]. Then since h(x) ≥ 0 for

x ∈ [0, D], the simple harmonic oscillator equation implies that h′′(x) < 0 for x ∈ [0, D].
We will consider the underdamped case with ξ < 1 and the overdamped case with ξ > 1. We

will see that for any collection of parameters, a can be chosen to give an overdamped solution with

the desired properties. However, when D2ℓβ < 8, a larger a can be chosen which gives rise to an

underdamped solution with the desired properties.

First we consider the underdamped case. The expression for ξ from (7) shows that

ξ2 < 1 ⇐⇒ D2ℓ2β

16
< a. (19)

Now we will try to maximize a while ensuring that h′(x) > 0. Standard methods from linear

differential equations show that h and its derivative are given by:

h(x) = e−xωN ξ sin(xωN

√

1− ξ2)

ωN

√

1− ξ2

h′(x) =
e−xωN ξ

√

1− ξ2
(
√

1− ξ2 cos(xωN

√

1− ξ2)− ξ sin(xωN

√

1− ξ2)).

The smallest x > 0 such that h′(x) = 0 is the smallest x > 0 such that

(cos(xωN

√

1− ξ2), sin(xωN

√

1− ξ2)) = (ξ,
√

1− ξ2).

Using the fact that sin′(θ) < 1 for θ 6= 2πk, we have that

sin(DωN

√

1− ξ2) < DωN

√

1− ξ2.

So, if we choose ωN ≤ D−1 we will have sin(xωN

√

1− ξ2) <
√

1− ξ2 and thus h′′(x) > 0 for

all x ∈ [0, D]. Plugging in the expression for ωN from (7) shows that a must satisfy

a ≤ 4

D2β
. (20)

Comparing (19) and (20) shows that a suitable a can only be chosen when D2ℓβ < 8. The a from

the lemma statement is chosen by taking the largest possible value. Note that by construction, a
satisfies (19) and so ξ < 1 in this case.

Now we consider the overdamped case, so that ξ2 > 1. In this case, standard methods from

linear differential equations show that h and its derivative are given by:

h(x) = e−xωN ξ sinh(xωN

√

ξ2 − 1)

ωN

√

ξ2 − 1

h′(x) =
e−xωN ξ

√

ξ2 − 1
(
√

ξ2 − 1 cosh(xωN

√

ξ2 − 1)− ξ sinh(xωN

√

ξ2 − 1))

Thus h′(x) = 0 precisely when tanh(xωN

√

ξ2 − 1) =

√
ξ2−1
ξ . Since tanh is monotonically

increasing, if tanh(DωN

√

ξ2 − 1) <

√
ξ2−1
ξ , then we will have that h′(x) > 0 for all x ∈ [0, D].

19



LAMPERSKI

Plugging in the expressions for ωN and ξ gives for all a > 0

tanh(DωN

√

ξ2 − 1) = tanh

(

D

2

√

D2ℓ2β2

16
− aβ

)

< tanh

(

D2ℓβ

8

)

.

So to ensure that h′(x) > 0 for all x ∈ [0, D], it suffices to choose a so that

√
ξ2−1
ξ achieves the

bound on the right. In particular, after some algebra we find that

a =
D2ℓ2β

16

(

1− tanh2
(

D2ℓβ

8

))

> 0.

Plugging this expression into the definition of ξ shows that ξ2 > 1, and so the oscillator is indeed

overdamped. Thus, h is well-defined and has all the desired properties, so the proof is complete.

Appendix C. Proofs of Supporting Lemmas

The proofs below use the following notation from (Rockafellar, 2015). Let γ(x|K) denote the gauge

function:

γ(x|K) = inf{t > 0|x ∈ tK}
and let γ∗(x|K) be the support function:

δ⋆(x|K) = sup{y⊤x|y ∈ K}.
By the assumption on K, it follows that γ(x|K) ≤ r−1‖x‖.

Proof of Lemma 8 Consider the family of switching processes x̂C
s,t be the process such that x̂C

s,t =

x̂t for t ≤ s and then for t ≥ s, the dynamics of x̂C
s,t follow (4), the definition of xC

t .

LetH = ⌊1/η⌋ and assume that t ∈ [kH, (k+1)H). It follows that x̂C
0,t = xC

t and x̂C
(k+1)H,t =

x̂t. The triangle inequality then implies that

W1(L(xC
t ),L(x̂t)) ≤

k
∑

i=0

W1(L(x̂C
iH,t),L(x̂C

(i+1)H,t))

For i < k, using Proposition 7, followed by the hypothesis gives

W1(L(x̂C
iH,t),L(x̂C

(i+1)H,t)) ≤ c9e
−ηa(t−(i+1)H)W (L(x̂C

iH,(i+1)H),L(x̂(i+1)H))

≤ c9e
−ηa(t−(i+1)H)g(H)

≤ c9e
−a(k−i−1)/2g(η−1)

The final inequality uses the facts that 1
2 ≤ ηH ≤ 1 along with monotonicity of g. The lower bound

on ηH arises because H ≥ η−1 − 1 and so ηH ≥ 1− η ≥ 1/2, since η ≤ 1/2.

It follows that the first k terms of the sum can be bounded by:

k−1
∑

i=0

W1(L(x̂C
iH,t),L(x̂C

(i+1)H,t)) ≤
k−1
∑

i=0

c9e
−a(k−i−1)/2g(1)

≤ c9g(1)

1− e−a/2
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For i = k the hypothesis gives

W1(L(x̂C
iH,t),L(x̂C

(i+1)H,t)) =W1(L(x̂C
kH,t),L(x̂t))

≤ g(t− kH) ≤ g(η−1)

Adding this to the bound from the first k terms gives the result. �

Proof of Lemma 9 The basic idea follows arguments from (Bubeck et al., 2018). However, we

must deviate from the method to account for the extra randomness due to zi. First note that since

xD
t = xD

⌊t⌋, we get the following triangle inequality bound:

‖xC
t − xD

t ‖ = ‖xC
t − xC

⌊t⌋ + xC
⌊t⌋ − xD

⌊t⌋‖ (21)

≤ ‖xC
t − xC

⌊t⌋‖+ ‖xC
⌊t⌋ − xD

⌊t⌋‖. (22)

For simpler notation, set ⌊t⌋ = k.

The first term can be estimated directly via Itô’s rule:

d‖xC
t − xC

k ‖2

= 2(xC
t − xC

k )
⊤
(

−η∇xf(x
C
t , z⌊t⌋)dt− vsdµ(s) +

√

2η

β
dwt

)

+
2ηn

β
dt. (23)

Note that the inner products between the state difference and gradient terms can be bounded by:

(xC
t − xC

k )
⊤∇xf̄(x

C
t ) + (xC

t − xC
k )

⊤ (∇xf(x
C
t , z⌊t⌋)−∇xf̄(x

C
t )
)

≤ Du+D‖∇xf(x
C
t , z⌊t⌋)−∇xf̄(x

C
t )‖ (24)

The uniform sub-Gaussian assumption implies that the mean of the term on the right is bounded

above by 2nσ. Indeed, if g is a sub-Gaussian vector in R
n with sub-gaussian parameter σ, then

E [‖g‖] ≤
n
∑

i=1

E[|e⊤i g|] =
n
∑

i=1

E[max{e⊤i g,−e⊤i g}] ≤ nσ
√

2 log(2) ≤ 2nσ.

Here ei are the standard basis vectors of Rn. The third inequality is based on a standard bounding

method for sub-Gaussian variables. See exercise 2.21 of (Wainwright, 2019). Additionally, we will

work out these details for bounding a different maximum of sub-Gaussian variables.

Thus, by integrating (23), taking expectations, and noting that t− k ≤ 1, we can conclude that

E
[

‖xC
t − xC

k ‖2
]

≤ 2η

(

n

β
+ uD + 2nσ

)

Thus, an elementary Cauchy-Schwarz bound gives that

E
[

‖xC
t − xC

k ‖
]

≤
√

E
[

‖xC
t − xC

k ‖2
]

≤
√

2η

(

Du+ 2nσ +
n

β

)

. (25)

The rest of the proof bounds E[‖xC
k − xD

k ‖]. When k = 0, this term is 0, so we focus on the

k ≥ 1 case. Recall that xC
t solves the Skorokhod problem for yC

t and xD
t solves the Skorkhod
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problem for D(yC)t = yC
⌊t⌋. Let ϕD

t = −
∫ t
0 v

D
t dµ

D(t) be the unique projection process such that

xD
t = yC

⌊t⌋ +ϕ
D
t . Then, Lemma 2.2 of (Tanaka et al., 1979) implies that

‖xC
k − xD

k ‖2

≤ ‖yC
k − yC

k ‖2 + 2

∫ k

0
(yC

k − yC
k − yC

s + yC
⌊s⌋)

⊤(vD
s dµ

D(s)− vC
s dµ

C(s))

= 2

∫ k

0
(yC

⌊s⌋ − yC
s )

⊤(vD
s dµ

D(s)− vsdµ(s))

Note that for any integer, i, yC
⌊s⌋ is constant for s ∈ (i, i + 1). It follows that the measure, µD

is supported on the integers. However, the integrand is zero on the integers, so we arrive at the

simplified bound:

‖xC
k − xD

k ‖2 ≤ 2

∫ k

0
(yC

s − yC
⌊s⌋)

⊤vC
s dµ

C(s).

Now, the elementary inequality x⊤y ≤ γ(x|K)δ∗(x|K) followed by Hölder’s inequality gives:

‖xC
k − xD

k ‖2 ≤ 2

∫ k

0
γ(yC

s − yC
⌊s⌋|K)δ⋆(vs|K)dµ(s)

≤ 2

(

sup
s∈[0,k]

γ(yC
s − yC

⌊s⌋|K)

)

∫ k

0
δ⋆(vs|K)dµ(s)

Taking square-roots, then followed by expectations, and then employing the Cauchy-Schwarz

inequality gives:

E
[

‖xC
k − xD

k ‖
]

≤
√
2E





√

sup
s∈[0,k]

γ(yC
s − yC

⌊s⌋|K)

√

∫ k

0
δ⋆(vs|K)dµ(s)





≤

√

√

√

√2E

[

sup
s∈[0,k]

γ(yC
s − yC

⌊s⌋|K)

]

E

[∫ k

0
δ⋆(vs|K)dµ(s)

]

. (26)

So, now it suffices to bound both terms on the right of (26).

We first bound the γ term. The methodology deviates from that of (Bubeck et al., 2018), as this

term is now a bit more complicated. First note that γ(x|K) ≤ r−1‖x‖ because K contains a ball of

radius r around the origin. Thus, plugging in the defition for yC
t and using the triangle inequality

gives:

γ(yC
s − yC

⌊s⌋|K) ≤ r−1‖yC
s − yC

⌊s⌋‖

≤ r−1η

∫ s

⌊s⌋
‖∇xf(x

C
τ , z⌊s⌋)‖dτ + r−1

√

2η

β
‖ws −w⌊s⌋‖

For compact notation, set i = ⌊s⌋ and gτ = ∇xf(x
C
τ , zi) − ∇xf̄(x

C
τ ). To bound the integral

term, note that

‖∇xf(x
C
τ , z⌊s⌋)‖ = ‖∇xf̄(x

C
τ ) + (gτ − gi) + gi‖

≤ u+ ℓD + ‖gi‖. (27)
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The inequality arises because of the bound on ‖∇xf̄‖ and the Lipschitz property of ∇xf .

It follows that

γ(yC
s − yC

⌊s⌋|K) ≤ η(u+ ℓD)

2r
+

η

2r
‖gi‖+ r−1

√

2η

β
‖ws −w⌊s⌋‖. (28)

Thus, to bound the first term on the right of (26), it suffices to bound maxi=0,...,k−1 ‖gi‖ and

sups∈[0,k] ‖ws − w⌊s⌋‖. The ‖gi‖ terms can be bounded using a modification of a standard sub-

Gaussian bounding method from exercise 2.21 of (Wainwright, 2019). We show it explicitly, as the

method will be generalized when bounding the ‖ws −w⌊s⌋‖ terms.

Let ej be the standard basis vectors of Rn. Then the following bound follows from the triangle

inequality:

‖gi‖ ≤
n
∑

j=1

|e⊤j gi|

=

n
∑

j=1

max
ε∈{−1,1}

εe⊤j gi.

Then for any λ > 0 we have that

max
i=0,...,k−1

‖gi‖ ≤ max
i=0,...,k−1

n
∑

j=1

max
ε∈{−1,1}

εe⊤j gi

≤
n
∑

j=1

max
i∈{0,...,k−1},ε∈{−1,1}

εe⊤j gi

≤
n
∑

j=1

λ−1 log





k−1
∑

i=0

∑

ε∈{−1,1}
exp

(

λεe⊤j gi
)



 .

Taking expectations and using Jensen’s inequality, followed by the sub-Gaussian property of gi
gives

E

[

max
i=0,...,k−1

‖gi‖
]

≤
n
∑

j=1

λ−1 log





k−1
∑

i=0

∑

ε∈{−1,1}
E

[

exp
(

λεe⊤j gi
)]





≤ n

λ
log
(

2keλ
2σ2/2

)

(29)

=
n log(2k)

λ
+
nλσ2

2
. (30)

Optimizing over λ gives:

E

[

max
i=0,...,k−1

‖gi‖
]

≤ nσ
√

2 log(2k). (31)

Now we will bound E

[

sups∈[0,k] ‖ws −w⌊s⌋‖
]

using an extension of the argument just used.

Note that
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E

[

sup
s∈[0,k]

‖ws −w⌊s⌋‖
]

= E

[

max
i=0,...,k−1

sup
s∈[i,i+1]

‖ws −wi‖
]

Then the triangle inequality implies that

‖ws −wi‖ ≤
n
∑

j=1

|e⊤j (ws −wi)| =
n
∑

j=1

max
ε∈{−1,1}

εe⊤j (ws −wi).

It follows that for all λ > 0, we get:

max
i=0,...,k−1

sup
s∈[i,i+1]

‖ws −wi‖ ≤
n
∑

j=1

max
i∈{0,...,k},ε∈{−1,1}

sup
s∈[i,i+1]

εe⊤j (ws −wi)

≤
n
∑

j=1

λ−1 log





k−1
∑

i=0

∑

ε∈{−1,1}
sup

s∈[i,i+1]
eλεe

⊤
j (ws−wi)





So, taking expectations and using Jensen’s inequality gives:

E

[

max
i=0,...,k−1

sup
s∈[i,i+1]

‖ws −wi‖
]

≤
n
∑

j=1

λ−1
E



log





k−1
∑

i=0

∑

ε∈{−1,1}
sup

s∈[i,i+1]
eλεe

⊤
j (ws−wi)









≤
n
∑

j=1

λ−1 log





k−1
∑

i=0

∑

ε∈{−1,1}
E

[

sup
s∈[i,i+1]

eλεe
⊤
j (ws−wi)

]



 (32)

Now we bound the expectation of each term on the right of (32). For simple notation, let α = εej
correspond to one of the terms in the sum. Note that α is a unit vector and that eλα

⊤(ws−wi) is con-

vex with respect to ws. Now since, ws is martingale, it follows that eλα
⊤(ws−wi) is a submartingale

for s ∈ [i, i + 1]. So, a Cauchy-Schwarz bound followed by Doob’s maximal inequality, and then

direct computation gives:

E

[

sup
s∈[i,i+1]

eλα
⊤(ws−wi)

]

≤

√

√

√

√E

[

sup
s∈[i,i+1]

e2λα⊤(ws−wi)

]

≤ 2
√

E
[

e2λα
⊤(wi+1−wi)

]

= 2eλ
2

Combining this result with (32) shows that

E

[

sup
s∈[0,k]

‖ws −w⌊s⌋‖
]

≤ n

λ
log(4keλ

2
) =

n log(4k)

λ
+ nλ
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for all λ > 0.

Optimizing over λ shows that

E

[

sup
s∈[0,k]

‖ws −w⌊s⌋‖
]

≤ 2n
√

log(4k)

Combining this result with (28) and (31) shows that

E

[

sup
s∈[0,k]

γ(yC
s − yC

⌊s⌋|K)

]

≤ η(u+ ℓD + nσ
√

2 log(2k))

2r
+

2n

r

√

2η log(4k)

β

≤
√

η log(4k)

(

u+ ℓD

2r
+

nσ√
2r

+
2n

√
2

r
√
β

)

. (33)

The second inequality used the assumption that η ≤ 1 so that η ≤ √
η, and the fact that log(4k) ≥ 1

for k ≥ 1.

Now we bound the second term on the right of (26). Note that xC
t is a continuous semimartingale

and the process
∫ t
0 vsdµ(s) has bounded variation. Thus, from Itô’s formula, (Kallenberg, 2002),

we have that

d‖xC
t ‖2 = 2(xC

t )
⊤
(

−η∇xf(x
C
t , z⌊t⌋) +

√

2η

β
dwt − vtdµ(t)

)

+
2ηn

β
dt (34)

Reasoning as in (24) shows that

E

[

|(xC
t )

⊤∇fx(xC
t , z⌊t⌋)|

]

≤ Du+DE [‖gt‖] ≤ Du+ 2Dnσ.

By construction, (xC
t )

⊤vt = sup{x⊤vt|x ∈ K} = δ⋆(vt|K). Thus, re-arranging, integrating,

and taking expectations gives the bound:

E

[∫ t

0
δ⋆(vs|K)dµ(s)

]

=
ηnt

β
− ηE

[∫ t

0
(xC

s )
⊤∇xf(x

C
s , z⌊s⌋)ds

]

+
1

2
E
[

‖xC
0 ‖2 − ‖xC

t ‖2
]

≤ ηt

(

n

β
+Du+ 2Dnσ

)

+
D2

2
(35)

Combining (26), (33), and (35) shows that

E
[

‖xC
k − xD

k ‖
]

≤
√
2

√

√

√

√

√

η log(4k)

(

u+ ℓD

2r
+

nσ√
2r

+
2n

√
2

r
√
β

)

·
√

ηk

(

n

β
+Du+ 2Dnσ

)

+
D2

2

Combining this result with (21) and (25) finishes the proof. �
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Proof of Lemma 10 Recall that xA
t and xD

t are discretized processes: xA
t = xA

⌊t⌋ and xD
t = xD

⌊t⌋.

Furthermore, if we set yA
t as

yA
t = xA

0 + η

∫ t

0
∇xf(x

A
⌊s⌋, z⌊s⌋)ds+

√

2η

β
wt,

then we have xA = S(D(yA)) and xD = S(D(yC)), where D is the discretization operator and S
is the Skorokhod solution operator. In particular

xA
k+1 = ΠK(x

A
k + yA

k+1 − yA
k ).

Define a difference process, ρt, by:

ρt = (xA
t + yA

t − yA
⌊t⌋)− (xD

t + yC
t − yC

⌊t⌋)

Note that for integers k, ρk = xA
k − xD

k . While ρt can jump at the integers, non-expansiveness of

convex projections implies that

‖ρk‖ = ‖xA
k − xD

k ‖ ≤ lim
t↑k

‖ρt‖ (36)

Let k ≥ 0 be an integer. For t ∈ [k, k + 1) we have that

dρt = d(yA
t − yC

t ) = η(∇xf(x
C
t , z⌊t⌋)−∇xf(x

A
t , z⌊t⌋))dt

It follows that ρt is a continuous bounded variation process on the interval [k, k + 1). When

ρt 6= 0, we can bound the growth of ‖ρt‖ using the chain rule, followed by the Cauchy-Schwarz

inequality, the Lipshitz property of ∇xf , and the triangle inequality:

d‖ρt‖ =

(

ρt

‖ρt‖

)⊤
η(∇xf(x

C
t , z⌊t⌋)−∇xf(x

A
t , z⌊t⌋))dt

≤ ηℓ‖xC
t − xA

t ‖dt (37)

≤ ηℓ(‖xC
t − xD

t ‖+ ‖xD
t − xA

t ‖)dt. (38)

While we have not characterized the behavior when ρt = 0, the Lemma 20 from Appendix H

can be used to show that this behavior does not cause problems. Specifically for t ∈ [k, k + 1)

‖ρt‖ = ‖ρk‖+
∫ t

k
d‖ρs‖

Lem. 20
= ‖ρk‖+ lim

ǫ↓0

∫ t

k
✶(‖ρs‖ ≥ ǫ)d‖ρs‖

(38)

≤ ‖ρk‖+ lim
ǫ↓0

∫ t

k
✶(‖ρs‖ ≥ ǫ)ηℓ(‖xC

s − xD
s ‖+ ‖xD

s − xA
s ‖)ds

≤ (1 + ηℓ)‖ρk‖+ ηℓ

∫ t

k
‖xC

s − xD
s ‖ds
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The final inequality used the fact that ρk = xA
s − xD

s for all s ∈ [k, k + 1).
Now using (36) we see that

‖ρk+1‖ ≤ (1 + ηℓ)‖ρk‖+ ηℓ

∫ k+1

k
‖xC

s − xD
s ‖ds

Then using the assumption that ρ0 = xA
0 − xD

0 = 0, we have that

‖ρk‖ ≤
k−1
∑

i=0

ηℓ(1 + ηℓ)k−i−1

∫ i+1

i
‖xC

s − xD
s ‖ds

Taking expectations and using Lemma 9 gives that

E[‖ρk‖] ≤ ηℓ
k−1
∑

i=1

(1 + ηℓ)k−i−1

∫ i+1

i
(η log(4max{1, s}))1/4 (c10

√
ηs+ c11) ds

≤ ηℓ (η log(4max{1, k}))1/4
(

c10
√

ηk + c11

)

k−1
∑

i=1

(1 + ηℓ)k−i−1

≤ (η log(4max{1, k}))1/4
(

c10
√

ηk + c11

)

((1 + ηℓ)k − 1)

The result now follows because xA
t and xD

t are constant for t ∈ [k, k + 1) and the bound above is

monotinically increasing in k. �

Proof of Lemma 11 Let −
∫ t
0 v

B
s dµ

B(s) be the unique finite-variation process that enforces that

xB
t ∈ K in the Skorokhod solution. Lemma 2.2 of (Tanaka et al., 1979) implies that

‖xB
t − xM

t ‖2 ≤ ‖yB
t − yM

t ‖2

+ 2

∫ t

0

(

yB
t − yM

t − yB
s + yM

s

)⊤ (
vM
s dµ

M (s)− vB
s dµ

B(s)
)

Thus, taking square roots and using the triangle inequality gives

‖xB
t − xM

t ‖ ≤ ‖yB
t − yM

t ‖

+

√

2

∣

∣

∣

∣

∫ t

0

(

yB
t − yM

t − yB
s + yM

s

)⊤
vM
s dµ

M (s)

∣

∣

∣

∣

+

√

2

∣

∣

∣

∣

∫ t

0

(

yB
t − yM

t − yB
s + yM

s

)⊤
vB
s dµ

B(s)

∣

∣

∣

∣

(39)

Now we analyze the various terms of this equation.

First we will bound E[‖yB
t − yM

t ‖] ≤
√

E[‖yB
t − yM

t ‖2].
Let F∞ be the σ-algebra generated by the Brownian motion. In the following discussion, we

will assume that the realization of the Brownian motion is fixed and examine the effects of zt. Note

that the initial condition assumption and the definition of yB
t from (18) imply that yM

t = E[yB
t |F∞].

In other words, yB
t − yM

t is a zero-mean function of the random variables z0, z1, . . ..
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To bound E
[

‖yB
t − yM

t ‖2|F∞
]

, it suffices to bound the individual coordinates. Each coordi-

nate can be represented as e⊤j (y
B
t − yM

t ), where ej is a corresponding unit basis vector. Thus, it

suffices to bound E

[

(

α⊤(yB
t − yM

t )
)2 |F∞

]

for an arbitrary unit vector, α.

With the realization of the Brownian motion fixed, vt := α⊤(yB
t − yM

t ) can be decomposed as

a sum of independent, sub-Gaussian random variables:

vt = α⊤(yB
t − yM

t ) = η

⌊t⌋−1
∑

i=0

∫ i+1

i
α⊤ (∇xf̄(x

M
s )−∇xf(x

M
s , zi)

)

ds

+ η

∫ t

⌊t⌋
α⊤ (∇xf̄(x

M
s )−∇xf(x

M
s , zi)

)

ds

=:

⌊t⌋
∑

i=0

ρi

Recall that ∇xf̄(x
M
s )−∇xf(x

M
s , zi) is sub-Gaussian for all xM

s . In particular, for i < ⌊t⌋, we

have for all λ ∈ R,

E[exp(λρi)|F∞]

= E

[

exp

(∫ i+1

i
ληα⊤ (∇xf̄(x

M
s )−∇xf(x

M
s , zi)

)

ds

)∣

∣

∣

∣

F∞

]

Jensen+Fubini
=

∫ i+1

i
E

[

exp
(

ληα⊤ (∇xf̄(x
M
s )−∇xf(x

M
s , zi)

)

)∣

∣

∣
F∞
]

ds

sub−Gaussian
≤

∫ i+1

i
exp

(

1

2
λ2η2σ2

)

ds

= exp

(

1

2
λ2η2σ2

)

.

Now consider the case that i = ⌊t⌋. When t = ⌊t⌋ = i, we have that ρi = 0 and so

E[exp(λρi)|F∞] = 1. When t > ⌊t⌋, a similar argument as above gives:

E[exp(λρi)|F∞]

= E

[

exp

(

1

t− ⌊t⌋

∫ t

⌊t⌋
λη(t− ⌊t⌋)α⊤ (∇xf̄(x

M
s )−∇xf(x

M
s , zi)

)

ds

)∣

∣

∣

∣

∣

F∞

]

J+F
=

1

t− ⌊t⌋

∫ t

⌊t⌋
E

[

exp
(

λη(t− ⌊t⌋)α⊤ (∇xf̄(x
M
s )−∇xf(x

M
s , zi)

)

)∣

∣

∣
F∞
]

ds

sub−Gaussian
≤ 1

t− ⌊t⌋

∫ t

⌊t⌋
exp

(

1

2
λ2η2(t− ⌊t⌋)2σ2

)

ds

≤ exp

(

1

2
λ2σ2η2(t− ⌊t⌋)

)

.

The final inequality used the fact that (t− ⌊t⌋)2 ≤ t− ⌊t⌋.
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Now using the fact that ρi are independent, conditioned on F∞, we have that

E [exp (λvt) |F∞] =

⌊t⌋
∏

i=0

E

[

eλρi |F∞
]

≤ e(λησ)
2(t−⌊t⌋))/2

⌊t⌋−1
∏

i=0

e(λησ)
2/2

≤ eλ
2η2σ2t/2.

Thus we have shown that vt is sub-Gaussian with parameter σ̂2 = η2σ2t. Then a standard

Chernoff bound argument shows that P(|vt|2 > ǫ|F∞) ≤ 2e−ǫ/(2σ̂2). Then we can bound the

variance by:

E

[

(

α⊤(yB
t − yM

t )
)2

|F∞

]

=

∫ ∞

0
P(|vt|2 > ǫ|F∞)dǫ

≤ 2

∫ ∞

0
e−ǫ/(2σ̂2)dǫ

= 4σ̂2

= 4η2σ2t. (40)

Applying (40) to α = ej for all of the standard basis vectors, then summing and using the tower

property gives:

E
[

‖yB
t − yM

t ‖2
]

≤ 4nη2σ2t.

Taking square roots gives

E
[

‖yB
t − yM

t ‖
]

≤
√

E
[

‖yB
t − yM

t ‖2
]

≤ 2ση
√
nt. (41)

Bounding the integral terms from (39) is more complex. First we consider the integral with

rerspect to µ
M . The integral with respect to µ

B is similar. As in the proof of Lemma 9 we will use

a Hölder inequality bound, followed by a Cauchy-Schwarz bound:

E





√

∣

∣

∣

∣

∫ t

0

(

yB
t − yM

t − yB
s + yM

s

)⊤
vM
s dµ

M (s)

∣

∣

∣

∣





≤ E





√

∫ t

0
γ(yB

t − yM
t − yB

s + yM
s |K)δ⋆(vM

s |K)dµM (s)





≤ E





√

sup
s∈[0,t]

γ(yB
t − yM

t − yB
s + yM

s |K)

√

∫ t

0
δ⋆(vM

s |K)dµM (s)



 (42)

≤

√

√

√

√E

[

sup
s∈[0,t]

γ(yB
t − yM

t − yB
s + yM

s |K)

]

√

E

[∫ t

0
δ⋆(vM

s |K)dµM (s)

]

(43)
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The integral bound follows from (35) applied to f̄ in place of f :

E

[∫ t

0
δ⋆(vM

s |K)dµM (s)

]

≤ ηt

(

n

β
+Du+ 2Dnσ

)

+
D2

2
(44)

Bounding the supremum will take more work. The eventual plan is to bound the individual

components using the Dudley entropy integral. To this end, we first note that for any vector in

x ∈ R
n, we have that

γ(x|K) ≤ r−1‖x‖ ≤ r−1
n
∑

i=1

|xi|. (45)

Thus, it suffices to bound E[sups∈[0,t] |vt − vs||F∞], where

vs = α⊤ (yB
s − yM

s

)

.

and α is an arbitrary unit vector.

Also note that

sup
s∈[0,t]

|vt − vs| ≤ sup
s,ŝ∈[0,t]

(vs − vŝ).

The expectation of the expression on the right will now be bounded via the Dudley entropy integral.

To derive the bound, we must show that vs has sub-Gaussian increments. A mild extension of the

argument that vt is sub-Guassian will suffice.

Without loss of generality, assume that ŝ ≥ s. Then

vŝ − vs = η

∫ ŝ

s
α⊤ (∇xf̄(x

M
τ )−∇xf̄(x

M
τ , z⌊τ⌋)

)

dτ

= η

∫ ⌈s⌉

s
α⊤ (∇xf̄(x

M
τ )−∇xf̄(x

M
τ , z⌊τ⌋)

)

dτ+

η

⌊ŝ⌋−1
∑

i=⌈s⌉

∫ i+1

i
α⊤ (∇xf̄(x

M
τ )−∇xf̄(x

M
τ , z⌊τ⌋)

)

dτ+

=

∫ s

⌊s⌋
α⊤ (∇xf̄(x

M
τ )−∇xf̄(x

M
τ , z⌊τ⌋)

)

dτ

=:

⌊ŝ⌋
∑

i=⌈s⌉−1

ρi

Then, similar to the case above, ρi are independent sub-Gaussian random variables with the follow-

ing bounds for all λ ∈ R:

E[eλρi |F∞] ≤











e(ησλ)
2(⌈s⌉−s)/2 if i = ⌈s⌉ − 1

e(ησλ
2)/2 if i = ⌈s⌉, . . . , ⌊ŝ⌋ − 1

e(ησλ)
2(ŝ−⌊s⌋)/2 if i = ⌊ŝ⌋
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Then independence implies that for all λ ∈ R, the following bound holds:

E[eλ(vs−vŝ)|F∞] ≤ exp





λ2η2σ2

2



(⌊s⌋ − s)2 +

⌊ŝ⌋−1
∑

i=⌈s⌉
1 + (ŝ− ⌊ŝ⌋)2









≤ exp

(

λ2η2σ2|s− ŝ|
2

)

.

It follows that vs is sub-Guassian with respect to the metric defined by d(s, ŝ) = ησ
√

|s− ŝ|. See

Definition 5.16 of (Wainwright, 2019).

Let N([0, t], d, ǫ) be the covering number of the interval [0, t] via closed balls of radius ǫ under

the metric d, and similarly N([0, t], | · |, ǫ) is the corresponding covering number with respect to the

absolute value metric. A standard argument shows that N([0, t], | · |, ǫ) = 1 when ǫ ≥ t/2 and when

ǫ ≤ t/2, we have that

N([0, t], | · |, ǫ) ≤ t

2ǫ
+ 1 ≤ t/ǫ.

See Example 5.2 of (Wainwright, 2019).

By the definition of d, a ball of radius ǫ in the d metric corresponds to a ball of radius
(

ǫ
ησ

)2

in the absolute value metric. And so, when ǫ ≥ ησ
√

t
2 , we have that N([0, t], d, ǫ) = 1 and when

ǫ ≤ ησ
√

t
2 the following bound holds:

N([0, t], d, ǫ) ≤ tη2σ2

ǫ2

Thus, the Dudley entropy integral bound (see Theorem 5.22 of (Wainwright, 2019)) implies that

E[ sup
s,ŝ∈[0,t]

(vs − vŝ)|F∞]

≤ 32

∫ ησ
√

t
2

0

√

logN([0, t], d, ǫ)dǫ

≤ 32

∫ ησ
√
t

0

√

log

(

tη2σ2

ǫ2

)

dǫ

= 32ησ
√
2t

∫ ∞

0
x1/2e−xdx

(

using 2x = log

(

tη2σ2

ǫ2

))

= 16ησ
√
2πt (46)

Thus, applying (46) for all of the standard basis vectors and plugging the bound into (45) and

using the tower property gives

E

[

sup
s∈[0,t]

γ(yB
t − yM

t − yB
s + yM

s |K)

]

≤ 16nησ
√
2πt

r
(47)
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Combining (43), (44), and (47) shows that

E





√

∣

∣

∣

∣

∫ t

0

(

yB
t − yM

t − yB
s + yM

s

)⊤
vM
s dµ

M (s)

∣

∣

∣

∣



 ≤

√

16nηu
√
2πt

r

(

ηt

(

n

β
+Du+ 2Dnσ

)

+
1

2
D2.

)

(48)

An identical argument holds for the integral with respect to vB
s dµ

M (s). So, multiplying the

bound from (48) by 2
√
2 =

√
8 and adding it to (41) shows that

W1(L(xB
t ),L(xM

t ))

≤ E
[

‖xB
t − xM

t ‖
]

≤ 2ση
√
nt+

√

128nησ
√
2πt

r

(

ηt

(

n

β
+Du+ 2Dnσ

)

+
1

2
D2

)

.

The result follows by factoring out the terms depending on η and t. �

Proof of Lemma 12 Note that

d(xC
t − xB

t ) = η
(

∇xf(x
M
t , z⌊t⌋)−∇xf(x

C
t , z⌊t⌋)

)

dt+ vB
t dµ

B(t)− vC
t dµ

C(t)

so that xC
t − xB

t is a continuous bounded-variation process. Thus, whenever xC
t 6= xB

t , we have

that:

d‖xC
t − xB

t ‖ =

(

xC
t − xB

t

‖xC
t − xB

t ‖

)⊤
η
(

∇xf(x
M
t , z⌊t⌋)−∇xf(x

C
t , z⌊t⌋)

)

dt

+

(

xC
t − xB

t

‖xC
t − xB

t ‖

)⊤
(

vB
t dµ

B(t)− vC
t dµ

C(t)
)

≤ ηℓ‖xM
t − xC

t ‖dt
≤ ηℓ(‖xM

t − xB
t ‖+ ‖xC

t − xB
t ‖)dt.

The first inequality uses the definitions of vB
t and vC

t to imply that the corresponding terms are

non-positive. It also simplifies the inner product with the gradients via the Lipschitz property and

the Cauchy-Schwarz inequality. The second inequality uses the triangle inequality.

Now we will use an argument to rule out any expected behavior from the dynamics when xC
t =

xB
t . Indeed, using Lemma 20 from Appendix H shows that

‖xC
t − xB

t ‖ =

∫ t

0
d‖xC

s − xB
s ‖

= lim
ǫ↓0

∫ t

0
✶(‖xC

s − xB
s ‖ ≥ ǫ)d‖xC

s − xB
s ‖

≤ lim
ǫ↓0

∫ t

0
ηℓ✶(‖xC

s − xB
s ‖ ≥ ǫ)(‖xM

s − xB
s ‖+ ‖xC

s − xB
s ‖)ds

≤
∫ t

0
ηℓ(‖xM

s − xB
s ‖+ ‖xC

s − xB
s ‖)ds.
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Thus Gronwall’s inequality implies that

‖xC
t − xB

t ‖ ≤ ηℓ

∫ t

0
eηℓ(t−s)‖xM

s − xB
s ‖ds

Taking expectations and using Lemma 11 gives the desired bound:

E[‖xC
t − xB

t ‖] ≤ ηℓ

∫ t

0
eηℓ(t−s)

(

c12ηs
1/2 + c13η

1/2s1/4 + c14ηs
3/4
)

ds

≤ ηℓ
(

c12ηt
1/2 + c13η

1/2t1/4 + c14ηt
3/4
)

∫ t

0
eηℓ(t−s)ds

=
(

c12ηt
1/2 + c13η

1/2t1/4 + c14ηt
3/4
)

(eηℓt − 1).

�

Appendix D. Bounding the Constants

In this expression, we bound the size of the constants based on the problem data. First we get

simplified bounds on the constants from Proposition 7. Then we use this result prove Proposition 2,

which bounds the overall constants for the algorithm.

Lemma 15 If D2ℓβ < 8 and a = 4
D2β

, then

a ≥ ℓ

2
and c9 ≤

2e
(

1− D2ℓβ
8

)2 .

Otherwise, if a = D2ℓ2β
16

(

1− tanh2
(

D2ℓβ
8

))

, then

a ≥ D2ℓ2β

16
exp

(

−D
2ℓβ

4

)

and c9 ≤
4

D2ℓβ
exp

(

D2ℓβ

2

)

.

Proof For consider the case that D2ℓβ < 8 and a = 4
D2β

. The lower bound on a is derived by

combining the inequality D2ℓβ < 8 with the expression for a. To derive the upper bound on c9,

first note that

DωNξ =
D2ℓβ

8
< 1

and so the numerator is bounded by eDωN ξ ≤ e.
Now we compute a lower bound on the denominator. By the choice of a, we have thatDωN = 1

and ξ = D2ℓβ
8 < 1. We use the fact that sin

(

√

1− ξ2
)

<
√

1− ξ2 to give

cos
(

√

1− ξ2
)

− ξ
√

1− ξ2
sin
(

√

1− ξ2
)

≥ cos
(

√

1− ξ2
)

− ξ

Then we use the elementary bound

cos(θ) = cos(0)−
∫ θ

0
sin(t)dt ≥ 1−

∫ θ

0
tdt = 1− θ2

2
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to give

cos
(

√

1− ξ2
)

− ξ
√

1− ξ2
sin
(

√

1− ξ2
)

≥ 1− 1

2

(

1− ξ2
)

− ξ =
1

2
(1− ξ)2.

Combining the bounds for the numerator and the denominator, along with the fact that ξ = D2ℓβ
8

gives the desired bound on c9.

Now consider the case that a = D2ℓ2β
16

(

1− tanh2
(

D2ℓβ
8

))

. For simpler notation, set x =

D2ℓβ
8 so that a = ℓ

2x
(

1− tanh2(x)
)

. Then the exponential decay factor can be bounded using the

fact that:

x
(

1− tanh2(x)
)

=
4x

(ex + e−x)2
≥ xe−2x.

Now we bound c9. Using the definition of x, the numerator is given by ex.

Now we derive a lower bound on the denominator of c9. Let y = DωN

√

ξ2 − 1. Plugging in

the expressions for ξ, a, and x shows that

y = DωN

√

ξ2 − 1 = x tanh(x) and

√

ξ2 − 1

ξ
= tanh(x).

Then the denominator of c9 can be expressed as

cosh(y)− sinh(y)

tanh(x)
=

cosh(y)

tanh(x)
(tanh(x)− tanh(y)) ≥ tanh(x)− tanh(y)

tanh(x)
, (49)

where the inequality follows from the fact that cosh(y) ≥ 1.

Using the fact that d
dx tanh(x) = 1− tanh2(x) and that tanh is monotonically increasing gives

the bound:

tanh(x)− tanh(y) =

∫ x

y

(

1− tanh2(z)
)

dz

≥ (x− y)(1− tanh2(x))

= x(1− tanh(x))2(1 + tanh(x))

=
8xe−2x

(ex + e−x)3
. (50)

The second-to-last line uses the fact that y = x tanh(x), while the last line uses that tanh(x) =
ex−e−x

ex+e−x .

Combining (49) and (50) shows that

cosh(y)− sinh(y)

tanh(x)
≥ 8xe−2x

(ex + e−x)2 (ex − e−x)
≥ 2xe−5x.

Combining the numerator and denominator bounds shows that

c9 ≤
e4x

2x
.

Plugging in the expression for x gives the result.
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Proof of Proposition 2 Collecting the constant definitions from the proofs above gives the fol-

lowing relations, in addition to the definitions of c9 and a:

c1 = c9D

c2 = c7 + c8

c7 = 21/4 (c10 + c11) e
ℓ

(

1 +
c9

1− e−a/2

)

c8 = (c12 + c13 + c14)e
ℓ

(

1 +
c9

1− e−a/2

)

c10 =

√

√

√

√2

(

u+ ℓD

2r
+

nσ√
2r

+
2n

√
2

r
√
β

)

(

n

β
+Du+ 2Dnσ

)

c11 =

√

2

(

Du+ 2nσ +
n

β

)

+D

√

u+ ℓD

2r
+

nσ√
2r

+
2n

√
2

r
√
β

c12 = 2σ
√
n

c13 =

√

64nσD
√
2π

r

c14 =

√

128nσ
√
2π

r

(

n

β
+Du+ 2Dnσ

)

Since neither c9 nor a depend on the state dimension, n, we can see that the constants grow

linearly with n.

In the case of D2ℓβ < 8 and a = 4
D2β

, Lemma 15 implies that (1− e−a/2)−1 ≤ (1− e−ℓ/4)−1.

So, the only way for the constants to become large as β varies is for β−1 or
(

1− D2ℓβ
8

)−1
to

approach ∞. In particular the terms that can go to ∞ are β−1/4 and
(

1− D2ℓβ
8

)−2
in this case.

Now consider the case that

a =
D2ℓ2β

16

(

1− tanh2
(

D2ℓβ

8

))

c9 =
eDωN ξ

cosh(DωN

√

ξ2 − 1)− ξ√
ξ2−1

sinh(DωN

√

1− ξ2)
.

The general lower bound on a is taken directly from Lemma 15.

The main term that remains to be bounded is 1
1−e−a/2 . To perform this bound, we first note that

for all y > 0,
1

1− e−y
≤ max

{

2

y
,

1

1− e−1

}

. (51)

Indeed, the left side is monotonically decreasing, and so for all y ≥ 1, the bound

1

1− e−y
≤ 1

1− e−1
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holds.

Now, we use the elementary bound that for all y ≥ 0, e−y ≤ 1 − y + 1
2y

2. This inequality

appears in (Lattimore and Szepesvári, 2019) without proof, but can be proved by showing that

ey
(

1− y + 1
2y

2
)

is monotonically increasing. In particular, when 0 < y ≤ 1, we have that

1

1− e−y
≤ 1

y
(

1− 1
2y
) ≤ 2

y
.

Combining the bounds for y ≥ 1 an 0 < y ≤ 1 gives (51).

So, now combining (51) with the results of Lemma 15 shows that

c9

1− e−a/2
≤ 4

D2ℓβ
exp

(

D2ℓβ

2

)

max

{

32

D2ℓ2β
exp

(

D2ℓβ

4

)

,
1

1− e−1

}

Then combining this above bound with the various expressions for the constants shows that

there is a polynomial p such c1 and c2 can be bounded by

ci ≤ p(β−1/4) exp

(

3D2ℓβ

4

)

�

Appendix E. Near-Optimality of Gibbs Distributions

In this appendix, we prove Proposition 3, which states that the algorithm can produce near-optimal

samples, provided that β is sufficiently large. This proposition depends on an elementary result on

the properties of Gibbs distributions constrained to K, shown next.

Lemma 16 For any function g : K → R, let πg be the probability measure defined by πg(A) =
∫
A e−g(x)dx
∫
K e−g(y)dy

. In particular, π0 corresponds to the uniform measure. If g is ℓ-lipschitz, then the KL

divergence of πg from the uniform measure is bounded by:

0 ≤ KL(πg, π0) ≤

min
x∈K

g(x)− Eπg [g(x)] + n log

(

max

{

2

r
,
(r +

√
r2 +D2)ℓ

r log 2

})

+ log(2Dn).

Proof The lower-bound on the KL divergence is standard (Cover and Thomas, 2012; Gray, 2011).

Now we prove the upper bound.

Say x⋆ minimizes g(x) over K. A minimizer exists because g is Lipschitz and K is compact.

Multiplying the numerator and denominator of the definition of πg by eg(x
⋆) gives

πg(A) =

∫

A e
g(x⋆)−g(x)dx

∫

K e
g(x⋆)−g(y)dy

.

Note that π0(dx) =
dx

vol(K) . Thus, the definition of KL divergence gives:

KL(πg, π0) = Eπg [g(x
⋆)− g(x)] + log (vol(K))− log

(∫

K
eg(x

⋆)−g(x)dx

)
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Note that K is contained in a ball of radius D, so that vol(K) ≤ Dn π
n
2

Γ(n
2
+1)

.

So, the desired upper bound is obtained by providing a lower bound on
∫

K e
g(x⋆)−g(x)dx. Note

that

0 ≥ g(x⋆)− g(x) ≥ −ℓ‖x− x⋆‖

Also, note that e−ℓ‖x−x⋆‖ ≥ 1
2 if and only if ‖x− x⋆‖ ≤ log 2

ℓ .

Set ǫ = log 2
ℓ and let Bx⋆(ǫ) be the ball of radius ǫ centered at x⋆. Then for any S ⊂ K ∩Bx⋆(ǫ)

we have that
∫

K
eg(x

⋆)−g(x)dx ≥ 1

2
vol (K ∩ Bx⋆(ǫ)) ≥ 1

2
vol(S)

We will show that K ∩ Bx⋆(ǫ) always contains a ball of radius min{ r
2 ,

rǫ
r+

√
r2+D2

}. The lemma

then follows by using the fact that a ball of radius ρ has volume given by π
n
2

Γ(n
2
+1)

ρn. Note that the

constant factors of π
n
2

Γ(n
2
+1)

cancel in the bound.

To find the desired ball, we consider three cases: 1) 0 /∈ Bx⋆(ǫ), 2) 0 ∈ Bx⋆(ǫ) and ǫ ≤ r, and

3) 0 ∈ Bx⋆(ǫ) and ǫ > r.

When 0 /∈ Bx⋆(ǫ), we construct the desired ball from the geometry of Fig. 2. Without loss of

generality, we can assume that x⋆ = −‖x⋆‖e1, where e1 is the first standard unit vector. Also, since

0 /∈ Bx⋆(ǫ), we must have that ‖x⋆‖ > 0. Consider the convex set defined by:

‖x− x⋆‖ ≤ ǫ (52a)

−‖x⋆‖ ≤ x1 ≤ 0 (52b)
√

√

√

√

n
∑

i=2

x2i ≤ r +
r

‖x⋆‖x1 (52c)

The set defined by (52) is a subset of K∩Bx⋆(ǫ). The angle between the x⋆ and the conic constraint

boundary, from (52c), is given by θ = tan−1 r
‖x⋆‖ . For any d > 0, the largest ball centered at

(−‖x⋆‖+ d)e1 which fits into the conic set from (52c) has radius d sin θ. The largest such ball that

is also contained in Bx⋆(ǫ) is found by setting d + d sin θ = ǫ. Plugging the definitions of d and θ
shows that the corresponding ball has radius ρ, which satifies

rǫ

r +
√
r2 +D2

≤ ρ =
rǫ

r +
√

r + ‖x⋆‖2
<
ǫ

2
.

Now consider the case that 0 ∈ Bx⋆(ǫ) and ǫ ≤ r. It follows that x⋆ ∈ B0(r). Then applications

of the triangle inequality show that Bx⋆/2(ǫ/2) ⊂ B0(r) ∩ Bx⋆(ǫ) ⊂ K ∩ Bx⋆(ǫ). Thus, a ball of

radius ǫ/2 > rǫ
r+

√
r+D2

has been constructed in K ∩ Bx⋆(ǫ).

Finally, consider the case that 0 ∈ Bx⋆(ǫ) and ǫ > r. If ‖x⋆‖ ≥ r/2, then B rx⋆

2‖x⋆‖
(r/2) ⊂

B0(r) ∩ Bx⋆(ǫ) ⊂ K ∩ Bx⋆(ǫ). Otherwise, if ‖x⋆‖ < r/2, then B0(r/2) ⊂ B0(r) ∩ Bx⋆(ǫ) ⊂
K ∩ Bx⋆(ǫ). In either case, a ball of radius r/2 has been constructed in K ∩ Bx⋆(ǫ).
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0
x⋆

r

ǫ

Figure 2: Case of 0 /∈ Bx⋆(ǫ). Using elementary trigonometry the largest inscribed circle can be

calculated.

Proof of Proposition 3 Recall that f̄ is u-Lipschitz, so that βf̄ is βu-Lipschitz. Assume that x̃ is

drawn according to πβf̄ . So, applying Lemma 16 to βf̄ and dividing by β implies that

E[f̄(x̃)] ≤ min
x∈K

f̄(x) +
n

β
log

(

2Dmax

{

2

r
,
(r +

√
r2 +D2)uβ

r log 2

})

. (53)

Let xk be the k-th iterate of the algorithm.

E[f(xk)]

Kantorovich Duality

≤ Eπβf̄
[f̄(x)] + uW1(L(xk), πβf̄ )

(53)

≤ min
x∈K

f̄(x) + uW1(L(xk), πβf̄ ) +
n log(c5max{1, β})

β
,

where c5 = 2Dmax
{

2
r ,

(r+
√
r2+D2)u

r log 2

}

.

Now we will show how to tune the parameters to achieve an average suboptimality of ǫ.

First, we choose β so that
n log(c5 max{1,β})

β ≤ ǫ
2 . Without loss of generality, assume that β ≥ 1.

Set x = log(c5β), so that β = c−1
5 ex and the required bound becomes:

xe−x ≤ c5ǫ

2n

Fix any λ ∈ (0, 1). Then the maximum value of xe−(1−λ)x occurs at x = (1− λ)−1, so that for

all x ∈ R:

xe−x ≤ 1

(1− λ)e
e−λx. (54)

So, it suffices to set e−λx ≤ c5ǫ(1−λ)e
2n . Plugging in the definition of x and re-arranging shows that a

sufficient condition for
n log(c5β)

β ≤ ǫ
2 is given by:

β ≥ c−1
5

(

2n

c5(1− λ)ǫe

)1/λ

. (55)
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Now, for fixed β ≥ 1, the bounds from Theorem 1 and Proposition 2 to give that

W1(L(xk), πβf̄ )

(

c1 +
c2

(4a)1/4

)

T−1/4(log T )1/2

≤ p(1)e
3D2ℓβ

4



1 +
e

D2ℓβ
16

41/4c3



T−1/4(log T )1/2

≤ p(1)

(

1 +
1

41/4c3

)

exp

(

13D2ℓβ

16

)

T−1/4(log T )1/2

Similar to the derivation of (54) we have for all δ ∈ (0, 1/2) and all T > 0:

T−1/4(log T )1/2 ≤

√

T− 1
2
+δ

eδ

Thus, to have uW1(L(xk), πβf̄ ) ≤ ǫ
2 , it suffices to have

T− 1
2
+δ ≤ eδ

( ǫ

2

)2
(

p(1)

(

1 +
1

41/4c3

)

exp

(

13D2ℓβ

16

))−2

=: ǫ̂,

which occurs whenever

T ≥ 1

ǫ̂
2

1−2δ

In particular, there is a constant, c6, independent of η, β, ǫ, λ, and δ, such that the bound above

holds whenever

T ≥
( c6
δǫ2

) 2
1−2δ

exp

(

13D2ℓβ

4(1− 2δ)

)

. (56)

The result now follows by combining (55) and (56), noting that 4
1−2δ can take any value ρ > 4 and

1/λ can take any value ζ > 1. �

Appendix F. The Skorokhod Problem

This appendix describes basic results on the Skorokhod problem, which is used to construct solu-

tions to reflected SDEs. First we describe some existing theory. Then we present limiting argument

that is used to translate results on compact convex sets with smooth boundaries general compact

convex sets.

F.1. Background

A classical construction for constraining stochastic processes to remain in a set is based on the

Skorokhod problem, which we describe below. This will be useful, in particular, for analyzing

projected gradient algorithms in continuous time.

Let K be a convex subset of Rn with non-empty interior. Let w : [0,∞) → R
n be a piecewise-

continuous function with w0 ∈ K. For each x ∈ R
n, let NK(x) be the normal cone at x. Then the

functions xt and φt solve the Skorokhod problem for wt if the following conditions hold:

• xt = wt + φt ∈ K for all t ∈ [0, T )
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• The function φ has the form φ(t) = −
∫ t
0 vsdµ(s), where ‖vs‖ ∈ {0, 1} and vs ∈ NK(xs) for

all s ∈ [0, T ), while the measure, µ, satisfies µ([0, T )) <∞ for any T > 0.

For each w, the corresponding functions xt and φt exist and are unique (Tanaka et al., 1979).

Note that if xt ∈ int(K), then NK(xt) = {0}, and so vt = 0. Thus, without loss of generality,

we can assume that µ is supported entirely on the times in which xt ∈ ∂K. In many cases, we are

primarily interested in xt and so we will often refer to xt as the solution of the Skorokhod problem

corresponding to wt. By existence and uniqueness, we can view the Skorokhod problem solution as

a mapping: x = S(w).
The connection between Skorokhod problems and projection algorithms becomes more concrete

when wt is piecewise constant. Specifically, assume that 0 = t0 < t1 < · · · < tM−1 ≤ T are the

jump points of wt, and let Sk = [tk, tk+1) for k < M − 1 and SM−1 = [tM−1, T ]. Then wt can be

represented as

wt =
M−1
∑

k=0

wtk✶Sk
(t).

Then the solution of the Skorokhod problem has the form

xt =

M−1
∑

k=0

xtk✶Sk
(t), φt = −

∫ t

0

M−1
∑

k=0

vtkdk+1δ(s− tk)ds,

where x0 = w0, v0 = 0, and

xtk+1
= ΠK(xtk + wtk+1

− wtk)

dk+1 = ‖(xtk + wtk+1
− wtk)− xtk+1

‖

vtk+1
=

{

0 xtk + wtk+1
− wtk ∈ K

(xtk
+wtk+1

−wtk
)−xtk+1

dk+1
xtk + wtk+1

− wtk /∈ K.

In (Tanaka et al., 1979), a construction for the Skorokhod solution for a continuous trajectory, w,

proceeds as follows. The continuous trajectory is approximated by piecewise constant trajectories of

the formw⌊ti⌋/i for positive integers i. Then the Skorokhod problems are solved for these discretized

trajectories and shown to converge to a unique solution for the original Skorokhod problem for w.

The existence of a solution to the Skorokhod problem for arbitrary continuous trajectories can

be used to construct unique solutions to reflected stochastic differential equations. In particular, the

integrated form of a reflected SDE can be expressed as:

xt = x0 +

∫ t

0
f(s,xs)ds+

∫ t

0
σ(s,xs)dws −

∫ t

0
vsdµ(s), (57)

where x0 ∈ K, −
∫ t
0 vsdµ(s) is the reflection process that ensures that x(t) ∈ K for all t ≥ 0. Note

that x is the Skorokhod solution to the process:

yt = x0 +

∫ t

0
f(xs)ds+

∫ t

0
σ(xs)dws.
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A construction for xt based on Picard iteration was given in (Tanaka et al., 1979). The paper

(Słomiński, 2001), examines the Euler scheme defined by: x̄m
0 = x0 and for integers k ≥ 0:

x̄m
(k+1)/m = ΠK

(

x̄m
k/m +

1

m
f(x̄m

k/m) + σ(x̄m
k/m)(w(k+1)/m −wk/m)

)

. (58)

Then for t ∈ [k/m, (k+1)/m), we set x̄m
t = x̄m

k/m. Corollary 3.3 of (Słomiński, 2001) shows that

x̄m converges uniformly to x on compact subsets of [0,∞).

F.2. Approximating the Domain

In Appendix G we show that the distribution πβf̄ from (3) is invariant for the process xM . However,

many of the arguments are easier when K has a smooth boundary. To handle the general case, we ex-

amine Skorokhod solutions on smooth approximations of K and then use a limiting argument. Here

we build the approximation results needed for this argument. The basic idea for this approximation

is discussed in Section 2 of (Lions and Sznitman, 1984), but not proved explicitly.

Let K1 ⊂ K2 ⊂ · · · ⊂ K be an increasing family of convex compact sets such that if S is any

compact subset of int(K), then S ⊂ Ki for all sufficiently large i.
The approximation results are proved using the following fact about projections.

Lemma 17 The functions ΠKi converge uniformly to ΠK on compact subsets of Rn.

Proof We will show that for any ǫ > 0, there is an i such that ‖ΠKi(x) − ΠK(x)‖ ≤ ǫ for all

x ∈ R
n with ‖x‖ ≤ R. By the monotonicity of Ki, the result then holds for all j ≥ i. Note that if

x ∈ Ki, then ΠKi(x) = ΠK(x) = x, so we only need to analyze the case that x /∈ Ki.

Let δ > 0 and let S be a compact subset of int(K) such that dist(x, S) ≤ δ for all x ∈ K.

Here dist(x, S) is the distance function. Such an S can be chosen as S = λK for λ ∈ (0, 1)
sufficiently close to 1. Take Ki such that S ⊂ Ki. This implies, in particular that for any x ∈ K,

that dist(x,Ki) ≤ δ.

Consider any x /∈ Ki. By the distance assumption, there is a point y ∈ Ki such that ‖y −ΠK(x)‖ ≤
δ. The generalized Pythagorean inequality applied to ‖ · ‖2 and Ki implies that

‖y − x‖2 ≥ ‖y −ΠKi(x)‖2 + ‖x−ΠKi(x)‖2. (59)

(See (Herbster and Warmuth, 2001) for more on the generalized Pythagorean inequality.)

Note that ‖x−ΠKi(x)‖ ≥ ‖x−ΠK(x)‖, since ΠKi(x) ∈ K. Furthermore, the triangle inequal-

ity, followed by the distance assumption on y imply that:

‖y − x‖ ≤ ‖y −ΠK(x)‖+ ‖x−ΠK(x)‖ ≤ δ + ‖x−ΠK(x)‖

Plugging the upper and lower bounds into (59) shows that

δ2 + 2δ‖x−ΠK(x)‖+ ‖x−ΠK(x)‖2 ≥ ‖y −ΠKi(x)‖2 + ‖x−ΠK(x)‖2.

Using the fact that 0 ∈ K and ‖x‖ ≤ R shows that ‖x−ΠK(x)‖ ≤ R. So, rearranging the inequality

above and plugging in this bound shows that:

‖y −ΠKi(x)‖ ≤
√

δ2 + 2δR.
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Also, note that by the triangle inequality, the assumption on y, and the inequality above:

‖ΠK(x)−ΠKi(x)‖ ≤ ‖ΠK(x)− y‖+ ‖y −ΠKi(x)‖ ≤ δ +
√

δ2 + 2δR.

So the result holds by choosing δ such that δ +
√
δ2 + 2δR ≤ ǫ.

Lemma 18 Let x and xi be solutions of the reflected SDE from (57) over domains K and Ki

respectively, with f(x) and σ(x) both Lipschitz in x. For almost all realizations of the Brownian

motion, xi converges uniformly to x on compact subsets of [0,∞).

Proof In the proof we denote the trajectories like x(t) and xi(t) to reduce the complexity of the

subscripts and superscripts.

Consider the Euler approximation from (58). For almost all realizations of the Brownian mo-

tion, the resulting solution converges uniformly on compacts to x. Similarly, for each Ki, the

corresponding Euler scheme converges uniformly on compacts to xi for almost all Brownian mo-

tion realizations. Now since the intersection of a countable collection of almost sure events is again

an almost sure event, we have for almost all Brownian motion realizations, all of the corresponding

Euler schemes converge uniformly on compacts.

Let w be a realization for which all of the corresponding Euler schemes converge uniformly on

compacts. Fix T > 0 and let x̄m
i be the Euler approximations of xi. Corollary 3.3 of (Słomiński,

2001) gives a convergence rate for the Euler scheme which implies that there is a constant c > 0
such that

∀i, sup
t∈[0,T ]

‖x̄m
i (t)− xi(t)‖ ≤ cm−1/5 and sup

t∈[0,T ]
‖x̄m(t)− x(t)‖ ≤ cm−1/5.

So fix ǫ > 0 and choose m sufficiently large so that

∀i, sup
t∈[0,T ]

‖x̄m
i (t)− xi(t)‖ ≤ ǫ and sup

t∈[0,T ]
‖x̄m(t)− x(t)‖ ≤ ǫ.

Now we will show that i can be chosen so that supt∈[0,T ] ‖x̄m
i (t)−xm(t)‖ ≤ ǫ. If we can show

this, the result will follow by the triangle inequality.

Let d = sups,t∈[0,T ] ‖ws − wt‖. Since f and σ are continuous, they are bounded on K. It

follows that all of the arguments of the projection used in the Euler schemes are bounded in norm

by:

D + sup
x∈K

‖f(x)‖+ sup
x∈K

‖σ(x)‖2d.

Here ‖ · ‖2 is the matrix 2-norm.

Thus, for any fixed m, Lemma 17 implies that all of the projections converge uniformly as

i → ∞, which in turn implies that x̄m
i converges to x̄m uniformly on [0, T ]. In particular, we can

choose m such that supt∈[0,T ] ‖x(t)− x̄m(t)‖ ≤ ǫ, and the proof is complete.
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Appendix G. Invariance of the Gibbs Distribution

Here we prove a basic result that πβf̄ is invariant for xM . Our proof extends the methodology from

Lemma 2.1 of (Harrison and Williams, 1987), which examines the case that f̄ is affine and the

boundary is smooth. (Bubeck et al., 2018) gives a brief outline of the analysis when f̄ is convex

and K is a general compact convex set. The basic idea follows through in the more general case in

which f̄ is only assumed to be differentiable.

Lemma 19 The measure πβf̄ is a stationary distribution for (5).

Proof We first assume that K has a smooth boundary. Later, we will use a limiting argument to

show that the result still holds for general compact convex K.

The generator associated with xM on the interior of K is given by:

Lg(x) = −η∇f̄(x)⊤∇g(x) + η

β
(∆g)(x),

where ∆ is the Laplacian operator. (In this proof we will drop the subscript of x from the gradient

operators, since zk does not influence xM .)

Define the diffusion operator Pt by:

(Ptg)(x) = E[g(xM
t )|x0 = x].

To show invariance, it suffices to show that for all g ∈ L2(πβf̄ ) and all t > 0 the follow holds:

∫

K
g(x)dπβf̄ (x) =

∫

K
(Ptg)(x)dπβf̄ (x) (60)

Now, since the set of differentiable functions is dense in L2(πβf̄ ), we can assume without loss

of generality that g is differentiable. In the case that g is differentiable, Theorem 6.31 of (Gilbarg

and Trudinger, 1998) shows that there is a unique twice-differentiable h such that

(Lh)(x)− λh(x) = −g(x) ∀x ∈ int(K) (61a)

∇h(x)⊤v = 0 ∀x ∈ ∂K and ∀v ∈ NK(x). (61b)

Note that since ∂K is smooth, NK(x) is a half-line for all x ∈ ∂K.

Let

qt = e−λth(xM
t ) +

∫ t

0
e−λsg(xM

s )ds.

Then Itô’s formula combined with (61b) followed by (61a) gives:

dqt

= e−λt(−λh(xM
t )− η∇f̄(xM

t )⊤∇h(xM
t ) +

η

β
∆h(xM

t ) + g(xM
t ))dt+

√

2η

β
∇g(xM

t )⊤dwt

=

√

2η

β
∇g(xM

t )⊤dwt.

So, in particular, qt is a martingale.
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If x = xM
0 , then

h(x) = q0

= lim
t→∞

E[qt|x0 = x]

= E

[∫ ∞

0
e−λtg(xM

t )dt

∣

∣

∣

∣

xM
0 = x

]

=

∫ ∞

0
e−λt(Ptg)(x)dt. (62)

The last equality follows from Fubini’s theorem, which is justified by the fact that g is differentiable,

and so the integrand is bounded on K.

Taking the Laplace transform of both sides of (60) gives the condition:

λ−1

∫

K
g(x)dπβf̄ (x) =

∫

K

∫ ∞

0
e−λt(Ptg)(x)dtdπβf̄ (x). (63)

Note that Fubini’s theorem was again used to switch the order of integrals on the right. Now,

uniqueness of Laplace transforms implies that (60) holds for all t > 0 if and only if (63) holds for

all λ > 0.

Using (61a), the left side of (63) becomes:

λ−1

∫

K
g(x)dπβf̄ (x) = λ−1

∫

K
(λh(x)− Lh(x))dπβf̄ (x)

Using (62), the right side of (63) becomes:

∫

K

∫ ∞

0
e−λt(Ptg)(x)dtdπβf̄ (x) =

∫

K
h(x)dπβf̄ (x).

Thus, we see that (63) holds if and only if

∫

K
Lh(x)dπβf̄ (x) = 0. (64)

Using the specific form of L and πβf̄ , we see that (64) holds if and only if

∫

K

(

−η∇f̄(x)⊤∇h(x) + η

β
∆h(x)

)

e−βf̄(x)dx = 0 (65)

We will prove (65) via Stokes theorem, which states that
∫

K dω(x) =
∫

∂K ω(x) for a differential

n− 1 form. Consider the (n− 1)-form defined by:

ω(x) =
n
∑

i=1

(−1)i+1

(

∂h(x)

∂xi
e−βf̄(x)

)

∧

j 6=i

dxj

Here the wedge product follows the standard ordering over the integers.

By construction, we have

dω(x) =

(

−η∇f̄(x)⊤∇h(x) + η

β
∆h(x)

)

e−βf̄(x)dx1 ∧ · · · ∧ dxn.
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Thus, Stokes theorem implies (65) if and only if
∫

∂K
ω(x) = 0

To evaluate this integral, we follow a typical construction from the integration of differential

forms from (Lee, 2013). Choose a finite open cover of K in the subspace topolgy, U1, . . . , Um,

with corresponding smooth charts, φ1, . . . , φm, and a corresponding partition of unity ψ1, . . . , ψm.

The partition of unity has the property that ψi is supported in U i. Without loss of generality, we

assume that φi preserve the orientation of K. Furthermore, since ∂K is smooth, the neighborhoods

and charts can be chosen such that if U i ∩ ∂K 6= ∅, then φi maps U i to a half-space, H:

φi(U i) ⊂ {y ∈ R
n|yn ≥ 0}

φi(U i ∩ ∂K) ⊂ {y ∈ R
n|yn = 0}.

As in (Lee, 2013), the desired integral can be evaluated as

∫

∂K
ω(x) =

M
∑

i=1

∫

∂K
ψi(x)ω(x)

=

M
∑

i=1

∫

∂Hn

(((φi)−1)⋆(ψiω))(y),

where ((φi)−1)⋆ denotes the pullback operation.

To evaluate
∫

K ω(x), it suffices to evaluate this integral over elements of the cover that intersect

∂K. We will show that each of these elements integrates to zero. To this end, let U be a set in the

cover with U ∩ ∂K with associated chart φ and partition of unity element ψ. For compact notation,

set

αi(x) = ψ(x)
∂h(x)

∂xi
e−βf̄(x)

so that

ψ(x)ω(x) =
n
∑

i=1

(−1)i+1αi(x)
∧

j 6=i

dxj .

Let J(y) be the Jacobian matrix of φ−1(y) and let Mij(y) be the associated minors. Then the

definition of the pullback followed by Proposition 14.11 of (Lee, 2013) shows that:

(φ⋆(ψω))(y) =
n
∑

i=1

(−1)i+1αi(φ
−1(y))

∧

j 6=i

(

n
∑

k=1

Jjk(y)dyk

)

=

n
∑

i=1

(−1)i+1αi(φ
−1(y))

n
∑

k=1

Mik(y)
∧

ℓ 6=k

dyℓ.

As in the proof of Stokes theorem from (Lee, 2013), all of the terms of the pullback that include

dyn integrate to zero. This is because the yn is fixed at 0 on the boundary, so the integrals over yn
must be zero. Thus, the integral simplifies to:

∫

∂Hn

((φ−1)⋆(ψω))(y) =

∫

∂Hn

n
∑

i=1

(−1)i+1αi(ψ
−1(y))Min(y)

∧

j 6=n

dyj (66)
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To show that the right side is zero, it suffices to show that the integrand on the right is zero. The

inverse function theorem, followed by Cramer’s rule shows that

∂φn
∂xi

∣

∣

∣

∣

x=φ−1(y)

= (J(y)−1)ni =
1

det(J(y))
(−1)i+nMin(y).

Letting x = φ−1(y), it follows that the integrand on the right of (66) is given by

n
∑

i=1

(−1)i+1αi(φ
−1(y))Min(y) = det(J(y))(−1)1−nψ(x)e−βf̄(x)∇h(x)⊤∇φn(x).

Note here that if y ∈ ∂Hn, then x ∈ ∂K. So, (61b) implies that the integrand is zero if −∇φn(x) ∈
NK(x). This follows because for all z ∈ K and all t > 0 sufficiently small, we have that x+ t(z −
x) ∈ K and

0 ≤ φn(x+ t(z − x)) = φn(x) + t∇φn(x)⊤(z − x) + o(t) = t∇φn(x)⊤(z − x) + o(t).

Thus ∇φn(x)⊤x ≤ ∇φn(x)⊤z and so −∇φn(x) ∈ NK(x). Thus, (65) has been proved and so the

lemma has been proved for K with smooth boundaries.

Now we cover the general case. Let b be a self-concordant barrier function for K such that for

any sequence xi ∈ int with xi → ∂K, we have b(xi) → ∞. By Theorem 2.5.1 of (Nesterov and

Nemirovskii, 1994), such a barrier function exists. Let Ki = {x|b(x) ≤ i}. For all sufficiently large

i, we have that Ki is non-empty. Whenever Ki is nonempty, it has a smooth boundary. Furthermore,

if S is a compact subset of int(K), then S ⊂ Ki for all sufficiently large i. Let xM,i be the

Skorokhod solutions corresponding to the sets Ki.

Let Zi =
∫

Ki
e−βf̄(x)dx. Then Zi ↑ Z =:

∫

K e
−βf̄(x)dx by monotone convergence. Let xM,i

be the solution from (5) in which the Skorokhod problem is solved over Ki in place of K. Let P i
t

be the diffusion operator corresponding to x
M,i
t . Then, for each non-empty Ki, the corresponding

version of (60) can be written as

1

Zi

∫

Ki

g(x)e−βf̄(x)dx =
1

Zi

∫

Ki

(P i
t g)(x)e

−βf̄(x)dx (67)

Using the fact that g is bounded on K, dominated convergence implies that

lim
i→∞

1

Zi

∫

Ki

g(x)e−βf̄(x)dx =
1

Z

∫

K
g(x)e−βf̄(x)dx =

∫

K
g(x)dπβf̄ (x).

The proof will be completed if we can show that the right side of (67) converges to the right side of

(60).

Note that the right side of (67) can be expressed as

1

Zi

∫

Ki

(P i
t g)(x)e

−βf̄(x)dx =
1

Zi

∫

Ki

E[g(xM,i
t )|xM,i

0 = x]e−βf̄(x)dx

Now, Lemma 18 from Appendix F shows that for almost all realizations of the Brownian motion, w,

the Skorokhod solution converges pointwise limi→∞ x
M,i
t = xM

t for all t ≥ 0. (In fact it converges

uniformly on compacts.) As a result the integrand on the right converges pointwise almost surely

to the integrand on the right side of (60). Thus, the integrals on the right of (67) converge to the

integral on the right of (60) via dominated convergence.
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Appendix H. An Elementary Result on Stieltjes Integration

The following basic result is used a few times to examine bounded variation functions, x(t) whose

differentials dx(t) are only known when x(t) 6= 0.

Lemma 20 Let x(t) be a continuous non-negative function with bounded variation. Then

x(t)− x(0) = lim
ǫ↓0

∫ t

0
✶(x(s) ≥ ǫ)dx(s) (68)

Proof Fix any ǫ > 0. Then we have the Stieltjes integral representation:

x(t)− x(0) =

∫ t

0
dx(s)

=

∫ t

0
✶(x(s) ≥ ǫ)dx(s) +

∫ t

0
✶(x(s) < ǫ)dx(s).

We will show that the second integral on the right goes to 0 as ǫ→ 0. This would imply the desired

result by re-arranging and taking limits.

Fix any δ > 0. Then since x(t) has bounded variation, there are numbers 0 = s0 < s1 < · · · <
sN = t such that

∣

∣

∣

∣

∣

∫ t

0
✶(x(s) < ǫ)dx(s)−

N−1
∑

i=0

✶(x(s̄i) < ǫ)(x(si+1)− x(si))

∣

∣

∣

∣

∣

≤ δ,

where s̄i =
1
2(si+1 + si).

Continuity of x(t) implies that the si can be chosen such that if x(s̄i) < ǫ then x(si) ≤ ǫ and

x(si+1) ≤ ǫ.
If x(s̄î) < ǫ for some î, then let I = {j, j + 1, . . . , k} be the largest sequence of integers such

that 0 ≤ j ≤ î ≤ k ≤ N − 1 and x(s̄i) < ǫ for i = j, . . . , k. Then

k
∑

i=j

✶(x(s̄i) < ǫ)(x(si+1)− x(si)) = x(sk+1)− x(sj) (69)

Maximality of the interval and our choice of si imply that either j = 0 or x(sj) = ǫ and either

k + 1 = N or x(sk+1) = ǫ.
Note that in all cases |x(sk+1)− x(sj)| ≤ ǫ. If x(sj) = x(sk+1) = ǫ then the sum from (69) is

zero. So the sum can only be non-zero if j = 0 or k + 1 = N (or both).

Since every term such that x(s̄i) < ǫ can be included in one of the intervals constructed above,

and a most two of them can give rise to a non-zero sum, we see that the Riemann sum is bounded

as:
∣

∣

∣

∣

∣

N−1
∑

i=0

✶(x(s̄i) < ǫ)(x(si+1)− x(si))

∣

∣

∣

∣

∣

≤ 2ǫ

Using the fact that δ is arbtrary and using the triangle inequality shows that
∣

∣

∣

∣

∫ t

0
✶(x(s) < ǫ)dx(s)

∣

∣

∣

∣

≤ 2ǫ
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