
Spark Meets MPI: Towards High-Performance
Communication Framework for Spark using MPI

Kinan Al-Attar
Department of Computer

Science Engineering
The Ohio State University

alattar.2@osu.edu

Aamir Shafi
Department of Computer

Science Engineering
The Ohio State University

shafi.16@osu.edu

Mustafa Abduljabbar
Department of Computer

Science Engineering
The Ohio State University

abduljabbar.1@osu.edu

Hari Subramoni
Department of Computer

Science Engineering
The Ohio State University

subramoni@cse.ohio-state.edu

Dhabaleswar K. Panda
Department of Computer

Science Engineering
The Ohio State University
panda@cse.ohio-state.edu

Abstract—There are several popular Big Data processing
frameworks including Apache Spark, Dask, and Ray. The Apache
Spark software provides an easy-to-use high-level API in different
languages including Scala, Java, and Python. Spark supports
parallel and distributed execution of user workloads by sup-
porting communication using an event-driven framework called
Netty. Some efforts — including RDMA-Spark and SparkUCX
— were made in the past to optimize Apache Spark on High-
Performance Computing (HPC) systems equipped with high-
performance interconnects like InfiniBand. In the HPC com-
munity, Message Passing Interface (MPI) libraries are widely
adopted for parallelizing science and engineering applications.
This paper presents MPI4Spark which uses MPI for commu-
nication in a parallel and distributed setting on HPC systems.
MPI4Spark can launch the Spark ecosystem using MPI launchers
to utilize MPI communication inside the Big Data framework.
It also maintains isolation for application execution on worker
nodes by forking new processes using Dynamic Process Manage-
ment (DPM). It bridges semantic differences between the event-
driven communication in Spark compared to the application-
driven communication engine in MPI. MPI4Spark also provides
portability and performance benefits as it is capable of utilizing
popular HPC interconnects including InfiniBand, Omni-Path,
Slingshot, and others. The performance of MPI4Spark is evalu-
ated against RDMA-Spark and Vanilla Spark using OSU HiBD
Benchmarks (OHB) and Intel HiBench that contain a variety
of Resilient Distributed Dataset (RDD), Graph Processing, and
Machine Learning workloads. This evaluation is done on three
HPC systems including TACC Frontera, TACC Stampede2, and
an internal cluster. MPI4Spark outperforms Vanilla Spark and
RDMA-Spark by 4.23× and 2.04×, respectively, on the TACC
Frontera system using 448 processing cores (8 Spark workers)
for the GroupByTest benchmark in OHB. The communication
performance of MPI4Spark is 13.08× and 5.56× better than
Vanilla Spark and RDMA-Spark, respectively.

Index Terms—Apache Spark, Netty, MPI

I. INTRODUCTION

The global Internet population and unique mobile phone

users continue to grow at an accelerated rate [1]. This rise in

the digital footprint of the human population is triggering the

generation of large amounts of data — the global datasphere is

expected [2] to reach 175 ZettaBytes by 2025. It is becoming

increasingly challenging for organizations to manage and

process this large amount of data, also known as Big Data.

The Apache Spark software [3], like Dask [4] and Ray [5],

provides a popular Big Data processing framework targeted for

commodity hardware. Spark has also seen wide deployment

on High-Performance Computing (HPC) systems including

the ones at Texas Advanced Computing Center (TACC), San

Diego Supercomputing Center (SDSC), and other HPC cen-

ters. Apache Spark improves the performance and scalability

of its predecessor, Apache Hadoop, by maintaining user data

in-memory as much as possible using Resilient Distributed

Datasets (RDDs). RDDs are in-memory partitions of data

that are spread out across a Spark cluster. A typical Spark

application processes data by applying transformations and

actions to these RDDs. The software and the associated

programming model are fault-tolerant and have support for

wide-ranging libraries for machine learning, graph processing,

streaming, and SQL-based workloads.

The performance of Apache Spark, however, does not

reap the full performance benefits that can be achieved on

High-Performance Computing (HPC) through communication

primitives such as MPI [6]. The Message Passing Interface

(MPI) is considered the defacto standard for writing large-

scale parallel applications on HPC systems. There are several

production-quality MPI-based messaging libraries including

Intel MPI [7], Cray MPI [8], MVAPICH2 [9], Open MPI [10],

and MPICH [11]. More recently, MPI libraries have been

exploited to scale Deep Learning (DL) training on HPC

systems [12].

A. Motivation

Large-scale distributed data processing is typically enabled

by running Apache Spark on parallel HPC systems. While the

Spark framework is capable of exploiting computing devices

71

2022 IEEE International Conference on Cluster Computing (CLUSTER)

2168-9253/22/$31.00 ©2022 IEEE
DOI 10.1109/CLUSTER51413.2022.00022

like CPUs and GPUs, it fails to exploit high-performance and

low latency interconnects provided by these HPC systems. The

overall communication performance of the shuffle phase —

covered in more detail in Section II — becomes a significant

bottleneck in distributed execution of Big Data workloads. The

reason for this bottleneck is that the Vanilla versions of the

Apache Spark software rely on TCP/IP protocol via Java sock-

ets for communication between distributed processes. There

have been efforts earlier to address this shortcoming by mul-

tiple projects including RDMA-Spark [13], SparkUCX [14],

and Spark-RAPIDS [15]. However, none of these efforts

utilized MPI communication libraries to exploit a wide range

of available high-performance networks (IB, RoCE, OPA,

etc.) for maximizing performance, reducing maintenance costs,

and building upon decades of research exercised by the

HPC community. There are efforts that use MPI libraries

such as Spark+MPI [16] and Spark-MPI [17]. Nonetheless,

Spark+MPI relies on extending the high-level API for Spark,

which requires extra application programming efforts. Also,

Spark-MPI just enables MPI workloads to run on Spark worker

nodes and does not enhance the communication backend of

Spark.

The primary motivation of this work is to utilize the com-
munication functionality provided by production-quality MPI
libraries in the Apache Spark framework without having to
extend the high-level Spark API. To realize our vision, we

design and implement MPI4Spark that aims to extend Spark’s

communication infrastructure using MPI.

B. Problem Statements

Table I provides an overview and comparison of the main

features of MPI4Spark with previous efforts. The proposed

MPI4Spark framework optimizes the communication layer,

supported by Netty, of the Apache Spark framework by

utilizing MPI. Netty [18] is a New I/O (NIO) client/server

framework that enables the development of event-based net-

working applications in Java. However, there are several issues

that need to be tackled for this. The communication layers

of the Spark software are mainly event-driven while the

communication engine of MPI, on the contrary, is application-

driven. Also, since MPI follows a Single Program Multiple

Data (SPMD) model of MPI, it does not clearly map to Apache

Spark where distributed processes are launched manually or

through a resource manager.

This paper considers the following design challenges and

questions:

• Is it possible to launch execution of Spark ecosystem and

associated user workloads using MPI launchers? This is

necessary in order to utilize the high-performance MPI

communication inside Spark.

• The Apache Spark framework provides isolation for

application execution on worker (or compute nodes) by

forking new processes — called executors — from the

worker processes. How can this execution model be

maintained using MPI?

• How can the semantic differences between the Spark

software and MPI be resolved? These differences mainly

include i) the event-driven communication in Spark com-

pared to the application-driven communication engine ,

and ii) process naming.

• What are the various performance benefits that can be

obtained through different application workloads?

Section III details the design challenges tackled in this

paper.

C. Overview

There have been two approaches to enhance the com-

munication performance of the Spark software. The first

approach, taken by SparkUCX, was to design and imple-

ment a new ShuffleManager based on the UCX com-

munication library [19]. The second approach, taken by

RDMA-Spark, was to rely on existing shuffle managers like

SortShuffleManager and only enhance the associated

BlockTransferService. In MPI4Spark , we go down

a level deeper, directly at the communication layer (Netty),

and enhance it with MPI. As mentioned, a unique feature

of the MPI4Spark framework is that it uses the Dynamic

Process Management (DPM) functionality provided by the

MPI standard to launch the execution of Spark workloads.

This effort allowed MPI-based communication within the

Apache Spark framework using two designs — MPI4Spark-
Basic and MPI4Spark-Optimized — that are described in detail

later in Section IV. Both of these designs enhance the Netty

communication layer.

We conduct a detailed performance evaluation of MPI4Spark
for up to 32 workers (1792 cores) against Vanilla Spark

and RDMA-Spark using OSU HiBD-Benchmarks (OHB) [20]

provided by the Ohio State University and the Intel Hi-

Bench Benchmark Suite [21] on NVIDIA/Mellanox Infini-

Band (TACC Frontera) and Intel Omni-Path (TACC Stam-

pede2) networked systems. As an example of performance

gains, MPI4Spark outperforms Vanilla Spark and RDMA-

Spark by 4.23× and 2.04×, respectively, on the TACC Fron-

tera system using 448 processing cores (8 Spark workers)

for the GroupByTest benchmark in OHB. The communi-

cation performance of MPI4Spark is 13.08× and 5.56× better

than Vanilla Spark and RDMA-Spark, respectively. More

detailed information regarding the performance evaluation of

MPI4Spark can be found in Section VII.

D. Contributions

This paper makes the following contributions:

1) The paper presents the design and implementation of

MPI4Spark, which is a novel and modular solution based

on Netty for using MPI-based communication inside

Spark. This effort realizes the vision of “Converged

Communication Stack” for Big Data, Deep Learning,

and HPC. MPI4Spark allows Spark to exploit the latest

developments, features, and network support provided

by production-quality MPI libraries.

72

Features MPI4Spark RDMA-Spark
[13]

SparkUCX
[14]

Spark+MPI
[16]

Spark-MPI
[17]

Support for Multiple Interconnects � � � � �
Adheres to Spark API � � � � �
Studies with Existing Benchmark Suites � � N/A � N/A

Optimization Technique MPI-Based Netty
RDMA-Based Block
TransferService

UCX-Based Shuffle
Manager

Offload to shared
memory and use MPI

N/A

TABLE I: Comparison of MPI4Spark with earlier work.

2) MPI4Spark utilizes Dynamic Process Management

(DPM) — an advanced feature in MPI libraries — for

maintaining the execution model required by the Spark

ecosystem where worker processes dynamically launch

executor processes for running Big Data workloads.

3) MPI4Spark maintains the event-driven communication

progression engine of Netty using MPI’s point-to-point

communication primitives, intra/intercommunicators.

4) The paper presents the micro-benchmark latency evalu-

ation of MPI4Spark at the Netty layer against the default

communication backend. MPI4Spark significantly out-

performs the existing communication backend in Netty

with speed-ups up to 9× for 4MB messages.

5) We compare the performance of MPI4Spark against

Vanilla Spark and RDMA-Spark on two HPC systems: i)

TACC Frontera with IB HDR (100 Gbps), and ii) TACC

Stampede2 with Omni-Path interconnect (100 Gbps). An

internal cluster equipped with InfiniBand (IB) EDR (100

Gbps) was used to evaluate MPI4Spark at the Netty layer.

6) The paper evaluates the performance of MPI4Spark
against Vanilla Spark and RDMA-Spark using two pop-

ular benchmark suites including OSU HiBD Benchmark

(OHB) and Intel HiBench. Detailed performance evalu-

ation can be seen in Section VII.

The rest of the paper is organized as follows. Section II

presents the background. Sections III and IV detail the chal-

lenges encountered and the design of MPI4Spark , respectively.

Launching Spark with MPI is discussed in Section V. Imple-

mentation details are introduced in Section VI. The perfor-

mance evaluation of MPI4Spark is detailed in Section VII.

Section VIII presents related work. The paper concludes by

covering conclusions and future work in Section IX.

II. BACKGROUND

This section provides an overview of the Apache Spark

software and its communication framework Netty.

A. Overview of Apache Spark: Originally developed by

the AMPlab in UC Berkley, Apache Spark [3] is an open-

source in-memory Big Data processing engine. Spark has

support for running workloads that are both iterative and

interactive that include streaming, graph processing, machine

learning, and SQL-based workloads. A key abstraction pro-

vided by Spark is Resilient Distributed Datasets (RDDs),

which are fault-tolerant in-memory distributed data partitions.

Applications on Spark run as independent sets of JVM pro-

cesses managed by the SparkContext object inside of

the main program or the driver program. Spark provides

abstractions like master, workers, and executors to manage

distributed execution of user applications. The master process

communicates with other processes including the driver to

allocate resources across applications and launch executors on

worker nodes.

Fig. 1: A simple spark cluster consisting of four worker nodes

showcasing the shuffle phase during the runtime of a given

Spark application.

B. The Shuffle Phase: There are two types of operations

for tasks run by executors. An action that carries out a

computation on some data partition and returns a value back

to the driver, and a transformation which creates a new data

partition from an existing one. The transformation operation

specifies the Directed Acyclic Graph (DAG) processing de-

pendency among RDDs. Narrow dependencies are a result of

functions such as Map and Filter, where each partition of

the parent RDD is used by at most one child partition RDD.

While, wide dependencies (i.e. Join and GroupByKey) have

multiple child partitions depending on the same partition of

the parent RDD. Wide dependencies involve data shuffling

across the network and are a performance bottleneck for Spark

applications. Figure 1 illustrates the communication patterns

of the shuffle phase for a Spark cluster with four worker nodes.

Spark uses Netty to communicate RPC and shuffle mes-

sages. It does this through a set of message types that are

divided into request and response message types. Table II lists

the different types of messages and their functions.

C. Overview of Netty: Netty [18] is an asynchronous event-

driven network application framework. It uses Java New I/O

(NIO) transport by default. The NIO transport relies on a

selector that utilizes the event notification API, to indicate

which, among a set of non-blocking sockets, are ready for

73

Message Type Function
StreamRequest A request to stream data from the remote end

StreamResponse
A response to a StreamRequest
when the stream has been successfully opened

RpcRequest
A request to perform a generic Remote
Procedure Call (RPC)

RpcResponse
A response to a RpcRequest for a success-
ful RPC

ChunkFetchRequest
A request to fetch a sequence of a single
chunk of a stream

ChunkFetchSuccess
A response to ChunkFetchRequest when a
chunk exists and has been successfully fetched

OneWayMessage A RPC that does not expect a reply

TABLE II: Spark Message Types used to communicate RPC

and shuffle messages

I/O. Spark relies on the NIO transport for communication of

shuffle data along with RPC messages. In Spark, Netty clients

and servers are created through the TransportContext
object, with each component in the Spark cluster having its

own set of Netty servers and clients.

III. CHALLENGES AND OUR APPROACH

As part of this paper, we tackle the following challenges to

produce a version of the Apache Spark software that exploits

MPI-based communication through the Netty framework.

Challenge 1: Launching Spark in a MPI environment.
The MPI standard follows the Single Program Multiple Data

(SPMD) programming model that allows executing parallel

copies of the same program that communicate with one

another using point-to-point and collective communication

primitives. In order to utilize MPI-based communication in

Spark, all processes — including master, workers, and ex-

ecutors — must be started as MPI processes using launchers

like mpiexec or mpirun. In comparison, Spark relies on

different launcher scripts (for the standalone mode) that spawn

JVM processes to create the Spark environment or cluster.

Approach: In order to handle this discrepancy between how

the two environments are launched, a Java wrapper program

was used to launch the MPI processes using mpiexec on re-

spective nodes. The MPI processes later fork Spark processes

using the launcher scripts that Spark provides.

Challenge 2: Event-driven vs. Application-driven Com-
munication Engines. The communication engine for Spark

is event-driven. For instance, Spark relies on Netty that is an

event-driven communication framework. In contrast, the MPI

runtime is progressed through explicit calls to communication

routines by the application. One of our goals in designing

MPI4Spark is to enhance the Netty communication framework

using MPI without affecting its event-based functionality.

Approach: To achieve this, we carefully maintained Netty’s

connection establishment functionality while write and read

events were handled using MPI point-to-point communication

primitives.

Challenge 3: Dynamically Launching Processes. To ex-

ecute user workloads, the Apache Spark software forks new

processes — called executors — on the same node as the

worker processes. The worker processes are responsible for

forking these processes. The reason for forking a new process

to execute the user program is to provide isolation and security

for multiple jobs running in parallel on the worker node. In

addition, the worker process and the newly launched executor

process also communicate with one another.

Approach: We meet the requirement of dynamically launch-

ing processes, needed by Big Data stacks, by exploiting

Dynamic Process Management (DPM) and intercommunicator

features of MPI.

Challenge 4: Process Naming. MPI maintains numeric

identifiers called ranks to identify processes involved

in a parallel execution. On the contrary, Big Data

frameworks use endpoints or channels to identify processes.

Endpoints/channels refer to abstractions used to identify

distributed entities (Spark master or client).

Approach: The semantic mismatch between

endpoints/channels and MPI ranks is handled through designs

mapping ranks to endpoints/channels during connection

establishment — similar to the concept of mapping virtual

to physical addresses. Note that we maintain the connection

establishment mechanism of Netty in MPI4Spark and use

MPI-based point-to-point communication for reading and

writing communication messages between various entities.

IV. THE PROPOSED DESIGNS

Targeting the Netty layer was motivated behind Netty’s

transparency, flexibility, and popularity, as it has a wide-range

of adopters [18]. Modifying the Netty layer would then not

only benefit Spark but also other applications. Netty also offers

a more transparent code-base that is solely written in Java as

opposed to Spark’s which is written in both Scala and Java.

Figure 2 illustrates Apache Spark’s Netty MPI-based archi-

tecture. By default, Spark uses the Netty NIO transport inside

of BlockTransferService. Our efforts were directed at

designing a new MPI transport (Netty+MPI) that uses MPI

Java bindings to interface with native MPI communication

libraries. The MPI transport layer relies on MPI point-to-

point communication primitives as opposed to TCP/IP used by

Netty’s NIO transport. The design can also support different

kinds of network interconnects such as IB, Intel OPA, RoCE,

and HPE Slingshot.

We present two designs in this paper, MPI4Spark-Basic , and

MPI4Spark-Optimized . The designs both integrate MPI at the

Netty level, to keep the Spark level code unchanged as much

as possible. Dynamic Process Management (DPM) is used to

handle worker processes forking executors and communication

between executors.

V. LAUNCHING SPARK WITH MPI

Executors in Spark are originally launched using the

ProcessBuilder class in Java. However, this can no longer

work because Spark executors rely on Netty which, due to our

design, now relies on MPI. So, instead, DPM here was used to

launch the executors. This was done with the DPM collective

operation MPI_Comm_spawn_multiple() which spawns

74

Fig. 2: An overview of the Netty MPI-based Apache Spark

architecture.

multiple MPI processes with different executable specifica-

tions.

Since the DPM operation is an MPI collective operation,

each worker node needs to know all the other different

arguments used for launching the executors. To achieve this, an

MPI_allgather was used across the workers to gather all

the different arguments to launch the executors. The executable

specifications are then sent to master and driver processes with

point-to-point communication to launch the new executors

collectively.

A Java wrapper program is used to launch Apache Spark

with MPI. The wrapper program uses the launcher scripts

that Spark provides. Figure 3 illustrates the steps required in

launching Spark with MPI.

In Step A, four wrapper processes are launched with

their respective ranks inside of MPI_COMM_WORLD. Each

process forks Spark processes accordingly, as seen in Step

B, where processes 0 and 1 are worker processes and 2
and 3 are master and driver processes, respectively. Step

C uses DPM to launch two executor processes, creating a

new DPM_COMM and an Intercomm. The significance of

inter- vs. intracommunicators is that intercommunicators allow

for process communication between two intracommunicators.

Communication between executors is carried out using DPM_
COMM. The node view is displayed in Step C to detail where

each process sits inside of its respective node.

VI. IMPLEMENTATION DETAILS FOR MPI4SPARK

We present the implementation details of the proposed

MPI4Spark design. This section is divided into several subsec-

tions that start with an overview of our Java bindings along

with the flow of the design inside the shuffle phase.

A. Java Bindings for MPI

We designed and implemented our own Java bindings for

MPI. The Java bindings are inspired by the MPJ Express [22]

library. The Java bindings implement wrapper methods to

native MPI libraries using the Java Native Interface (JNI).

The goal of the Java bindings is to keep the Java layer as

slim as possible for several reasons. Mainly, a minimal Java

layer will aid in easier maintenance and development of the

Java MPI library and helps in achieving better communication

performance.

B. Identifying Processes in MPI4Spark

Spark relies on channels that identify client or server

processes. For example in Netty the ChannelId abstraction

is used to signify a unique id for a Channel that wraps

a Java socket. MPI on the other hand relies on numeric

identifiers (ranks) that are used to signify processes that

are involved in parallel execution. Handling this semantic

mismatch is further complicated with the use of DPM in

launching executor processes which necessitates the use of

inter and intracommunicators.

To handle the semantic mismatch between channels and

MPI ranks and the different communicator types, each

Channel with its corresponding ChannelId was mapped

to both an MPI process rank and a communicator type — the

communicator type mapping is needed to determine whether

the MPI process needs to communicate over an intra- or

intercommunicator. The mappings take place at the connec-

tion establishment phase. The ranks of MPI processes are

identified and communicated through the Netty Java sockets

using PooledDirectByteBufs. The communicator types

are signified using single bytes and are also communicated

during the connection establishment phase.

C. Flow of Apache Spark Netty MPI-Based Design

The flow of the MPI4Spark design is illustrated in Figure 4

through the shuffle phase. The shuffle phase is highlighted

through two executors in a Spark cluster. One executor per-

forms a reduce task that requires fetching of remote blocks.

The reduce task begins by reading records from the underlying

ShuffleManager, where combined key-values are read by

the ShuffleReader. Within the ShuffleReader, the

ShuffleBlockFetcherIterator is used to fetch data

blocks either locally or remotely. Local blocks are fetched

directly through the BlockManager without extra com-

munication, while remote blocks (i.e. map outputs) require

communication with the remote executor through Netty.

When fetches to a remote block are needed,

the ShuffleBlockFetcherIterator will send

ChunkFetchRequest messages to the underlying

BlockTransferService. If the user decides to use the

MPI-Based Netty design by config parameters, fetch requests

will be sent through the MPI-Based Netty client to the server

using MPI point-to-point communication primitives.

Once the message is received on the remote end, it

will be deserialized to get the block ID information

from the BlockManager. Upon finding the block, the

StreamManager is used to fetch individual chunks from

75

Fig. 3: An example illustrating how a MPI4Spark execution is launched. In Step A 4 wrapper processes are launched on separate

nodes with their respective MPI ranks. In Step B the Spark cluster is created where each process forks Spark processes. In

Step C the executor processes are launched using the DPM operation MPI_Comm_spawn_multiple(). The node view is

illustrated under nodes A, B, C, and D.

Fig. 4: Flow of MPI4Spark with Netty MPI-based de-

sign. The MPI4Spark-Basic sends all message types us-

ing MPI, the MPI4Spark-Optimized design only sends

ChunkFetchSuccess and StreamResposne with MPI.

the BlockManager. The fetched chunks are then trans-

ferred to the underlying BlockTransferService where

the MPI-based Netty design sends out the corresponding

ChunkFetchSuccess message back to the client and the

process repeats until all remote blocks are received.

D. The MPI4Spark-Basic Design

The MPI4Spark-Basic design modified the Netty NIO se-

lector loop (Figure 5), which polls for channel state changes

based on connection, read, or write events. Inside of the se-

lector loop checks were implemented with MPI non-blocking

probing method (MPI_probe) for MPI_recv calls matching

MPI_sends. The blocking select operation that was used was

changed to a non-blocking select to avoid hangs as there were

not any messages written or read to/from the Java sockets.

Netty Channels or simply Java sockets were still being

used but only for connection establishment, besides that no

messages were being communicated through the Java sockets.

Fig. 5: Overview of how Netty polls channel updates through

the selector. 1) New channels register. 2) Selector handles

new registration and other channel state changes. 3) Selec-

tor.select(..) blocks until new state changes are received or if

a given timeout has been reached. 4) Check if a state has

changed. 5) If it has, handle it and execute other tasks. 6)

Otherwise, execute other tasks and repeat process.

E. The MPI4Spark-Optimized Design

The first design used a non-blocking select and MPI_
Iprobe in the selector loop. As a result of using these

operations the performance of Spark was greatly affected. The

operations were too compute-intensive and we needed to avoid

using them.

76

Fig. 6: Format of Spark Messages in MessageWithHeader,

which is a wrapper class for communicating messages such

as ChunkFetchSuccess and others. The header contains

encoded information of its type and body size.

The MPI4Spark-Optimized design avoids the pitfalls of the

MPI4Spark-Basic design and is a lot simpler. In this design,

we only target shuffle messages. Since we can not use

non-blocking MPI probes and non-blocking select calls, the

idea was now to trigger MPI_recv calls by parsing the

headers of shuffle messages inside of ChannelHandlers.

This allows us to identify the message type (i.e. whether

it is a shuffle message or not) and perform the MPI_
recv call accordingly. Figure 7 illustrates the flow of

communication between client and server Channels using

ChannelHandlers which handle incoming and outgoing

events inside of ChannelPipelines. Each message that is

being received on either side of the communication parses the

header inside of ChannelHandlers to determine whether a

MPI recv call is to be triggered for a respective MPI send.

Fig. 7: Flow of Netty client-server communication, detailing

the use of inbound and outbound channel handlers in channel

pipelines.

Knowing that the shuffle phase was a performance

bottleneck and can account for 80% of total execu-

tion time, we focused our efforts to solely optimizing it.

We noticed that during the shuffle phase message types

ChunkFetchRequest and ChunkFetchSuccess corre-

sponded to shuffle messages and were communicated heavily.

The ChunkFetchRequest message type is a request to

fetch a chunk of data while the ChunkFetchSuccess
message type is a response to ChunkFetchRequest when

a chunk exists and has been successfully fetched.

The ChunkFetchSuccess message type was to be

communicated through MPI as it is the message type

that is involved with sending and receiving shuffle data.

ChunkFetchSuccess consists of a header and a body

(Figure 6), with the header containing encoded information

about the message’s type and body size. The header is sent

over Java sockets, while the much larger body is sent and

received with MPI.

The message type StreamResponse is also sent and

received with MPI. StreamResponse is a response to

StreamRequest and is used to communicate metadata such

as jar dependencies to the worker nodes. These jars are

needed for running the Spark application. Similar to how the

ChunkFetchSuccess message type is communicated, the

header message is sent over Java sockets while the body is

sent through MPI.

VII. PERFORMANCE EVALUATION

This section presents the performance evaluation of

MPI4Spark against Vanilla Spark and RDMA-Spark using two

benchmark suites, the OSU HiBD Benchmarks (OHB) [20]

and the Intel HiBench [21]. We could not collect numbers

with SparkUCX because hangs were encountered with both

benchmark suites. Table IV details the different benchmarks

used in the performance evaluation. The experiments were

conducted on two prominent TACC clusters, Frontera and

Stampede2. An internal cluster was used for Netty-based

evaluations. Hardware details for these systems are shown in

Table III.

TABLE III: Hardware specification of the Xeon Broadwell

system (Internal Cluster) and TACC’s Frontera and Stampede2

systems.

Specification Frontera Stampede2 Internal Cluster

Number of Nodes 18 10 2
Processor Family Xeon Platinum Xeon Platinum Xeon Broadwell
Clock Speed 2.7 GHz 2.1 GHz 2.1 GHz
Sockets 2 2 2
Cores Per socket 28 28 14
RAM 192 GB 192 GB 128 GB
Hyper-threading � 2 threads/core �
Interconnect IB-HDR (100G) OPA (100G) IB-EDR (100G)

The following library versions were used for the exper-

iments: Apache Spark v3.3.0-SNAPSHOT, Netty v4.1.67,

Apache Hadoop v3.2.3 [23], OSU HiBD Benchmarks (OHB)

v0.9.3, Intel HiBench v8.0-SNAPSHOT, and v7.0 — for Spark

RDMA as it uses Spark v2.1.0 — and MVAPICH2-X v2.3.6
[9].

A. Evaluating Communication Performance of MPI-based
Netty

Netty is evaluated using a ping-pong benchmark that reports

the latency in microseconds for different sized messages. The

evaluation was carried out on two nodes on the internal cluster.

Figure 8 showcases the results obtained from the benchmark.

Netty+MPI performs considerably better with speedups of up

to 9× times for 4MB messages.

B. MPI4Spark-Basic vs. MPI4Spark-Optimized

The performance of MPI4Spark-Basic was evaluated using

GroupByTest and SortByTest. The evaluation was car-

ried out for 28GB with 112 cores and 56GB with 224 cores on

Fontera. Figure 9 depicts that MPI4Spark-Optimized performs

better than the MPI4Spark-Basic . The reason is that the selec-

tor loop is constantly calling the non-blocking select()
function and MPI_Iprobe for incoming messages. This

constant polling in the selector thread was consuming CPU

77

Benchmark
Suite Workload Description Category

Intel
HiBench

Support Vector Machine Support Vector Machine (SVM) is a standard method for large-scale classification tasks

Latent Dirichlet allocation
Latent Dirichlet allocation (LDA) is a topic model which infers topics from a collection
of text documents

Machine
LearningGaussian Mixture Model

Gaussian Mixture Model (GMM) represents a composite distribution whereby points are
drawn from one of k Gaussian sub-distributions

Logistic Regression Logistic Regression (LR) is a popular method to predict a categorical response

Repartition This workload benchmarks shuffle performance Micro
BenchmarksTeraSort A standard benchmark to sort input data

Nweight Computes associations between two vertices that are n-hop away Graph

OSU HiBD
Benchmarks
(OHB)

GroupBy RDD-level benchmark to group the values for each key in the RDD into a single sequence
RDD
BenchmarksSortBy RDD-level benchmark to sort the the RDD by key

TABLE IV: Benchmark Suite Type with Workload Description and Category

(a) Latency (Small)

(b) Latency (Large)

Fig. 8: Average latency numbers (in microseconds) collected

using a ping-pong Netty benchmark on the internal cluster for

large and small message sizes.

time hence starving the actual compute tasks. Note that for
the remainder of the evaluation, the paper only utilizes
MPI4Spark-Optimized design for MPI4Spark .

C. MPI4Spark-Optimized Performance Evaluation (OHB)

The following configurations for Spark were used in

carrying out the performance evaluation, spark worker

memory=120GB, spark daemon memory=6GB, spark

executor memory=120GB, spark driver memory=6GB. The

configuration variables spark worker cores and spark

executor core represent the number of threads the CPU can

run concurrently, and were, by default, set to the number of

cores available on a single node. For Frontera, the variables

were set to 56 cores, while for Stampede2, they were set to

96, as a result of hyper-threading.

Fig. 9: Performance evaluation between MPI4Spark-Basic and

MPI4Spark-Optimized using OHB’s GroupByTest and Sort-

ByTest against Vanilla Spark on Frontera.

Figures 10 and 11 present the strong and weak scal-

ing performance breakdown for OHB’s GroupByTest
and SortByTest RDD-benchmarks using 8 (112GB), 16
(224GB), and 32 (448GB) worker nodes. For GroupByTest
performance is broken down into three main stages. Job0-

ResultStage, Job1-ShuffleMapStage, and Job1-ResultStage.

Job0-ResultStage is the stage that generates data, and Job1-

ShuffleMapStage (shuffle-write) is the stage of mapping the

output data into local storage (RAM disk) for the shuf-

fle read stage. Job1-ResultStage is the shuffle read stage

where the heavy communication takes place. Similarly, for

SortByTest, Job0-ResultStage refers to the data generation

stage, Job2-ShuffleMapStage refers to the shuffle write stage,

and Job2-ResultStage refers to the shuffle read stage.

In Figure 10(a), for 448GB with 1792 cores, MPI4Spark
outperforms Vanilla Spark by 3.78× and RDMA-Spark by

2.07×. For 448 cores, MPI4Spark is faster by 4.23× and 2.04×
compared to Vanilla Spark and RDMA-Spark, respectively. In

Figure 10(b), for the same data size and number of cores,

we also perform better than Vanilla Spark by 3.44× and,

for RDMA-Spark, by 1.66×. For 448 cores, MPI4Spark fairs

better by 4.31× and 1.60× compared to Vanilla Spark and

RDMA-Spark, respectively. For strong scaling in Figure 11(a)

(GroupByTest), with 448 cores, we perform better than Vanilla

Spark by 3.72× and 2.06× compared to RDMA-Spark. In

SortByTest, also with 448 cores, we find that MPI4Spark

78

(a) GroupByTest Execution Breakdown Evaluation (b) SortByTest Execution Breakdown Evaluation

Fig. 10: Weak scaling performance breakdown for RDD Benchmarks on TACC Frontera. MPI here refers to MPI4Spark . IPoIB

and RDMA refer to Vanilla Spark and RDMA-Spark, respectively. Job1-ResultStage in (a) and Job2-ResultStage in (b) refer

to the shuffle read time.

(a) GroupByTest Execution Breakdown Evaluation (b) SortByTest Execution Breakdown Evaluation

Fig. 11: Strong scaling performance Breakdown for OHB RDD Benchmarks on TACC Frontera using 224GB. MPI here refers

to MPI4Spark . IPoIB and RDMA refer to Vanilla Spark and RDMA-Spark, respectively. Job1-ResultStage in (a) and Job2-

ResultStage in (b) refer to the shuffle read time.

(a) ML Workloads (Frontera) (b) Micro/Graph Workloads (Frontera) (c) Micro/ML Workloads (Stampede2)

Fig. 12: Performance comparison of Vanilla Spark (IPoIB) and RDMA-Spark against MPI4Spark under Intel Hibench ML

and graph processing workloads along with micro-benchmarks using the Huge data size and 896 cores on TACC Frontera,

interconnected with InfiniBand. For Stampede2, interconnected with Intel Omni-Path, the performance evaluation was carried

on 384 cores (768 threads).

79

performs better than Vanilla Spark and RDMA-Spark by

3.51× and 1.41×, respectively.

D. MPI4Spark-Optimized Performance Evaluation (Intel Hi-
Bench)

Figure 12 presents the performance evaluation of MPI4Spark
using the Intel Hibench suite. The evaluation was conducted

on two systems, Frontera and Stampede2. On Frontera, 16
worker nodes were used in full subscription mode (896 cores).

On Stampede2, 8 worker nodes were used in full subscription

mode (384 cores - 768 threads). The Huge data size provided

in Intel HiBench was used in all evaluations.

In Figure 12(a), for Latent Dirichlet Allocation (LDA), we

can see that MPI4Spark outperforms both Vanilla Spark and

RDMA-Spark by 1.74× and 1.66×, respectively. For Singular

Value Decomposition (SVM), we fair better than Vanilla Spark

by 1.17× and 1.10× for RDMA-Spark. We could not col-

lect numbers for RDMA-Spark for Gaussian Mixture Model

(GMM) and Repartition, as HiBench 7.0 did not support it.

MPI4Spark outperforms Vanilla Spark by 1.50× and 1.49×
for GMM and Repartition, respectively. Figure 12(b) presents

evaluations with the graph processing workload, Nweight,

and the TeraSort micro-benchmark. For Nweight, our design

performs comparably to RDMA-Spark and 1.61× faster than

Vanilla Spark. We see that for TeraSort we are also performing

comparably to both Vanilla and RDMA. In Figure 12(c)

we present numbers obtained on TACC’s Stampede2 clus-

ter. RDMA-Spark numbers were not collected here because

Stampede2 does not use IB interconnects. For the Logistic

Regression (LR), GMM, SVM and Repartition, MPI4Spark
speeds up execution time by 2.17×, 1.09×, 1.16×, and 1.48×,

respectively.

E. Discussion

The performance benefits seen in MPI4Spark are a result

of optimizing the shuffle phase using MPI compared to the

unified communication runtime (UCR) of RDMA-Spark. This

is seen in Figure 10(a) and 10(b) where MPI4Spark outper-

forms both Vanilla Spark and RDMA-Spark by 13.08× and

5.56× and 12.78× and 3.19× for 448 cores, respectively. For

strong scaling, similarly can be said about MPI4Spark ’s shuffle

communication performance optimizations.

VIII. RELATED WORK

Several efforts were carried out to optimize Apache Spark

like RDMA-Spark [13], SparkUCX [14], Spark-RAPIDS [15],

and Spark+MPI [16]. SparkUCX and RDMA-Spark designs

use RDMA. However, the implementation of each design is

different. For SparkUCX, a new ShuffleManager was

developed, while for Spark RDMA, the design was carried out

at a lower level, where a new BlockTransferService
was implemented. Spark-RAPIDS uses the open-source

RAPIDS [24] libraries to accelerate Spark performance on

GPUs. Other work such as Spark-MPI [17], provides the

capability for MPI applications to run on Spark workers, while

Spark+MPI, utilizes the Linux shared memory to offload Spark

work to an MPI environment using HDFS [25].

One of the benefits of our design is that it adheres to the

high-level API that Apache Spark provides. This is in contrast

to Spark+MPI where additional API was introduced to offload

RDDs to shared memory.

IX. CONCLUSIONS AND FUTURE WORK

The paper presented MPI4Spark that utilizes MPI communi-

cation in the Spark framework. The paper discussed two design

alternatives, MPI4Spark-Basic , and MPI4Spark-Optimized ,

to optimize Apache Spark for HPC at the Netty level. The

performance analysis of MPI4Spark-Basic revealed overheads

because of repetitive calls to MPI_Iprobe, coupled with

non-blocking select() inside the selector loop — this ap-

proach led to high CPU usage for communication threads. To

alleviate these performance overheads, MPI4Spark-Optimized
was designed to avoid constant polling of incoming message

and focused only on communicating Spark shuffle messages

through MPI.

MPI4Spark outperformed both Vanilla Spark and

RDMA-Spark by 3.78× and 2.07×, respectively, for

the GroupByTest in OHB benchmarks (weak scaling)

running on 1792 cores. With strong scaling, for 224GB

and 448 cores, our design was faster by 3.72× and 2.06×.

While for SortByTest (weak scaling), our design was

faster by 3.44× and 1.60× compared to Vanilla Spark and

RDMA-Spark, respectively for 1792 cores. In strong scaling

numbers, for SortByTest with 224GB and 448 cores,

MPI4Spark outperformed Vanilla Spark and RDMA-Spark

by 3.51× and 1.41×, respectively. For machine learning

workloads like Latent Dirichlet Allocation (LDT), MPI4Spark
performed better than Vanilla Spark and RDMA-Spark by

1.74× and 1.66×, respectively for 896 cores with the Huge

data size. While, for the Singular Value Decomposition

(SVM) workload, we saw speed-ups of 1.17× and 1.10×
compared to Vanilla Spark and RDMA-Spark, respectively

for 896 cores. On Stampede2, we found that MPI4Spark-
Optimized performed better than Vanilla Spark with speed-ups

up to 2.17×.

The performance evaluation, on TACC’s Frontera and Stam-

pede2, showcased the portability of our design on both

InfiniBand and Intel Omni-Path interconnects and the per-

formance benefits gained through MPI4Spark . We plan to

release MPI4Spark soon along with our Java MPI Bindings

and incorporate fault-tolerance (using MPI_Comm_connect
and MPI_Comm_accept functionality) along with support

for GPU communication in the future.

X. ACKNOWLEDGEMENT

This research is supported in part by NSF grants #1818253,

#1854828, #1931537, #2007991, #2018627, and XRAC grant

#NCR-130002.

80

REFERENCES

[1] “Data Never Sleeps 9.0,” urlhttps://www.domo.com/learn/infographic/data-
never-sleeps-9, 2022, Accessed: August 1, 2022.

[2] David Reinsel, John Gantz, and John Rydning, “Data
Age 2025: The Digitization of the World, From Edge
to Core,” urlhttps://www.seagate.com/files/www-content/our-
story/trends/files/idc-seagate-dataage-whitepaper.pdf, 2018, Accessed:
August 1, 2022.

[3] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache spark: A unified engine
for big data processing,” Commun. ACM, vol. 59, no. 11, p. 56–65, oct
2016. [Online]. Available: https://doi.org/10.1145/2934664

[4] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th Python in Science Confer-
ence, K. Huff and J. Bergstra, Eds., 2015, pp. 130 – 136.

[5] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan,
and I. Stoica, “Ray: A distributed framework for emerging
AI applications,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad, CA:
USENIX Association, Oct. 2018, pp. 561–577. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/moritz

[6] The MPI Forum, “The Message Passing Interface (MPI) 4.0 Standard,”
urlhttps://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf, 2022,
Accessed: August 1, 2022.

[7] Intel MPI, “Multifabric message-passing library that
implements the open-source MPICH specification,”
urlhttps://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-
library.html#gs.0s5e9z, 2022, Accessed: August 1, 2022.

[8] CrayMPI, “CUDA-aware MPI implementation,”
urlhttps://docs.nersc.gov/development/programming-models/mpi/cray-
mpich/, 2022, Accessed: August 1, 2022.

[9] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour,
“The MVAPICH project: Transforming research into high-
performance MPI library for HPC community,” Journal of
Computational Science, vol. 52, p. 101208, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877750320305093

[10] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004, pp. 97–104.

[11] “MPICH: High-Performance Portable MPI,” http://www.mpich.org. Ac-
cessed: August 1, 2022.

[12] A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and B. Catanzaro,
“Deep learning with cots hpc systems,” in Proceedings of the 30th Inter-
national Conference on International Conference on Machine Learning
- Volume 28, ser. ICML’13. JMLR.org, 2013, p. III–1337–III–1345.

[13] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda, “High-performance
design of apache spark with rdma and its benefits on various workloads,”
pp. 253–262, 2016.

[14] SparkUCX, “A high-performance, scalable and efficient ShuffleManager
plugin for Apache Spark, utilizing UCX communication layer,” url-
https://github.com/openucx/sparkucx, 2022, Accessed: August 1, 2022.

[15] “RAPIDS Accelerator For Apache Spark,”
urlhttps://nvidia.github.io/spark-rapids/, 2020, Accessed: August 1,
2022.

[16] M. Anderson, S. Smith, N. Sundaram, M. Capotă, Z. Zhao, S. Dulloor,
N. Satish, and T. L. Willke, “Bridging the gap between hpc and big
data frameworks,” Proc. VLDB Endow., vol. 10, no. 8, p. 901–912, apr
2017. [Online]. Available: https://doi.org/10.14778/3090163.3090168

[17] N. Malitsky, R. Castain, and M. Cowan, “Spark-mpi: Approaching the
fifth paradigm of cognitive applications,” CoRR, vol. abs/1806.01110,
2018. [Online]. Available: http://arxiv.org/abs/1806.01110

[18] “The Netty Project,” urlhttps://netty.io/, 2022, Accessed: August 1, 2022.
[19] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,

Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, Y. Shahar,
S. Potluri, D. Rossetti, D. Becker, D. Poole, C. Lamb, S. Kumar,
C. Stunkel, G. Bosilca, and A. Bouteiller, “Ucx: An open source
framework for hpc network apis and beyond,” in 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects, 2015, pp. 40–43.

[20] “OSU HiBD-Benchmarks (OHB),” http://hibd.cse.ohio-
state.edu/static/media/ohb/changelogs/ohb-0.9.3.txt. Accessed: August
1, 2022.

[21] Intel HiBench Suite, “Big Data Benchmark Suite,”
urlhttps://github.com/Intel-bigdata/HiBench, 2022, Accessed: August 1,
2022.

[22] A. Shafi, B. Carpenter, and M. Baker, “Nested parallelism for multi-
core HPC systems using Java,” Journal of Parallel and Distributed
Computing, vol. 69, no. 6, pp. 532–545, 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731509000252

[23] Apache Software Foundation, “Apache Hadoop,” url-
https://hadoop.apache.org, 2022, Accessed: August 1, 2022.

[24] RAPIDS, “RAPIDS suite of open source software libraries and APIs,”
urlhttps://github.com/rapidsai, 2022, Accessed: August 1, 2022.

[25] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” pp. 1–10, 2010.

81

