Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2022-06-27

Efficient and Adaptive Decentralized Sparse Gaussian Process
Regression for Environmental Sampling Using Autonomous
Vehicles

Tanner A. Norton
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

6‘ Part of the Physical Sciences and Mathematics Commons

BYU ScholarsArchive Citation

Norton, Tanner A., "Efficient and Adaptive Decentralized Sparse Gaussian Process Regression for
Environmental Sampling Using Autonomous Vehicles" (2022). Theses and Dissertations. 96009.
https://scholarsarchive.byu.edu/etd/9609

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F9609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/114?utm_source=scholarsarchive.byu.edu%2Fetd%2F9609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/9609?utm_source=scholarsarchive.byu.edu%2Fetd%2F9609&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Efficient and Adaptive Decentralized Sparse Gaussian Process
Regression for Environmental Sampling Using

Autonomous Vehicles

Tanner A. Norton

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Master of Science

Michael A. Goodrich, Chair
Cameron K. Peterson, Adviser
Josh Mangelson

Department of Computer Science

Brigham Young University

Copyright () 2022 Tanner A. Norton
All Rights Reserved

ABSTRACT

Efficient and Adaptive Decentralized Sparse Gaussian Process
Regression for Environmental Sampling Using
Autonomous Vehicles

Tanner A. Norton
Department of Computer Science, BYU
Master of Science

In this thesis, I present a decentralized sparse Gaussian process regression (DSGPR)
model with event-triggered, adaptive inducing points. This DSGPR model brings the
advantages of sparse Gaussian process regression to a decentralized implementation. Being
decentralized and sparse provides advantages that are ideal for multi-agent systems (MASs)
performing environmental modeling. In this case, MASs need to model large amounts of
information while having potential intermittent communication connections. Additionally,
the model needs to correctly perform uncertainty propagation between autonomous agents
and ensure high accuracy on the prediction.

For the model to meet these requirements, a bounded and efficient real-time sparse
Gaussian process regression (SGPR) model is needed. I improve real-time SGPR models
in these regards by introducing an adaptation of the mean shift and fixed-width clustering
algorithms called radial clustering. Radial clustering enables real-time SGPR models to
have an adaptive number of inducing points through an efficient in ducing point selection
process. I show how this clustering approach scales better than other seminal Gaussian
process regression (GPR) and SGPR models for real-time purposes while attaining similar
prediction accuracy and uncertainty reduction performance.

Furthermore, this thesis addresses common issues inherent in decentralized frameworks
such as high computation costs, inter-agent message bandwidth restrictions, and data fusion
integrity. These challenges are addressed in part through performing maximum consensus
between local agent models which enables the MAS to gain the advantages of decentral-
ization while keeping data fusion integrity. The inter-agent communication restrictions are
addressed through the contribution of two message passing heuristics called the covariance
reduction heuristic and the Bhattacharyya distance heuristic. These heuristics enable user to
reduce message passing frequency and message size through the Bhattacharyya distance and
properties of spatial kernels.

The entire DSGPR framework is evaluated on multiple simulated random vector
fields. T he results show t hat t his framework e ffectively estimates vector fields using multiple
autonomous agents. This vector field is assumed to be a wind field; however, this framework
may be applied to the estimation of other scalar or vector fields (e.g., fluids, magnetic fields,
electricity, etc.).

Keywords: Sparse Gaussian process regression, clustering, event-triggered, decentralized,
sensor fusion, uncertainty propagation, inducing points

ACKNOWLEDGMENTS

This work has been funded by the Center for Unmanned Aircraft Systems (C-UAS), a
National Science Foundation Industry/University Cooperative Research Center (I/UCRC)
under NSF award No. IIP-1650547 along with significant contributions from C-UAS industry
members. Great appreciation goes towards the members of this thesis committee (Dr.
Goodrich, Dr. Peterson, and Dr. Mangelson) who have freely given advice and direction
regarding this research. I would also like to thank Dr. Matthew Heaton and Dr. Philip

White from BYU’s Department of Statistics for their added input and advice.

Table of Contents

List of Figures

1 Introduction

1.1
1.2
1.3

1.4

Related Works
Contribution L
Background
1.3.1 Exact Gaussian Process Regression
1.3.2 Sparse Gaussian Process Regression

Thesis Outline

2 Radial Clustering

2.1
2.2

2.3

Radial Clustering Formulation
Radial Clustering Upper Bound
2.2.1 Optimal Sphere Packing Density for Cubic Containers
2.2.2 Three Dimensional Radial Clustering Upper Bound
2.2.3 Two Dimensional Radial Clustering Upper Bound

Event-Triggered Sparse Message Passing

3 Decentralized Framework

3.1
3.2
3.3

Decentralized Framework: Outline
Decentralized Sparse Gaussian Process Regression
Message Passing

3.3.1 Message Passing Memory Considerations

vii

10
10
12
16
17

3.3.2 Message Passing Protocols 0oL
3.3.3 Covariance Matrix Reduction

3.3.4 Message Frequency Heuristic: Bhattacharyya Distance

4 Results and Analysis
4.1 Simulation Details oo
4.2 DSGPR Model Comparison
4.2.1 Exact GPR MSE Comparison
4.2.2 Decreasing Uncertainty Efficiently
4.2.3 Inducing Point Selection Comparison
4.3 Monte Carlo Runs
4.3.1 Mean-Squared Error (MSE) and Uncertainty
4.3.2 Computational Time

4.3.3 Message Passing Memory Considerations

5 Conclusion

5.1 Future Work

References

Appendices

A Two Dimensional Approximation of Maximum Clusters

vi

32
32
33
34
35
37
38
40
43
48

53
54

56

61

61

1.1

2.1

2.2

2.3

24

2.5

3.1

List of Figures

This figure depicts four agents as they cooperatively estimate an environmental
field. The red circles and lines denote the agent’s current position and heading
respectively. The blue arrows show the agent’s prediction of the wind-field.
While the gold arrows are the ground truth wind field. Pink lines show the
path taken by each agent. The gray /black color bar /heat-map shows the global
variance of the wind field. Darker color denoting higher uncertainty /variance,

while lighter color denotes lower uncertainty /variance.

Example of two agent’s paths clustering by radial clustering. The star marker
denotes the cluster centroid which is selected as an inducing point.
Base cube optimal sphere packingo
Base cube optimal sphere stuffing 0L
[lustration of some of the partial spheres that reside directly over the face of
the base cube.o
[lustration of some of the partial spheres that reside directly over the edge of

the base cube.

Overview of the information flow for a single agent creating first a local GP
representation and then, by combining information from neighboring agents, a

global representation. L

vil

3.2

3.3

3.4
3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Message passing process where agent 1 will ping all neighbors in their neigh-
borhood, then each agent that received a ping will potentially query agent 1
for any agent’s updated local model, and finally agent 1 will send a message
containing the queried model to agents 2 and 3. 25
Decentralized agent graph. The edges connecting agent nodes denote that two
agents are within the same neighborhood (message passing range). 27
Sketched representation of covariance reduction of the A matrix. 28
Example showing the scenario in which A doesn’t change when new measure-

ments are far enough away. Lo 29

[lustration of simulating multiple agents measuring a cubic wind-field and
passing messages according to pre-determined message passing ranges. 33
MSE comparison between Exact GPR and DSGPR for 1, 2, 3, and 4 agents.
DSGPR set with same parameters as MC runs described in Table 4.1. All
agents are fully connected for the duration of this test (i.e., message passing
density of 1.0, refer to Figure 4.7). 34
The total cost in terms of computation time of each model (exact GPR, VFE-
SGPR, summed agents running DSGPR). Note the heavy cost of optimization
for VFE-SGPR, and the cubic time of exact GPR. 36
Notice how the trace of the global covariance matrix (uncertainty) decreases
even when sampling of the same area occurs. 36
Time and MSE comparisons for DSGPR, centralized exact GPR, and central-
ized VFE-SGPR. DSGPR was run with two agents, their MSE is averaged
and their times are summed.o 37
Breakdown of individual test runs given parameters of random seeds, number
of agents, and neighborhood density. 38

Message passing distances for each agent at the varying message passing densities 39

viii

4.8

4.9

4.10

4.11

4.12
4.13

4.14

4.15

4.16

4.17

Average MSE across all MC runs and across each agent grouping. MSE at
each timestep is plotted. 40
MSE box plot of each agent and their respective densities averaged across all
MC runs. The plotted MSE value is the very last average agent MSE score of
therun. 41
MSE low, high, and mean plotted for a 10 agent group from a single MC run.
All message passing densities are considered in this plot. Low MSE variation
is seen across all 10 agents. 42
Global model covariance trace (uncertainty) results for all MC runs. The trace
is taken from the global decentralized model provided by each agent and then
averaged across all the agents participating in that run. Then it is averaged
across all 100 random seed runs (including each density). 43
Total average DSGPR time results from all MC runs averaged across each agent. 44
Total model times for all MC runs NOT including the global DSGPR model
computation time.o 46
Average agent clustering times from all MC runs 46
Average agent message passing times from all MC runs. This time includes all
protocols mentioned in Section 3.3.2 and computation times of both heuristics
from Sections 3.3.3 and 3.3.4. Lo 47
Average agent DSGPR computation times from all MC runs. This shows the
cost of computing the global decentralized model. This global model will not
be computed each time step in practice (unless the global model is required
cach time step for a different process).o 48
Average agent DSGPR message passing data rates (KBps) averaged across
densities for all MC runs. As expected, the amount of data to send increases

with the number of agents. 0L 49

X

4.18

4.19

4.20

Al

Plotted function showing the maximum number of messages that could be
sent by an individual agent in a single time step. For illustration purposes, A
is chosen to be 10 in this figure. I is the variable input on the x-axis, and the
y-axis is the max number of messages that would be sent given a specified I.
The average data rate at each time step for each density group averaged across
the number of agents.
Message size per time step averaged across message passing densities. We can

observe memory size scales at a linear rate for the first 1000 time steps. . . .

Example of Radial Clustering Upper Bound in Square Boundary Space. Each
red point represents a chosen inducing point, while each circle represents that

inducing point’s radius of influence.00

50

52

Chapter 1
Introduction

Multi-agent systems (MASs) are extremely valuable due to the large number of benefits
they offer compared to a single agent system. MASs can increase areas of operation, provide
time-sensitive information, and produce high-fidelity information. A group of coordinating
agents can quickly explore large environments and use their measurements to rapidly create
a model of important parameters within the operating region. However, coordinating and
controlling a large number of agents in a MAS comes with complex challenges such as high
computation costs, inter-agent message bandwidth restrictions, and data fusion integrity. I
address these issues for coordinated autonomous agents with a novel decentralized sparse
Gaussian process regression (DSGPR) framework with event-triggered, adaptive inducing
points.

A MAS equipped with this DSGPR framework has a wide range of real-world ap-
plications for estimating various scalar or vector fields. Some exciting applications include
measuring and tracking smoke plumes, radiation, and oceanic scalar fields (such as salinity and
water temperature), or estimating wind fields to help with optimal vehicle control [8, 20, 27].
DSGPR provides a framework for cooperating agents to fuse information gained from envi-
ronmental measurements. In this thesis, we assume that the environmental parameters being
measured are a three-dimensional wind field, but this approach can be generalized to any
scalar or vector field.

Figure 1.1 illustrates a simulation of two agents (red circles) modeling a two dimensional
wind field. The blue arrows denote the agent’s current estimation of the wind field at
predetermined test points. The gold arrows show the unknown ground truth wind field values.
As seen in the figure, the aerial agents perform an effective environmental modeling of the
wind field. Note that we depicted a two dimensional scenario due to the difficulty of clearly
illustrating three dimensional vector fields. All the algorithms and approaches presented in
this thesis are capable of operating in three dimensions.

1.1 Related Works

Environmental modeling has been studied previously by many other groups; this research varies
between centralized, distributed, and decentralized methods. Decentralized estimation allows
many agents to fuse measurements to generate individual local representations of the global
scalar or vector field. Decentralized approaches require agents to do individual computation
and also perform inter-agent communication. Decentralized methods do not require a central
server as all agents individually update their representation of the global model. This makes
decentralized algorithms robust to single agent failures [1, 4, 26]. Centralized estimation
requires agents to send their information (e.g. measurements, state values) to a central server

East (m)

Figure 1.1: This figure depicts four agents as they cooperatively estimate an environmental
field. The red circles and lines denote the agent’s current position and heading respectively.
The blue arrows show the agent’s prediction of the wind-field. While the gold arrows are
the ground truth wind field. Pink lines show the path taken by each agent. The gray/black
color bar/heat-map shows the global variance of the wind field. Darker color denoting higher
uncertainty /variance, while lighter color denotes lower uncertainty /variance.

that computes the global model. While distributed estimation splits data sets into subsets
that are sent to multiple agents to be processed. The agents then send a estimation of their
subset of data to a central server where the summaries are combined [9, 22].

In this work, I focus on the development of a real-time decentralized multi-agent
framework using sparse Gaussian process regression . Other approaches in both decentralized
and distributed scenarios have provided the foundational knowledge that has led to the
contributions of this thesis. These contributing papers are discussed next.

A distributed regression system is proposed in [37] where agents send messages in small
neighborhood groups (agents within message passing range) to share information regarding a
desired approximation problem. The system is fully distributed and convergence is guaranteed
under the correct circumstances. They focus on their system being consistent while confident,
where some data fusion approaches become overly conservative in their estimations. Their
implementations only deal with a parametric Kalman filter, while in this thesis, I create a
decentralized semi-parametric information fusion model.

Other research has investigated decentralized GPRs. The work from [4] outlines
a decentralized Gaussian process approach for mobility-on-demand systems. To combine
information, they assume a common set of inducing points (or support set) that are shared

among all agents. This system tracks and predicts traffic flow based on mobile sensing units
that travel different roads given a certain boundary. Each agent in the algorithm produces
summary statistics for a common support set. Then the agents share there summary statistics
and create a global model by combing all agents local models.

Their work is extended by [26] to have separate support sets for sub-regions of the
boundary space. However, this method falls short if there is insufficient data in a sub-region.
DSGPR does not assume a common set of inducing points (support set) ensuring the agents
can explore new areas of the boundary space according to the needs/direction of a path
planning algorithm or user.

The authors from [1] present a decentralized Gaussian process fusion approach for
MAS information sharing and prediction. Instead of sharing measurements, agents share
a local GPR model with other agents. Artificial measurements are then drawn from those
local models and fed into a global model. The authors admit that this can lead to inaccurate
artificial measurements being used in the global model. Furthermore, the authors in [21]
create a decentralized GP fusion method that allows agents to fuse other agent models into
a global model. Thus allowing them to mitigate the propagation of rumors throughout
(redundant measurement information) their decentralized system. However, their approach
does not mention any sparse GPs which would decrease the scalability of their system.

A highly scalable decentralized approach called COOL is presented in [17]. Their
work focuses on scaling to thousands of agents and enabling each agent to have their own
hyper-parameters, which can be tuned online. However, their approach does not account for
a varying number of inducing points.

The research in [39] focuses on adaptive model prediction using local model formation
that adapts to new streaming data. While their local model formation is adaptive, those
local SGPR models do not contain adaptive inducing points.

Because GPRs are inherently computationally inefficient, many researchers have
developed SGPR algorithms that use pseudo measurements to reduce the computational
complexity of a GP, while retaining much of its accuracy [28, 30, 33-35].

1.2 Contribution

In this thesis, I extend the work of prior researchers in providing SGPR models with the ability
to choose a varying number of inducing points depending on the current data distribution.
Adaptive inducing points enable accurate data point summarization for scenarios where the
data set changes over time. Adaptive inducing points can also allow SGPR models to be
implemented in applications that must run in real-time. On top of the adaptive inducing
points, this thesis presents a decentralized SGPR framework for scalar or vector field modeling.
This framework also enables message sharing between multiple decentralized agents. The
presented framework and message heuristics allow small to medium sized groupings of agents
to be utilized in real-time modeling scenarios.
These contributions of this thesis to decentralized MAS estimation are as follows:

1. A clustering algorithm providing an adaptive number of inducing points and their
locations for decentralized SGPR.

2. A guaranteed two and three dimensional upper bound for those adaptive inducing
points.

3. An effective event-triggering algorithm for updating inducing point values and locations.

4. A decentralized SGPR framework equipped with message passing heuristics that control
message size and message passing frequency.

1.3 Background

This section provides the background information on GPR and SGPR models necessary
to understand my contributions. I start by describing an exact GPR and then describe a
common SGPR model that was developed in [29, 35].

1.3.1 Exact Gaussian Process Regression

Gaussian process regression (GPR) is a powerful non-parametric data driven model. GPRs
approximate the latent ground truth function using data and distance properties inherent in
the specified kernel function. GPs are a collection of random variables which each have a
Gaussian distribution, and also which are jointly Gaussian.

Let the data be measured (training) points denoted as & = [z1,...,2x]| where x
represents a vector of IV training point locations. Let x, be the test points, or the points at
which prediction will occur. The true function values for & and x, are denoted as f, and f
and their priors can be described jointly as

)~ (o) [&) m

where the subscripts on the Ks denote whether the kernel was performed on the training
or test set (the subscripts do not represent an index). It is common for a zero mean to
be assumed on the prior. Using a regression model y; = f(x;) + v with ¢ € [1, N] and
v ~ N(0,0%) as measurement noise, the GPR is characterized by

f(x) ~ GP(m(x), K(x,2)), (1.2)

with m(x) and K (x, ') being the mean and covariance functions, respectively.

The mean and covariance define a Gaussian distribution of all possible functions that
describe the true underlying function f, given the training points and hyper parameters, i.e.,
P(f.|f,x,0) where 0 is the hyper-parameters. This conditioning occurs because it is assumed
that there is a dependence structure between f, and f; the dependence structure used in
GPs is called the kernel function. A kernel function is used to generate the covariance matrix
and account for spatial similarities of test and training points. The specific kernel function
used in this thesis is the Laplacian kernel (part of the radial basis function (RBF) family of
kernels),

Kij = k(z;, xj) = U?e_’\”xi_’”j”, (1.3)

where the hyper-parameter O'J% is the variance of the signal and A is the length-scale.

To predict over the x, values, the predictive posterior for f, must be found i.e.,
P(f.|f,«,0). This multivariate conditioning results in a mean of

Ful@a) = m(wm) + Kop(Kyp + 00" In) " Ky (y — m(w)), (1.4)

where m(x,) is the prior mean function of the desired test points (zero mean), Iy is the
(N x N) identity matrix, y is the vector of observed values obtained at each position . The
0,2 term is the observation noise and m(x) is the mean function for the prior of f (which is also
assumed to be zero mean). The term Kyp = k(z;,x;), Vi, j € and K. = k(x;, z;), Vi € x.
and Vj € x. Note that K, is the transpose of K.;. The result f.(x,) is a vector with size
(N, x 1) containing the mean scalar field approximation at each given test point x,.

The covariance matrix for the predictive posterior for f, is

cov(f) = Ko — Ko (Kpp + 0,2 In) ' K, (1.5)

where K, = k(z;,2;),Vi,j € x..

The two main drawbacks for using exact GPRs are the high computation and storage
costs. Exact GPR has O(N?) computation complexity, and O(N?) space complexity. Sparse
approaches have been developed to decrease the space and computational complexity of
GPRs.

1.3.2 Sparse Gaussian Process Regression

High computational costs of exact GPs have lead to the development of sparse GPRs (SGPR).
SGPRs rely on selecting a set of summary points that approximately describe the whole data
set. These summary data points are called inducing points. To reduce the computational
complexity of an exact GPR, M (the number of inducing points) must be much smaller
than N (the number of training points). This reduces the computational complexity from
O(N?) to O(NM?). The main difference between SGPR approaches is in how the inducing
points are selected [28, 30, 33-35]. The authors in [29, 30, 35] select a representative set of
inducing points; these inducing points can be described by a Gaussian process. The mean
and covariance of this inducing point Gaussian process is given by

m =0, K. K,y (1.6)

and
A=K, 2Ky,, (1.7)

where ¥ = (K, + 0, 2Ky Kpu) 7

The u subscript represents the vector of inducing points and the f subscript represents
vector of data or training points. The matrix K, is the output of the kernel function
Ky = k(u;,u;), Vi, j € u where w is the vector of inducing point locations. The matrix K, ¢
is the output of the kernel function K, r = k(u;, z;), Vi € u, and Vj € & where x is a vector
of measured (training) point locations. Using the distribution of the inducing points, the
mean and covariance functions of the predictive posterior are

fo(®s) = KW Kym (1.8)

and
cov(f) = K — K K Ky + Ko K ANK K (1.9)

These equations result in a computational complexity of O(NM?) instead of O(N?)
allowing SGPRs to be used on large data sets. However, most implementations of SGPR do
not allow for a varying number of inducing points as new data arrives.

1.4 Thesis Outline

The remainder of this thesis will describe my contributions in depth. Chapter 2 presents
and outlines the radial clustering algorithm that enables adaptive inducing points. In this
chapter, I provide a guaranteed upper bound on the number of inducing points that will
be required in a given cubic boundary space. Chapter 3 introduces the DSGPR model and
message passing protocols and heuristics. In Chapter 4, I present simulation results using the
DSGPR model for a MAS. I analyze and discuss the DSGPR framework and its attributes
across a variety of parameters, including the number of agents, message passing ranges, and
heuristic parameters. I also compare the DSGPR framework to other seminal GPR models
to show the advantages and drawbacks of the usage of each model.

Chapter 2
Radial Clustering

In this chapter, I present an efficient algorithm capable of adapting the number of
inducing points in a SGPR. This algorithm is called radial clustering (RC) and uses a
principled approach to find a representative set of inducing points. I also provide a proven
upper bound on the number of inducing points that will be created for a square or cubic
boundary space. This bound is necessary to set upper limits on the memory and message
size used when operating with cooperating agents. RC uses a kernel function to decide when
to insert another inducing point. While the following explanation uses the Laplacian kernel,
the concept is applicable to other spatial RBF kernels.

Most SGPR models assume a static number of inducing points [3, 4, 17, 35]. How-
ever, [11] also provide an SGPR with an adaptive number of inducing points. Their approach
takes advantage of the already computed K, kernel matrix, which contains information
regarding the spatial relationship between the inducing points and the measured points, to
determine when a new inducing point should be added. If a measured point’s similarity (i.e.
the corresponding entry in the kernel matrix K, r) becomes less than a chosen threshold
(meaning it is far away from all other inducing points), they choose this isolated point to be
another inducing point. Their method is simple and fast. However, this approach allows an
edge case, when a chosen inducing point cannot be changed or adjusted once selected. This
becomes an issue when a large number of points are measured at the edge of an inducing
point’s threshold; the model’s ability to correctly predict at test point locations nearby this
area is hindered. The fixed inducing point no longer summarizes the data as well as a centroid
point, which could decrease the model’s accuracy. In this chapter, I show that RC is not
hindered by this same edge case scenario, due to its ability to actively re-position old inducing
points as new data becomes available.

The remainder of this chapter will proceed as follows. Section 2.1 describes the radial
clustering algorithm in detail. The upper bound for the radial clustering algorithm is derived
in Section 2.2. Finally, Section 2.3 presents an event condition that triggers radial clustering
in a real-time implementation.

2.1 Radial Clustering Formulation

The goal of the RC algorithm is to provide a SGPR model with the ability to adapt the
number of inducing points it is using in real-time. In real-time prediction, agents will receive
a stream of data over time where it is difficult to predict the exact number of inducing points
needed to best summarize the underlying data while not using an unnecessarily large number
of inducing points. Thus, agents need to adapt the number and location of the inducing points
according to the arriving data. To achieve this streaming data adaptability, RC can cluster

the existing data using the kernel function already in use with the SGPR. The centroids of
these clusters becomes the new inducing points, and through the event triggering mentioned
in Section 2.3 these clusters can be updated according to freshly arriving data. These clusters
are determined through the same kernel used in the GPR model.

To create these clusters, I use the kernel to create groupings of similar data measure-
ments. Using the kernel, RC groups measured points into clusters when groups of points have
a spatial similarity defined by x. The value of k is chosen by the user to determine at what
similarity (or distance) clustering should occur at between measurements. Let 0 < k < O’J% be
a constant output of the of the Laplacian kernel, and define r = ||z; — z;||. Equation (1.3)
can be solved for r yielding r = log(r/0})/—\. Essentially, now represents the distance
between two points where their similarity has a value x. With this rearrangement, the r
distance can now be thought of as a radius where every point inside the radius has a similarity
score greater than that of k. Algorithm 1 shows how 7 is used in the radial clustering (RC)
approach.

Algorithm 1: Radial Clustering
Data: D: Measured Data, r: Cluster Radius
Result: Centroid Points
for measurement in D do
for point in clusters do
L if L2 distance(measurement - point) < r then

L append measurement to point’s cluster;

if measurement not in clusters then
L add new cluster with measurement as point;

return Compute centroids(clusters);

As shown in Algorithm 1, the distance between a measured point and each current
cluster point is calculated. If the distance between those two points is less than r, then
the measured point is appended to the cluster associated with the cluster point. A cluster
point is created if a measured point does not fall within the radius of any existing cluster;
that measured point will then become a cluster point. There are no initial clusters are the
beginning of the algorithm. Once all points have been assigned a cluster, the centroids of each
cluster are computed. Because of the DSGPR framework has each agent creating their own
isolated local model, the computed centroids become the inducing points for that local SGPR.
However, clustering does not occur on the global DSGPR model outlined in Section 3.2. The
advantage of the RC approach on local models is that the measured points are dynamically
represented as the data set changes over time. The number of clusters is dependent on the
given radius r and the distribution of the measurements.

Figure 2.1 shows how RC performs given a run of two agents randomly moving through
a two dimensional field. Each agent will cluster its own measured points individually. Both
paths are shown to represent how RC occurs in a decentralized setting. RC effectively reduces
a total of 102 measured points into 38 clusters resulting in 38 inducing points totaled between
both agents. The star markers denote the cluster centroids which are then chosen to be the

inducing points. Measured points in the same cluster are identified by the same color. As
shown in the figure, RC performs well at summarizing the data into a small representative
number of clusters without having to know the total number of clusters beforehand.

Number of Clusters: 38

15 LI *

*
40 ‘. % : o
£ 4 b 4 I"
£ Tk % +
'E * *
2 30 %% .,&*
*
25 F)
#"
x r
*
&
15 -
0 10 20 30 40 50
East (m)

Figure 2.1: Example of two agent’s paths clustering by radial clustering. The star marker
denotes the cluster centroid which is selected as an inducing point.

This notable advantage of knowing clusters beforehand comes from properties of the
mean-shift [5] and fixed-width clustering algorithms. Radial clustering (RC) is combination
of the mean-shift and fixed width clustering [2] algorithms. Mean-shift uses a user chosen
kernel to find regions with dense data and then iteratively shifts the points towards the those
regions of highest density. Once iteration stops, clusters are assigned. RC does not iterate to
change the clusters; this would be an expensive operation in real-time. Since clustering will
occur more than once in most real-time scenarios, spending large amounts of computation
time to find the optimal clusters has diminishing returns. During the clustering process, RC
does not adjust the mean of the cluster as new points are added. This is different from the
fixed-width clustering approach which does adjust the mean once a new point is added. RC
is also different from fixed-width in that I am using a kernel to determine the fixed-width
that will be used in the clustering process. Therefore, RC is a combination of the fixed-width
and mean-shift clustering algorithms.

The fixed width clustering has O(n?) for its computational complexity, and the mean-
shift approach is O(T -n?) where T is the number of iterations. The computational complexity
of RC is O(n?). However, since the mean-shift approach is O(n?) for each iteration, RC is
faster by a factor of T'. Furthermore, when thinking of my use case of agents measuring the
scalar or vector field of a boundary space, I can show that the computational complexity for

my case is O(upn) where uy, is the upper bound of the number of possible clusters that can
be formed in the boundary space and n is the number of measured points. The viability of
RC as a real-time solution for finding effective inducing points is shown in Section 4.3.2.

Those familiar with other SGPR inducing point optimization methods might suggest
using the cluster centers as seeds to further optimize the inducing point locations. However,
even with good seed values, the computational cost/time is typically too large to optimize
inducing points in real-time systems (especially when the number of inducing points is high).
Section 4.2.3 expressly shows a comparison of DSGPR to a common SGPR inducing point
optimization approach. The cost of optimizing the inducing points is much greater than the
cost to re-cluster, and there isn’t a significant difference in prediction accuracy.

2.2 Radial Clustering Upper Bound

To find RC’s computational complexity O(upn) from Section 2.1, we must calculate u;, which
is the maximum number of inducing points possible for an agent given a fixed boundary
space, which I will refer to in this section as the cubic container. Knowing this upper
bound also allows users and system designers to account for how large the message sizes
between cooperating agents can become if every agent reaches this maximum. I provide this
guaranteed upper bound of the RC inducing point numbers in a fixed cubic container for
both 2D and 3D.

I find this upper bound using existing theory developed in the field of sphere packing.
Articles [6, 7, 10, 12-15, 24, 36, 38| provide an in-depth discussion on sphere packing. For
this chapter, each inducing point will be thought of as a sphere. I do this because each
inducing point has a radius in which another inducing point center will not be placed. This
spherical representation of inducing points leads us to the topic of fitting/packing spheres
into cubes. I will briefly introduce the sphere packing topic so it is clear how I am taking the
proof that comes with packing spheres into cubes to finding the RC upper bound.

Section 2.2.1 outlines the proof from [38] for finding the upper bound of packing
spheres in a cube. Then, in Section 2.2.2 I modify the proof from Section 2.2.1 to create
a guaranteed upper bound on the number of RC inducing points for three dimensions. In
Section 2.2.3, an inducing point upper bound is derived for 2D. And finally, in Section A, a
process is presented that finds an RC upper bound for 2D that is not guaranteed, but is a
less-conservative approximation than what is presented in Section 2.2.3.

2.2.1 Optimal Sphere Packing Density for Cubic Containers

In this subsection, I provide a high-level overview of the sphere-packing research. This is
essential context needed to understand the RC inducing point upper bound.
The optimal sphere packing problem is described as follows:

Find the mazimum amount of congruent spheres that can be packed (non-overlapping)
in a cubic container where (i) each sphere center must be at least 2r units away
from every other sphere, where r is each sphere’s radius, and (ii) no sphere can
extend beyond the cubic container boundary.

10

Figure 2.2: Base cube optimal sphere packing

A provably optimal approach for packing spheres in a cubic container is summarized in [38].
This approach finds a base cube of optimally packed spheres (shown in Figure 2.2) and finds
the number of base cubes that fit inside the larger cubic container. The total number of
spheres that fit in the cubic container is then determined using the base cube’s “density”.
Where the packing density is defined to be the total volume of spheres that fit inside the
volume of the cubic container.

Note that the base cube (in Figure 2.2) consists of six non-overlapping hemispheres
placed at each face of the cube, and eight eighth spheres are placed at each of the eight
corners. The length of each side of the cube is described as 2\/57’, and thus the volume of
the base cube is V;, = (2¢/2r). The well-known volume of an individual sphere is V; = %7?7“3.
The total volume of spheres that pack the base cube can be computed by summing the
volume of each partial sphere shown in Figure 2.2. Thus the total volume of spheres,
%:‘/}(6'%—1—8-%):1%7’3.

The packing density is defined to be the ratio between the volume of spheres in the
cube with the volume of the cube, given as Py = V,/V;, = 7/1/18. We use packing density of
the base cube to determine the maximum number of spheres that can be packed into a larger
cubic container. A cubic container with side length b has a volume V, = b3 and will fit

Ve By

Ts v

(2.1)

11

total number of spheres.

I use a similar idea of using a base cube to find a guaranteed upper bound for the
maximum number of inducing points chosen in the RC algorithm in two and three dimensional
spaces.

2.2.2 Three Dimensional Radial Clustering Upper Bound

Here, I provide the process for determining the guaranteed upper bound for the max number
of clusters possible for RC in a cubic container. Similar to sphere packing, the problem of
finding the upper bound for radial clustering can be described with the problem statement:

Find the maximum number of congruent spheres that can fit into a cubic container
where (i) each sphere center must be at least a distance r away from every other
sphere center, where r is the radius of each sphere, (ii) spheres are allowed to
overlap each other and the boundary, and (iii) no sphere center may be placed
outside the cubic container.

Following the methodology described in Section 2.2.1, the total number of spheres stuffed
into a cubic container can be determined by first creating a base cube of stuffed spheres (the
term stuffed is used to reference the fact that the spheres in radial clustering can overlap
each other’s radii). Figure 2.3 shows the optimal configuration of spheres being stuffed into a
base cube. The pattern shown in Figure 2.3 is continued with two more layers of spheres
(total of three layers), yielding a total of 27 spheres that are partially or completely contained
within the base cube. Similar to sphere packing, the goal is to calculate the total number of
all spheres that have their centers inside the base cube. Simply stated, the summed volume
of all spheres that are involved with the base cube will be used to compute the the total
number of spheres that can fit into the cubic container. To find the total number of spheres,
the cubic container will then be optimally filled with base cubes and the total sphere number
that corresponds to those base cubes is used to find the total number of spheres inside the
cubic container.

The stuffed base cube has a side length of 2r where r is each congruent circle radius.
Each base cube has complete and partial spheres stuffed inside it. The interior sum of spheres
is used when fitting all the base cubes inside the larger cubic container. The exterior summed
number of spheres must be found so that the spheres that will extend passed the edge of the
cubic container are accounted for. Combining all the interior and exterior sphere numbers
related to the many base cubes inside the cubic container leads to the upper bound of all
possible spheres that can possibly be fit inside the cubic container.

Interior Sphere Volume of the Base Cube

The interior of the base cube contains many overlapping partial spheres and a complete
sphere; summing all those partial spheres and complete spheres gives the total number of
spheres for the base cube interior. I will walk through how many spheres exist for each of the
three layers shown in Figure 2.3 that strictly falls within the boundary of the base cube.
The bottom layer of spheres (where only 3 of the 9 spheres colored blue are shown
in Figure 2.3) contains four corner spheres, four edge spheres, and one face sphere. The

12

Figure 2.3: Base cube optimal sphere stuffing

corner spheres each take up an eighth of a sphere inside the cube. The four edge spheres
each take up a fourth of a sphere inside the cube. The one face sphere has a volume of
half a sphere in the base cube boundary. Thus the bottom layer has two complete spheres,
4(3) +4(3) + 1(3) = 2, that fall within the base cube boundary.

The middle layer (colored red spheres in Figure 2.3) has four edge spheres, four face
spheres, and a single center sphere. The four edge spheres each have a fourth of a sphere
residing in the base cube. The four face cubes each have a half sphere in the base cube. The
center sphere fits completely in the base cube; therefore, its entire volume is counted for this
layer. The number of spheres for the middle layer residing in the cube is 4(3) +4(3) +1(1) = 4.

The top layer (green spheres in Figure 2.3)is exactly the same as the bottom layer.
Thus bringing the total number of spheres including all the portions of spheres for the interior
of the base cube to a count of C; =2 +4+2 = 8.

Exterior Sphere Volume of the Base Cube

To find the exterior number of spheres, the volume associated with the base cube’s six faces,
twelve edges, and eight corners must be taken into account. To find the number of spheres
that exist on the outside of the base cube, we must count how many total spheres (in terms
of combined volume) exist on the face, edge, and corner of the base cube.

13

Figure 2.4: Ilustration of some of the partial spheres that reside directly over the face of the
base cube.

For a single face of the exterior of the base cube, we only count spheres that are
directly over the face, or the volume that is contained by the white extending bounds as seen
in Figure 2.4. To count up the spheres on the face, we start with the four spheres that lie at
the corners of the face. Each of these four spheres have an eighth of a sphere volume residing
directly above the face of the base cube. There are four spheres that reside on the edges of
the face. Only a fourth of a sphere volume for these spheres lie directly over a base cube face.
Lastly, there is a single sphere that lies in the middle or face of the base cube with half of a
sphere volume that extends into the exterior region. In total, a single face of the base cube
has a combined number of two spheres, Cy = 4(3) + 4(3) + 1(3) = 2.

To count the number of spheres that exist on the exterior of an edge of the base cube,
there are three spheres that must be accounted for. These three spheres are pictured by the
extending white boundary in Figure 2.5. Note that this area will not overlap with areas
extending from any face of the cube. The two corner spheres each have an eighth of a sphere
that is directly over the edge of the base cube, while the middle edge sphere has a fourth of a
sphere over the base cube edge. The number of spheres that reside on an edge of the base
cube is C, == 2(3) + 1(3) = 0.5.

14

Figure 2.5: Illustration of some of the partial spheres that reside directly over the edge of the
base cube.

Lastly, the number of spheres that are on the exterior of the base cube corners must
be counted. For a single corner, there is only one sphere that must be addressed. That single
sphere has an eighth of a sphere that lies directly over the corner of a base cube such that
C.=1/8.

These three exterior base cube counts of the faces, edges, and corners (Cy, C., C.)
can be multiplied by their respective occurrences and summed up to find the total number of
spheres that exist on the exterior of a single base cube. This enables the calculation of the
number of spheres that will exist once many base cubes are placed inside the cubic container.

Sphere Stuffing Equation

Given the interior number of spheres C; and the exterior number of spheres, C, C,, and C.,
we can use volumetric attributes of the base cube to create an equation for the upper bound
of total spheres stuffed into a larger cubic container. The upper bound for the number of
spheres that can be stuffed into a large cubic container given by the already defined base

cube is,
b* b2 b\ b\°
w1 (L) ero (L) (L) ars(L) o ea

15

where b is the side length of the large cubic container. The b/2r term determines how many
base cubes fit in each dimension of the cubic container, and the following C' coefficient shows
how many spheres to count for a single base cube for that dimension of the cubic container.

Equation (2.2) is able to count the total number of spheres that fit in a cubic container
according to the predefined base cube. The meaning of the terms in the equation are as
follows. The 1 (%)3 - C; term counts how many base cubes fit within the cubic container
and then multiplies by C; which is the total number of spheres that are associated with the
interior of a base cube. The 6 (2—1’7,)2 - Uy term counts the number of base cubes that are fit
against the plane of each face of the cubic container. The C coefficient then accounts for the

number of spheres for each face of those base cubes. The 12 (2%)1 - C, counts the cubes at
each of the cubic container’s edges. Multiplying by C, then counts up the spheres associated
with the edge of each of those base cubes. Finally, the 8 (%)0 - C, counts how many spheres
must be counted at the four corners of the cubic container. Summing up the resulting number
of spheres from these terms gives Ag. This term is the maximum number of spheres that can
possibly be stuffed into a larger cubic container with side length b.

Knowing Ag enables the use of RC in a boundary space (cubic container) where the
upper bound of the maximum number of possible clusters is known. The use case in this
thesis is for multiple agents measuring from a cubic boundary space. Knowing the size of the
boundary space and the kernel being used is required to compute this upper bound. Note
that this is an upper bound and not an exact computation of the number of inducing points
that will be placed in the space. Since some may use RC for other use cases besides scenarios
in three dimensions, I provide a two dimensional bound as well as an unproven approximation
of the exact number of circles that can fit into a square.

2.2.3 Two Dimensional Radial Clustering Upper Bound

Now I present the guaranteed upper bound for the max number of clusters possible for radial
clustering in two dimensions. The maximum number of inducing points that can be selected
in a two dimensional square boundary space is a simplification of the 3D Equation (2.2).
Switching from volume to surface area, the total surface area associated with each portion of
the square must be included (i.e. face, each edge, and each corner). The portion of each circle
that overlaps over the single face can summed up and denoted by Sy = 4(3) +4(3) + 1(1) = 4.
The overlapping surface area for an edge can be defined as S, = 2(1) + 1(3) = 1, and each
corner S, = 1(}1). Counting base squares in the larger square gives the overall equation,

b\’ b\ b\°
AC:]_(g) Sf+4(2_r) Se+4<2_7“) 'Sca (23)

where Ac denotes all the circles stuffed into any large square with side length b and circle
radii 7.

Equations (2.3) and (2.2) give an upper bound. Both equations will give the exact
number of spheres or circles that can be stuffed into the larger container when the radius r
of each circle is a factor of the side length b. However, these equations provide a conservative
estimate on number of spheres/circles in the cubic container when r is not a factor of b.
While difficult to prove exact closed-form solutions for 2D and 3D, I provide an equation

16

for the 2D case which provides an approximation for a less conservative number of circles
that can be stuffed into any sized square. While not theoretically guaranteed, it works well
in practice and can be checked in conjunction with the aforementioned upper bound. This
equation is outlined in the appendix Section A.

2.3 Event-Triggered Sparse Message Passing

Adaptive inducing point selection through RC and event triggering is pivotal for the decentral-
ized multi-agent system to dynamically search the boundary space and communicate accurate
and efficient inducing points between multiple agents. It is desirable to only re-cluster the
measured points when the measurements begin to change significantly (have a high kernel
dissimilarity from other measurements). If an agent is re-sampling from an area that is
already adequately described by an inducing point, it is redundant and inefficient to re-cluster.
Therefore, I implement an event-trigger where agents perform RC when measured points
are no longer being correctly summarized by the current number of inducing points and
their locations. Similar to [11] but independently derived, I check the most recent measured
point’s column in the K,y matrix to determine if re-clustering should occur. These values
show how spatially correlated the most recent measured point is to all existing inducing
points. If the maximum value of this vector (i.e. the spatial correlation value of the measured
point and the inducing point closest to it) is smaller than a user defined similarity threshold
p, then re-clustering is triggered. This event-trigger ensures all new measured points are
summarized by an inducing point with a similarity of at least p. It also allows inducing points
to shift towards better summary locations given the new distribution of measured data. The
event-trigger ensures no time is wasted on unnecessary clustering, which is vital for real-time
systems.

Using the RC algorithm allows real-time SGPR systems (single agent or multi-agent)
the ability to adapt the number of inducing points as new data is received. This approach
is robust to edge case sampling cases and is outlier resistant (unlike [11]) because if new
measurements would be better described by a different inducing point, RC has the ability
to re-cluster. This re-cluster ability allows for the agent to have the best inducing point
distribution according to the current data. The work done in [11] does not get updated with
the current measurement information.

17

Chapter 3
Decentralized Framework

This chapter outlines the full decentralized sparse Gaussian process regression (DSGPR)
framework that enables multiple agents to perform environmental modeling of a square or
cubic boundary space. There are three typical architectural approaches to working with
multi-agent systems: centralized, distributed, and decentralized. I implement a decentralized
GP framework due to advantages in system robustness under degraded communications
or node failure. To fully understand the advantages and disadvantages of a decentralized
approach, I summarize the different architectural approaches below.

Centralized systems have a main server/computer that receives all measurements
(information) from each individual agent. Once it has received those measurements the
central computer will complete all the computations and decision making, eventually relaying
commands back to each agent. When completing tasks, such as environmental modeling,
the centralized computer provides the best model, solution, and decisions since it receives
and uses all the gathered information. In this scenario, each autonomous agent essentially
becomes a mobile sensor. Centralized systems can fail when the central computer is down, or
when there are message passing bottlenecks.

Distributed frameworks such as [9, 18, 22, 40| are formulated such that each agent
computes a piece of the model taking computational load off of a central computer. This is
advantageous when the agents must solve computationally complex tasks. Agents send the
solved piece of the overall problem back to the central computer. Similar to the centralized
case, the central computer will assemble all the distributed pieces back together for decision
making and modeling. All agents still receive commands from the central computer. One
significant issue with distributed frameworks is the possibility of a single agent causing a
system wide failure. Distributed systems are also prone to central computer failure, similar
to the centralized case. And there can be bottleneck issues when high loads information must
be communicated with the central computer.

Decentralized frameworks enable each agent to perform sensor measurements, model
computations, and decision making without having to rely on other agents or centralized
computers [9, 22]. Agents communicate their individual information (measurements, results,
or decisions) with each other directly. Decentralized systems are robust to single agent
failures (including a central computer failure) and can potentially mitigate communication
bottlenecks. This is especially advantageous when dealing with autonomous mobile agents
(such as unmanned aerial vehicles) when communication may be unreliable and individual
agents have high probabilities of failure.

While there are some clear benefits and advantages to choosing decentralized systems,
there are also unique challenges that arise. Decentralized agents are subject to some common
data fusion problems such as the whispering hall problem (i.e. remnants of past measurements

18

being perpetuated when no agent has actually measured it recently), double counting, and
accuracy degeneracy. There are also memory and computational constraints unique to
decentralized systems that must be addressed.

DSGPR mitigates these decentralized challenges in a way that provides better com-
putational efficiency and inducing point flexibility as compared to other decentralized GP
models. As noted in Section 1.1, the work from [1] avoids sensor fusion problems by pass-
ing local models and creating artificial measurements from those models. The creation of
artificial measurements reduces accuracy while increasing computational complexity (note
the discussion on computational complexity in Section 3.3.1). In comparison to [1], which
samples a large number of measurements, DSGPR decreases the computational complexity.
The work done in [39] creates a decentralized system using online local models based on the
prior work of [3]. They use a product of experts model between local online SGPR, models to
predict over a space. This means that the density functions of each local model are multiplied
together for prediction. However, the product of experts do not compute a global covariance
between the local agents. Agents can use global covariances for further use in other objectives
(such as informative path planning, etc.). DSGPR provides a global covariance that can be
used for secondary tasks, such as path planning. The work done in [17] merges multiple local
models using an information version of their local covariance. They then add and subtract
information matrices to avoid the mentioned data fusion issues of double counting etc. While
efficient at scaling, their decentralized approach requires a set or fixed number of inducing
points for their local models. My DSGPR framework mitigates this issue by using RC as
explained in Chapter 2.

In this thesis, I also chose to implement a decentralized system due to the afore-
mentioned advantages of robustness and I have developed a method that mitigates the
challenges with data fusion and efficient message passing. This DSGPR framework is outlined
in Section 3.1 while the equation for computing the global model is derived in Section 3.2. I
show how the challenges of data fusion are mitigated by the structure of the message passing
in the DSGPR framework and how the message passing memory cost can be reduced through
a heuristic in Section3.3.

3.1 Decentralized Framework: Outline

The DSGPR framework, as depicted in Figure 3.1, consists of three main pieces: local SGPR
models, message passing, and a global model. Each piece is vital in making DSGPR a viable
real-time option for a MAS performing scalar or vector field estimation.

The local portion of the DSGPR framework is set up to address the whispering hall
and double counting data fusion challenges. This is accomplished by having each agent having
their own local model according to their own measurement data, which is always isolated
from other agent’s data. In this way, no local model can be corrupted by other agents because
no other agent information is ever considered when an agent is computing its local SGPR
model (shown as the green diamond in Figure 3.1).

The agent’s local model is sent to neighboring agents using the message passing
protocols outlined in Section 3.3 (seen as the yellow boxes in Figure 3.1). DSGPR passes
messages between agents in the same neighborhood and between multiple neighborhoods over
time (a group of agents that are within message passing range are considered a neighborhood).

19

Ll) Global
|

Z,m,A ‘ Outi
Event Triggered Radial
il DATA Clustering (RC) —
Message
In

N
|

Figure 3.1: Overview of the information flow for a single agent creating first a local GP
representation and then, by combining information from neighboring agents, a global repre-
sentation.

As explained in Section 3.3, agents will relay each other’s local models until all agents in
the system have the most up to date version of all local models. This message relay is
implemented using a max consensus on the timestamps of each agent’s local model. This
process is described in detail in Section 3.3.2. The advantage of this message passing setup
is that agents are still able to make informative decisions when single (or multiple) agent
failures occur.

When agents have received other local models, through message passing, they can
create accurate global models of the entire boundary space. The global model computation,
shown as the purple diamond in Figure 3.1, is derived in Section 3.2.

3.2 Decentralized Sparse Gaussian Process Regression

Each agent’s local model is defined by the sparse Gaussian process regression models outlined
in [35]. The local models can be defined by the location of each inducing point in two or
three dimensional space described by vector z, the mean value of the desired scalar or vector
prediction for each inducing point represented as vector m, and the covariance of those mean
values denoted as matrix A.

The equations for combining all local models into a single global model were derived by
PhD candidate Grant Stagg in 2021 and the work is currently unpublished. Only Section 3.2
was heavily borrowed from the work done by Grant Stagg and is included in this thesis for
completeness.

To derive the DSGPR model, we start with the distribution of each agent’s induc-
ing points ¢; = p(fu,|y;) ~ N(m;, A;). The equation for the predictive posterior of the
decentralized SGPR mirrors the predictive posterior for SGPR and is

where ¥y is the vector of prior measurements and f,,, is the underlying function values for the
ith agent’s inducing points. We start by deriving the prior for the predictive posterior of f,
which is p(fi| fuys - -+, fu,, ¥)- As with other GPRs, we use the kernel function to calculate
the covariance of the prior and assume zero mean. Differing from other GPR approaches, we

20

stack all agents’ inducing points into combined variables that now describe the entire system.
Each agent’s inducing point locations are stacked into a single variable Xg. The unknown
ground truth of each inducing point is denoted as fg. The local agents’ predicted mean value
at each inducing point is described by stacking all the local m values into m. Both fz and
m are defined as

ful my
u m
Ja= f.2 and m = .2 . (3.2)
Jun my

Using these stacked inducing points from all agents, the prior for f, can be written as
p(f+| fa,¥) because f,, is a Gaussian distribution and the joint distribution of all f,, is also
Gaussian. Define the covariance matrix between test points and inducing points to be

K= [Kewy K o Kuil, (3.3)

where Ky, = K, and K., is the kernel function between the i agent’s inducing points and
the test points k(X,, X,,). And defining the covariance matrix between inducing points to
be

Kulul KU11.L2 coee KulUn
Kﬁ _ K1l:2’u1 KU'Q’U,Q P Ku.zun : (3.4>
Kuju, Kupuy, - Kuju,

where K,,,, is the kernel function between the ™™ and the j™ agent’s inducing points
k(Xy,;, Xy;). We then calculate the prior using the conditional multivariate Gaussian distri-

bution,
AR (iR)] -

where K,, is the covariance matrix from Equation (1.5). Equation (3.6) gives us the prior
distribution of function values at the test point locations conditioned on the prior distribution
of function values at the inducing point locations. Because f, and fg are both multivariate
Gaussian distributions, we can write Equation (3.6) such that we will be able to predict the
mean values of f, as a linear transformation from fg through the equation

yielding

fo= KaK fa+n (3.7)

where 1 ~ N(0, Ky, — KKt Ky,
Because we are combining multiple agent’s inducing points, we must account for the
covariance already existing in each agent’s local model f,,. To account for these covariances,

21

we use a temporary matrix B = K_! and partition it into submatricies

Biuw, Buju, --- Buju,
Bﬁ _ B’LL'2’UA1 B’LL'2’M2 R Bu2un) (38)
Bunul Bunug e Bunun

Note that B,., # K, 1uj. Rather, B, is a submatrix of the precomputed Ku;& that
corresponds to the location of K, in Kyu. By expanding Equation (3.7) with Equation (3.8)
one can see that f, is a sum of linear transformations from uy, us, ..., u,. We can then create
a transformation matrix,

n
Ci =Y K., Buyu,. (3.9)

j=1
that represents the linear transformation from agent ¢’s inducing points to f.. We write the
linear transformation as f. = Cif,, + Cafu, + -+ C, fu, + 1. Because we have information
gained from our agent’s measured points, we have a local posterior distribution for each
fu, such that ¢; = p(fu,|y:)) ~ N(m;, A;). If we assume each agents’ inducing points are

independent, the predictive posterior is a Gaussian distribution takes the form

p(f*’fﬁvy) NN<K*ﬁKu;&m7 Ef*)? (31())
with
N
T =Y CANCI+ K.~ K Kgh K. (3.11)
i=1
From Equation (3.10), the prior does not depend on f,,, ..., f.,, SO we can remove it

from the integration in equation (3.1). This gives the new predictive posterior,

p(£.19) = p(fil fa 7) / - / (oo furl§)dfor - fu (3.12)

Due to the law of total probability the integral term becomes 1 and the predictive posterior
is p(f«|fa,¥) who's equation is given in (3.10).

The derivation of the predictive posterior assumes the distribution of inducing points
for each agent are independent. Because of the exponential nature of the kernel function,
each agent’s distributions can never be truly independent of another agent’s inducing points.
However, if an agent’s inducing points are spaced far enough apart from another agent’s
points, the distributions can be approximately independent.

3.3 Message Passing

Cooperating agents must be able to efficiently and effectively communicate their local model’s
information with each other in order to compute their global models. I present the details
on how message passing occurs in the DSGPR framework. First, Section 3.3.1 discusses the
memory considerations inherent with peer to peer message passing. The actual protocols for

22

each agent in the DSGPR framework is outlined in Section 3.3.2. Lastly, two heuristics are
introduced that provide efficient message passing. Section 3.3.3 discusses a covariance matrix
reduction heuristic to reduce the size of each message being sent. Section 3.3.4 presents a
heuristic using the Bhattacharyya distance that controls the frequency of messages being
passed. A discussion on how a user can manipulate each heuristic occurs at the end of this
chapter (subsection in Section 3.3.4). Each of these pieces enables the DSGPR framework to
be decentralized while maintaining viability for its use in real-world scenarios.

Passing local models between agents comes with two memory considerations that
must be addressed. These are the cost of storing models in memory (actual hardware on the
drones) and the total cost of sending messages between agents (network bandwidth), both of
which are limited. A discussion regarding the size of the models as sampling continues in
time will be insightful for the justification of choosing my message passing protocols.

3.3.1 Message Passing Memory Considerations

Reducing message sizes is a challenge when completing cooperative estimation with GPs.
The work done by [1, 17, 40], all make the choice to send representations of their prediction
models instead of sending the exact measurements, stating that it is more memory efficient.
Instead, they send the covariance matrix of the inducing points (or the covariance of the
sampled measurements). On the other hand, the authors in [21] send the measurements and
have a message passing complexity of O(n). While there are pros and cons to sending exact
measurements, sending the model representation also has cons that are not highlighted in the
prior research. The covariance scales at a rate of O(n?). If the inducing points are allowed
to increase in total number, then the covariance matrix describing the inducing points can
become too large, causing issues for message passing in a real-time system.

A quick example illustrates the drawback of sharing the covariance matrix of induced
points among cooperating agents. Assume an environmental sampling scenario where A
agents are operating within message passing range (a single neighborhood), and each agent
is sampling a scalar field. Each agent’s local model will consist of the z, m, and A values
mentioned in Section 3.2. If m is the agent’s individual number of inducing points. The total
memory (MB) it takes to describe a local model is given by the equation,

(B3m +m+ 3(m? +m))
10242 ’

Tvp = (3.13)
where 3m represents all floats it takes to describe z in three dimensional space, m represents
the predicted scalar mean values for each inducing point, and (m? 4+ m)/2 is the most efficient
way to collapse a covariance matrix (taking advantage of symmetry). Given an example
where m = 10,000, then Ty = 47.7 MB. That is the total memory (MB) for a single agent.
If an agent is required to send all the local models it knows about, then it would be the sum
of each agent’s Ty;g. This growth scales with the number of agents A, which clearly isn’t
sustainable for message passing within the network of a real-time system with time steps in
the seconds range. However, time steps that are minutes long would make these message
passing memory issues negligible.

23

Note that even when the number of inducing points is small, the strain on the message
passing network is not negligible if there are desires to scale to tens of agents or especially
hundreds of agents, i.e. if each agent’s m = 1,000 and Ty, = 0.48 MB, when A = 100 then
the total memory of all combined models would be 48 MB. The worst case scenario would be
all agents sending their models at the same time, in this case, even for a small m value (e.g.,
m = 100), the required bandwidth to handle A > 1000 would surpass most cellular data
rates [25] and would require high data rates for any WiFi connections (i.e., ~ 400 Mbps).

The aforementioned papers make the assumption that efficient message passing can
occur when passing SGPR model parameters (z, m, A), but they do not mention the scaling
rate of A. Note that most of these implementations do not have adaptive inducing points
which is what gives the undesirable squared scaling of A in this case; however, these papers
still don’t account for statically choosing a number for m among their local models which still
becomes expensive when trying to represent a large space. Compared to passing SGPR model
parameters, passing exact measurements scales linearly per agent, i.e. (3w + w)/1024? where
w is the total number of measurements for a vehicle in 3D space. Passing measurements
only becomes inefficient compared to sending a model when the SGPR model has reached its
upper bound wu; as derived in Section 2.2.2. Note however, that the number of measurements
would be quite high before this occurs even for a small value of m. An example goes as such,
given a small upper bound for m of 100 (i.e., both m and w, are 100), sending measurements
is less memory intensive until the number of measurements passes 1363. Calculated by
w = (3m +m + (m? + m)/2) /4. Note that this scenario only occurs if all the measurements
had to be sent in one fell swoop. The most likely scenario is that agents would have the
advantage of only needing to send a measurement once if they were in message passing range
of other agents.

This analysis begs the question of why not always use the measurement passing
approach instead of sending models? The main reason is due to the high computational cost
required to compute models based on a large number of measurements instead of computing
based on local models. The computational complexity on the global model calculation of
the DSGPR framework presented in this work is O(M?) where M is all combined inducing
points from all agents. Assuming an approach where all measurements are passed between all
agents, then the vanilla exact GPR used in that case would have a computational complexity
of O(N?) where N is the combination of all agent measurements. Another approach to only
using measurements would then be to cluster those N measurements for each agent using RC
from Section 2. The RC algorithm has a computational complexity of O(N?) so the combined
clustering and SGPR model computational complexity for measurements for each agent would
be O(N? + NM?) while each agent in the model case has a total computational complexity
(including clustering) of O(n? + M?) where n is the measurements for an individual agent
and M < N. Also, the overall number of messages could potentially be greater for sending
individual measurements between agents than the number of messages sent when only sending
local models (this concept will be domain dependent).

With these pros and cons in mind, I provide a framework for an efficient approach
for passing local models between agents. This message passing framework has three main
components as follows:

24

1. Message passing protocols that enable agents to perform maximum consensus on the
local models of the system (Section 3.3.2).

2. Agents send messages of reduced size through the covariance reduction heuristic (Sec-
tion 3.3.3).

3. Agents send fewer messages overall using the Bhattacharyya distance heuristic (Sec-
tion 3.3.4).

The first item ensures that agents are robust to switching between neighborhoods where
certain agents may be out of communication range for long periods of time. All agents are
also guaranteed to have the most up to date system information (once maximum consensus
has been performed). The last two components provide the ability for users to reduce message
passing frequency and message size according to their network bandwidth needs (i.e., when
message passing could be at its peak).

3.3.2 Message Passing Protocols

The message passing protocols are query based instead of broadcasting dependent. When
an agent’s neighbor has an updated or new model, it will query its neighbor for this model
instead of agents broadcasting their own updated models to all neighbors. The following
protocols determine when the agent should query a neighbor agent for a local model and how
this query process is implemented.

The message passing process is described by three steps as seen in Figure 3.2. Each
time step every agent will broadcast a ping. Agents can also selectively send query messages
or local model information if it was queried from a peer agent.

1) Ping 2) Query 3) Send

Q) @
®
® ®

Figure 3.2: Message passing process where agent 1 will ping all neighbors in their neighborhood,
then each agent that received a ping will potentially query agent 1 for any agent’s updated
local model, and finally agent 1 will send a message containing the queried model to agents 2
and 3.

First: Ping

Each agent will broadcast a ping to any agent that is within communication range. The ping
message contains the agent’s current local model timestamp, a list of all peer agent local
models it has in memory (each agent is given a unique ID), and the timestamps indicating
when the local models were updated.

25

Second: Query

When an agent receives a ping message, it will determine if there are newer local models
that it has not yet received. If so, it will query its neighbor (who has the updated model)
to request the information. As a part of the query, the requesting agent will send the most
recent timestamp it has for the model being queried such that the agent who is receiving the
query can send a reduced A matrix according to the heuristic described in Section 3.3.3.

Third: Send

Any agent that has received a query will send the requested model. An agent may send any
local model it has stored (not just its own local model).

Note that steps one and two will in general only take on average 100 ms total for an average
4G network (due to the small ping/query message sizes), while step three’s time will vary
depending on message size [25]. Because steps one and two are so quick, it is reasonable to
count steps one, two, and three as one time step.

To reduce the amount of messages passed through the network, each agent only
updates its local model timestamp when one of the following conditions are met:

e re-clustering occurs,

e the Bhattacharyya distance change threshold is surpassed (as explained in Section 3.3.4),
or

e a first time agent connection occurs.

When any of these conditions are met, the agent will update the timestamp of its model to
the current time. This will trigger all agents within its message passing range to query for
the updated model. The updated model will then be passed around until max consensus
of all model timestamps has been reached. When agents are not within message passing
range (the same neighborhood), there is a chance that formerly isolated agents will meet for
the first time. I refer to this first time meeting as a first connection. When this occurs, the
protocol is to send that formerly isolated agent the most up to date models available. This
includes the self model. This will then trigger any currently connected agents to query for
the newly updated model.

These message passing protocols can be applied to a drone system that is on its own
local area network (LAN), equipped with individual cellular networks, or with direct WiFi
capabilities where data rates can reasonably handle 100 - 200 Mbps. Any issues related to
network congestion caused by agents sending messages at the exact same time is left as a
networking problem and is not addressed in this work.

These protocols allow the agents to be fully decentralized. Here fully decentralized
refers to the idea that agents can receive all the local models in the system under any
communication network topology given that the topology forms a connected graph over time.
Furthermore, each agent is given the ability to act completely autonomously without the
need for a centralized node that provides direction or information. The main component of
the message passing framework that enables this decentralization is the maximum consensus
on the timestamp of the local models.

26

Known Agents
1) - -3 -
2) -234

Agent 3

Agent 1

Known Agents
1)1---
2)12 - -

Known Agents
1) ---4
2) -234

3) 1234
4) 1234

Figure 3.3: Decentralized agent graph. The edges connecting agent nodes denote that two
agents are within the same neighborhood (message passing range).

The maximum consensus algorithm implemented in this framework allows agents to
receive the local information of other agents despite being outside of their message sharing
neighborhood. Being outside of communication range is a common issue when multiple agents
gather measurements over long range distances. Consensus is reached in the network when
each node (agent) has received the maximum model timestamp (and it’s corresponding model)
for each agent, even when they are out of message sharing range. Figure 3.3 shows a simple
example of this at time step 4. Each node in the graph is an agent, the edges connecting
the nodes denote the ability to pass messages between agents. The grey boxes show which
models each corresponding agent has stored in memory at different time steps. Agent one is
not within range of agents three and four. However, agent one is connected to agent two.
Agent two becomes the relay between the agents that are not within message passing range.
Over the course of four time steps, each agent’s model is propagated throughout the agent
graph.

Successful consensus can only be achieved when each node in the graph is reach-
able from every other node, i.e. the network topology graph, which is directed, must be
connected.Therefore, an assumption of connectivity is required for the network to achieve
maximum consensus. However, even when agents are not connected for a time, once they
return to within communication range, they will be updated with all the modified /new models
of their peer agents. Then their global predictions will be as accurate as the other agents of
the system. Therefore, connectivity is only required when the agent needs to provide the
most accurate global prediction possible.

3.3.3 Covariance Matrix Reduction

The viability of this entire framework for use on smaller bandwidth networks may be dependent
on the size of the messages needing to be passed. Covariance matrix reduction is a heuristic
designed to alleviate the most network intensive (in terms of message size) element when
passing the agent’s local model, the covariance of the inducing points A. I developed an

27

adaptive method that reduces the number of elements shared from the A matrix based
upon user/domain knowledge of a reasonable kernel length scale (distance) where points are
essentially independent of each other. Note that I assume memory on-board the autonomous
agent will be relatively cheap, i.e. less consideration is given for the cost to store information
in memory. The focus of this method is on reducing the amount of information that must be
shared across a network in real-time.

Covariance
Reduction
A 1
AZ
A3
A4
AS

Hin

Unchanged Changed

Figure 3.4: Sketched representation of covariance reduction of the A matrix.

A common approach to sending covariance matrices over a network is to send the
diagonal and upper triangular elements of the matrix, since it is symmetric. This yields a
memory cost of (n? 4+ n)/2 for a n X n covariance matrix. I further limit memory cost by only
sending values of A that have changed significantly from the last time A was sent. This occurs
because agents send updated versions of their own model when their model has changed
significantly due to their continual measurements (the heuristic for sending an updated local
model is explained in Section 3.3.4).

Equation (1.7) shows that A is defined using a kernel on the inducing points and
measured points. Under the assumption that the kernel being used is a type of stationary
distance kernel, there exists a distance where the kernel similarity score (weight) of new
inducing and measured points have negligible effects on the previous covariance values. When
this is true, there is no need to re-send the original /unchanged values of A (assuming the
neighbor agent has received the prior A matrix). This significantly reduces the amount of
memory that is sent between neighboring agents.

Each agent determines how much of A to send based on two pieces of information,
the querying agent’s last received A and the user defined low significance factor, Lgr. The
formulation and logic for the heuristic reducing A can be seen in the following toy example.

I illustrate how much message passing memory can be saved using a simplified example
where there are two measured points (denoted by the small green dots in Figure 3.5) and

28

Low Significance Distance

A,

Cusier M \
® () ®; ®
Inducing Points O Measured Points Q

Figure 3.5: Example showing the scenario in which A doesn’t change when new measurements
are far enough away.

an inducing point (shown as the larger pink dot in Figure 3.5) that is representative of the
measured points M; and M,. We create an example that shows when an agent measures a
new point (Mj3) that is "far” enough away from a known cluster of prior measured points
(M, M) and their inducing point [;, then M3 won’t affect the A values of I;. This is due to
exponential nature of RBF kernels. As the distance increases, the similarity between those
two points decreases which lowers the weight that the two points have on each other. We can
then take a user defined distance at which two points become essentially independent. The
user chooses this distance by choosing a low similarity threshold that can be used to compute
a distance between points as was done with « in Section 2.1. Using this general computed
distance between points, the toy example shows the change in A covariance values related
the inducing point I; caused by the new measurement Ms. Define \; as the first covariance
entry (a scalar value) of I; in A before Mj is measured, and define Ay as the first covariance
value of I; in A after M3 is measured. Then, Do = |A; — Ag|, where D¢ is the absolute value
of difference. This shows the amount of impact M3 has on ;. The difference changed value
D¢ can then be used in my covariance reduction heuristic to help reduce the number of A
rows sent in a message.

The D¢ value is used for comparison in the following covariance reduction heuristic.
It is a heuristic in that it is not exact, but gives a user adjustable approach for determining
unneeded information in the A covariance matrix. The value D¢ gets checked anytime an
agent is queried. Assume Agent 1 has a model from Agent x, where the model is represented
as B,. B, is made up of mean values (m) and covariance values A as described in Section 3.2
where x denotes whose model it is. The inducing point covariance matrix in this example is
denoted as Ap, with time step ¢, thus written as Ap, . Assume Agent 2 has a more up to
date local model of Agent x, with the A Bariny matrix. Therefore, Agent 1 queries Agent 2
to send it this more up to date version of model B,. In the query, Agent 1 notifies Agent
2 that it has already received the B,, version of the model. Agent 2 can then look at all
the time stamped versions of the model K it has saved (note that each agent will store all
versions of each model it encounters, relying on the assumption that on-board memory is
relatively cheap). In this example, Agent 2 has two versions, B,, and By, Agent 2 then
performs the covariance matrix reduction heuristic between Ap, and A Barin)” Any row of

29

Lgp 0.05 | 0.10 | 0.15 | 0.20 | 0.25

Total Sizes in MB | 50.04 | 29.23 | 19.81 | 15.18 | 12.48
Total Messages | 17964 | 11688 | 8508 | 6712 | 5512

Table 3.1: Covariance reduction and Bhattacharyya heuristic effectiveness. Message sizes and
message frequency decrease as the similarity score threshold defined by the user increases.
Five separate tests run with five fully connected agents.

Berin) where each value in the row has changed less than D¢ from the previous A B,, Matrix
will not be sent. Agent 2 sends this reduced matrix, and Agent 1 uses the old values from
Ap,, and the received A Betriny covariance values to create a A’y . matrix so it can have the

T(t+1

most up to date information for Agent x.

The effect of this covariance reduction heuristic on message memory size is seen in the
five test results shown in Table 3.1. This table illustrates that the total number of messages
and message size throughout a 1000 time step simulation decreases as Lgp increases.

3.3.4 Message Frequency Heuristic: Bhattacharyya Distance

As mentioned in Section 3.3.2, an adaptable message passing frequency is another strength
of this decentralized system. Messages are communicated when an agent’s local model has
changed significantly, as determined by this Bhattacharyya distance heuristic. Using the toy
problem from Section 3.3.3, the user can define a low significance factor Lgr to control how
often messages are sent.

In the first step (ping) of the message protocol, each agent will find the Bhattacharyya
distance between their most recently computed local model (m, and A,) with the last
broadcasted model (my, and Ap). To find the distance between these two models, I use the
well-known equation for Bhattacharyya distance [19]

.) 1 det(P)
Dp = ~(m, —mp)" P~ (m, — my) + 51 ’ e
B 8(b) (b) 2 " <\/det(Ar)det(Ab)> ()
where A, + A
p_ % (315)

is a new covariance matrix being the average of A, and A,. With Dg computed, I can then
compare it to the pre-computed distance between the two distributions described in the toy
example in Section 3.3.3. Referencing the toy example again, there exist two distributions
to compare: the distribution that existed with My, M,, and I;, and the second distribution
that added Mj3. The Bhattacharyya distance between these two toy distributions is denoted
as Dr (note that Dy is computed once before the agents start measuring). The distance
Dy shows when a new measurement is no longer close enough to be described well by old
data (because the data is too far away for there to be any dependence between them). When
Dg > Dr, it is reasonable to determine that the old model (m; and A;) no longer describes
the new model (m, and A,) well enough for prediction, which then triggers the agent to

30

inform other agents that its model is ready to be queried; i.e., other agents now know that
an updated model is available. Thus the agent will update the timestamp for its own model
(alerting neighbors in the ping step) which will then trigger maximum consensus to occur for
all neighboring agents and thus the whole system.

The effect of this Bhattacharyya distance heuristic on the total messages passed is
seen in a simple experiment conducted where the Lgr value is increased as seen in Table 3.1.
As Lgp is increased, the number of total messages decreases as expected.

Impact of Lsp

The advantage of using these heuristics is that it allows the user to determine how aggressive
they are in their memory saving approaches. Increasing the value of Lgp is used to reduce the
A covariance matrix that needs to be sent in a message described in Section 3.3.3 and, and
increasing Lgp reduces how often new messages need to be sent as described in Section 3.3.4.
The higher Lgp gets, the fewer numbers of A entries get sent, according to the covariance
matrix reduction heuristic, and the less often agents will update the timestamp on their own
models, which will cause less messages to be sent overall. Thus allowing lower data rate
message passing such that DSGPR can be viable for decentralized modeling. However, these
heuristics allow for user flexibility if their network bandwidths can handle large amounts of
data, then users can lower Lgsr and higher numbers of the A covariance rows will be sent
between agents, as well as an increased rate at which each agent will update their model’s
timestamp. All of this is determined by the user defining what significance levels (Lgp),
which may be chosen to best fit the application scenario and hardware being utilized. Note
that the usage of Lgp is completely kernel dependent. Domain knowledge is required to make
the appropriate judgements on which kernel is to be used and what should be chosen for the
length scale.

31

Chapter 4
Results and Analysis

Extensive testing shows the viability of the DSGPR framework presented in the above
chapters. This chapter shows the strengths and weaknesses of this approach and provides
insight into the specific use cases where this framework is best suited. In this chapter,
we first describe the simulation setup. Second, DSGPR is compared to exact GPR and
variational free energy sparse Gaussian process regression (VFE-SGPR), which is explained
below. This comparison consists of showing how DSGPR is more computationally efficient
in inducing point selection (Subsection 4.2.3) and in re-measuring areas of the boundary
space (Subsection 4.2.2) while maintaining competitive predictive accuracy (Subsection 4.2.1).
Third, the Monte Carlo (MC) runs are presented and analyzed showing viability of this
system for some real-world applications. The DSGPR framework is shown to perform well
at prediction and uncertainty reduction in Subsection 4.3.1. The computational cost of the
entire framework is outlined in Subsection 4.3.2. And finally, Subsection 4.3.3 outlines how
the message passing performs such that DSGPR can be considered for real-time systems.

4.1 Simulation Details

In these tests, I simulate agents traveling through two or three dimensional space as seen in
Figure 4.1. Agents travel at a constant velocity, with the assumption that they maintain that
constant velocity while travelling through any wind-field, i.e. the agents were not deterred or
negatively affected by surrounding weather conditions. Agents are tasked with prediction at
evenly spaced test points throughout a boundary space. All agents share the same test points
for prediction, meaning that each agent is capable of predicting across the entire boundary
space (note that agents are not required to have the same exact test points, but I choose this
for simplicity). The wind-field was made to match the number of spatial dimensions (2D
or 3D) for each specific run. Note that the DSGPR framework is not limited to predicting
3D vector fields, the number of dimensions for prediction can vary from a scalar field to any
number of dimensions. Figure 4.1 also shows how the agents have a sphere around them
denoting their message passing range. In many large, real-world applications, agents will not
always be within communication range of each other (the magenta line connecting two agents
shows that they are within in communication range). This was also accounted for in these
simulations and is shown in the figure.

Tests ran for a pre-determined, specified number of time steps, where time steps
can represents a single second, or be adjusted to varying use cases. As will be seen in the
results, the framework is able to handle real-time use cases where a time step is set as 1 — 2
seconds. Agents measure the wind-field each time step at its current location. Each wind-field
measurement has added sensor noise of 0.4 units added to it. The ground truth wind-field

32

Figure 4.1: Hlustration of simulating multiple agents measuring a cubic wind-field and passing
messages according to pre-determined message passing ranges.

was simulated using python package gstools [23]. Gstool’s core tool is the spatial random
field generation. Their process of generation is based on the work done in [16] where a
randomisation method is presented for generating random fields. This generation occurs
through a specified covariance model or semi-variogram. The wind-field covariance model
chosen for these simulations is Gaussian with a variance of 25 and a length scale of 38.

Each agent is initialized in the boundary space at a random starting position. And the
agents travel within the bounding area by following randomly generated way-points. Note
that uncertainty and MSE results would be improved with intelligent path planners, this
is left as a future research direction. The two RBF kernel hyper-parameters presented in
Equation (1.3) (o; and \), were tuned offline and set to be fixed for all agent’s global and
local models. Decentralized online tuning is addressed in other works [3, 17, 39] and is left as
a future research avenue for this particular framework.

4.2 DSGPR Model Comparison

The DSGPR framework is compared to an exact GPR framework and a variational free
energy (VFE) sparse Gaussian process regression framework (VFE-SGPR) [35]. VFE-SGPR
is a popular and seminal SGPR approach where instead of making a sparse approximation
on the likelihood like [32] and [31], the approximation occurs on the approximate posterior.
VFE-SGPR and exact GPR are used to serve as a comparison to the DSGPR approach,
allowing for analysis of the model’s strengths and weaknesses.

33

MSE Comparison Between Exact GPR and DSGPR

1 agent(s) 2 agent(s)
' i \ —— DSGPR
3.0 1 1 ‘\ --- Exact GPR
2.5 - 1
LU
%3] -
= 2.0 ‘:L‘L ‘\
1.5 A __l-‘:.—i L\
Ly E - 7 “\“-_.__
T T T T T T T T T T
3 agent(s) 4 agent(s)
201 i
1.5 - \ 1
L
m -
= 1.0 - L‘-_
0.5 1
"\..,_.__,_‘;__‘r e
0 250 500 750 1000 0 250 500 750 1000
Timestep Timestep

Figure 4.2: MSE comparison between Exact GPR and DSGPR for 1, 2, 3, and 4 agents.
DSGPR set with same parameters as MC runs described in Table 4.1. All agents are fully
connected for the duration of this test (i.e., message passing density of 1.0, refer to Figure 4.7).

Subsections 4.2.1, 4.2.2, and 4.2.3 show test results regarding the DSGPR framework
compared to centralized exact GPR and VFE-SGPR. Subsection 4.2.1 shows how exact GPR
compares to varying number of agents in terms of MSE. Subsection 4.2.2 shows how the
uncertainty (global trace) decreases over time and how DSGPR is more efficient at decreasing
uncertainty. Finally, subsection 4.2.3 shows the advantages of using RC for inducing point
selection; the computational cost and MSE are compared between the three models where
MSE is scored against the ground truth values of the vector field. These results help show
the advantages and trade-offs of DSGPR against these other well-known algorithms.

4.2.1 Exact GPR MSE Comparison

First, I compare an exact GPR model to my DSGPR framework in terms of accuracy. An
exact GPR model will always perform better in terms of MSE when compared to sparse
models. This is due to sparse models giving up some information (i.e., all the measurement
data) for a smaller representation and computation cost. This brings up the question, how
much better does exact GPR perform compared to my DSGPR model? To answer this
question, a small test was performed between exact GPR and DSGPR.

Given the O(n?®) computational complexity of an exact GP, I do not include exact GP
in the many MC runs. However, I show results for a single run with 1, 2, 3, and 4 agents in
Figure 4.2, where all agents are fully connected in terms of message passing.

34

Figure 4.2 shows that as the number of agents increases, there is minimal to no change
in the performance of MSE. In the figure, the exact GPR (shown by the dashed black line)
performs only marginally better in terms of MSE when compared with DSGPR (shown
by the blue line) for agent sizes up to 4. The results certify that this DSGPR framework
is comparable to an exact GPR model in terms of MSE while being tractable in terms of
computational feasibility for an increasing number of agents as shown in subsection 4.2.3.

4.2.2 Decreasing Uncertainty Efficiently

One key advantage of DSGPR that is seen when comparing to exact GPR and VFE-GPR is
the re-sampling ability of this framework. Once an agent has covered a space, all the inducing
points are set and don’t need to be adjusted.

RC can create these inducing points quickly and effectively with a guaranteed upper
bound on the number of inducing points. When coverage has occurred (i.e. no regularly new
inducing points), the agents may be tasked with re-sampling from certain regions to reduce
the uncertainty. To show this advantage of our framework’s re-sampling ability, a test using
all models (exact GPR, VFE-SGPR, and DSGPR) was run for 2000 time steps, where a
single agent covers the boundary space (20 x 20 x 20) and then re-traces its path again. We
can see that the agent is in an area that already has inducing point coverage from time steps
650 - 1250, 1250 - 1510, and 1510 - 2000 because there are no spikes in time from the cost to
re-cluster (in other words it is re-measuring places it has already been at these time steps).
The re-sampling comes with little computation cost as seen by the blue line in Figure 4.3. To
accomplish the same re-sampling with an exact GPR (shown in the black dashed line), takes
a higher computational cost. The VFE-SGPR model has low computational cost once it has
the inducing points optimized, but getting to that point is more expensive than DSGPR as
seen by the red spikes in Figure 4.3. DSGPR is the best choice in this instance, it reduces the
uncertainty at a similar rate as an exact GPR model, while not accruing the same amount of
computational cost.

This advantage of DSGPR comes into play when is is necessary to make predictions
with low uncertainty. The use case may require a certain threshold of certainty regarding
prediction and the agents running DSGPR would be able to provide that confidence with
a lower computational strain as compared to the other models. As seen in Figure 4.4, the
uncertainty (global trace) decreases consistently over time. There are jumps of uncertainty
decrease when re-clustering occurs. Also note that even when re-clustering does not occur,
the DSGPR model decreases uncertainty even as areas already visited are re-measured. Note
that all three approaches decrease the trace when new measurements occur, but the DSGPR
approach has a much smaller cost of computation for the same result. Also observe that
DSGPR performs better in terms of uncertainty reduction compared to VFE-SGPR; one
potential reason for this result is the adjustments made to the VFE-SGPR algorithm such
that it can be compared in a real-time data streaming setting. The optimization of inducing
points is implemented with early stopping to allow it to be more competitive in terms of
computational time compared to DSGPR, this early stopping does not allow optimal inducing
point placement which may have affected its performance in terms of uncertainty reduction
negatively.

35

Model Time Comparisons

10
=== Ceniralized Exact GPR
----- Centralized VFE-SGFPR
8 —— 1 agent(s) DSGPR summed times
5 6 }
S |
2 i
(1) 1
@ a
= i
g 4
= i
2
0 i o A AR
0 250 500 750 1000 1250 1500 1750 2000

Timesteps

Figure 4.3: The total cost in terms of computation time of each model (exact GPR, VFE-
SGPR, summed agents running DSGPR). Note the heavy cost of optimization for VFE-SGPR,
and the cubic time of exact GPR.

Trace Comparison

=== Cenftralized Exact GPR
----- Centralized VFE-SGPR
—— 1 agent(s) DSGPR

800

800

0 250 500 750 1000 1250 1500 1750 2000
Samples

Figure 4.4: Notice how the trace of the global covariance matrix (uncertainty) decreases even
when sampling of the same area occurs.

36

4.2.3 Inducing Point Selection Comparison

Model Time Comparisons

—— 2 agent(s) DSGPR
=== Centralized Exact GPR

20 ... Centralized VFE-SGPR
w15 =
2 X
o i MSE
[= .
@ S |
S k“h“*‘k |
= 10 - N
g \QK
@ d
= Tiime R U
. TN
05 - $5 R pi =S
WW‘L L AR PN
00
0 50 100 150 200 250

Timesteps

Figure 4.5: Time and MSE comparisons for DSGPR, centralized exact GPR, and centralized
VFE-SGPR. DSGPR was run with two agents, their MSE is averaged and their times are
summed.

Here, I explain how DSGPR has low computational cost in choosing inducing points
compared to VFE-SGPR while maintaining competitive accuracy (MSE).

Section 2 describes how RC will adaptively determine the number of inducing points
and select their positions. RC has a small computational cost compared to common SGPR
inducing point optimizations. I show the optimization cost of radial clustering by comparing
it with the optimization cost of the variational free energy SGPR (VFE-SGPR) approach
developed in [35]. In this work, Titsias, et. al maximize the evidence lower bound (ELBO)
to calculate optimal inducing point locations. Note that the ELBO is the lower bound
for log-likelihood of the observed data given kernel hyper-parameters and inducing point
locations.

When the evidence lower bound (ELBO) approach is used for inducing point location
optimization, it becomes infeasible to re-optimize the inducing points. Figure 4.5 illustrates
the results of a test where three GPR approaches are compared: a centralized exact GPR
model (shown in dashed black), a centralized VFE-SGPR model (shown in dotted red), and
two agents running RC with DSGPR (shown in blue). The figure shows that as the number
of inducing points increase, the VFE-SGPR model requires large amounts of computation
time to optimize the inducing point locations. To make the comparison fair, the VFE-SGPR
model is re-optimized based on when each DSGPR agent re-clusters (this is an advantage that
the standard VFE-SGPR model does not have). The original VFE-SGPR ELBO approach
was implemented with early stopping gradient descent. Another advantage given to the
VFE-SGPR approach is knowing how many inducing points are needed to represent the data.

37

Even with these advantages, the VFE-SGPR method is too slow to be a viable option for
real-time inducing point optimization (in comparison to RC).

Figure 4.5 also shows the mean-squared-error (MSE) comparison for these models;
note that all methods are competitive in terms of MSE (with centralized exact GPR being
consistently the most accurate) with our decentralized approach being the best option in
terms of time. Section 4.3.2 provides a more thorough testing/analysis of the DSGPR model
computation times. However, it is evident from this example that RC provides fast inducing
point optimization times with nearly identical resulting MSE values, as compared with exact
GPR and VFE-SGPR models.

4.3 Monte Carlo Runs

Parameters with individual test runs

100 Different Random Seeds

COLELEE vt
AL

4 \

1, 2, 3, 4,5, 10, and 25 Agents

e l l I | l |

1.0, 0.5, 0.25, and 0.10 Neighborhood Densities

L | | |

Figure 4.6: Breakdown of individual test runs given parameters of random seeds, number of
agents, and neighborhood density.

I use Monte Carlo (MC) test runs to show that DSGPR is a viable real-time option
for different numbers of agents. For each of 100 random seeds (pink box in Figure 4.6), runs
are made with 1, 2, 3, 4, 5, 10, and 25 agents (green box in Figure 4.6). The random seeds
create a new distinct wind-field, random agent starting positions, and random way-points
for each agent. For each number of agents test, there are four neighborhood density tests
that were run (blue box shown in Figure 4.6). The neighborhood densities represent the
percentage of the boundary space that is covered by a single agent’s message range. Since this
can vary in a real-world scenario, I change the tests according to message passing densities of
1.0, 0.50, 0.25, and 0.10, where the density indicates the percentage of the boundary space

38

Density 1.0

Figure 4.7: Message passing distances for each agent at the varying message passing densities

that is covered by the agent’s spherical communication radius. This relationship is shown
in Figure 4.7, where the spheres show the communication region for an agent positioned at
(0,0,0) and the blue box is the boundary space. Note that an agent with a density of 1.0
will have communication connectivity with all other agents no matter where they are in the

boundary space (shown by the light pink sphere).

Parameter Name/Descr. Value
Boundary Space Side Length 30
Test Points 1000
Kernel Length Scale 0.085
Kernel oy Term 1
High Kernel Significance Factor 0.8
Low Kernel Significance Factor 0.15
Re-Cluster Significance Factor 0.6
Wind Sensor Error 0.4
Kernel Laplacian

Table 4.1: Name and values of the significant parameters used in simulation.

39

Each of these tests is run in a fixed cubic boundary space so as the number of agents
increases, the reduction of MSE and uncertainty drops more quickly; a single agent can not
traverse the cubic boundary space as quickly as a large number of agents.

The simulations all had some basic parameters that are noted in Table 4.1 for
completeness and reproducibility. Notice how there are no units for these parameters,
this is because the framework is scale invariant. It will be effective given any units and scale.
The performance of DSGPR is more dependent on the sample rate than the units defining
the size of the space. The wind sensor error is will also be in the units of whatever the units
are of the magnitude of the wind measurements.

4.3.1 Mean-Squared Error (MSE) and Uncertainty

In this section, I show how the MSE error and the global trace (uncertainty) changes as a
factor of the number of agents and communication densities.

The average MSE over all MC runs for different groups of agents is shown in Figure 4.8.
As expected, the MSE consistently drops over time. Note that as the number of agents
increases the MSE will decrease more rapidly. Given long enough simulation time, there
will eventually be complete coverage of the bounding areas and the MSE for all numbers of
agents would eventually decrease to similar MSE results.

MSE per agent all MC Runs

- Agent1
. Agent 2
44 i e Agent 3
i — - Agent 4
%. : ——- Agent5
f§ - - Agent10
39 M,
B Agent 25
e
N g
2]
2 “11s 9,
AT
A
1 ‘t{\ :
R \RY
14 i \\\
. T
0l o BRIl B ko R A Al i
T T T T T T
0 200 400 600 800 1000

Timestep

Figure 4.8: Average MSE across all MC runs and across each agent grouping. MSE at each
timestep is plotted.

On top of MSE comparison for agent groupings, I use the message passing density
illustrated in Figure 4.7 to explore how message passing affects the rate of MSE reduction.

40

End Average MSE Density Comparisons Between Agents

2 Agents 3 Agents 4 Agents
0.8 ° ° L] ° 0.8 0.8
o
[}
0.7 4 0.7 o ° o o 0.7
o o o e
o
0.6 0.6 4 0.6 4 °
° °] & 5 o g
05 054 054
g 3 8 o o 8 B
0.4 0.4 0.4 2 o
0 o o o
0.3 0.3 4 0.3 4 €
8 8 o
0.2 0.2 4 0.2 4
0.1 0.1 0.1
0.0 T T T T 0.0 T T T T 0.0 T T T T
1 0.5 0.25 010 1 0.5 0.25 010 1 0.5 0.25 0.10
w
[02]
= 5 Agents 10 Agents 25 Agents
0.8 0.8 4 0.8 4
0.7 0.7 4 0.7 4
0.6 0.6 1 0.6 1
05 054 054
8 8 8 §
0.4 ° o 0.4 4 0.4
o o o
03 034 ° o o 8 034
wal 8 8 24 o ° ° 0.2
¢ -] -]
o o
0.1 0.1 i i 0.1 g g g g
0.0 : - : T 0.0 T T T T 0.0 T T T T
1 0.5 0.25 0.10 1 0.5 0.25 0.10 1 0.5 0.25 0.10
Density Type

Figure 4.9: MSE box plot of each agent and their respective densities averaged across all MC
runs. The plotted MSE value is the very last average agent MSE score of the run.

Figure 4.9 shows the MSE for each agent and density at the end of the 1000 time step
simulations, averaged across all MC runs. The neighborhood densities are represented on
the x-axis and decrease as we move right across the x-axis. The yellow line in the middle of
each box is the median of the averaged MSE across all 100 runs. The bottom and top line of
the box is the first and third quartile respectively. The distance between the first and third
quartile is known as the inter-quartile range (IQR). Each whisker extends a distance of 1.5x
the IQR. The unfilled dots extending passed the whiskers are outliers of the data.

This plot (Figure 4.9) only shows the MSE at the final time step. From it, we see that
when agents are farther apart (or cannot pass messages according to neighborhood bounds
i.e., message passing densities) each agent can have less global information (given a snapshot
of the current model predictions). Note that accuracy degeneration is strongly evident in
the 0.10 density case (i.e., when agents have an extremely limited message passing range);
however, there is little MSE variation for the other densities. We can observe that when
agents are not fully connected (in the 0.5, 0.25, and 0.10 density cases) the agent models are
propagated throughout the network effectively enough that the drop in prediction accuracy
is insignificant. This trait is extremely advantageous for agents surveying larger boundary
spaces. Agents that can predict well even when they are not always within message passing
range of their neighbors enables extended exploration of large boundary spaces. Also, as
expected, the higher the number of agents (e.g., 5, 10, and 25 agents) in a fixed boundary

41

10 Agent(s) MSE spread for a single random seed run

Low
2.0 A High
— Mean
1.5
600 - 900
w 0.05 A
E 1.0
) 0.04
0.03 A
0.5 A
0.0
T T T T T T
0 200 400 600 800 1000
Timestep

Figure 4.10: MSE low, high, and mean plotted for a 10 agent group from a single MC run.
All message passing densities are considered in this plot. Low MSE variation is seen across
all 10 agents.

space, the better the resulting prediction accuracy becomes, regardless of the message passing
density.

After reviewing MSE variation given agent groupings and changing neighborhood
densities, it is important to look at the spread of MSE within a single agent grouping. This
is done to ensure that all agents perform adequately well and no discrepancy is being hidden
by averaging across agent groups for individual runs. The spread is measured by plotting the
low, high, and mean MSE for an agent group each time step in a randomly selected MC run.
Figure 4.10 shows that while the 10 agents begin with high variation in their MSE scores,
once message passing and exploration has occurred, the agent MSE variation is minuscule.
The plot in Figure 4.10 is calculated across densities as well, showing that all agents perform
within similar ranges for a given agent group even in varying message passing densities.

Along with analyzing prediction accuracy, determining whether or not there is confi-
dence (low uncertainty) in those predictions is also important. Figure 4.11 depicts the trace of
the global covariance matrix (uncertainty) averaged across each agent group for all MC runs
(including the different density configurations). As expected, the trace decreases over time
as new areas of the boundary space are explored as well as when areas are re-measured by
the agents. The more agents exploring this fixed boundary space the quicker the uncertainty
decreases. This is caused by having more agents able to explore more of the boundary space
quicker than runs with less agents. This trace plot is similar to the average agent MSE plot
in Figure 4.8 because both MSE and uncertainty will decrease as more diverse measurements

42

Global traces for all MC Runs

: - Agent1l
9001 * - Agent2
800 - Il. — Agent4
k} g ——- Agent5
1 N "
700 4 i AR Agent 10
S Agent 25
L N
L
w i v MR N ey,
§ 600 RN % X
= \ L T
. ",
500 - \ T P
. - e,
-~ = L
. -“"‘"-..l‘ -
400 1 A TR B b
300 1 N gy g T _
200 4
T T T T T T
0 200 400 600 800 1000
Timestep

Figure 4.11: Global model covariance trace (uncertainty) results for all MC runs. The trace
is taken from the global decentralized model provided by each agent and then averaged across
all the agents participating in that run. Then it is averaged across all 100 random seed runs
(including each density).

occur in the boundary space. Note that the trace (uncertainty) would decrease much more
quickly and efficiently given an intelligent path planner that directs agents to high uncertainty
regions rather than this current approach of having each agent choose random waypoints.
For this work, it suffices that the overall global uncertainty is being reduced as agents explore
the boundary space over time.

4.3.2 Computational Time

In this subsection, I examine the total computational cost for the model. To understand
what components are the most costly, I show what the cost would be when not including the
global decentralized computation and the computational strain for RC, message passing, and
the global decentralized prediction portion of the framework. From this analysis, it is clear
that the highest cost is the decentralized prediction computation of the global mean and
covariance. Because the decentralized prediction is not necessarily needed each time step,
this result provides more evidence for real-world viability of the DSGPR framework.

Exact GPR models have a computational complexity of O(n?), VFE-SGPR models
have a computational complexity of O(nm?) where n is the number of data points and m is the
number of inducing points. The DSGPR model presented in this work has a computational
complexity of O(m?) where m denotes the total number of inducing points for all agents.

43

Time for all MC Runs

- Agent 1
3.5 1 Agent 2
- Agent 3
309 — - Agent4
——- Agent 5
254 - - Agentl0
Agent 25
wl
B 2.0+
o
&
1.5
1.0 4
0.5 1 _
004 & e e T AT e R THIS TR T P
T T T T T T
0 200 400 600 800 1000

Timestep

Figure 4.12: Total average DSGPR time results from all MC runs averaged across each agent.

Each individual agent has some m; inducing points that are combined to create the global
model. To determine the viability of this system for real-time performance, it is imperative
to know how DSGPR performs in terms of computation time. For each MC run, the time to
compute each major portion of the framework was tracked, allowing an analysis on the run
time of the framework.

Figure 4.12 shows the average computation time for each agent averaged across all MC
runs (including all density configurations) computing decentralized global model at each time
step. Note that, as expected, the average times increase as the number of agents increases
and the biggest jump in average times occurs between 10 to 25 agents. From this figure, it is
evident that this model is not realistic for a large numbers of agents (25+) with sampling
intervals of 1 second. However, it is viable in its current form (with a 1 second sampling rate)
for real-time prediction with 1-10 agents.

Another consideration for why DSGPR can be utilized in real-time is because the
global model is not always needed (i.e., it is not always required for decision making). If this
is true, then it would only be computed as needed (e.g. when queried for by a user or needed
by an agent). Figure 4.13 shows the computational time in seconds for running DSGPR
without computing the decentralized global model. We can observe that the computational
cost becomes more quadratic than cubic comparatively. The time includes the local model
computation time, RC, event triggering, and message passing computations; the final global
Gaussian process equations for the global mean and covariance (Equation (3.10)) are the
only computations not included in this figure’s plot. Note that all the global information is
available and ready to be computed, but the global mean and covariance at the test points is

44

not computed. Depending on the problem to be solved, there are situations/use cases where
the global mean and covariance would not need to be computed each time step. The rest of
this section shows the computational cost of RC and message passing.

45

Total times NOT including decentralized predictions

0.07 4. Agent 1 7
— Agent 2 /‘
0.06 4 | == Agent 3
— - Agent 4
e | e Agent 5
’ - - Agent 10
--— Agent 25
5 0.04
=
5]
[%)
A 0.03 7
0.02 4
0.01 +
0.00 T T T T T T
0 200 400 600 800 1000
Timestep

Figure 4.13: Total model times for all MC runs NOT including the global DSGPR model
computation time.

Cluster times for all MC Runs

....... Agent 1
0.0064 Agent 2 H
T B Agent 3 E
— - Agent 4 |
0.0059 ——. Agent 5 H
- - Agent 10 H
0.004{ ~ Agent25 %
5
=
S
2 0.003 4
0.002 +
0.001 4
0.000 4
T T T T T T
0 200 400 600 800 1000
Timestep

Figure 4.14: Average agent clustering times from all MC runs

46

The cost of RC for each agent is illustrated in Figure 4.14; we see that clustering
only accounts for a small portion of the computation time. Average agent clustering scales
according to O(n?), as mentioned in Section 2, because radial clustering is only dependent
on each agent’s local measurements. Since each agent is traveling at the same speed in these
tests, they are gather close to the same number of measurements. Hence why all the RC
computational times are extremely similar for all agent groupings and all message passing
densities.

The message passing heuristics outlined in Sections 3.3.3 and 3.3.4 also have a
computational cost that must be analyzed. Figure 4.15 shows the average agent’s time to
send messages averaged across all MC runs. This plot averages the time to send messages
across all message passing densities.

Message passing times for all MC Runs

- Agent 1
Agent 2
0.044 - Agent 3
— = Agent 4
—— Agent 5
- - Agent 10
— Agent 25
%]
=
=
o
=)
& 0.02 A
0.01
0.00 | e emremvseroronin
T T T T T T
0 200 400 600 800 1000

Timestep

Figure 4.15: Average agent message passing times from all MC runs. This time includes
all protocols mentioned in Section 3.3.2 and computation times of both heuristics from
Sections 3.3.3 and 3.3.4.

It is clear that the bulk of the total time does not lie in clustering or message passing
parts of the DSGPR framework. Most of computation resides inside the actual decentralized
sparse Gaussian process regression calculations outlined in Section 3.2. Figure 4.16 shows
how the DSGPR makes up almost all of the total computation time. This high computation
cost is expected due to DSGPR calculations being O(m?). As the number of agents increases,
so does the total number of inducing points (denoted as 7). This high computation cost
shows that if this calculation is not required each time step, it furthers the case for DSGPR
being real-time viable. Future work could be done to run an optimization or radial clustering
on top of all agent’s inducing points to creating another layer of summarization thus reducing

47

the computation time of the final global DSGPR calculation. I leave that as a future avenue
of research.

Decentralized model times for all MC Runs

- Agent 1
3.5 1
Agent 2
- Agent 3
3.09 — - Agent 4
——- Agent 5
254 - - Agentl0
Agent 25
5 2.0
[=1
[=]
2
& 1.5 4
1.0 4
0.5 1
o4 = e et e e et P T O TS SPHTS M TG STH B ISP
T T T T T T
0 200 400 600 800 1000

Timestep

Figure 4.16: Average agent DSGPR computation times from all MC runs. This shows the
cost of computing the global decentralized model. This global model will not be computed
each time step in practice (unless the global model is required each time step for a different
process).

4.3.3 Message Passing Memory Considerations

I present the performance of the message passing protocols and heuristics when run with
varying number of agents and message passing densities. It is shown that the amount of
memory sent between agents is small enough to be viable for real-world use given existing
reasonable network data rates.

The message passing protocol presented in Section 3.3.2 can be analyzed through the
MC tests. Because of necessary bandwidth restrictions, it is imperative that the data rate or
total message size does not exceed reasonable message passing networks. Figure 4.17 shows
the data rate in terms of Kilobytes per second (KBps) for all agent groups for the MC runs.
The data rate is computed by summing up the total memory sent throughout all previous
time steps and dividing it by the total number of time steps. Thus giving the rate at which
data is transferred. As expected, the data rate increases as the number of agents increases.

Along with increasing number of agents, the data rate is also affected by the message
passing density as described in Figure 4.7. We observe in Figure 4.19 that the density of
0.25 has the highest data rate out of all densities. This is due to the final protocol for

48

Bit rate per timestep per average agent group, all MC

25 == Agent1l
Agent 2
- Agent 3
s0d|™ = Agent 4
——- Agent 5
- - Agent 10
Agent 25
m 127
¥
=
=l
10

T T T T T
0 200 400 600 800 1000
Timestep

Figure 4.17: Average agent DSGPR message passing data rates (KBps) averaged across
densities for all MC runs. As expected, the amount of data to send increases with the number
of agents.

updating an agent’s model such that other agents will query for the new model found in
Section 3.3.2, the third bullet point. The low message passing density causes more new agent
connections to occur as agents traverse the boundary space. Once a new connection occurs,
the agent will send its most up to date model. Other agents already in communication
with this agent will then query for the new model thus causing more message to be passed
than in the 1.0 density case. This only occurs in the cases where message passing density is
below 1.0. This feature increases the total number of messages sent, but enables agents that
are spread out with low message passing density to have access to more up to date models
thus improving global accuracy and uncertainty at a faster rate than sending an older less
informative model. Another approach would be to not send an updated model with every
new connection (expunging the third bullet in Section 3.3.2), this would decrease the total
number of messages sent for message passing densities lower than 1.0 while decreasing global
model performance.

While the data rates shown in Figures 4.17 and 4.19 are within manageable network
ranges (assuming 100 Mbps), it is helpful to know the most messages a single agent can
possibly send in a single time step given the different densities. When the message passing
density is 1.0, the most messages that can possibly be passed by a single agent in a single
time step is A — 1 where A is the number of agents in the entire system. This is due to the
fact that no agent will ever need to send any model besides its own to another agent. When

49

Max Messages

25

20

0 5 1 D

Figure 4.18: Plotted function showing the maximum number of messages that could be sent
by an individual agent in a single time step. For illustration purposes, A is chosen to be
10 in this figure. [is the variable input on the x-axis, and the y-axis is the max number of
messages that would be sent given a specified .

an agent updates its own model, it will then send it to A — 1 agents for the 1.0 message
passing density case.

When the agents are not fully connected, then there is the potential to send more
than the fully connected max number of messages in a single time step. When not connected,
the max number of messages that can be sent is [(A — I) where I is the number of agents
that could potentially query A — I models from an agent that knows all A — I models. This
number will never be greater than (A/2)?, this is seen in Figure 4.18.

This equation is shown true by a simple example. Assume A = 50, and I = 25 such
that I is the agents which are completely isolated from the other 25 agents. Assume that
agent W knows about 25 agents in the system (including itself). Assume that all I isolated
agents come into contact with agent W within the same time step (i.e., all are simultaneously
within message passing range). Now agent W must sent the 25 local models it knows about
to all I isolated agents. Since A = 50 and I = 25, then the max number of messages that
can possibly be sent by agent W is 25(50 — 25) which resolves to 625 messages for that time
step. We can see if I = 24 then the resulting number of messages is 624, and if I = 26 then
the result is also 624. Thus showing that the max number of messages that can be sent is

50

indeed (A/2)?. This example shows how the lower density groups will have greater data rate
costs than the fully connected 1.0 density.

We can observe in Figure 4.20 that the highest amount of memory sent by an agent
during a single time step was only 50 KB. This shows the real-world viability for this system
given the reasonable existing data rates of 100 Mbps. Even in the worst case scenario for 1000
time steps, most existing networks can handle this type of traffic. We can also note/observe
that both Figures 4.19 and 4.20 are scaling at rate similar to a linear rate. Thus showing
the scalability of this message passing system given varying message passing densities (i.e.,
varying agent connectivity and sparsity).

51

Bit rate per timestep per average density group, all MC

- Density 1
- Density 0.5 ™
204 -~ Density 0.25
— - Density 0.10
-
15 - e at’
a® - L
5 -
= 2 Bt
2 10 iy
5_ P
0o{ £L---7
T T T T T T
0 200 400 600 800 1000
Timestep

Figure 4.19: The average data rate at each time step for each density group averaged across
the number of agents.

Message size per timestep per average agent group, all MC

- Agent 1 i
501 — Agent2 ;zg"?
- Agent 3 .*%ﬁ%
— = Agent 4 p w;
40 1 ——- Agent5 gﬁ
- - Agent10 ﬁﬁﬁ?ﬁ*
--—- Agent 25 #éw’-
30 4 e
2 el
Ll
£ ol
20 - 3 -
e
alr
> s
g 4 e wera” it
10 - _,.."" =" ..‘.h,l-“_"‘lq_\'l.-r'-a‘*
,‘; aip ™ sy eV o i
N sawtentt v bendawa™
> e g sy ;,,}--t,paﬂll“""‘
foas w;m:g}:ﬁ.?_m::u&!- ey WA
T T T T T T
0 200 400 600 800 1000
Timestep

Figure 4.20: Message size per time step averaged across message passing densities. We can
observe memory size scales at a linear rate for the first 1000 time steps.

52

Chapter 5
Conclusion

This paper presents a DSGPR framework with efficient message passing along with
event-triggered adaptive inducing points. The purpose of this framework is to allow multiple
agents to perform real-time perception of surrounding scalar or vector fields and make quick,
well-informed decisions based on that perception.

This work focuses on a specific use-case of multiple aerial agents predicting a three
dimensional wind-field with uncertainty bounds on that prediction. Prediction and uncertainty
are performed through the presented formulation of DSGPR in Section 3.2. The contributions
made in this thesis to accomplish this task more effectively are as follows:

1. A clustering algorithm providing an adaptive number of inducing points and their
locations for decentralized SGPR.

2. A guaranteed two and three dimensional upper bound for those adaptive inducing
points.

3. An effective event-triggering algorithm for updating inducing point values and locations.

4. A decentralized SGPR framework equipped with message passing heuristics that control
message size and message passing frequency.

The contributions can be summed up into a DSGPR framework. The framework
consists of each agent creating a local representation of the environment using a sparse
Gaussian process regression (SGPR) model. Each agent then passes these local models
according to the message passing protocols outlined in Section 3.3.2. These protocols
implement maximum consensus of model timestamps for all agents. Even when agents have
varying densities of connection, maximum consensus occurs as long as no agent or small
groups of agents are completely isolated. Message passing frequency and message size are
efficiently controlled using the presented heuristics in Sections 3.3.3 and 3.3.4.

Each agent has an adaptive number of local inducing points according to their own
path and trajectory. The method for how agents can adapt their inducing point location
and number is outlined in Section 2. An upper bound for the possible number of inducing
points is proven for two and three dimensional square/cubic boundary spaces in Sections 2.3
and 2.2. Re-clustering occurs through an event-triggering process described in Section 2.3.

These contributions show that DSGPR is an effective real-time option for MASs
modeling a vector field. The effectiveness of DSGPR is shown through the tests and analysis
performed in Section 4. The test results show that the DSGPR framework is real-time
effective for MASs of small to medium number of agents (1-10). One main advantage of this
DSGPR framework over other sparse and exact methods is the low cost to re-measure an area
to reduce the total amount of uncertainty (Section 4.2.2). It was also shown that DSGPR is

53

competitive in terms of reducing MSE as compared to centralized exact GPR and centralized
sparse GPR models. The results also show that the RC algorithm for adaptive inducing
points has low cost in terms of computational time complexity as seen in Figure 4.14. The
message passing cost of this system is also shown to be minimal; therefore, showing that the
DSGPR framework is a viable option for integration into real-time systems.

5.1 Future Work

The work presented in this paper has multiple areas where future effort could be placed,
including online hyper-parameter tuning and GP regression, summarizing inducing points,
and enabling heterogeneous vehicles into the DSGPR framework.

The first and most pressing area would the area of online hyper-parameter tuning in
this decentralized framework. Tuning the hyper-parameters allows agents to get a better
real-time view of the current vector field being measured. Preset hyper-parameters will
never be as good as ones calculated from the current data. On top of doing global online
hyper-parameter tuning, another promising avenue is individual agents having their own
hyper-parameters which can be combined into a global model. One approach to accomplishing
this idea is explored in [17] and gains similar hyper-parameter results to a mixture of experts
type of approach. However, neither of them have an adaptive number of inducing points for
their local models. Being able to tune hyper-parameters locally and allowing for adaptive
inducing points is definitely a future area to pursue. The reason tuning could be different
given adaptive inducing points is the question of can there be an objective function such that
the adaptive inducing point locations can be tuned as well as the kernel hyper-parameters fast
enough for real-time? Progress in the area of online hyper-parameter tuning would increase
the viability of this system in real-world scenarios.

Another area to help increase real-world viability is the area of adjusting the framework
into a completely online system. Currently, the work done in [3] and [39] are the few approaches
where data is streamed online. This is accomplished by updating the model and then forgetting
old measurements, while keeping the inducing points that summarize them. This online
methodology is an enticing avenue due to the low amount of storage required since old data
is quickly forgotten. Adjusting the DSGPR model in this thesis into a fully online model
would gain these memory storage benefits while maintaining the adaptive inducing point
advantage expressed in this thesis that [3] and [39] do not have.

Another future avenue that would enable lower memory storage costs is another
summarization of all agent’s inducing points (7) as presented work in this thesis. Currently,
this work does not summarize the combined agent’s inducing points m. This limits DSGPR’s
scalability to hundreds and thousands of agents. Each agent can have a large number of
inducing points and if they each have to maintain a list of all agent’s inducing points the
total can grow large as the number of agents increase. One option would be to apply the RC
algorithm on the received inducing points (similar to how the current framework applies the
RC algorithm to the received measurements) to create another summary set of all agents’
inducing points. This would enable each agent to compute the global regression model without
incurring the large cost of a GP using a large set of inducing points. However, summarizing
inducing points would necessitate a loss in the global model’s fidelity. It would be critical to
find a bound on how this would influence the fidelity of the global model.

o4

Another avenue related to summarizing the combined total of all agent’s inducing
points is in the pursuit of coordinating heterogeneous vehicles. This thesis is concerned with
homogeneous vehicles that have the same sensors and similar mediums through which they
travel. However, the decentralized nature of the algorithm could be extended to addressing
the problem of how vector field modeling could occur with heterogeneous vehicles. One
potential option would be projecting each vehicle’s measurements or predictions onto a
high-dimensional manifold that holds a global semantic meaning. Each heterogeneous vehicle
could gain information from and add information to each other using this higher dimensional
manifold. This avenue of research could equip heterogeneous agents with the ability to
perform more diverse tasks as compared to a homogeneous group of agents.

Along with these future avenues, the need for cooperative multi-agent systems grows
each year. The work shown in this thesis makes several meaningful contributions and sets the
foundation for future work to enable multi-agent integration into commercial /professional
use.

55

[1]

References

R. Allamraju and G. Chowdhary. Communication efficient decentralized gaussian process
fusion for multi-uas path planning. In 2017 American Control Conference (ACC), pages
4442-4447, 2017. doi: 10.23919/ACC.2017.7963639.

Sneha N Aware and Varsha H Patil. Survey on various-width clustering for efficient
k-nearest neighbor search. IJARIIE, 3(2), 2017.

Thang D Bui, Cuong Nguyen, and Richard E Turner. Streaming sparse gaussian
process approximations. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neur
ips.cc/paper/2017/file/£31b204662ae89669f9741e047487eb37-Paper . pdf.

J. Chen, K. H. Low, Y. Yao, and P. Jaillet. Gaussian process decentralized data fusion
and active sensing for spatiotemporal traffic modeling and prediction in mobility-on-

demand systems. IEEE Transactions on Automation Science and Engineering, 12(3):
901-921, 2015. doi: 10.1109/TASE.2015.2422852.

Yizong Cheng. Mean shift, mode seeking, and clustering. IEEFE Transactions on Pattern
Analysis and Machine Intelligence, 17(8):790-799, 1995. doi: 10.1109/34.400568.

Henry Cohn, Abhinav Kumar, Stephen Miller, Danylo Radchenko, and Maryna Viazovska.
The sphere packing problem in dimension 24. Annals of Mathematics, 185(3):1017 —
1033, 2017. doi: 10.4007/annals.2017.185.3.8. URL https://doi.org/10.4007/annals
.2017.185.3.8.

John H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups. In Grundlehren

der mathematischen Wissenschaften, 1988.

Zachary Cook, Monia Kazemeini, Alexander Barzilov, and Woosoon Yim. Low-altitude
contour mapping of radiation fields using UAS swarm. [Intelligent Service Robotics,
12(3):219-230, 2019. ISSN 18612784. doi: 10.1007/s11370-019-00277-8. URL
https://doi.org/10.1007/s11370-019-00277-8.

56

https://proceedings.neurips.cc/paper/2017/file/f31b20466ae89669f9741e047487eb37-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f31b20466ae89669f9741e047487eb37-Paper.pdf
https://doi.org/10.4007/annals.2017.185.3.8
https://doi.org/10.4007/annals.2017.185.3.8
https://doi.org/10.1007/s11370-019-00277-8

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Marc Peter Deisenroth and Jun Wei Ng. Distributed Gaussian processes. In 32nd
International Conference on Machine Learning, ICML 2015, volume 2, pages 1481-1490,
2015. ISBN 9781510810587. doi: 10.25561/21163.

Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. Generalized sphere packing bound.
IEEFE Transactions on Information Theory, 61(5):2313-2334, 2015. doi: 10.1109/TIT.20
15.2413418.

Théo Galy-Fajou and Manfred Opper. Adaptive inducing points selection for gaussian

processes, 2021.

TC Hales. A proof of the kepler conjecture. Annals of Mathematics, 162:1065-1185, 11
2005.

Thomas Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison, Truong Le
Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat Nguyen,
Truong Quang Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey
Solovyev, An Hoai Thi Ta, Trung Nam Tran, Diep Thi Trieu, Josef Urban, Ky Khac Vu,
and Roland Zumkeller. A formal proof of the kepler conjecture, 2015.

Thomas C. Hales. The sphere packing problem. Journal of Computational and Applied
Mathematics, 44(1):41-76, 1992. ISSN 0377-0427. doi: https://doi.org/10.1016/0377-0
427(92)90052-Y. URL https://wuw.sciencedirect.com/science/article/pii/03
7704279290052Y.

K. Han, Y.T. Feng, and D.R.J. Owen. Sphere packing with a geometric based compression
algorithm. Powder Technology, 155(1):33-41, 2005. ISSN 0032-5910. doi: https:
//doi.org/10.1016/j.powtec.2005.04.055. URL https://www.sciencedirect.com/scie
nce/article/pii/S0032591005001956.

Falk Hefle, Vladyslav Prykhodko, Steffen Schliiter, and Sabine Attinger. Generating
random fields with a truncated power-law variogram: A comparison of several numerical
methods. Environmental Modelling € Software, 55:32-48, 2014. ISSN 1364-8152. doi:
https://doi.org/10.1016 /j.envsoft.2014.01.013. URL https://www.sciencedirect.co
m/science/article/pii/S1364815214000231.

Trong Nghia Hoang, Jonathan How, Quang Minh Hoang, and Kian Hsiang Low. Collec-
tive online learning via decentralized Gaussian processes in massive multi-agent systems.
arXiv, 2018. ISSN 23318422.

57

https://www.sciencedirect.com/science/article/pii/037704279290052Y
https://www.sciencedirect.com/science/article/pii/037704279290052Y
https://www.sciencedirect.com/science/article/pii/S0032591005001956
https://www.sciencedirect.com/science/article/pii/S0032591005001956
https://www.sciencedirect.com/science/article/pii/S1364815214000231
https://www.sciencedirect.com/science/article/pii/S1364815214000231

[18]

[19]

[21]

[22]

[24]

[25]

[26]

Dohyun Jang, Jaehyun Yoo, Clark Youngdong Son, Dabin Kim, and H. Jin Kim. Multi-
robot active sensing and environmental model learning with distributed gaussian process.
IEEFE Robotics and Automation Letters, 5(4):5905-5912, 2020. doi: 10.1109/LRA.2020.3
010456.

Ravi Kashyap. The perfect marriage and much more: Combining dimension reduction,
distance measures and covariance. Physica A: Statistical Mechanics and its Applications,

536:120938, 07 2019. doi: 10.1016/j.physa.2019.04.174.

Michael J. Kuhlman, Dylan Jones, Donald A. Sofge, Geoffrey A. Hollinger, and
Satyandra K. Gupta. Collaborating underwater vehicles conducting large-scale
geospatial tasks. IEEE Journal of Oceanic Engineering, 46(3):785-807, 2021. doi:
10.1109/JOE.2020.3041123.

Chang Liu, Zhihao Liao, and Silvia Ferrari. Rumor-robust Decentralized Gaussian Process
Learning, Fusion, and Planning for Modeling Multiple Moving Targets. Proceedings of
the IEEE Conference on Decision and Control, 2020-December(Cdc):3066-3071, 2020.
ISSN 07431546. doi: 10.1109/CDC42340.2020.9304365.

Haitao Liu, Jianfei Cai, Yi Wang, and Yew Soon Ong. Generalized robust Bayesian
committee machine for large-scale Gaussian process regression. In 35th International
Conference on Machine Learning, ICML 2018, volume 7, pages 4898-4910, 2018. ISBN
9781510867963. URL https://github.com/LiuHaiTao01/GRBCM.

S. Miiller, L. Schiiler, A. Zech, and F. Hele. GSTools v1.3: a toolbox for geostatistical
modelling in python. Geoscientific Model Development, 15(7):3161-3182, 2022. doi:
10.5194 /gmd-15-3161-2022. URL https://gnd.copernicus.org/articles/15/3161/
2022/.

Barig Nakiboglu. The sphere packing bound via augustin’s method. IEFE Transactions
on Information Theory, 65(2):816-840, 2019. doi: 10.1109/TIT.2018.2882547.

S. O’Dea. Mobile provider latency in the us 2019, Dec 2021. URL https://www.stat
ista.com/statistics/818205/4g-and-3g-network-latency-in-the-united-sta
tes-2017-by-provider/.

Ruofei Ouyang and Bryan Kian Hsiang Low. Gaussian process decentralized data fusion
meets transfer learning in large-scale distributed cooperative perception. Autonomous
Robots, 44(3-4):359-376, 2020. ISSN 15737527. doi: 10.1007/s10514-018-09826-z. URL
https://doi.org/10.1007/s10514-018-09826-z.

58

https://github.com/LiuHaiTao01/GRBCM.
https://gmd.copernicus.org/articles/15/3161/2022/
https://gmd.copernicus.org/articles/15/3161/2022/
https://www.statista.com/statistics/818205/4g-and-3g-network-latency-in-the-united-states-2017-by-provider/
https://www.statista.com/statistics/818205/4g-and-3g-network-latency-in-the-united-states-2017-by-provider/
https://www.statista.com/statistics/818205/4g-and-3g-network-latency-in-the-united-states-2017-by-provider/
https://doi.org/10.1007/s10514-018-09826-z

[27]

28]

[29]

[30]

[31]

[32]

[33]

[35]

Ligian Peng, Doug Lipinski, and Kamran Mohseni. Dynamic Data Driven Application
System for Plume Estimation Using UAVs. J Intell Robot Syst, 74:421-436, 2014. doi:
10.1007/s10846-013-9964-x.

Yuan Qi, Ahmed H Abdel-Gawad, and Thomas P Minka. Sparse-posterior Gaussian
Processes for general likelihoods. In Proceedings of the Twenty-Siath Conference on

Uncertainty in Artificial Intelligence, 2010.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

Matthias Seeger, Christopher K.I. Williams, and Neil D. Lawrence. Fast Forward
Selection to Speed Up Sparse Gaussian Process Regression. In Proceedings of the Ninth
International Workshop on Artificial Intelligence and Statistics, pages 254-261, 2003.
URL http://proceedings.mlr.press/r4/seeger03a/seeger03a.pdf.

Matthias W. Seeger, Christopher K. I. Williams, and Neil D. Lawrence. Fast forward
selection to speed up sparse gaussian process regression. In Christopher M. Bishop and
Brendan J. Frey, editors, Proceedings of the Ninth International Workshop on Artificial
Intelligence and Statistics, volume R4 of Proceedings of Machine Learning Research,
pages 254-261. PMLR, 03-06 Jan 2003. URL https://proceedings.mlr.press/r4/s
eeger03a.html. Reissued by PMLR on 01 April 2021.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-
inputs. In Y. Weiss, B. Schélkopf, and J. Platt, editors, Advances in Neural Information
Processing Systems, volume 18. MIT Press, 2005. URL https://proceedings.neurip
s.cc/paper/2005/file/4491777blaa8b5b32c2e8666dbelad95-Paper . pdf.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian Processes using Pseudo-
inputs. In Advances in Neural Information Processing Systems 18, pages 12571264,
2006.

Edward Snelson and Zoubin Ghahramani. Local and global sparse gaussian process
approximations. In Marina Meila and Xiaotong Shen, editors, Proceedings of the Eleventh
International Conference on Artificial Intelligence and Statistics, volume 2 of Proceedings
of Machine Learning Research, pages 524-531, San Juan, Puerto Rico, 21-24 Mar 2007.
PMLR.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes.

In Proceedings of the Twelth International Conference on Artificial Intelligence and

59

http://proceedings.mlr.press/r4/seeger03a/seeger03a.pdf
https://proceedings.mlr.press/r4/seeger03a.html
https://proceedings.mlr.press/r4/seeger03a.html
https://proceedings.neurips.cc/paper/2005/file/4491777b1aa8b5b32c2e8666dbe1a495-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/4491777b1aa8b5b32c2e8666dbe1a495-Paper.pdf

[36]

[38]

[39]

[40]

Statistics, volume 5 of Proceedings of Machine Learning Research, pages 567-574. PMLR,
Apr 2009.

Maryna S. Viazovska. The sphere packing problem in dimension 8. Annals of Mathematics,
185(3):991-1015, 2017. ISSN 0003486X. URL http://www.jstor.org/stable/26395
T47.

S. Wang and W. Ren. On the consistency and confidence of distributed dynamic state
estimation in wireless sensor networks. In 2015 5th IEEE Conference on Decision and
Control (CDC), pages 3069-3074, 2015. doi: 10.1109/CDC.2015.7402680.

Eric W. Weisstein. ”Cubic Close Packing.” From Mathworld-A Wolfram Web Resource.,
2022. URL https://mathworld.wolfram.com/CubicClosePacking.html.

Brian Wilcox and Michael C. Yip. Solar-gp: Sparse online locally adaptive regression
using gaussian processes for bayesian robot model learning and control. IEEE Robotics
and Automation Letters, 5(2):2832-2839, 2020. doi: 10.1109/LRA.2020.2974432.

Zhenyuan Yuan and Minghui Zhu. Lightweight distributed gaussian process regression
for online machine learning, 2021. URL https://arxiv.org/abs/2105.04738.

60

http://www.jstor.org/stable/26395747
http://www.jstor.org/stable/26395747
https://mathworld.wolfram.com/CubicClosePacking.html
https://arxiv.org/abs/2105.04738

Appendix A

Two Dimensional Approximation of Maximum Clusters

I outline an equation for finding a less conservative approximation of the maximum
number of clusters that can fit in a square boundary space. This is different from the prior
approaches (Section 2.2.2 and 2.2.3)to an upper bound which provided a conservative upper
bound on this number. This equation is not proven to be the exact upper bound, but is
shown below to be extremely accurate.

Let [] and | | refer to the ceiling and flooring functions respectively. Given a cluster
radius r and square boundary space with side length of b, the maximum number of inducing

points that can be placed by the radial clustering algorithm is given by

Up = s+ (s — 1)v +a,, (A1)

= 7] (A2)

r

where

is a bound on the number of points needed to cover one side of the square,

1 1
| Fe— "
14 ell% 1+ e—lder]

is an additive term that addresses the corner edge case (explained below), with d. =
V/(r(s —1) = b)2 + (r(s — 1) — b)2, which is the distance from the most upper-right circle to

the upper-right boundary corner (assuming circle placement started in the lower-left boundary

)

is a value that covers the intersection edge case (explained below) with d,, = r(s — 1) + ¢,
c=rv3/2.

To show that this equation provides a solution, I show that the upper bound on

corner), and

inducing points given by Equation (A.1) provides clusters that completely cover the b?

boundary space. Since clusters are defined by a single radius, this is equivalent to finding the

61

number of overlapping circles that can be placed that completely cover the bounding area,
assuming each circle center lies one radius away from the previous circle.

Without loss of generality, assume the boundary space starts at (0,0) and is the center
point for the first circle. Equation (A.2) represents how many circles will fit on one boundary
edge until the last placed circle’s radius is greater than b. I square s in (A.1) to fill the square
boundary space. Once this has been calculated, there are two edge cases that need to be
accounted for to get the true upper bound. Those edge cases are covered in the last two
terms of Equation (A.1).

Using the v term, I address the edge case where the radii of the last circle in the last
column /row is greater than b but the intersection point between adjacent circles is not greater
than b; therefore, the whole boundary space b would not be covered. The (s — 1)v term
accounts for this case and adds another row and column of circles to the total upper bound
at those intersection points, i.e. the intersection points become the circle centers for the
last row/column of circles. I calculate the height /width distance d,, between the intersection
point of the last row/column of circles and the boundary space by summing the distance
to the last circle centroid r(s — 1) with the height /width distance from this centroid to the
intersection point c. The distance c is simply the height of the equilateral triangle formed by
the intersection point and the two circle centers. If d,, < b, then I must add 2(s — 1) circles,
where the 2 accounts for the addition of circles to both the last row and column. If d,, > b,
then no extra circles need to be added due to a complete coverage being obtained. Once d,,
is computed, flooring d,, /b functions as an if statement. When d,, > b, the flooring results in
a value of 1 which yields 0 after the subtraction, ultimately turning off the term such that
the intersection circles are not included in the upper bound. However, when d,, < b, v gains
a value of 2 which will add the 2(s — 1) circles to uy.

Lastly, the a. term covers an edge case where the last placed circle’s radius does not
cover the final corner of the square boundary space. The distance from the last column and
last row’s circle center to the corner of the boundary space is d.. If the radii of the last circle
excludes the corner, then add one circle to the upper bound u,. The a. term functions as
an if statement to help determine whether or not the corner circle should be added in a
given case. If d. < r, then |d./r]| will output 0 which will take the left-hand term of a. to 0
ensuring that no corner circle is added. If d. = r, the right-hand term of a, will also compute
to 0 under the same logic aforementioned. Lastly, if d. > r, then I add one extra circle to u.
Computing both left and right terms of a. outputs a one in this case ensuring that a circle is
added to uy. All of these edge cases are shown in Figure A.1.

The upper bound ultimately determines the maximum number of clusters for given a

radius 7 and square boundary space b?. This directly equates to the max number of inducing

62

Two Dimensional Exact Maximum Circle Stuffing

Figure A.1: Example of Radial Clustering Upper Bound in Square Boundary Space. Each red
point represents a chosen inducing point, while each circle represents that inducing point’s
radius of influence.

points possible. Knowing this value provides limits on the computational load and the size
of messages communicated between agents. Note that a similar approach could be used to
provide a less conservative approximation in the 3D case as well. This is not explored in this

thesis.

63

	Efficient and Adaptive Decentralized Sparse Gaussian Process Regression for Environmental Sampling Using Autonomous Vehicles
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Related Works
	1.2 Contribution
	1.3 Background
	1.3.1 Exact Gaussian Process Regression
	1.3.2 Sparse Gaussian Process Regression

	1.4 Thesis Outline

	2 Radial Clustering
	2.1 Radial Clustering Formulation
	2.2 Radial Clustering Upper Bound
	2.2.1 Optimal Sphere Packing Density for Cubic Containers
	2.2.2 Three Dimensional Radial Clustering Upper Bound
	2.2.3 Two Dimensional Radial Clustering Upper Bound

	2.3 Event-Triggered Sparse Message Passing

	3 Decentralized Framework
	3.1 Decentralized Framework: Outline
	3.2 Decentralized Sparse Gaussian Process Regression
	3.3 Message Passing
	3.3.1 Message Passing Memory Considerations
	3.3.2 Message Passing Protocols
	3.3.3 Covariance Matrix Reduction
	3.3.4 Message Frequency Heuristic: Bhattacharyya Distance

	4 Results and Analysis
	4.1 Simulation Details
	4.2 DSGPR Model Comparison
	4.2.1 Exact GPR MSE Comparison
	4.2.2 Decreasing Uncertainty Efficiently
	4.2.3 Inducing Point Selection Comparison

	4.3 Monte Carlo Runs
	4.3.1 Mean-Squared Error (MSE) and Uncertainty
	4.3.2 Computational Time
	4.3.3 Message Passing Memory Considerations

	5 Conclusion
	5.1 Future Work

	References
	Appendices
	A Two Dimensional Approximation of Maximum Clusters

