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Abstract—Reinforcement learning (RL) is an effective and
increasingly popular machine learning approach for optimization
and decision-making. However, modern reinforcement learning
techniques, such as deep Q-learning, often require neural net-
work inference and training, and therefore are computationally
expensive. For example, Twin-Delay Deep Deterministic Policy
Gradient (TD3), a state-of-the-art RL technique, uses as many
as 6 neural networks. In this work, we study the FPGA-based
acceleration of TD3. To address the resource and computa-
tional overhead due to inference and training of the multiple
neural networks of TD3, we propose TD3lite, an integrated
approach consisting of a network sharing technique combined
with bitwidth-optimized block floating-point arithmetic. TD3lite
is evaluated on several robotic benchmarks with continuous
state and action spaces. With only 5.7% learning performance
degradation, TD3lite achieves 21× and 8× speedup compared
to CPU and GPU implementations, respectively. Its energy
efficiency is 26× of the GPU implementation. Moreover, it utilizes
∼ 25− 40% fewer FPGA resources compared to a conventional
single-precision floating-point representation of TD3.

Index Terms—Reinforcement learning, hardware acceleration,
FPGA, neural network, block floating-point

I. INTRODUCTION

Reinforcement Learning (RL) is a branch of machine learn-
ing that focuses on sequential decision-making in an environ-
ment with uncertainty [1]. It has a wide range of applications,
such as robotics [2], [3], healthcare [4], and finance [5].
Unlike supervised learning, where training and inference can
be largely decoupled, the application (decision-making) of
RL is tightly integrated with training. Thus, the traditional
training-on-server and application-on-edge paradigm for deep
learning cannot be applied for RL. This makes hardware ap-
proaches for RL challenging to realize, because the combined
computational load of inference and training demands high
computing efficiency as well as carefully engineered hardware
acceleration techniques.

The recent flurry of interest in RL research was triggered
by deep Q-learning (DQN) [6], which integrates deep neu-
ral networks (DNNs) with RL, and its well known success
playing Google AlphaGo [7]. A DQN employs two DNNs.
Generally, implementing the training and inference of the two
neural networks is more challenging than many existing DNN
acceleration works that perform either training or inference
of a single DNN. Furthermore, state-of-the-art RL techniques
increase the number of neural networks. DDPG [8], which is
more advanced than DQN, uses four networks. Twin-Delayed
Deep Deterministic Policy Gradient (TD3) [9], which is an

improvement over DDPG, employs six networks. With this
increase in the number of neural networks, there is a growing
need for improving computational and resource efficiency in
RL hardware acceleration.

In this work, we perform FPGA acceleration for TD3 [9].
We trade off learning performance and computing resource-
efficiency through two integrated techniques: network sharing
and block floating-point arithmetic with bit-width optimiza-
tion. Existing RL FPGA acceleration approaches [10]–[17] pay
little attention to the tradeoff except [18], which uses fixed-
point arithmetic. In a large portion of existing works [11]–
[13], [15], [16], the RL agent is only partially realized on
an FPGA. Some other works [10], [17] are restricted to a
discrete state/action space. By contrast, our approach, called
TD3lite, realizes the entire RL agent on an FPGA, with a
continuous state/action space. TD3lite is able to deliver a high
computational and resource efficiency with minimal learning
performance loss. Our contributions are summarized below.

• To the best of our knowledge, this work is the first
FPGA acceleration technique for TD3, a state-of-the-art
RL technique.

• To the best of our knowledge, this is the first study on
neural network sharing in hardware acceleration.

• Further, this is the first investigation of block floating
point arithmetic for RL FPGA acceleration.

• In TD3lite, the entire computation of the TD3 agent,
including training of 6 networks, is realized on an FPGA.

• We test TD3lite on four widely used benchmarks from
MuJoCo with a continuous state/action space. TD3lite
achieves 21× and 8× speedup against CPU-based and
GPU-based implementations (baselines). The energy ef-
ficiency of TD3lite is 47× and 26× better respectively,
than the baselines. Moreover, the resource utilization is
∼ 25 − 40% lower than a conventional single-precision
floating-point representation of TD3.

II. BACKGROUND

A. Reinforcement Learning
In reinforcement learning (RL), an agent interacts with an

environment in discrete time steps, as shown in Figure 1. At
each time step t, the agent takes an action at according to
its policy π based on state st observed from the environment.
Then, the environment returns a scalar reward rt and moves
to the next state st+1. The objective of an agent is to optimize



its policy π that maximizes the discounted cumulative reward
Rt =

∑︁T
i=t γ

i−tri, where γ is the discount factor and T is
the episode length. The state-action value function Q(st, at)
estimates the cumulative reward by taking action at at state
st.
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Fig. 1. Overview of RL system and algorithms.
A well-known early RL algorithm is Q-learning [1], which

tabulates Q(st, at) for limited discrete state and action spaces.
A more advanced approach is function approximation, where
Q(st, at) is approximated by a continuous function, to handle
much bigger spaces. A recent approach is deep Q-learning
(DQN) [6], where the value function is approximated by
deep neural networks. To reduce the correlation among the
network training data, DQN requires to store some historical
state transitions, which are randomly sampled and used as
training data. This technique is called experience replay and
needs significant storage space. Besides the main network,
DQN employs a target network, which provides a reference
for the main Q-network training with stability. Alternatively,
one can approximate the policy π with a function instead of
the Q-value. This approach is called policy gradient, and is
usually faster than value-function based techniques. Neural
network-based policy approximation techniques include Trust
Region Policy Optimization (TRPO) [19] and Proximal Policy
Optimization (PPO) [20]. Sometimes, policy gradient methods
face instability problems and this motivates the actor-critic
approach, where the actor plays the role of policy and the critic
evaluates the value function. One recent influential actor-critic
approach is Deep Deterministic Policy Gradient (DDPG) [8],
which uses 4 networks. A3C (Asynchronous Advantage Actor-
Critic) [21] is a lightweight multi-agent approach friendly
to parallel processing. We use the TD3 approach, which is
described next.

B. Twin-Delayed Deep Deterministic Policy Gradient (TD3)
Twin-Delayed Deep Deterministic Policy Gradient

(TD3) [9] is built upon DDPG [8]. DDPG includes four
DNNs, which are the main actor, the main critic, the target
actor and the target critic. The main actor network πϕ(at|st)
computes an action at based on the current state st, where
ϕ indicates network weights. Meanwhile, the main critic
network takes the state and action as input, and outputs value
function Qθ(st, at), where θ denotes network weights. Target
networks have the same structure as their corresponding main
networks, and their weights are periodically synchronized
with the main networks. The less frequently updated target
networks regulate the main network training. The weights in
the target actor network and target critic network are denoted
as ϕ

′
and θ

′
, correspondingly. In TD3, two sets of critic

networks, including both the main and target, are used with

an identical structure but different initial conditions. The two
main critic networks compute value functions Qθ1 and Qθ2 ,
respectively, where θ1 and θ2 are the network parameters of
the first and second main critic networks. The Q-value being
actually used is min(Qθ1 , Qθ2). θ

′

1 and θ
′

2 represents the
network parameters for two target critic networks, Qθ

′
1

and
Qθ

′
2
. A brief TD3 pseudo code is provided in Algorithm 1.

At each time step t, only the main actor network interacts
with the environment and stores transitions to the experience
replay buffer (lines 2-4). This is the decision-making stage.
In the training stage (lines 5-10), gradients are computed and
parameters are updated according to training data sampled
from the replay buffer. Unlike the main critic network, which
is trained at every time step, all target networks and the main
actor network are updated every d time steps (line 7), where
d is a parameter. Overall, TD3 uses 6 networks, πϕ, πϕ′ ,
Qθ1 , Qθ′

1
, Qθ2 , and Qθ′

2
.

Algorithm 1 TD3 algorithm
Require: Randomize parameters θ1 and θ2 for main critic

networks Qθ1 and Qθ2

Require: Randomize ϕ for main actor network πϕ

Require: Initialize parameters for target networks θ
′

1 ←− θ1,
θ
′

2 ←− θ2 and ϕ
′ ←− ϕ

Require: Initialize experience replay buffer R
1: while t ≤ termination time do
2: Main actor network takes action at ∼ πϕ(st) + ϵ, ϵ is

a random noise for exploration.
3: Receives reward rt and next state st+1.
4: Push tuple (st, at, rt, st+1) to replay buffer R.
5: Get a batch B of transition data from R.
6: Compute gradients and update θ1 and θ2 based on B.
7: if (t%d) == 0 then
8: Compute gradients and update ϕ based on B.
9: Synchronize ϕ′, θ′1, and θ′2 with ϕ, θ1, and θ2.

10: end if
11: end while

C. Block Floating-Point Arithmetic
The main idea of Block Floating-Point (BFP) representation

is to let multiple floating point numbers, which form a block,
share a single exponent. It is more compact than conventional
floating-point representation since all numbers in the block
share the same exponent, and provides better precision/range
than a fixed-point representation. BFP is especially suitable for
DNN hardware designs [22], whose major computing com-
ponent is the MAC (multiply-accumulate). The floating-point
multiplication has similar complexity as fixed-point arithmetic.
After the “multiply”, all operands naturally have the same
value for their exponents and then the expensive floating-point
addition is reduced to simpler fixed-point addition.

III. PREVIOUS RELATED WORKS

A survey for FPGA acceleration for reinforcement learn-
ing is provided in [23]. Mainstream reinforcement learning
algorithms can be broadly categorized to (I) the classical
tabular techniques, such as Q-learning [1], and (II) neural
network-based function approximation approaches, which are



the latest trend. Here we summarize the previous works
of the latter category, to which our work belongs. Several
previous works [10]–[13] target FPGA acceleration of deep
Q-learning (DQN) [6], [7], which employs two deep neural
networks. The work of [10] implements only MLP layers
without convolution, and is restricted to a discrete action
space. In [11], a binary neural network is developed on the
FPGA for the inference part, while the network training is
conducted through servers. Another work [12] is able to
perform partial training on an FPGA, wherein some layers
are trained on the FPGA while the other layers are fixed.
By doing so, a low precision can be used the fixed layers,
thereby limiting the resource overhead. The acceleration of
DQN in [13] is partly on an FPGA while the other parts
are computed on an ARM core of the SoC on which the
FPGA resides. It simplifies the neural network training by
adopting online sequential extreme learning machine, which is
effective for only certain types of neural networks. A couple
of previous works [14], [15] investigate acceleration of the
policy gradient method, which has a single neural network for
approximating the policy and does not have a value function
network. The work of [14] implements the TRPO (Trust
Region Policy Optimization) training algorithm. It is targeted
for stochastic policies while our work is focused on determin-
istic policies. Later, another work [15] realizes a lightweight
training algorithm PPO (Proximal Policy Optimization) on a
heterogeneous CPU-FPGA platform. In other words, only a
part of the computing is carried out on the FPGA. There are
works that implement actor-critic learning, which contain both
value-function (critic) networks and policy (actor) networks.
One such approach is DDPG (Deep Deterministic Policy
Gradient), which is partially implemented on FPGA in [16].
In [18], DDPG is implemented using fixed-point operation on
an FPGA. We have observed that fixed-point approach causes
easily discernible degradation in the learning curves, though
the numerical error is not reported. One recent actor-critic
technique is A3C (Asynchronous Advantage Actor-Critic),
which has multiple agents and avoids experience replay. An
FPGA acceleration technique for A3C is proposed in [17].
Although A3C is able to handle continuous action space, the
experiment in [17] is performed for only discrete action space.
We focus on both continuous state/action space, and apply
block floating-point to TD3 with a sharing technique.

IV. TD3LITE DESIGN

A. Computing Flow and Platform

The major computing tasks of TD3 (Algorithm 1) are
depicted in the block diagram of Figure 2. The black arrows in-
dicate the forward propagation (FW) dataflow in the decision-
making stage, which generates actions to interact with the
environment. The training stage contains three components:
forward propagation (FW, shown in blue arrows), backward
propagation (BP, shown in red arrows), and weight update
(WU, shown in green arrows). The computing flow for one
full iteration of TD3lite is depicted in Figure 3.

We describe the computing flow and tasks with a structural
view of Figure 2 and a temporal view of Figure 3. The
host CPU emulates the environment, the TD3lite agent is
completely implemented on the FPGA and the communication

Fig. 2. Computing task overview.

Fig. 3. Computing flow of one full iteration of TD3lite.

between them is through the PCIe 4.0 bus. In the decision-
making stage of step t, the host CPU sends the current state
st to the FPGA agent, receives an action at generated by
the FPGA agent, calculates reward rt, and transitions to the
next state st+1. A number of state transitions are stored in
the experience replay buffer in the form of (st, at, rt, st+1).
In the training stage of step t, a batch B of transitions are
sampled from the replay buffer to serve as training data. For
each sampled transition (s, a, r, s′), the target actor takes s′

as input and generates action a′. Next, the main and target
critic networks perform FW according to (s, a) and (s′, a′),
respectively, and produce Qmain and Qtarget. Please note
this done for two sets of main/target critic networks and
the Q-values are the minimum between them. Then, the two
main critic networks are trained according to a loss defined
by Qtarget and r. Meanwhile, the main actor network is
trained according to loss of −Qmain. More details of the loss
functions can be found in [8], [9]. The gradients obtained from
BP are applied for WU of the main networks according to the
RMSprop method [24].

B. The Accelerator Design

The hardware architecture of TD3lite is depicted in Figure
4. The off-chip memory contains the experience replay buffer.
The weight buffer, the intermediate buffer storing all the
intermediate results, and the gradient buffer are implemented
using BRAMs. The FP-to-BFP converter helps convert a block
of floating-point numbers, such as a matrix, into block floating-
point representation. It first extracts the largest exponent in a
block, which becomes the shared exponent. Then, the mantissa



of each value is aligned based on the shared exponent. The
BFP-to-FP converter performs block floating-point to con-
ventional floating-point number conversion. A 16-bit Linear-
Feedback Shift Register (LFSR) [25] adds random noise from
a Gaussian distribution with zero mean and unit variance
to the main actor output in each decision-making stage for
exploration (line 2 in Algorithm 1).

Fig. 4. Hardware architecture of TD3lite.

The FW and BP computations of all the networks are
performed on a systolic array with 16×16 processing elements
(PEs). Each PE is a fixed-point MAC unit with a weight
register so that the dataflow through the systolic array is
weight-stationary. The FW computations are

Zl

M×nl

= Al−1

M×nl−1

× W l

nl−1×nl

, Al = ReLU(Zl) (1)

where l is the network layer index, nl is width of layer l, W l

is the matrix of weights from layer l− 1 to l, Al is the output
of layer l and Zl is an intermediate result of layer l.

The BP computations are specified by

∆l

M×nl

= ( ∆l+1

M×nl+1

× (W l+1)⊤

nl+1×nl

) ·ReLU ′(Zl)
1×nl

gl

nl−1×nl

= (Zl−1)⊤

nl−1×M

× ∆l

M×nl

(2)

The error of the last layer is obtained by ∆L = Loss ·
ReLU ′(ZL). For the other layers, ∆l is the error of layer
l propagated from layer l + 1 and gl is the gradient for W l.

In the decision-making stage, the main actor network per-
forms FW (blue line) to compute the action. All the inter-
mediate results and middle layer outputs are stored in the
intermediate buffer. The action is the output from the last layer.

The training stage includes both FW and BP specified in Eq.
(1) and (2). Weights are loaded to the systolic array after the
FP-to-BFP conversion. The BP computations follow the red
lines in Figure 4. The loss module computes the loss functions
using a single-precision floating-point multiplier and adder.
The gradients obtained through BP are stored in the gradient
buffer. The weight update unit (WUU) has two multipliers and
an adder. It uses single-precision floating-point representation
because it tracks the moving average of the squared gradient,
which requires high precision. The overhead of float-point
computing for a few multipliers and adders is limited.

C. Block Floating-Point (BFP) Computation
In TD3lite, a matrix or a vector is treated as a block for BFP

representation. For example, a BFP vector can be expressed
as Ai = mA

i × 2eA , where Ai is the i-th element in vector
A, with the shared exponent eA and its mantissa mA

i , and
2eA is shared by all elements of the block. To illustrate BFP
arithmetic, a dot product of two vectors A and B is given by

A ·B =

N∑︂
i=1

((mA
i × 2eA)× (mB

i × 2eB ))

= (mA ·mB)× (2eA+eB )

(3)

where mA ·mB is computed via fixed-point arithmetic. Thus,
each PE in the systolic array performs fixed-point MAC
computation for the mantissa part. This reduces resource
utilization and improves speed compared with a floating-point
based MAC. The shared exponents are added only once for
the entire block. Further, we study different bit-widths for
the mantissa of BFP in order to explore the tradeoff between
learning performance and computing-resource efficiency. BFP
with short bitwidth can accelerate computing speed and re-
duce FPGA resource, at the expense of learning performance
degradation.

D. Network Sharing with Expansion
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Fig. 5. (a) Two separated (main or target) critic networks; (b) Two critic
networks with shared hidden layer1.

We propose a sharing technique, called topology sharing,
for the critic networks to compensate the learning performance
loss due to bitwidth reduction in BFP while the training
computing overhead is still limited. Please note this purpose is
different from the typical goal of resource utilization reduction
through sharing. Figure 5(a) shows two main (or target) critic



TABLE I
LEARNING PERFORMANCE COMPARISON AMONG DIFFERENT NUMBER REPRESENTATIONS.

Single-precision FP Mantissa bit-width in BFP
GPU CPU FPGA 24 20 16 12 11 10

Hopper 3416.23 3376.46 3479.66 3211.42 3187.25 2983.64 2818.35 (-19%) 2511.78 1433.81
HalfCheetah 8451.76 8411.87 8409.1 8172.82 8066.3 6817.67 6604.87 (-21.4%) 3194.12 2434.88

Walker 4478.12 4510.03 4452.94 4312.44 4093.21 3771.18 3686.01 (-17.2%) 2732.36 2331.72
Ant 5110.32 5033.1 5117.83 4998.14 4452.67 4112.13 3920.22 (-23.4%) 3192.75 2432.18

networks in TD3. Since the two networks perform a similar
task, their hidden layers can be shared as shown in Figure 5(b).
There are two special designs in this sharing.

1) The shared hidden layer is larger than each of the
original ones. In Figure 5, if there are k orange nodes
and k blue nodes, there are K > k green nodes. This
expansion captures more information than the original
hidden layers and thus can compensate the learning
performance loss caused by the reduced bitwidth in BFP.

2) BP is performed only on a subset of shared nodes, e.g.,
dark green nodes in Figure 5(b). Different subsets are
randomly selected at different time steps of TD3. The
randomness is realized via the LFSR [25]. Since BP is
the largest component of TD3 computing, this expanded
sharing hardly increases computing overhead if only k
nodes are selected. Please note all nodes are used in FW.

There are other variants for the sharing, e.g., sharing both
hidden layers, and they are analyzed in Section V.

V. EVALUATION AND ANALYSIS

A. Benchmarks and Experiment Platforms
To evaluate the proposed TD3lite, we use four MuJoCo

benchmarks, Hopper, HalfCheetah, Walker and Ant, from
OpenAI Gym [26]. MuJoCo benchmarks are widely used in
RL literature [27], [28] for learning performance evaluation
since they provide environments with continuous state/action
spaces. For example, Hopper is a single-legged jumper with
11 physical states and 6 actions. The objective is to control the
hopper to hop forward as fast as possible without falling to the
ground. HalfCheetah and Walker have a 17-dimensional state
and 6-dimensional action space, and Ant has 111-dimensional
state and 8-dimensional action space.

In our implementation, both main and target actor networks
have two hidden layers of size 256. For main and target
critic networks without topology sharing, the size of the input
layer is the concatenation of state and action, and the output
size is 1 as each network calculates an estimated Q-value.
With topology sharing, as shown in Figure 5(b), the size of
shared hidden layer is 300, and in each training iteration, 256
neurons are selected randomly to perform BP and WU. All
TD3lite networks together have about 300K parameters. All
the weights in the networks are updated by the RMSprop
method [24], which is implemented using single-precision
floating-point arithmetic and is fully stored in BRAM. The
learning rate is 3× 10−4, and the batch size |B| is 256.

We implement TD3lite on the Xilinx Alveo U50 acceler-
ation card operating at 160MHz using Xilinx Vitis 2020.1
and Vitis HLS. The resources available on the Alveo U50
is presented in the last row of Table IV. Two baselines are
compared with TD3lite – a CPU-based and a GPU-based

implementation. For all three designs, an AMD Ryzen 7 3800x
operating at 3.9 GHz with 32G RAM is used as the host
CPU. For the GPU-based platform, we use RTX 2070 Super at
1605 MHz, with 2560 cores and 8GB GDDR6 memory. The
replay buffer is implemented in 8GB HBM (High Bandwidth
memory) on the Alveo U50 board. We use an efficient and high
performance deep learning library, PyTorch [29], to implement
TD3 on the CPU-based and GPU-based baselines. PyTorch
automatically provides optimizations, such as data parallelism,
custom caching tensor allocation and multiprocessing, for
general-purpose parallel hardware, such as GPU.

B. Precision and Learning Performance

The learning performance is measured by the average
maximum cumulative reward over 10 runs of 5000 episodes
each, which is the metric used in the TD3 paper [9]. Besides
single-precision floating-point arithmetic, we investigate dif-
ferent bitwidth options for the proposed BFP arithmetic and
show the results in Table I. In our BFP implementation, the
shared exponent is set to 8 bits, which is the same as the IEEE
754 standard. From Table I, BFP alone without bitwidth reduc-
tion (24-bit mantissa) causes very small learning performance
loss. It is no surprise that the learning performance degrades
along with bitwidth reduction. Although TD3lite adopts BFP
with a 12-bit mantissa, which has large performance loss,
we will show that this loss can be largely compensated by
our proposed network topology sharing. Moreover, a 12-bit
mantissa for our BFP implementation offers a reasonable
performance drop and a good reduction in resource utilization.

We study the topology sharing (TS) with several variants,
as described in Section IV-D. One variant is hard sharing
(HS), which updates all nodes during the training stage, while
TS only updates a subset of nodes, and different subsets are
updated in different time steps. In HS1, we share the first
hidden layer, and in HS2, both hidden layers are shared. These
variants are implemented on the FPGA and summarized below.

• TD3-ori: TD3 implementation on FPGA with neither
BFP nor network sharing.

• BFP12: BFP with 12-bit mantissa only.
• TS1: Topology sharing on the first hidden layer as shown

in Figure 5(b) without BFP.
• BFP12-TS1 (TD3lite): BFP with 12-bit mantissa & TS1.
• BFP12-TS2: BFP12 and TS2, which is topology sharing

for both hidden layers.
• BFP12-HS1-256: BFP12 with hard sharing of the first

hidden layer with 256 nodes.
• BFP12-HS1-300: BFP12 and hard sharing with 300

nodes for the first hidden layer.
• BFP12-HS2-256: BFP12 with hard sharing of both hid-

den layers with 256 nodes.



TABLE II
LEARNING PERFORMANCE OF DIFFERENT COMBINATIONS OF NUMBER REPRESENTATIONS AND NETWORK SHARING VARIANTS.

TD3-ori BFP12 TS1 BFP12-TS1 (TD3lite) BFP12-TS2 BFP12-HS1-256 BFP12-HS1-300 BFP12-HS2-256 BFP12-HS2-300
Hopper 3479.66 2818.35 3421.63 (-1.7%) 3271.72 (-5.9%) 2552.76 2387.1 2588.33 2132.44 2127.3

HalfCheetah 8409.1 6604.87 8201.82 (-2.5%) 7996.51 (-4.9%) 6098.8 6551.28 6327.11 5187.56 4968.5
Walker 4452.94 3686.01 4348.08 (-2.4%) 4126.4 (-7.3%) 3211.72 2635.5 2643.97 2011.22 2264.2

Ant 5117.83 3920.22 5003.4 (-2.2%) 4874.53 (-4.8%) 3287.13 3337.41 3476.54 2412.34 2529.37
Average loss - -20% -2.2% -5.7% -29.4% -32.3% -30.8% -46.2% -44.9%

• BFP12-HS2-300: BFP12 and hard sharing with 300
nodes for both hidden layers.

Table II compares the learning performance of the above
options. In BFP12-TS1, we can reduce the learning perfor-
mance loss of BFP12 from 20% to merely 5.7% on average.
It is reasonable since BFP12-TS1 has 300 neurons in the
first hidden layer, which is more informative. One can also
see that hard sharing and sharing two layers cause too much
learning performance loss. Although the learning performance
loss from TS1 alone is only 2.2%, we will show that it does
not have the computing and resource efficiency provided by
BFP12-TS1 (TD3lite). In Figure 6, we illustrate the cumulative
reward over learning episode for Hopper. One can see that the
final reward from TD3lite is close to the CPU and GPU im-
plementations with single-precision floating point and TD3lite
reaches high reward faster than the other two approaches.

Fig. 6. Learning curves for the Hopper benchmark.

C. Computing Throughput
Computing throughput is measured by Full Iteration Pro-

cessed per Second (FIPS), where a full iteration includes both
the decision-making and training stages shown in Figure 3.
The FIPS results are plotted in Figure 7. TD3lite achieves
a 21× and 8× throughput compared to the CPU and GPU
implementations, respectively. TS1 alone provides limited
throughput improvement. One can observe that the main
contributor of throughput improvement is BFP12. However,
its significant learning performance loss (20%) needs to be
compensated by TS1. This is why the combination of BFP12
and TS1, which is TD3lite, achieves the best tradeoff between
learning performance and computing throughput.

D. Resource Utilization and Efficiency
Table III compares power consumption and energy effi-

ciency in terms of FIPS per Watt. The energy efficiency of
TD3lite is 47× and 26× of CPU and GPU implementations,
respectively. Comparing BFP12 and TD3lite, one can tell that
TD3lite slightly improves energy efficiency of BFP12 while
compensating the learning performance loss of BFP12.

Fig. 7. Computing throughput in terms of FIPS.

TABLE III
POWER AND ENERGY EFFICIENCY COMPARISON.

CPU GPU TD3-ori TS1 BFP24 BFP12 TD3lite
Power (W) 52 74 26 25 25 24 24

FIPS 123 320 550 567 1053 2617 2647
FIPS/W 2.37 4.32 21.15 22.7 42.1 109 110.3

Table IV compares the FPGA resource utilization of TD3lite
and others. TD3lite utilizes 35% less DSPs, 39% less flip-
flops, 35% less LUTs, and 26% less BRAMs than TD3-ori,
which is based on single-precision floating-point arithmetic.

TABLE IV
RESOURCE UTILIZATION ON XILINX ALVEO U50. THE NUMBER IN

PARENTHESES INDICATES THE PERCENTAGE CHANGE IN UTILIZATION
COMPARED WITH OUR BASELINE FPGA IMPLEMENTATION, TD3-ORI.

Type Flip-Flops LUTs BRAM DSP
TD3-ori 611K 763K 717 3551

TS1 609K (-0.3%) 744K (-2.5%) 746 (-4%) 3461 (-2.5%)
BFP24 451K (-26%) 551K (-28%) 601 (-16%) 2899 (-18%)
BFP12 370K (-39%) 490K (-36%) 512 (-28.5%) 2237 (-37%)
TD3lite 373K (-39%) 498K (-35%) 527 (-26%) 2299 (-35%)

Available on FPGA 1743K 872K 1344 5952

VI. CONCLUSIONS

In this paper, we introduce TD3lite, an FPGA acceleration
approach for TD3, a state-of-the-art RL technique. To address
the computational and resource overhead resulting from the
inference and training of multiple neural networks, TD3lite
employs a network sharing technique in conjunction with the
use of bitwidth-optimized block floating-point arithmetic. Ex-
perimental results from robotic benchmarks show that TD3lite
is 21× and 8× faster than CPU and GPU implementations,
respectively, at the cost of only 5.7% learning performance
loss. TD3lite achieves 26× energy efficiency over a GPU
implementation, and reduces FPGA resource utilization by
∼ 25 − 40% compared to a single-precision floating-point
realization of TD3.
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