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Abstract—The importance of GPUs in accelerating HPC appli-
cations is evident by the fact that a large number of super-
computing clusters are GPU-enabled. Many of these HPC ap-
plications use MPI as their programming model. These MPI
applications oftentimes exchange data that is non-contiguous
in GPU memory. MPI provides Derived Datatypes(DDTs) to
represent such data. In the past, researchers have proposed
solutions to optimize these MPI DDT based inter-node GPU
exchanges. All of these solutions are aimed at optimizing the
overheads associated with pack-unpack kernels that facilitate
the non-contiguous exchanges. Modern HCAs are capable of
gathering/scattering data from/to non-contiguous GPU memory
regions. In this work, we analyze the challenges in using HCA’s
scatter/gather mechanism for GPU-based HPC workloads. We
propose a low-overhead HCA-assisted scheme to improve the
performance of GPU-based non-contiguous exchanges. We show
that the proposed scheme provides up to 2X benefits compared
to existing pack-based schemes at the benchmark level. Fur-
thermore, on the layouts used by MILC, NASMG, Specfem3D
applications, we show that the proposed scheme outperforms
the state-of-the MPI libraries such as MVAPICH2-GDR and
OpenMPI+UCX.

Index Terms—MPI, DDT, GPU

I. INTRODUCTION

Graphics Processing Units (GPUs) have become ubiquitous
in modern supercomputers due to their high compute capa-
bility and power efficiency. This is particularly evident in the
growing number of top supercomputers on the Top500 [17]
list deploying GPUs on their clusters.

In these super-computing clusters, Message Passing In-
terface (MPI) is a widely adopted programming model for
several large-scale GPU-based applications. Oftentimes, appli-
cations are required to exchange data that is non-contiguous
in memory. MPI provides Derived Data Types (DDTs) that
allow an application to represent any non-contiguous layout
in memory. Table I gives a summary of access patterns and
possible data-types of different HPC applications. As shown
in Table I, applications often involve a variety of complex data
exchange patterns and use multiple types of MPI DDT layouts.
This underscores the need for MPI libraries to optimize the
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exchange of such non-contiguous data layouts represented by
DDTs.

TABLE I
SUMMARY OF DATATYPES USED IN HPC APPLICATIONS

Applications MPI DDTs used Data Exchange Pat-
tern

NAS MPI Type Vector 2D,3D face exchange
MILC MPI Type Vector,

MPI Type Contiguous
4D face exchange

Specfem3D MPI Type Vector,
MPI Type Indexed

unstructured exchange

HCA0 HCA1
Transfer data

Scatter data

Destination Data BlocksSource Data Blocks

Gather data

Fig. 1. HCA Assisted Exchange of Non-Contiguous Data. HCA0 gathers
data blocks from source memory and sends it to HCA1. HCA1 scatters the
received data to the destination memory at appropriate locations

MPI libraries typically use pack-unpack kernels for inter-
node DDT based exchanges. All the preceding studies on
DDT based inter-node optimizations have either optimized 1)
pack-unpack kernels [5] or 2) overlapped kernels with trans-
fers/other kernels for inter-node GPU-to-GPU transfers [22].
While pack/unpack kernels can be an effective approach to
transfer DDT messages, they involve an additional step of
packing/unpacking every buffer on the sender/receiver side.
Modern HCAs provide the capability of transferring non-
contiguous data directly from source buffers to the destination
buffers without using the pack-unpack kernels. As shown in
figure 1, given a list of source buffer addresses and destination
buffer addresses, the source HCA can gather data from these
memory regions and send them to the destination HCA.
Once the destination HCA receives the data, it can scatter



these to their respective memory regions. None of the past
research on GPU DDT optimization explored this possibility
of doing non-contiguous transfers using HCA assisted scatter-
gather mechanisms. There are overheads associated with such
transfers such as the cost of registering the layouts with HCAs.
In this work, we identify all the challenges in using the HCA
assisted mechanisms for moving GPU resident non-contiguous
data and design a low-overhead HCA assisted data-transfer
scheme that performs better than pack based schemes for
certain application layouts.

II. BACKGROUND

A. MPI Derived Datatypes

Derived datatypes (DDT) are used in MPI in order to
group and then communicate data that is either noncontiguous
or data that are differing in type. MPI provides various
functions for derived datatypes to represent different types
including MPI Type Contiguous, MPI Pack, MPI Unpack,
MPI Type Vector, and etc. For example, MPI Type Vector is
a function that will take the following values as parameters and
utilize this information to create a vector datatype: the number
of blocks, the block length, the stride, a handle representing
the old datatype, and a handle representing the new datatype.

B. UMR

User-Mode Memory Registration (UMR) is a registration
mode introduced by Infiniband and utilized for communication
of non-contiguous data. This feature can enable direct com-
munication of MPI derived datatypes( II-A) without requiring
any additional packing or unpacking schemes. A list of lkeys
and rkeys are created through registering memory regions and
the mkey is then mapped to this list. UMR uses send queues
and enables changing the address translation of mKeys [18].

C. MPI Inter-Node Communication Protocols

Various communication protocols exist within MPI and
are utilized for different configurations of communication. In
particular, the rendezvous protocol involves a transfer of data
that utilizes the Infiniband RDMA feature in order to directly
transfer data from the buffer at the source to the destination.
This eliminates the overhead of copying large regions of
memory to the buffer involved in the communication. The
sender process registers the buffer and sends a RTS (Request
to Send) packet to the receiver process. Once the receiving
process posts the process to the HCA, it will then initiate a
CTS (Clear to Send) packet back to the sender, to post the
send on the HCA. This will then trigger an RDMA transfer
between the sender and receiver.

For GPU-based communications in a GPU-aware MPI li-
brary, GPUDirect RDMA is a common protocol for data
transfer between GPUs. GPUDirect RDMA, introduced by
NVIDIA, provides a direct path between the GPU and the
network interface sharing the same PCIe root complex to
communicate data. This eliminates large overhead involved
in communication between two GPUs by removing the CPU
from the critical path.

D. Commonly used pack based GPU schemes for DDT based
transfers

Several different packing schemes currently exist in the
state-of-the-art MPI libraries and the literature. The first
scheme, referred to here as pack-host, involves the host in the
packing process. The packing operation is done onto the host,
where a data transfer then occurs between two CPUs before
unpacking it to the GPU. The second scheme, referred to here
as pack-stage, involves the packing happening to the GPU in
the first step. The data is then moved from GPU to CPU and
transferred between CPUs where it is then unpacked to the
destination GPU. Finally, the third scheme, referred to here
as pack-gdr utilizes GPUDirect RDMA to transfer between
GPUs and does not involve the host in the data transfer path.
The packing is done to the source GPU, GPUDirect RDMA
is then utilized to transfer the data between GPUs, where it is
then unpacked at the destination GPU.

III. MOTIVATION

A. Pack Cost in Application Layouts
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Fig. 2. Pack-Unpack Cost as a percentage of total latency in a ping-
pong benchmark which exchanges non-contiguous layouts used in MILC
application between source and destination GPU buffers. The data at the
sender side packed and sent. The data at the receiver’s side is unpacked to the
final destination buffer. The input parameters represent the grid dimensions
used by the MILC application.

In this section, we analyze the pack cost incurred in applica-
tion layouts. We wrote an application kernel with MPI Derived
Datatypes based on DDTBench which exchanges data from
GPU resident buffers. We profiled the amount of time spent in
pack-unpack routines inside an MPI library to exchange some
non-contiguous datatype layouts used in the MILC application.
Figure 2 shows the percentage of time spent in pack-unpack
operations out of the total time to exchange data for three
different input parameters. We observe that depending on the
input parameters, the pack-unpack cost could be as high as
40% of the total exchange time. Given this information, we
strive to know if we can leverage the HCA’s scatter/gather
mechanism to exchange non-contiguous data between MPI
ranks.

B. Overheads in the Hardware Assisted Scheme
State-of-the-art NVIDIA HCAs support non-contiguous

RDMA operations through the User Mode Memory Reg-
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istration (UMR) feature. This feature allows a program to
directly exchange non-contiguous data from a set of source
buffers to a set of destination buffers using a single post
operation. This is shown in figure 1 where the source HCA
gathers the non-contiguous data blocks and transfers them
to the destination HCA. Then, the destination HCA scatters
the data to the destination memory addresses. However, this
operation requires the user to create a mkey and map the set
of non-contiguous buffers with the mkey and subsequently
use that mkey for posting send operations. To understand the
cost of these operations we wrote an IB level benchmark
that exchanges non-contiguous layouts used in the MILC
application. We used UMR to exchange the non-contiguous
data. We observed that the creation of a single mkey takes
about 200us. In figure 3 we show the time spent in mapping
the UMR mkeys to the layout as a percentage of the total time
taken to do RDMA-Write operation of non-contiguous data.
We observe the percentages of UMR overhead are similar to
the pack costs that we presented in the section III-A. However,
applications tend to re-use a particular layout multiple times.
Can we leverage this information to amortize the overhead
of mapping mkeys to a layout in UMR based transfers?
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Fig. 3. UMR Overhead as a percentage of total latency in a ping-pong bench-
mark which exchanges non-contiguous layouts used in the MILC application
between source and destination GPU buffers. The UMR overhead refers to the
cost of mapping mkeys to a particular layout. The input parameters represent
the grid dimensions used by the MILC application.

C. Amortizing the mkey exchange overhead

By mapping a single mkey to a set of buffers, we can
exchange all the buffers using a single ibv post operation.
However, the number of buffers associated with a single
mkey is limited. Therefore, one needs to use multiple mkeys
depending on the number of blocks in a non-contiguous layout.
For a process to do RDMA-Write to a remote process, the
local process needs the list of remote process’ mkeys. To
understand the effect of this exchange, let us consider a layout
with 4096 blocks. Assuming the HCA can support 4 blocks
per mkey, this would require 1024 keys which can amount to
4KB of data exchange. This can have a significant impact on
the performance of medium message transfers. However, the

applications tend to re-use many layouts. This brings us to the
next challenge where we ask: Given the temporal repetition
of layouts in the application how can we amortize this
mkey exchange?

D. Contributions

In this work, we motivate the need for a hardware-
assisted inter-node transfer mechanism for GPU resident non-
contiguous memory layouts by analyzing the pack costs of
application layouts. Driven by this motivation, we identify the
challenges with a hardware-assisted mechanism called UMR
and propose a design that addresses the above challenges.

To summarize, this paper makes the following contributions:
1) Survey of the existing mechanisms for inter-node ex-

change of non-contiguous data using MPI Derived
Datatypes.

2) Motivate the need for HCA-assisted non-contiguous data
transfers by profiling the layout of the MILC application.

3) Propose a UMR-based design for exchanging non-
contiguous data.

4) Enhance the proposed design by using caching mech-
anisms to amortize the overheads associated with the
UMR scheme.

5) Demonstrate the usefulness of the proposed schemes by
comparing the performance of the proposed designs on
real application layouts in GPU-based HPC clusters.

IV. DESIGN AND IMPLEMENTATION

In this section, we discuss our network based non-
contiguous transfer design (Proposed-UMR).

A. Rendezvous Protocol

We employ RPUT protocol for all our designs. In this
protocol, the sender first sends Request-To-Send (RTS) packet
to the receiver. This RTS packet may contain the sender’s
buffer information depending on the design. After receiving
the RTS packet, the receiver sends a Clear-To-Send (CTS)
packet to the sender. This packet may contain information that
is useful for data exchange. After receiving the CTS packet,
the sender transfers data and sends a FIN packet to signal
the completion. Now, to transfer a contiguous buffer using the
above protocol, the sender first registers the send GPU buffer
with the HCA to obtain a lkey, and a rkey. The receiver also
registers the receive buffer to obtain the lkey and the rkey.
Once the receiver gets the RTS, it sends the receive buffer
address, data-size, and rkey to the sender in the CTS packet.
Now, the sender uses this buffer address, data-size, and rkey
to post an RDMA-Write to the receiver.

B. DDT Processing in Rendezvous Protocol

When derived datatypes (DDT) are used in MPI calls, first
the sender/receiver parses the DDT handle to get a list of
IOVs. An IOV is a structure that contains the address and
length of a contiguous memory block. The number of IOVs
in a layout indicates the number of blocks in that layout. Once
the sender gets the list of IOVs for a given DDT handle,
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as a next step a pack kernel is launched which packs all
the memory regions represented by the IOVs to a single
contiguous memory region called pack-buffer. Next, the data
from this pack-buffer is transferred to a remote pack-buffer
using the RPUT mechanism described earlier (Section IV-A).
Once the receiver receives data in the remote pack-buffer, it
will launch an unpack kernel which transfers data from the
pack-buffer to the memory regions pointed by individual IOVs.

addr1, 
size1

addr2, 
size2

addr3, 
size3

lkey1,rkey1 lkey2,rkey2 lkey3,rkey3

Register each block with HCA 

Map IOVs to UMR mkey

Local mkey(lkey,rkey)

Obtain remote mkey(lkey, rkey)

RDMA_Write(local-addr, local-mkey-lkey, local-size, 
remote-addr, remote-mkey-rkey, remote-size)

Fig. 4. Basic sender-side flow showing the steps involved in making a non-
contiguous buffer ready for UMR-based HCA-assisted RDMA operations

C. Mkey Mapping and Exchange

Figure 4 depicts how UMR can be used for non-contiguous
data exchange. Given a list of memory addresses and sizes,
first, these memory regions are registered with the HCA
which generates a list of lkeys and rkeys. Then UMR mkey
is created and then mapped to the list of addresses. This
mkey object contains one lkey and one rkey that refers to
the entire memory region. This composite lkey and rkey can
be used for posting RDMA operations provided we have the
corresponding mkey based rkey of a destination buffer address.
The HCA is responsible for gathering data referred to by the
newly created mkey from the local node and scattering data
to the remote node according to the mapping in the remote
process’s mkey.

As described in section III, we can only map a limited
number of blocks/IOVs to a single mkey. Therefore, we use a
list of mkeys to represent a single layout. To simplify the data
exchange process, we first fix a chunk-size for a given layout.
Then, we use a moving window-based approach to map mkeys
with the IOVs. A window of size chunk-size starts at IOV-0,
and spans all the IOVs whose collective sum of size is the
chunk-size. The first mkey is mapped to the IOVs spanned
by the window. After the first mkey is mapped, the window
is moved by an offset of chunk-size. Now the next mkey is
mapped to the IOVs under the current window. This process
continues until we exhaust all the IOVs. Note that the window
does not span the gaps between blocks, it operates at the IOV
level. This process is shown in figure 5.

IOV2IOV1 IOV3 IOV4 IOV5 IOV6

IOV2IOV1 IOV3 IOV4 IOV5 IOV6

IOV2IOV1 IOV3 IOV4 IOV5 IOV6

mkey1

mkey2

mkey3

Step 1: Window at offset 0

Step 2: Window at offset chunk-size

Step 3: Window at offset 2*chunk-size

Fig. 5. Sliding window based approach to map mkeys to IOV list. At each
step the IOVs covered by the window is mapped to a new mkey. This way
the entire layout is mapped to a set of mkeys which represent the layout.

When we use the above approach to map a list of IOVs with
a list of mkeys, we also add a constraint of the max number
of IOVs per mkey to ensure that our RDMA operation does
not fail.

D. UMR based Design

RDMA_write1

SENDER RECEIVER

Register send/recv buffer

RTS

RDMA_write2

mkeyr1

map chunk1 to mkeyr1

map chunk2 to mkeyr2

map chunk1 to mkeys1

map chunk2 to mkeys2

CTS

Parse DDT layout

Recv BufferSend Buffer

mkeyr2

mkeys1

mkeys2

Fig. 6. Steps involved in the UMR design between a Sender and Receiver. The
figure shows how one send/recv buffer can have multiple mkeys representing
regions in memory, and the independent transfer of each region using RDMA
operations.

Since the sender and receiver’s layouts may not be identical
it is necessary to create and map mkeys on the sender
and receiver’s side in a co-operative manner to ensure data
validation. In our protocol, the sender first selects a chunk-size
based on local layout and sends it to the receiver. The receiver
then arrives at a chunk-size based on the sender’s chunk-size
and its layout. This agreed chunk-size is sent to the sender.
Now, both sender and receiver will create mkeys based on
the agreed chunk-size. This will result in the same number of
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mkeys on the sender and receiver’s sides. A single mkey in
the sender side will be used to post an RDMA-Write operation
using a corresponding remote mkey from the receiver side.
This way the responsibility of gathering and scattering data
from any type of source layout to any type of destination
layout is given to the source and the destination HCAs.

Figure 6 illustrates the various steps involved in our
UMR design. First, the sender/receiver registers the entire
send/receive buffer to obtain the lkey and the rkey. Then the
sender sends its chunk-size to the receiver. After receiving the
sender’s layout information, the receiver arrives at an agreed
chunk-size and it creates and maps mkeys the receiver’s IOVs
with this agreed chunk-size. These mkeys and agreed chunk-
size values are sent to the sender in the CTS packet. Then, the
sender creates and maps a set of mkeys to its layout based on
the agreed chunk-size value obtained in the CTS packet. Then,
the sender uses the remote mkey’s rkey to post RDMA-Write
operations. The number of RDMA-Write operations is equal
to the number of mkeys created.

(base-addr1, layout-id1, chunk-size1 )

(base-addr2, layout-id2, chunk-size2 )

(base-addr3, layout-id3, chunk-size3 )

[mkey1, … mkeyn],  rank_map

[mkey1, … mkeyn],  rank_map

[mkey1, … mkeyn],  rank_map

Key Value

Fig. 7. UMR local mkey cache. This cache is a hash-table which has keys
generated from the base address of the send/recv buffer, layout-ID, and chunk-
size of each transfer. The value is a tuple with the list of mkeys which are
mapped to the layout, and a rank map which stores the remote ranks to which
the mkeys were sent to (used by the receiver).

E. Enhancing the UMR design

As discussed in section III, mkey creation is an expensive
operation. Therefore we create a pool of mkeys at the time of
MPI Init. During the run of the application, a sender/receiver
obtains a mkey from the pool and uses it for mapping to IOVs.
If at any point the size of the free pool is reduced to 50%,
an auxiliary thread is signaled which creates and adds a fixed
number of mkeys to the pool. This is done to ensure that the
main thread does not get impacted if it runs out of mkeys.

We use a layout-cache [4] to amortize the layout parsing
cost. In the above design, the sender and receiver use the same
set of layouts multiple times, each time the receiver performs
UMR based registrations and exchanges the list of mkeys with
the sender. To amortize the UMR registration cost and the
mkey exchange cost, we propose a UMR mkey cache.

We propose two kinds of mkey cache. First, is a local cache
which is to avoid re-mapping of mkeys to the layouts. The
second is a remote cache maintained at the sender side to
cache the remote mkeys. This cache is used by the sender

when the receiver’s layout was already sent to it at an earlier
exchange.

Figure 7 depicts the UMR mkey cache. It is implemented
as a hash-table that is indexed by local layout-cache-id, local
base address, and agreed chunk-size. Each entry of the cache
stores a list of mkeys that are uniquely identified by the above
three parameters. In addition to the mkey list, the local cache
stores a bitmap. This bitmap is used by the receiver to store
the ranks to which the mkey list was sent. On the sender’s
side, this bitmap is not used.

The remote mkey cache is implemented as an array of hash-
tables where the array is indexed by remote-rank. Each entry
of an array has a structure similar to the local cache which is a
hash-table indexed by the remote layout-cache-id, remote base
address and agreed-chunk-size. This is used at the sender’s
side when it does not receive the mkey list from the receiver.

F. Understanding the performance of non-contiguous ex-
change

We evaluate the performance of the above designs with a
simple vector-based ping-pong latency benchmark. We use a
block size of 1KB and a stride of 2KB between consecutive
blocks. Figure 8 compares the performance of the basic UMR
scheme and UMR with mkey map cache for a different number
of blocks.
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Fig. 8. Impact of UMR mkey cache on a vector of block size 1KB. The
benchmark used is a modified version of OMB which exchanges vector layouts
of a given block and count. The UMR-default is a basic design proposed in
section IV. UMR-cache is the enhanced version of the design where UMR-
pool, UMR local and remote cache are used to amortize mkey creation,
mapping and exchange costs respectively.

We observe that as the block count increases the perfor-
mance of default UMR becomes much worse, for instance, at
16 blocks default UMR is 2X worse compared to the cached
UMR and at 64 blocks it becomes 3X worse. Both mkey
mapping and mkey exchange contribute to the degradation,
however, the mkey exchange cost increases with an increase
in the number of blocks.

V. PERFORMANCE EVALUATION

In this section, we compare the performance of the proposed
scheme against other existing pack-based schemes on GPU-
based clusters. We also compare the proposed scheme with
the state-of-the-art MPI libraries.
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A. Experimental Platforms and Setup

We use MRI and ThetaGPU clusters for our evaluations.
MRI is an in-house cluster of 8 nodes with AMD-EPYC
processors and A100 NVIDIA GPU nodes. The ThetaGPU
cluster, deployed at the Argonne Leadership Computing Facil-
ity (ALCF), contains 24 DGX-A100 nodes with AMD-EPYC
processors. The NVIDIA DGX A100 GPU has 40GB HBM2.
The GPUs are connected with the third generation NVIDIA
NVLink and the second generation NVIDIA NVSwitch. The
detailed hardware specifications of these clusters are shown in
table II

We implemented the proposed scheme (UMR) in
MVAPICH2-GDR using MPI derived datatypes (DDT)
and we compare this with other pack based MPI-DDT
schemes in our MPI library. We compare pack-gdr and
pack-staged with our scheme. Details of these pack scheme
are mentioned in section II-D.

TABLE II
HARDWARE SPECIFICATION OF DIFFERENT TEST-BED CLUSTERS

Specification MRI ThetaGPU
Processor Family AMD EPYC AMD EPYC
Processor Model EPYC 7713 EPYC 7742

Clock Speed 2.0 GHz 3.4 GHz
Sockets 2 2

Cores Per socket 64 64
NUMA nodes 2 8

CCX Per NUMA 8 4
RAM (DDR4) 256 GB 1 TB
Interconnect IB-HDR(200G) - 1 HCA IB-HDR(200G) - 8 HCAs

GPU Processor NVIDIA A100×4 NVIDIA A100×8
GPU Memory 40GB 40GB

Interconnects between GPUs PCIe NVLink-3 and NVSwitch
NVIDIA Driver Version 510.39.01 470.82.01

First, to understand the performance of a simple non-
contiguous layouts, we modified the osu latency test provided
by the OSU Micro-Benchmarks (OMB) suite [13] to support
MPI Type Vector datatype. In this benchmark, a simple vector
layout of a given block length and count is exchanged in a
ping-pong manner for a given number of iterations.

Then, we evaluate application kernels with representative
application layouts. We implemented the GPU-enabled appli-
cation kernels based on popular benchmarks including ddt-
bench [15] and a kernel of 3D domain decomposition [11].
For all our experiments, we report an average of 100 iterations,
excluding the 10 warm-up iterations.
B. Microbenchmark Results

In this section, we first evaluate the modified osu latency
vector benchmark for block sizes of 1KB, 2KB, 4KB. For each
of these block sizes, we vary the number of segments from
16 to 128. These block lengths are representative of some of
the layouts in halo exchange based applications. Figures 10(a),
10(b), 10(c) show the results on the MRI cluster. We observe
that UMR performs up-to 2X better than pack-GDR and UMR
performs up to 3X better than pack-staged. The HCA’s ability
to scatter/gather data directly to GPU buffers coupled with our
UMR cache design, which ensures that expensive operations
like UMR-registration and mkey exchange happen only once,
enable the UMR scheme to outperform pack-based schemes.
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Fig. 9. 3D-Stencil benchmark performance on ThetaGPU nodes

C. 3D-Stencil Communication Benchmark

In this section, we evaluate the performance of a GPU based
3D stencil communication benchmark. 3D Stencil benchmark
follows a near-neighbor communication pattern which is com-
mon in HPC applications. In this benchmark, each process
sends and receives non-contiguous data buffers represented
by MPI Type subarray derived datatype to/from at most 6
neighbors. We ran this benchmark for a problem size of
128X128X128 with 1 GPU per-node scaling from 4 to 16
nodes. For the above problem size, the block sizes used are 8
bytes in the X direction, 1KB in the Y direction. Z-direction
datatype is a contiguous send of size 128KB. The results are
shown in figure 9. We have not added results for pack-staged
because it performed worse compared to pack-gdr. We observe
that the proposed scheme is 2X better than pack-gdr.

D. Comparison of Application layouts with the State-of-the-
Art MPI Libraries

In this section, we evaluate the proposed designs for the
performance of various applications layouts using applications
level kernels and compare the results with existing state-of-the-
art GPU-aware MPI libraries. For our comparisons here, we
utilize the MVAPICH2-GDR library [12] (version 2.3.6) and
OpenMPI+UCX [1] (version 4.1.3 and ucx version 1.12.1).
We would like to note that in the section V-B, we only
show the comparison of basic pack schemes. Advanced pack
schemes such as pipelined pack have been implemented in
OpenMPI+UCX. Therefore we use OpenMPI+UCX numbers
as reference for such schemes.

We utilize the following application layouts for our evalua-
tion below:
MILC: MILC studies the integration of quarks and gluons
using Quantum Chromodynamics (QCD). The MILC su3 zd
kernel in DDTbench models the z-direction of the su3 rmd
application from the MILC code. It uses nested vector datatype
for 4D face exchanges. Figure 11(a) shows that the Proposed-
UMR scheme is at least 15% better than MVAPICH2-GDR
and is at least 10X better than OpenMPI+UCX. The layout
used for the inputs has block lengths varying from 768 bytes
to 6144 bytes. The strides for these layouts are several orders
of magnitude larger than the block length. The main reason
we see such benefits with the proposed scheme is the mkey
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(a) Comparison of proposed schemes with state-
of-the-art MPI libraries for 1KB block size.
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(b) Comparison of proposed schemes with state-
of-the-art MPI libraries for 2KB block size.
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(c) Comparison of proposed schemes with state-
of-the-art MPI libraries for 4KB block size.

Fig. 10. Performance comparison of schemes for representative layouts with the basic pack schemes
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(a) MILC on ThetaGPU. Grid dimensions
are A = (8,8,16,32), B = (8,16,16,32), C =
(16,16,32,32) ), D = (16,32,32,32).
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(b) NASMGY on ThetaGPU. Grid dimensions
are A = (512,66,66), B = (1024,66,66), C =
(2048,66,120).
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(c) SPECFEM3D mt on ThetaGPU. Grid di-
mensions are A = (1024,2,32), B=(1024,2,64),
C=(1024,2,128)

Fig. 11. Normalized performance comparison of Proposed-UMR with state-of-the-art solutions using application kernels for different input sizes. Latencies
are normalized with OpenMPI+UCX. Higher is better.

cache that amortizes the overhead caused by mkey mapping.
This coupled with the absence of pack-kernel overheads in the
proposed scheme make it viable for these layouts.
NAS MG: It is a fluid dynamics application that does 3d
face exchanges in x,y, and z directions with vector and nested
vector datatypes. For inputs shown in the graphs, the block
lengths go to 6KB and similar to MILC strides several orders
of magnitude more than the block lengths. The counts used for
these layouts are around 60 elements. The proposed scheme
does at least 50% better than MVAPICH2-GDR. The proposed
scheme does about 30X better than OpenMPI+UCX. This
again demonstrates the efficacy of HCA-assisted designs that
avoid the usage of pack-unpack kernels.
SPECFEM3D GLOBE: Specfem3d Globe is a spectral-
element an application that can simulate global seismic
wave propagation through the earth model. We used the
SPECFEM3D mt kernel, which uses vector and contiguous
data types for data exchange. In Figure 11(c), we compare the
performance of the proposed scheme with MVAPICH2-GDR
and OpenMPI. The block length used is 4KB and the counts
vary from 32 to 128. Our proposed scheme is nearly 20%
better than MVAPCIH2-GDR and performs approximately
20X better than OpenMPI+UCX.

VI. RELATED WORK

For optimizing GPU based DDT exchange, the first study
provides a significant speedup over CPU-based design for
datatype processing was done by Wang et al. [20]. They
process non-contiguous datatypes by leveraging a multi-stage
pipeline of data transfer and offloading packing/unpacking

processing from the host to the device. Jenkins et al. concluded
that non-contiguous data transfer could improve performance
by kernelizing the packing operations into the GPU [9], [10].
Rong et al. propose a novel packing framework, called HAND,
to efficiently pack and unpack non-contiguous data on GPU
directly [16]. To obtain a higher overlap between CPU and
GPU executions and eliminate unnecessary synchronizations,
[3] propose an asynchronous design by taking advantage of
several CUDA features. Wu et al. implement a different way
to offload the packing and unpacking operations onto the GPU
and seamlessly integrate with RDMA networks [22]. However,
none of these approaches use HCA assisted scheme to avoid
pack-unpack kernels.

To efficiently mitigate performance penalties caused by
transferring non-contiguous data, extensive research has been
explored with MPI derived datatypes processing. Traff et al.
propose ”flattening on the fly” scheme to optimize the parse
of MPI DDT layout [19]. Gropp et al. provide a guideline
for using various aspects of datatype [7] based on the per-
formance evaluation. Byna et al. propose packing algorithms
that take advantage of memory-optimization techniques, which
improves the performance of derived datatypes [2]. There
are other approaches for MPI datatype communication over
the InfiniBand network such as pack/unpack-based, and copy-
reduced approaches [21]. To support processing MPI datatype
routines efficiently outside of the MPI implementations, Ross
et al. propose an open-source library, MPITypes [14]. In [8],
the MPI DDT layout extraction and caching are analyzed thor-
oughly. A new zero-copy scheme for MPI DDT is proposed
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by leveraging inter-process load-store operations on CPU and
GPU memory within the node. These approaches are aimed
at optimizing the DDT processing cost whereas we optimize
the exchange of data.

Girolamo et al. [6] implement full non-contiguous memory
transfer processing and work with sPIN, a packet stream-
ing processor, to develop scheduling strategies that enhance
datatype processing. Our work is not at the HCA level,
rather we leverage existing HCA’s feature to optimize GPU
workloads. Chu et al. [4] propose a zero-copy scheme to
exploit load-store semantics over NVLink/PCIe and achieve
pack-free mechanism. Moreover, they implement an adap-
tive scheme on selecting the optimal CPU- or GPU-driven
packing/unpacking scheme if NVLink/PCIe is not available
between GPUs. However, our work is focused on optimizing
the inter-node transfers. Our work could be added to their
adaptive scheme.

VII. CONCLUSION

The deployment of GPUs to accelerate many modern Su-
percomputers has created a need for optimized communication
patterns that adhere to the needs of these applications. In
particular, applications that are utilizing GPU-aware MPI
may require exchanging data that is non-contiguous in GPU
memory. While MPI Derived Datatypes have been used in
the past and extensive work has elaborated on the usage of
datatypes for non-contiguous data movement, most of this
work focuses on optimizing packing and unpacking schemes.
In this work, we proposed an efficient mechanism to handle
non-contiguous data on GPUs being communicated across the
network for inter-node communication. Through these designs,
we utilize the features provided by modern HCAs in order to
gather then scatter data between non-contiguous GPU memory
regions. We provide an extensive evaluation of our proposed
schemes against existing approaches. At the benchmark layer,
we are able to present approximately 2X improvement with
our HCA assisted schemes compared to approaches currently
utilized in various state-of-the-art GPU-aware MPI libraries.
We also utilize the layouts provided by MILC, NASMG, and
Specfem3D to show improvement against various libraries
including MVAPICH2-GDR and OpenMPI+UCX.
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