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Abstract. Bipartite graphs model the relationship between two disjoint
sets of objects. They have a wide range of applications and are often
visualized as 2-layered drawings, where each set of objects is visualized
as vertices (points) on one of two parallel horizontal lines and the rela-
tionships are represented by (usually straight-line) edges between the
corresponding vertices. One of the common objectives in such drawings
is to minimize the number of crossings. This, in general, is an NP-hard
problem and may still result in drawings with so many crossings that they
affect the readability of the drawing. We consider a recent approach to re-
move crossings in such visualizations by splitting vertices, where the goal
is to find the minimum number of vertices to be split to obtain a planar
drawing. We show that determining whether a planar 2-layered drawing
exists after splitting at most k vertices is fixed parameter tractable in k.

Keywords: fixed parameter tractability · graph drawing · vertex splitting

1 Introduction

Bipartite graphs are used in many applications to study complex systems and
their dynamics [20]. We can visualize a bipartite graph G = (T ∪ B,E) as a
2-layered drawing where vertices in T are placed (at integer coordinates) along
the horizontal line defined by y = 1 and vertices in B along the line below (at
integer coordinates) defined by y = 0.

A common optimization goal in graph drawing is to minimize the number
of crossings. Deciding whether a planar 2-layered drawing exists for a given
graph can be done in linear time, although most graphs, including sparse ones
such as cycles and binary trees, do not admit planar 2-layered drawings [6].
The problem of minimizing the number of crossings in 2-layered layouts is NP-
hard, even if the maximum degree of the graph is at most four [16], or if the
permutation of vertices is fixed on one of the layers [6]. The latter variant
of the problem is known as One-Sided Crossing Minimization (OSCM). The
minimum number of crossings in a 2-layered drawing can be approximated within
a factor of 1.47 and 1.3 + 12/(δ − 4), where δ is the minimum degree, given that
δ > 4 [17]. Dujmović et al. [5] gave a fixed-parameter tractable (FPT) algorithm
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with runtime O(1.62k · n2), which was later improved to O(1.4656k + kn2) [4].
Fernau et al. [10] reduced this problem to weighted FAST (feedback arc sets
in tournaments) obtaining a subexponential time algorithm that runs in time

2O(
√
k log k) + nO(1). Finally Kobayashi and Tamaki [14] gave a straightforward

dynamic programming algorithm on an interval graph associated with each

OSCM instance with runtime 2O(
√
k log k) + nO(1). They also showed that the

exponent O(
√
k) in their bound is asymptotically optimal under the Exponential

Time Hypothesis (ETH) [11], a well-known complexity assumption which states
that, for each k ≥ 3, there is a positive constant ck such that k-SAT cannot be
solved in O(2ckn) time where n is the number of variables.

Minimizing the number of crossings in 2-layer drawings may still result in
visually complex drawings from a practical point of view [12]. Hence, we study
vertex splitting [7,15,8,13] which aims to construct planar drawings, and thus,
avoid crossings altogether. In the split operation for a vertex u we delete u from
G, add two new copies u1 and u2, and distribute the edges originally incident to
u between the two new vertices u1 and u2. There are two main variations of the
objective in vertex splitting: minimizing the number of split operations (or splits)
and minimizing the number of split vertices (each vertex can be split arbitrary
many times) to obtain a planar drawing of G. Minimizing the number of splits
is NP-hard even for cubic graphs [9]. Nickel et al. [18] extend the investigation
of the problem and its complexity from abstract graphs to drawings of graphs
where splits are performed on an underlying drawing.

Vertex splitting in bipartite graphs with 2-layered drawings has not received
much attention [2]. In several applications, such as visualizing graphs defined
on anatomical structures and cell types in the human body [19], the two vertex
sets of G play different roles and vertex splitting is allowed only on one side of
the layout. This has motivated the interest in splitting the vertices in only one
vertex partition of the bipartite graph. It has been shown that minimizing splits
in this setting is NP-hard for an arbitrary bipartite graph [3].

The other variant – minimizing the number of split vertices – has been recently
considered and was shown to be NP-hard [1]. On the positive side, we show that
the problem is FPT parameterized by the natural parameter, that is, the number
of split vertices.

Problem (Crossing Removal with k Split Vertices – CRSV(k)). Let G =
(T ∪B,E) be a bipartite graph. Decide whether there is a planar 2-layer drawing
of G after splitting at most k vertices of B.

In the next section we prove the following theorem.

Theorem 1. Given a bipartite graph G = (T ∪ B,E), the CRSV(k) problem

can be decided in time 2O(k6) ·m, where m is the number of edges of G.

We prove Theorem 1 using kernelization, one of the standard techniques
for designing FPT algorithms. The goal of kernelization is to reduce the input
instance to its computationally hard part on which a slower exact algorithm can
be applied. If the size of the reduced instance is bounded by a function of the
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parameter, the problem can be solved by brute force on the reduced instance
yielding FPT runtime. Our reduction consists of two parts.

In the first part we identify and remove vertices that necessarily belong to
the solution (Step 1 below) and remove redundant vertices of the input graph
G; Step 2 below. Then we show that there is a solution for the reduced graph
G′′1 if and only if there is a solution for the original graph G; see Claim 1. Then
we prove two structural properties about the degrees of the vertices of G′′1 ; see
Lemmas 1 and 2. These two properties allow us to bound the size of the “essential”
part (called the core) of the reduced graph G′′1 ; see Lemma 3.

In the second part of the reduction we remove more redundant vertices of G′′1
and identify and remove the vertices that necessarily belong to the solution. Then
we show that the resulting reduced graph G′2 has size bounded by a polynomial
function of the parameter; see Lemma 4. Finally, we show that there is a solution
for G′2 if and only if there is a solution for G′′1 ; see Claim 2. The proof is concluded
by applying an exact algorithm to the graph G′2.

2 Proof of Theorem 1

Let G = (T ∪B,E) be a bipartite graph and k be the number of vertices that
we are allowed to split.

First reduction rule: Before we describe our first reduction rule, we make a useful
observation.

Observation 1. If a vertex v ∈ B has at least three neighbours of degree at least
two, it must be split in any planar 2-layered drawing of G; see Figure 1a.

Let Btr be the set of such vertices of degree 3 or more in B (as described in
Observation 1). The first reduction rule consists of two steps described below.

1. We initialize our solution set S with the vertices in Btr, that is, S := Btr and
remove them from the graph G. Let the resulting graph be G′1 = (T ′1∪B′1, E′1)
and k′1 = k − |Btr|; note that T ′1 = T1.

2. Let Ts ⊂ T ′1 be the set of vertices v such that deg(v) = 1 and deg(u) ≥ 3,
where u is the unique neighbor of v in G′1. Similarly, let Bs ⊂ B′1 be the set
of vertices v such that deg(v) = 1 and deg(u) ≥ 3, where u is the unique
neighbor of v in G′1. We remove the vertices Ts and Bs from the graph G′1.
Let the resulting graph be G′′1 = (T ′′1 ∪B′′1 , E′′1 ).

Let us now show the following.

Claim 1. The graph G is a Yes instance for CRSV(k) if and only if G′′1 is a
Yes instance for CRSV(k′1).

Proof. We first argue the “only if” direction: consider a planar 2-layered drawing
of G with at most k vertices split. According to Observation 1, each vertex in
Btr is split, moreover, none of the vertices in Bs are split because each of them
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v

(a) v ∈ Btr (b) a drawing of G′′
1

v1v2 v3

(c) reinserting split copies of v

Fig. 1: Reinserting split copies v1, v2, . . . , vdeg(v) of v ∈ Btr into a planar 2-layered
drawing of G′′1 to get a planar 2-layered drawing of G.

w

u

v

v1 v2

Fig. 2: Reinserting w ∈ Bs and u ∈ Ts into a 2-layered drawing of G′′1 to obtain a
2-layered drawing of G. A safe wedge v1vv2 is filled green.

has degree one. Therefore, there are at most k − |Btr| vertices in B \ (Btr

⋃
Bs)

that are split. Because B′′1 = B \ (Btr

⋃
Bs) and k′1 = k − |Btr| there exists a

planar 2-layered drawing of G′′1 with at most k′1 vertices split.
For the “if” direction, consider a planar 2-layered drawing of G′′1 with at most

k′1 vertices split. Note that after applying Step 1 and Step 2 the vertices in B′′1
have degree at most two. Thus for each vertex v ∈ Btr we can reinsert its split
copies v1, v2, . . . , vdeg(v) (each reinserted vertex has degree one) without crossings;
see Figure 1. For the same reason we can reinsert the vertices in Bs of degree one
removed at Step 2; see Figure 2. To see that we can reinsert each vertex u ∈ Ts
of degree one removed at Step 2 observe that we always connect it to a vertex
v ∈ B′′1 of degree at least two, therefore, in any planar 2-layered drawing of G′′1
there is always a safe wedge formed by two edges vv1 and vv2 where we can fit
in the edge vu without causing any crossings; see Figure 2.

Now we state two observations about the degrees of the vertices of the
graph G′′1 .

Lemma 1. For each vertex v ∈ T ′′1 it holds that deg(v) ≤ k′1 + 2 if there exists a
planar 2-layered drawing of G′′1 with at most k′1 split vertices.

Proof. Consider for contradiction that there is a vertex v ∈ T ′′1 that has deg(v) =
k′1 + 3; see Figure 3. According to Step 2 v does not have any neighbors of
degree one in B′′1 , therefore, to obtain a planar 2-layered drawing of G′′1 all
but two neighbors of v must be split, that is, k′1 + 1 vertices must be split;
contradiction.

To make our second observation let T ′′1, deg(v)≥3 be the set of all the vertices

of degree at least three in T ′′1 .
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v

Fig. 3: All but two neighbors of v must be split to obtain a planar 2-layered
drawing of G′′1 because each neighbour of v has degree at least two.

v1 v2

u

v1 v2

u1 u2

Fig. 4: For each vertex in v ∈ T ′′1, deg(v)≥3 at least one of its neighbors u ∈ B′′1
must be split to obtain a planar 2-layered drawing of G′′1 because each of the
neighbours of v has degree at least two. Splitting u can resolve crossings for at
most two vertices v1, v2 ∈ T ′′1, deg(v)≥3 because it has degree at most two.

Lemma 2. It holds that
∣∣T ′′1, deg(v)≥3

∣∣ ≤ 2k′1 if there exists a planar 2-layered

drawing of G′′1 with at most k′1 split vertices.

Proof. Observe that according to Step 2 no vertex in T ′′1, deg(v)≥3 has any neigh-

bors of degree one in B′′1 . This implies that for each vertex v in T ′′1, deg(v)≥3 at

least one of its neighbors u ∈ B′′1 must be split to obtain a planar 2-layered
drawing of G′′1 ; see Figure 4. But the degree of u is at most two, therefore,
splitting u can resolve crossings for at most two vertices v1, v2 ∈ T ′′1, deg(v)≥3.

Thus, if |T ′′1, deg(v)≥3| > 2k′1, more than k′1 vertices in B′′1 must be split to obtain

a planar 2-layered drawing of G′′1 ; contradiction.

For a subset of vertices W let N(W ) denote the set of neighbors of W . From
Lemma 1 and 2 we obtain the following.

Lemma 3. The graph induced by the vertices T ′′1, deg(v)≥3
⋃
N(T ′′1, deg(v)≥3) has

at most 2k′1(k′1 + 2) vertices if there exists a planar 2-layered drawing of G′′1 with
at most k′1 split vertices.

Let C = T ′′1, deg(v)≥3
⋃
N(T ′′1, deg(v)≥3) and call the graph induced by the

vertices in C the core of G′′1 . Now we can proceed to the second reduction rule.

Second reduction rule: Observe that all the vertices in (B′′1
⋃
T ′′1 ) \C have degree

at most two, and therefore, induce paths or cycles in G′′1 . Since the cycles are not
connected to the core in G′′1 (because their vertices have degree at most two in
G′′1) we can remove them and handle separately. We need to account for one split
vertex per each such cycle. Let E be the set of these cycles and let k′2 = k′1 − |E|.
In addition, let Z be the set of vertices that we split in these cycles, S := S

⋃
Z.
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v

(a) p (black) in G′
2, safe wedge (green) (b) reinserting the missing part of p

Fig. 5: Reinserting the missing part of the path p ∈ P into a planar 2-layered
drawing of G′2 to get a planar 2-layered drawing of G′′1 .

Let P be the set of paths induced in G′′1 by the vertices in (B′′1
⋃
T ′′1 ) \ C

of length at least 2k′2 + 5. We reduce G′′1 to G′2 = (T ′2 ∪ B′2, E′2) by shortening
each path p ∈ P (that is, iteratively removing one of the middle vertices of p
from T ′′1 and identifying its two neighbours in B′′1 ) until p has at most 2k′2 + 5
vertices. Because during shortening step the length of p decreases by two, after
the shortening process p will still have at least 2k′2 + 3 vertices.

Claim 2. The graph G′′1 is a Yes instance for CRSV(k′1) if and only if G′2 is a
Yes instance for CRSV(k′2).

Proof. In one direction the claim is obvious, because shortening paths in a planar
2-layered drawing of the graph G′′1 does not cause any crossings.

For the other direction, consider a planar 2-layered drawing of the graph G′2.
To obtain from it a planar 2-layered drawing of the graph G′′1 we need to: (1)
reinsert each of the cycles in E that we have removed from G′′1 to obtain G′2, and
(2) reinsert back the missing parts of the paths of P, which are made up of the
vertices from (B′′1

⋃
T ′′1 ) \ C. Because the cycles in E are disconnected from G′′1

we can reinsert them anywhere in the drawing wherever there is space with one
split vertex in Z.

Let us now argue why we can reinsert the missing vertices from (B′′1
⋃
T ′′1 )\C

into the paths in P ; we will refer to Figure 5 for illustration. Because for any such
path p ∈ P the length of p is at least 2k′2 + 3 there must be at least one vertex v
in B′2 that was not split in a planar 2-layered drawing of G′2 (see Figure 5a), as
otherwise a planar 2-layered drawing of G′2 cannot be constructed with at most
k′2 splits. Therefore, there must be a safe wedge formed by the unsplit vertex
v and the two edges of the path p incident to v providing space to reinsert the
missing vertices without causing any crossings; see Figure 5b.

Lemma 4. The graph G′2 has at most O(k6) vertices.

Proof. According to Lemma 3 the core C has at most 2k′1(k′1 + 2) vertices and
according to Lemma 1 the highest degree of each vertex in C is at most k′1 + 2.

Therefore, there can be at most
(
2k′

1(k
′
1+2)
2

)
(k′1 + 2) many paths induced by the

vertices in (B′2
⋃
T ′2) \C. Moreover, after applying the second reduction rule each

such path has at most 2k′2 + 5 vertices. Thus the total number of vertices in G′2
is at most

(
2k′

1(k
′
1+2)
2

)
(k′1 + 2)(2k′2 + 5) ∈ O(k6).
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Finally we decide CRSV(k′2) for G′2 by brute force. More precisely, we check
all subsets X of B′2 such that |X| ≤ k′2 ≤ k. For each vertex v in X we check all
ways to partition its incident edges (at most k + 2) into non-empty subsets, this
represents splitting of v. The number of such partitions is bounded by the Bell
number of order k+ 2, which in turn is bounded by (k+ 2)!. Then we run a linear
time algorithm to check whether a planar 2-layered drawing of the resulting
graph exists. This can be done in time 2O(k6)(k!)O(k) ·m ⊂ 2O(k6) ·m, where
m is the number of edges of G. If G′2 is a yes instance for CRSV(k′2) with the
subset of split vertices X, we update our solution set S := S

⋃
X and return it.

It is worth noting that the kernelization itself can be done in time O(m) since
we process each vertex in constant time given that we know its degree. Thus, the
kernelization does not affect the total asymptotic runtime of the algorithm.

3 Conclusion and Open Problems

We presented an FPT algorithm for the CRSV(k) problem parameterized by k.
Improving the runtime is needed for this algorithm to be useful in practice, as
the constants are very large. Another natural direction is to look for an FPT
algorithm for the other variant of the problem, that is, minimizing the number
of splits, which was recently shown to be NP-hard [1].

Problem (Crossing Removal with k Splits – CRS(k)). Let G = (T ∪B,E) be
a bipartite graph. Decide whether there is a planar 2-layer drawing of G after
applying at most k splits to the vertices in B.

Is there an FPT algorithm for the CRS(k) problem parameterized by k? It
is not clear how to adjust the algorithm in Theorem 1 as it splits every vertex
in Btr as many times as its degree, and thus, the number of splits is not bounded
by a function of the parameter k.
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