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Abstract

The Next Generation Science Standards and the National Research Council recognize
systems thinking as an essential skill to address the global challenges of the 21st century. But
the habits of mind needed to understand complex systems are not readily learned through
traditional approaches. Recently large-scale interactive multi-user immersive simulations are
being used to expose the learners to diverse topics that emulate real-world complex systems
phenomena. These modern-day mixed reality simulations are unique in that the learners are
an integral part of the evolving dynamics. The decisions they make and the actions that
follow, collectively impact the simulated complex system, much like any real-world complex
system. But the learners have difficulty understanding these coupled complex systems
processes, and often get “lost” or “stuck,” and need help navigating the problem space.
Formative feedback is the traditional way educators support learners during problem solving.
Traditional goal-based and learner-centered approaches don’t scale well to environments that
allow learners to explore multiple goals or solutions, and multiple solution paths
(Mallavarapu & Lyons, 2020). In this work, we reconceptualize formative feedback for
complex systems-based learning environments, formative fugues, (a term derived from music
by Reitman, 1964) to allow learners to make informed decisions about their own exploration
paths. We discuss a novel computational approach that employs causal inference and pattern
matching to characterize the exploration paths of prior learners and generate situationally
relevant formative feedback. We extract formative fugues from the data collected from an
ecological complex systems simulation installed at a museum. The extracted feedback does
not presume the goals of the learners, but helps the learners understand what choices and
events led to the current state of the problem space, and what paths forward are possible. We
conclude with a discussion of implications of using formative fugues for complex systems
education.
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INTRODUCTION

To prepare learners for the future workforce, educational researchers and
policymakers have been drawing increasing attention to exposing learners to the skills,
disciplinary processes and dispositions required to solve the 2ist century problems
(National Research Council, 2010). One of these essential skills is systems thinking (NGSS,
2013; National Research Council, 2012), which can help learners understand and address
many of the social and global problems that we face today. Since the behavior in many of
these systems is intrinsically difficult to understand (due to the uncertainties in the
dependencies and the dynamic interactions among the various components at different
levels of organization), they have been termed complex systems. The disciplinary skills,
practices, and habits of mind needed to comprehend such systems, are not readily
understood or adopted (Hmelo-Silver & Azevedo, 2006; Yoon et al, 2018; Jacobson &
Wilensky, 2006). For example, one of the properties that complex systems can exhibit is
emergence - meaning that a given outcome arises from the interactions of many smaller
factors, without any centralized control (Yoon, 2008; Jacobson, 2001). Coming to
understand a complex system thus requires learners to master not just the content, but to
also adopt an epistemological stance that rejects a deterministic, “clockwork”
understanding of how systems function (Yoon, 2008; Jacobson, 2001; Chi et al., 2012). To
understand emergence, learners need to recognize that their every action contributes to
the emergent outcome emulating the decentralized operation. It can have effects that are
separated spatially and temporally across the different system components. To introduce
learners to concepts like these, researchers have been exploring a host of new digitally
supported learning environments that expose learners to complex open ended, real-world
problems. These environments allow learners to work collaboratively to both experience
and comprehend the complex real-world problems in which they are immersed (Yoon et
al., 2018).

Importantly, the immersiveness in these environments demands that the learners
play a part in the evolving complex system, much like the real-world complex systems that
are a product of interacting human and natural systems. The nature of these problems
requires learners to engage in exploration-based learning (Moradi et al., 2020) and apply
disciplinary skills and practices to solve problems, imposing learning goals that prioritize
the process of solving the problem over the quality of the solution. However, in addition to
the complex systems phenomena with which the learners engage, the skills and practices
the learners deploy for exploration-based learning (like keeping track of the explorations,
regulating the problem-solving activities by constantly engaging in planning, monitoring,
or evaluating) are notoriously hard to measure (Mallavarapu et al., 2015). These challenges
have held back the support and scaffolds that can be provided to the learners to help them
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understand the disciplinary processes, in turn hampering the very goal of effectively
implementing these digital learning environments (Goh et al., 2012; Slattery et al., 2012;
Mallavarapu et al., 2015).

Formative feedback is the traditional way educators support learners during problem
solving, by giving learners information based on their distance or deviation from the goal.
But open-endedness in these new digital environments imparts loosely bound goals or
reward functions, thus affording a very large solution space - with multiple possible
solutions, multiple strategies for reaching the solutions, and multiple actions that make up
the strategies (Mallavarapu & Lyons, 2020). Additionally, complex systems properties
encapsulate nonlinear and dynamic state changes that require the learners to evolve their
goals, redefine the sub-problems and the associated solutions they will tackle as they
discover previously unknown or emergent parts of the problem. This makes their
experience non-deterministic and unrepeatable, which in-turn renders the traditional goal-
based methods unfit for tracking their progress in these environments. For example, certain
phenomena likely to happen within a complex system may not emerge in exactly the same
way, or at the same time, each time a system is enacted or simulated. This means that any
feedback given to the learners to help them internalize the concepts and epistemologies
needs to be relevant to the learners’ current context. Thus, to aid learners understand and
acquire the complex systems disciplinary processes we need to develop methods that can
make visible the complex systems processes that the learners experience, monitor the skills
and practices the learners exhibit while solving these problems as a process and provide
them as formative feedback. Indeed, even in more traditional educational scenarios,
contextual feedback has been shown to be useful as a driving force for motivation,
effectiveness and efficiency in learning (Fancsali, 2015; Verbert et al., 2013).

Our motivation for this work is to provide contextually relevant formative feedback
for learners who are engaged with an ecology-based, complex systems, open-ended
learning environment called Connected Worlds, installed at a science museum. The exhibit
has won multiple design awards and engages groups of visitors to cooperate or interfere
with one another, encouraging them to disrupt or improve the state of an ecological
simulation (Mallavarapu et al., 2019). The exhibit was designed to evidence the critical
phenomena hard to comprehend when just viewing the simulation, as a third party. It
instead makes a large group of learners part of the emergent complex system, allowing
them to trigger and interrupt the complex systems phenomena. However, the coupled
nature of the human and natural systems simulation makes it difficult for the learners to
identify the processes they trigger and interrupt collectively, and they often express
confusion about “what was really going on.” To be fair, when a human-based complex
system couples with a natural complex system, they together form a completely new
complex, dynamic, interconnected system which has its own unique feedbacks, behaviors
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and functions that can be triggered by events in either constituent system (Ferraro,
Sanchirico, & Smith, 2019). Understanding these behaviors and functions is crucial to make
an informed decision about what actions to take next.

We present this work to address the need to provide learners of Connected Worlds
situationally relevant formative feedback that can help them understand the current
situations, make decisions, and take actions in order to guide their explorations in the
open-ended solution space. Through this work we provide two contributions: conceptual
contribution of newly conceived formative feedback, called formative fugues, and
methodological contribution of a data-driven computational method for extracting
formative fugues from prior learners’ data.

After a review of existing work in the area, we first discuss the conceptual
contributions, in which we reconceptualize the traditional definition and functions of
formative feedback as formative fugues, modifying it to meet the demands of these modern-
day complex systems open-ended learning environments. We then address the
methodological contributions and discuss a computational approach that can expose the
learners’ exploration paths to generate formative fugues for Connected Worlds. The
formative fugues generated through this process highlight the different cause-effect chains
that connect the actions by different visitors at different times and at spatially different
locations, exposing the complex systems processes under play in a meaningful manner. Our
approach uses collective visitor interaction logs that record the changes in the simulated
system state due to the different visitor actions and decisions to model the complex system.
Our decision to collect data at the system level, instead of tracking individual learners in
the space, was set to maximize the possibility of surfacing the effects of the decentralized
actions on the system. The causal relationships are then used as embeddings to extract
contextual formative feedback as salient patterns from the interaction data. We further
elaborate on the implications of using formative fugues, for three stakeholders: the learners,
educators and educational researchers, and its delivery mechanisms.

RELATED WORK

Digital learning environments have made way for “living labs” (Salgado, 2004) that
expose learners to real-world problems and provide the instrumentation to observe
learning. In this section we describe with examples the features of such complex open-
ended learning environments that allow learners to experience the real-world problems.
The very complex nature of these problems presents a need for contextually relevant
formative feedback to guide and motivate the learners to explore the concepts. We survey
the implications of analytically monitoring learning in these environments and the
correlation between the nature of the analytical techniques used by researchers to extract
formative feedback and the learning goals defined by the environment.
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Complex Open-ended Learning Environments (COpELE)

Ideally, the open-endedness of digital learning environments that enable multiple
solutions, multiple strategies to solve each solution and multiple paths to each of those
strategies (Le et al., 2013) arises from the absence of, or loosely defined goals or reward
functions. The learners are expected to evolve their goals, strategies and actions according
to the context of their interaction. Additionally, complex systems exhibit special qualities
like: 1. Hysteresis, or path dependence (meaning that the actions that are possible to
undertake are dependent on events early on in the unfolding of the system, preventing
backtracking); 2. A near-infinite number of system states that include both stable states
(where the system can resist changes to this state for a longer period of time) and nonlinear
rapid regime shifts (tipping points which cause abrupt changes in the system states); and
3. Emergence of unique phenomena at the global level, which are not visible at the local
level but arise due to the interactions among system elements present at the local levels.
All these dimensions together portray a sense of randomness in the behavior of the complex
system.

So, with each goal and strategy implementation that the learners explore - hysteresis
imposes restrictions on which alternatives are propagated forward, thus constraining
learner choices (Lynch et al., 2012), while nonlinearities and emergence makes learner
progress non-monotonic and dynamic. The learners need to adopt a non-reductive
systems-thinking approach to understand the order and structure of multiple causes and
consequences that coexist at many different scales of time, space, and organization
(Jacobson, 2001). This perspective requires constantly shifting focus between local and
global thinking - understanding how the action at a local level impacts the behavior of the
local entities and the processes at both the local and the global levels, to unravel
emergence. This can be a difficult perspective to attain while enmeshed in the problem-
solving process. Researchers have suggested that learners can begin to comprehend
emergence by performing mental exercises that juxtapose local-level perspectives with
global-level perspectives (Jacobson & Wilensky, 2006; Goldstone & Wilensky, 2008) and
have stressed the importance of learners coming to understand the causal connections
present in the complex system (Grotzer, 2012) to help them transition from an event-based
way of experiencing systems phenomena to a process-based understanding (Grotzer et al.,
2013). Learners need opportunities to experience complex systems phenomena firsthand,
motivating challenges to encourage them to explore the phenomena, and they need
assistance to orient them to these new forms of decentralized thinking. While this kind of
learning can be accomplished via technology-free activities, like the classic 1960s “Beer
Game” participatory simulation, the affordances of simulation technologies for enacting
complex systems and permitting learner engagement with them are undeniable.
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Simulation Based COpELE

The need to expose learners to complex systems has led to a range of simulation-
based learning environments which engage learners in different ways. There are a number
of single-user simulation environments, some which engage learners in programming the
behavior of local-level agents, like NetLogo (Wilensky, 1999), StarLogo (Klopfer, 2003;
Klopfer et al., 2005), and AgentSheets (Repenning et al., 2000). Others, like STELLA
(Richmond & Paterson, 2001) and Model-It (Jackson et al., 1996), ask learners to model the
system itself. Asking learners to model agents and systems can be very effective for
supporting their understanding of systems but is very challenging for learners - it requires
a lot of teacher support, and is not an inherently motivating task.

As a consequence, a number of researchers have looked towards more participatory
and collaborative methods for exposing learners to complex systems, from in-person
participatory simulations where learners enact a complex system while digitally supported
in their role-play by mobile devices (Colella, 2000; loannidou et al., 2010; Danesh et al.,
2001; Soloway et al., 2001) to purely online Multi-User Virtual Environments (MUVEs),
which help learners explore systems by practicing scientific inquiry and reasoning skills by
virtually interacting with their peers through discussions and chat windows [e.g.,
EcoMUVE (Grotzer et al., 2011), ECOXPT (Thompson et al., 2016; Dede et al., 2017)], to more
involved co-located full body participatory simulations [e.g. RoomQuake (Moher, 2008),
WallCology (Malcolm et al., 2008), BeeSim (Peppler et al., 2010)], and more recently
collaborative mixed reality and virtual reality based immersive simulations [e.g. MEteor
(Tscholl et al., 2013), Evoroom (Slotta et al., 2013), Learning Physics through Play (LPP)
project (Enyedy et al., 2015), ELASTIC3S (Planey & Lindgren, 2018), and Connected Worlds
(Mallavarapu et al., 2019)]. The immersive mixed reality simulations have evolved from
affording the learner a passive role (like in the programming-based environments and the
MUVESs) to an active role, where the learners (their actions and interactions with each other
and with the system) influence the complex-systems phenomena.

The learning environments expose the learners to diverse complex system topics that
extend into the real world, spanning digital and real-world artifacts (Mallavarapu & Lyons,
2021). These experiences emulate real-world complex systems and problems, which couple
a human-based system (that the participants bring through their interactions with each
other) and a natural system (the simulation) - each affecting the other. The goal of these
environments is to make the learners aware of both the global and local perspectives for
the complexities present in the problems, with the ecological validity and educational
rationale of letting learners face challenges they would face in the real world. Presenting
open-ended problems that are less constrained, permits learners to set their own goals and
coordinate actions to explore these problems in service of those goals. This exploration acts
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as motivation for engaging learners to investigate such phenomena. Many real-world
complex systems problems, like climate change, require deep understanding and skills for
managing the phenomena. It especially requires an understanding of how the human-
based complex system, where people, and their individual decisions, co-constitute the
natural complex system triggering complex phenomena. The system requires people to
continuously coordinate their actions as they strive to explore the system, devise goals, and
attain or maintain desirable system states. [llustrating how each simple action impacts the
current state and/or future actions while the learners are engaged in maintaining the
system, can help the learners adopt and understand the new perspective of systems
thinking.

Implications of Complex Open-ended Solution Space

The learning environments reviewed above succeed at exposing learners to complex
open-ended problem solving. While the more collaborative and immersive versions are
highly successful at motivating learners’ engagement, these elements also make it much
harder for educators to offer guidance and support to learners. The vague (or emergent)
goals and few (or no) constraints that allow the learners the opportunity to explore more
of the complex problem domain (Bauer et al., 2017), limit the ability of the researchers and
educators to easily monitor and track learning processes. The exploration-based learning
that goes along with these open-ended problems presents unique opportunities often
missing in traditional learning experiences. Traditionally, learning experiences have been
known to pose “simple” problems, with well-defined goals that impose restrictions on the
actions, and the order of the actions the learners can take to implement strategies to reach
the unique solution. The greater the constraints, the more precise is the learner’s goal,
which can hamper a learner’s exposure to the full problem space - as the learner is
incentivized to exploit the problem domain rather than explore it. This is true for open-
ended problems that also are complex systems based, where constraining the learners’
goals and actions through well-defined functions can lead to systematically ignoring or
oversimplifying the processes that account for the “complex” nature of these problems
(Jacobson & Wilensky, 2006), hiding the very properties that these problems and learning
environments were designed to expose the learners to.

Some problems embedded within the complex systems are even described as having
no correct or incorrect answers, but only answers that are better or worse when compared
to each other in terms of some domain dependent heuristics (e.g., the problems in Bauer
et al., 2017 and Mallavarapu et al., 2015). Such problems with non-verifiable solution states
ensure that the learning goal is not to achieve a certain “terminal” state but rather the
learners are required to actively manage the system. However, this requires that the
learners have considerable prior knowledge that they search, update and filter during the
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exploration process while keeping track of the historical events that elicit these changes.
While, this has educational benefits, as it places learners in a position to make evaluative
judgements, engaging exploratively with complex systems demands additional support to
understand, search, filter and update the exploration paths.

Challenge of Adapting Traditional Formative Feedback to Complex Open-ended
Problems

Traditionally, formative feedback has been defined as “information communicated to
the learner that is intended to modify the learner’s thinking or behavior for the purpose of
improving learning” (Shute, 2008, p.2). This definition portrays formative feedback as being
provided in response to the learner’s actions in the form of a verification of the accuracy of
the action, a hint for the next action, or a content-based explanation guiding the learners
towards the correct action. These kinds of formative feedback work well with individual
learners. They have been used extensively to support them while solving simple well-
defined problems, and they are inherently tied to an assumption of one fixed goal, making
them unsuitable for solving complex open-ended problems, which can have a dynamically
evolving solution space. Moreover, it can be challenging to fit a fixed goal perspective to
collaborative learning environments, both pragmatically (instrumentation is a challenge)
and conceptually (how one can go about ascribing “credit” to multiple learners when they
jointly create a solution is a theoretically undefined proposition). The theories of learning
that could conceptually fully account for and embrace the multifaceted ways groups of
learners support one another and their joint endeavors are currently very fragmented and
underdeveloped (Mallavarapu & Lyons, 2020).

To supply formative feedback for these newly conceived COpELE, a fundamental re-
conceptualization of how formative feedback is structured, and the techniques used to
distill it from collected data, are needed. Black and Wiliam (1998) identified two main
functions of formative feedback to manage the cognitive aspects of the learning process: 1.
The directive aspect, which communicates the gap between the current level of
performance and the desired level of performance, and 2. The facilitative aspect that
explains the concepts to the learner and guides them towards the revision or
conceptualization. For these functions to hold for collaborative, open-ended learning
environments, we need to relax the assumptions on what the desired level of performance
is, and help the learners visualize the many different possibilities of goals, strategies, and
actions.

Because of the immense amount of detail and multiple parallel processes interacting
to shape the complex system, extracting feedback that is specific to the learners’ experience
and that can serve either the facilitative or directive aspects is non-trivial. The feedback
generation mechanism should first be able to extract the details of individual processes and
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then clearly relate the processes to the larger complex systems phenomena. In complex
systems there may actually be a near-infinite number of states a system can assume, thanks
to systemic nonlinearity, and a near-infinite number of paths that learners take through
that state space. It is thus impossible to map out the state space, or the learners’ action
space, a priori. We argue that data-mining the learners’ interaction data offers a great
potential to extract specific nuances highlighting the complex systems processes and
deliver them as formative feedback in these novel learning environments. If applied
correctly, data mining can build a picture of the space of possible states and actions,
experienced by learners, and generalize them in usefully bounded ways. It has the ability
to capture the fundamental functions and elements of formative feedback highlighted in
the literature, while complementing the features of complex systems processes with which
learners are engaged.

Computational Methods for Extracting and Delivering Formative Feedback

Computational methods have been successfully used to monitor learner progress with
a wide range of simple problems (e.g., Harpstead et al., 2013; Andersen et al., 2010;
Martinez-Maldonado et al,, 2013; Gobert et al., 2013; Rafferty et al., 2013; Biswas et al., 2013;
Desmarais & Lemieux, 2013; Jaru$ek et al., 2013; DiCerbo & Kidwai, 2013; Miiller et al., 2013),
largely due to the simplifying assumptions researchers can make when representing
learners’ engagement with such problems. But computationally monitoring learners’
engagement with COpELE entails accounting for all possible actions, strategies, and goals,
which can be difficult to map especially when open-ended learning environments present
complex systems problems, because - 1. there may be many unexplored and unknown
exploration paths that need to be mapped to provide the full picture, and 2. there are
multiple strands of processes in play simultaneously. Surfacing the process most relevant
to the learner requires knowledge of their goals, intentions, and the cause-effect
relationships at varying scales of time, space, and organization. Computational methods
used to document the problem spaces of open-ended complex systems learning
environments should expose the details of the complex systems properties like
randomness, nonlinear dynamics, and emergence that arises due to the learners’
explorations, but do so without constraining the sprawl of learners’ idiosyncratic
exploration activity.

Although limiting the learners’ ability to explore, the predictable order and
consequences of actions in traditional “simple” problems lend the advantage of allowing
the use of learner-centric computational methods to provide the learners with feedback
that is fit to their own progress. These approaches build “expert” models that map the
possible actions and strategies for each well-defined goal. At each step these techniques
compare the learners’ actions to the “expert” model, providing them feedback based on
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distance or deviation from the goal or next permissible action. However, these learner-
centric methods are not practical in collaborative settings, and do not scale well for open-
ended experiences with a large and evolving solution space where the learners’ goals and
understanding of the problem space evolve with it.

Due to the presence of this large solution space, some researchers have argued that
open-ended learning environments, and the exploratory learning styles often promoted to
go along with them, are simply not workable in educational settings (Kirschner & Clark,
2006). While other educational researchers have argued that rather than giving up on
exposing learners to complex open-ended problems, educators and researchers should
instead seek to support learners in their explorations via proper supports (Hmelo-Silver,
Duncan, & Chinn, 2007), like scaffolds and formative feedback. Should such support be
viable and feasible to produce, the argument against complex, open-ended learning
environments would no longer carry weight. Given the potential benefits of open-ended
learning, then, there is a compelling argument for devising efficient and effective formative
feedback.

We argue that the need to support learner explorations by exposing the underpinning
complex systems processes to help the learners internalize the concepts, goes beyond the
traditional supports that monitor the “quality” or “completeness” of the solutions. Thus,
the rethinking and remodeling of complex systems education that has been initiated
through the virtual and participatory simulations must be followed by reconceptualizing
formative feedback. Exploration support could provide the contextual feedback that not
only highlights learners’ own experiences but also provides them a mechanism for
“informed discovery” by surfacing alternatives for how complex systems could evolve. To
this end, we present a reconceptualization of the formative feedback that complements
COPpELE, and devise a novel computational technique that can extract contextual formative
feedback to surface the different complex systems process at play during learners’
explorations.

FORMATIVE FUGUES: RECONCEPTUALIZATION OF FORMATIVE
FEEDBACK FOR COpELE

We have reconceptualized the nature of formative feedback for COpELE by shifting
the focus of the analysis that generates learner-centric feedback to problem-space-centric
feedback. As an analogy - if traditional formative feedback was akin to giving a tourist step-
by-step direction to reach a destination, the COpELE formative feedback attempts to
produce an “annotated map”, highlighting the crucial decision points, while paring away
unnecessary details. Embracing the exploration-based learning supported by these
environments, we resituate the decision-making power with the learners themselves, and
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see our mission as providing them with relevant, situationally salient information to make
those decisions. The annotated map to this problem space is drawn from the explorations
of prior learners, which necessitates finding commonalities across these learner
experiences. While it may be the case that a given end-to-end use of a complex system
simulation is completely unique, there will be a number of self-similar chains of events,
even if they may occur at different times and places from one simulation session to another.
We have dubbed these self-similar chains formative fugues, drawing on the notion of
“fugue” as described by Reitman (1964), which in music is a short motif, melody or phrase
that can be taken up by other instruments, or musicians and developed further. Each fugue
has an initial state. However, the terminal state and the series of intentional actions leading
up to the terminal state, dubbed the transformation path, are objects of the learners’
evolving goals and interactions. In other words: fugues may not be identical, but they
“rhyme.” The flexibility and multiplicity in the choice of transformation paths from the
starting state leading up to the same or different terminal state is what makes the fugues
suitable for the reconceptualized formative feedback for COpELE. Thus, the annotated map
is more like a crowd-sourced travel guide annotated by multiple travelers, where the
annotations are binned and summarized to represent certain kinds of engagement with the
city (e.g., a number of them sought out a fancy dining experience, whereas others sought
to peruse a museum).

We define the formative fugues as information that is communicated to support
explorations and exposes the different possibilities in the problem space. To specifically
support the complex systems facet of the problems, this definition captures the context of
the actions. This answers three very important questions that learners exploring a complex
systems-based learning environment often ponder: 1. Which action(s) can produce the
desired effects?, an important yet difficult to predict property in complex systems due to
emergence which we dub as “extrapolative feedback”, 2. How did the system arrive at the
current state?, which can be hard for a casual observer to infer given the nonlinear
dynamics of state evolution and the multiplicity of possible causal chains at play, we call
“explanatory feedback” and 3. What other possibilities exist that have been explored by the
prior learners?, exposing the different exploration paths in the exploration map that can
expose learners to complex systems processes that have not been explored by them yet,
which we call “exemplary feedback”. We call these three types the “3Es” of formative fugues
and together they help the learners relate their actions and outcomes to larger causal chains
to answer these questions.

The 3Es draw strong parallels with the functional aspects of formative feedback as
defined by Black and Williams (1998) discussed earlier but parsing it into three distinct
functions that can support explorations in COpELE. Extrapolative feedback is similar to the
directive definition in Black and Wiliam (1998), but with the assumptions of fixed goals or
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standards relaxed to accommodate multiple solutions and strategies. This function
provides actionable insights that could suggest the possible options for steps the learners
could take but without making restrictive assumptions about the learners’ goals. It
specifically provides the learners with a “contextualizing function” that can help learners
understand the causal interconnections and other complex semantics between the actions
they can take and the consequences of those actions on the system state. We further divide
the facilitative function as defined by Black and Wiliam (1998) into explanatory feedback
that makes relevant the causal chains available for the learners’ reflection of their
experiences. These expose the various interconnections that were triggered by the learners’
decisions explaining the sequence of events that has brought them to the current state or
phenomenon. Exemplary feedback shows the learners the scope of possibilities within the
learning environment and allows them to make their own choices about what to do next,
thus guiding the “informed inquiry”. In the next section, we discuss the novel
computational method that extracts formative feedback that complements the
reconceptualised functions for a simulated complex systems learning environment.

CONNECTED WORLDS: ECOLOGICAL COMPLEX SYSTEMS
MUSEUM EXHIBIT

Figure 1. Connected Worlds exhibit showing the biomes and water sources (clockwise): desert,
mountain valley, plains, waterfall, jungle, reservoir, and wetlands.
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We highlight the potential of the computational method as we design formative
feedback to be used in the context of a mixed reality, simulation-based participatory
museum exhibit, Connected Worlds, that is currently installed at the New York Hall of
Science. The exhibit allows learners to explore the concepts of ecological complexity and
systems thinking. Connected Worlds is an immersive open-ended complex system exhibit
that can support up to 50 simultaneous users to explore and manipulate the ecosystem.
The exhibit is composed of four plantable biomes and three sources of water (see Figure 1).
Visitors interact with the simulation by diverting the flow of water projected on the gallery
floor from the water sources (see Figure 2), and by planting seeds in the biomes on the wall
projections. They can plant seeds by holding their hand up in front of the screens and
dropping their hand when the seed they want to plant appears on-screen (visitor gestures
detected by Kinect cameras). If sufficient water is present, the seed will sprout. Different
plants attract and support different animals as sources of food or shelter. The simulation
includes a simplified model of “ecological succession”, meaning that initially visitors can
only plant small plants like grasses, but when sufficient grasses are present, the “soil” can
support larger, more elaborate plants. Visitors supply water to the biomes by dragging large
stuffed “logs” around the floor of the exhibit (detected by infra-red cameras), diverting the
flow of water from the 6-story Waterfall and the Mountain Valley and Reservoir screens
(water sources). When water is supplied to a biome it gets collected as “groundwater.” The
plants in the biomes cause water from the biomes to evaporate and form clouds, which
return water to the ecosystem through rain, emulating a real-world water cycle.

Figure 2. A top-down view of the exhibit with visitors interacting with the exhibit. The tangible
logs are being used to direct water towards the biomes.
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The visitors are tasked with maintaining the diversity within and among four different
biomes via planting and managing water resources. It serves as a perfect testing ground for
observing the evolution and interaction of the coupled natural and human systems because
the exhibit, like any real-world complex system, does not provide the learners with fixed
goals or constraints for strategies and actions encapsulating the three characteristics of
open-ended learning environments. There are no verifiable solutions or explicit end goals,
no clear strategies, and no fixed paths to solve/maintain the diversity. The visitors must
constantly work together to maintain diversity and manage resources across the ecosystem,
and there can be a variety of different ways of doing so, with interactions varying
substantially across contexts nominally of the same type, producing different results
across-context, a recognized quality of complex open-ended environments (Mallavarapu et
al., 2019). The entire experience is a dynamic system in which many complex interactions
result in emergent phenomena, which can be local, teleconnected, or global that visitors
must cogitate about and seek solutions that demand causal reasoning, cooperation, and
experimentation. However, the open-endedness of the experience and the complex
properties that present themselves at varying scales of time, space and organization often
makes it difficult for the learners to identify and hence engage in informed inquiry. Thus,
formative feedback becomes very important for the learners engaged with Connected
Worlds to transform their experience from a mere playful experience to that of “informed
inquiry” where they uncover new properties and understand the ecological phenomena
within Connected Worlds.

METHOD

Data Collection

Connected Worlds is equipped with an automatic data logging system which
unobtrusively records the simulation settings and its state every second, producing rows of
time-stamped information that is saved as a CSV file at the end of the session (which we
consider “raw” data). At each second, the log records state information as 93 variables,
including: types and number of plants (both alive and dead), types and number of animals,
water and clouds present in biomes and water sources, and number of users in front of each
screen.

The exhibit is frequented by visitors between the age groups 3-60 years (up to 50
persons at a time), with about 3000 visitors a day. The large footprint makes it
pragmatically impossible to instrument each visitor with tracking devices. Moreover,
tracking visitors through sensors or camera-based equipment requires the devices be
calibrated to the space and the visitors, while maintaining identity records of the visitors,
which has serious ethical implications. Our museum serves populations for whom
identifiable information can become politically weaponized (e.g., undocumented
residents). Collecting and storing sensitive data has implications (perhaps against the
intentions of the researchers) that could negatively impact the learners (Mallavarapu &
Lyons, 2021). We thus avoid using these methods. Additionally, video recording school
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groups or young visitors in general requires special considerations about parental consent.
So, in keeping with the ethical data logging parameters, the data includes no identifiable
information about the visitors. This ensures that we do not record data on who performed
which actions, and the way the log files are structured there is no clear indication of any
individual goals, strategies, or even causal chains of events to help explain how the system
state evolved due to a single visitor’s action. The data, however, indicates how the group’s
decisions in the space collectively impacts the complex system.

To shortlist groups and select log files for analysis, we used school group reservations
data from the museum’s Visitor Services department (collected under IRB-approved
protocol), to guarantee that the same facilitation script and simulation parameter settings
were used for the Connected Worlds simulation, and to obtain the size of each school group
and their grade levels. Similar to the interaction log data, these visitor logs did not include
any identifiable visitor information. No other demographic information was collected by
our Visitor Services department. The data was analyzed retrospectively years after it was
collected, we obtained implied consent at the time of data collection by posting a sign at
the entrance indicating that research is in progress (because our data does not include any
identifiable visitor information our IRB only requires that we obtain implied consent).

Participants

This work uses the raw exhibit interaction data collected during the visits of 67 school
groups over the period of October 2017- October 2019. In these planned visits, each school
group had exclusive access to the Connected Worlds environment for a 12-minute open
interaction session, that followed a 3-minute orientation to Connected Worlds (an
introduction on how to interact with it, how to plant and how to divert water) and an
orientation to the learning goal of promoting and sustaining diversity. The selected school
group sessions averaged 28.5 participants in size, of an average age of 11 years, ranging from
grade 2 (typically 7-8 years old) to grade g (typically 14-15 years). We opted to include
multiple age cohorts in our sample because of our interest in identifying and listing the
nuances in the response of the system to the visitors’ Connected Worlds interactions and
their multiplicity, embracing both the diversity of the learners’ approaches and the age-
groups of learners interacting with the system.

Procedure: Computationally Extracting Formative Fugues

Researchers have exploited the absence of concrete descriptions of behavior or action
patterns in open ended learning environments through unsupervised methods like
sequence mining (e.g., Segedy et al., 2015; Paafden et al., 2017; Price et al., 2017; Wallner,
2015; Saadat & Sukthankar, 2020; Martinez et al., 2011). The advantage of these techniques
is that they bootstrap the definition of a “pattern”, sequences of learners’ actions or
behaviors, from the data, which evolves as more and more data becomes available. This
representational strategy is useful because, unlike close-ended learning environments
where the outcomes of interest are end states (e.g., learner’s answer to a problem), in open
ended learning environments the “outcomes” of interest are actually the processes by which
learners engage with the different aspects of the problem domain (e.g., the step-by-step
process).
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This technique works for open-ended learning environments, where at any given
moment the changes to the system state can be readily mapped to a single action-event
triggered by the learner (e.g., click of a button). However, in environments which portray
complex system behaviors, characteristic of Connected Worlds, there often exist multiple
action-events occurring simultaneously. Additionally, each event influences the system at
varying scales of time, adding a temporal dimension to the definition of the event. We
wanted to capture how the state of a dynamic open-ended simulation changes as a result
of the co-evolutionary process between learners’ actions and system responses to provide
formative feedback. But without the knowledge of the correct causal and the temporal
order for a specific system, extracting sequences that reveal the behavior of the system is
non-trivial. Applying sequence mining would produce a large number of patterns with
spurious, causally invalid sequences. Identifying the causal order of events, both
sequentially and temporally is necessary to automatically prune out sequences that are
spurious. We devise a novel computational method that allows us to identify the specific
causal relationships and specific temporal latencies between the actions, and we use those
details to provide formative feedback to the educators for them to use to help the learners.

Computational Pipeline to Extract Causally Valid Patterns

Researchers have used causal modelling to uncover the rules followed by the local
entities in complex systems automatically from observed data. They are also able to assess
the sensitivity and validity (Chen et al., 2012) of the extracted rules. However, crucial to this
is first representing the components that constitute the dynamic interactions while also
capturing the relationships between these components to make the underlying complex
systems processes observable. In the case of Connected Worlds, we have a human-based
complex system (formed by the group of visitors interacting among themselves) interacting
with the simulated complex (natural) system. To represent the combined complex system
resulting from this interaction, the behavior and/or functions of both the constituent
systems need to be correctly represented. Although a virtually designed environment might
have a predictable response to each individual action, the collective learners’ interactions
constitute a complex system whose dynamics are not completely known or predictable.
Additionally, when the two systems interact it makes the effects of collective actions for
these systems difficult to comprehend let alone provide useful feedback to the participant.

Researchers have used causal modelling to uncover the rules followed by the local
entities in complex systems automatically from observed data. They are also able to assess
the sensitivity and validity (Chen et al., 2012) of the extracted rules. However, crucial to this
is first representing the components that constitute the dynamic interactions while also
capturing the relationships between these components to make the underlying complex
systems processes observable. In the case of Connected Worlds, we have a human-based
complex system (formed by the group of visitors interacting among themselves) interacting
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with the simulated complex (natural) system. To represent the combined complex system
resulting from this interaction, the behavior and/or functions of both the constituent
systems need to be correctly represented. Although a virtually designed environment might
have a predictable response to each individual action, the collective learners’ interactions
constitute a complex system whose dynamics are not completely known or predictable.
Additionally, when the two systems interact it makes the effects of collective actions for
these systems difficult to comprehend let alone provide useful feedback to the participant.

Generate Extrapolative feedback
“what can we do next”

}. Causal Modelling

Exploration paths making up exploration maps.

Prior Temporal Lags f;:::s:f:“
& i i
learners Log files - Real-time log data
interaction g |
data did | Library of
Candidate-query Pattern Matching ‘ formative
causal chains |
Fugues
Generate Explanatory feedback Generate Exemplary feedback
“how did we get here” “what are the possibilities from here”

Figure 3. Novel computational pipeline for generating formative fugues with the sub-processes
generating the 3Es. The processes are highlighted in the boxes with red borders and labeled
outside of the figure margins. The Extrapolative feedback is extracted from the causal details
(temporal lags and cause-effect relationships) learnt from the prior learners’ interactions by the
causal model. Causal chains are generated using these causal details, which are used as query
sequences with the pattern matching algorithm to generate contextual Explanatory feedback
from the real-time log data. The entire corpus of matched query sequences combines to produce
a library of formative fugues, which provides Exemplary feedback, and contributes exploration
paths for the exploration map.

To provide formative feedback that is useful, the Connected Worlds model should
capture the different component relationships between the two complex systems, while
also capturing relationships within the individual systems. Additionally, because there are
apparent temporal delays between the time at which changes take place at the cause and
the time at which its effect actually becomes apparent, we also needed to model the
temporal delays between the different components. Since, in our case, we did not have the
knowledge of all the semantics of the coupled system to model it effectively, we adopted
an unsupervised machine learning method called causal modelling.
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Figure 4. Connected Worlds causal model. The biome “health” metrics (blue nodes), human
controlled (yellow nodes) components, system (green nodes) components. Red arrows represent
nonzero time lag between the change in the cause and the occurrence of the effect.

The causal model (see Figure 4) characterizes the valid causal order and identifies the
temporal lags between each causal pair, in turn revealing the complex system processes.
We used that information to mine patterns that preserve causal context, we dub these
patterns causal chains. We use a custom-tailored subsequence pattern matching algorithm
to find these causal chains in the learners’ interaction data. The sequences obtained from
this novel computational pipeline (shown in Figure 3) with causal model followed by the
pattern matching technique are included as a part of the fugue library and conform with
three different functions of the reconceptualized formative feedback. In the next section,
we discuss each component of this pipeline in detail and describe with examples the 3Es
we were able to extract for Connected Worlds. Extrapolative feedback is extracted from the
causal modelling approach. Explanatory feedback is derived from the sequences extracted
after pattern matching the causal chains, indicating explanations for “how did we get here”.
Exemplary feedback is distilled from the complete set of mined sequences exposing the
different exploration paths in the learning environment as experienced by previous
learners. The 3Es of the fugues allow us to characterize the processes that are an interplay
between the action-events (those triggered by learners) and system-events (events arising
due to intra-system interactions). Bringing these processes to the surface allows us to tell
stories of how an event evolved, how learners responded to that event, and for providing
the learners choices by showing them what is possible in the space.
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Modelling Connected Worlds

Causal modelling and the computational methods that go along with it can represent
the complexity of the system generated by the data. An advantage of causal models is that
they can capture the details of what changes could lead to what effects, without human
intervention. Causal modelling is an unsupervised machine learning approach that
characterizes observed data as pseudo randomized trials and quantifies the effects of one
variable on the other by learning the semantics directly from the data - without an
extensive labelling process (as is followed in supervised machine learning approaches). The
Directed Acyclic Graph (DAG) representing a causal model, has nodes that represent
variables, and edges that represent the relationships between those variables. The model
supports the computational quantification of the effect of manipulation of one variable on
another.

Drawing from the knowledge of how learners interact with the exhibit, how the
exhibit responds and the kinds of challenges that the educators on the exhibit floor
experience responding to questions from the visitors, we constructed the causal model for
Connected Worlds (see Figure 4), generalized at the biome level. The model exploits the
fact that each biome in Connected Worlds is designed to have analogous behavior -
representing the self-similarity property of complex systems. The model includes the
different systemic causes that capture how the system behaves indicated by the green
nodes, DeltaWaterfallWater, DeltaMoutainValleyWater, DeltaReservoirWater,
DeltaFloorWater represent the changes in the water levels at each of the sources and the
nodes WaterfallWater, MoutainValleyWater, ReservoirWater, FloorWater represent the
water levels in the water sources, Waterfall, Mountain Valley, Reservoir and the floor
respectively; the water levels in the biomes represented by the nodes WaterAmount and
WaterInOther Biomes; number of plants in the biome are represented by the
HealthyPlantLevel nodes; the change in number of clouds in the biome are represented by
the DeltaClouds and the number of clouds represented by Clouds. The learner actions and
learner controlled causes are indicated in yellow nodes, with the changes in the number of
users on floor and at the biomes represented by the UsersOnFloor and UsersAtBiome nodes
respectively, the planting actions for different levels of plants is represented by
PlantsAddedLevel nodes and water diversion decision, #BiomeWaterDiverted, indicating
the number of biomes water was simultaneously diverted to, the water diversion actions
represented by DeltaWaterAmount and DeltaWaterInOtherBiomes nodes indicate the
amount of water diverted towards the biomes.
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Table 1
Causal Model Identified Time Lags Between Crucial Cause-Effect Pairs
Cause variable Effect variable Identified time lag (in seconds)

UsersAtBiome PlantsAddedLevel1 4
UsersAtBiome PlantsAddedLevel2 6
UsersAtBiome PlantsAddedLevel3 10
UsersAtBiome PlantsAddedLevelg 15
UsersOnFloor DeltaWaterInOtherBiomes 1
UsersOnFloor DeltaWaterAmount 1
OverPlanting DeltaDeadPlantsLevell 50
OverPlanting DeltaDeadPlantsLevel2 50
OverPlanting DeltaDeadPlantsLevel3 50
OverPlanting DeltaDeadPlantsLevelg 50
WaterNeglect DeltaDeadPlantsLeveli 1
WaterNeglect DeltaDeadPlantsLevel2 4
WaterNeglect DeltaDeadPlantsLevels 10
WaterNeglect DeltaDeadPlantsLevelg 15

The different touch points between the two complex systems (human and natural) and
within the individual system define the edges between the nodes. To qualitatively
understand the effect of these human systemic interactions on the simulated ecological
system, we defined a few outcome metrics that reflect the health of the system represented
as a function of the various systemic and human-action nodes, indicated in blue in the
model. Specifically, we have two metrics: 1. The PlantDiversity metric (adopted from the
domain of ecology) to reflect on the diversity of the plant life in the biomes and 2. The
WaterSufficiency metric which is indicative of the ability of the biome to support plant life.
Additionally, to explain the death of plants - we defined two nodes OverPlanting and
WaterNeglect reflecting the situation leading to plant death in the biome. The red arrows
indicate relationships with a non-zero temporal latency (i.e., the influence on the system
is not instantaneous, but becomes apparent after a certain unknown temporal lag), black
arrows indicate relationships that influence the system instantly.
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Identifying Causal Temporal Lags

Analytically, given a set of observations of the variables represented by the nodes and
the set of all conditional independence claims as seen in a causal diagram, a causal model
can be used to inform statistical tests that can quantify the effect of one variable on
another. We use this quantified effect to identify the causally valid unknown temporal lags
between the pairs of nodes connected by red arrows in the causal model (see Figure 4). We
use the causal model to perform sensitivity analysis, by systematically varying the latency
between observed cause and effect pair values and identify the time lag which yields
maximum effect for the particular pair of variables. Additional details about model
construction, choice for nodes and edges, effect estimation methods and time-lag
identification computation methods can be found in (Mallavarapu, Lyons, Zheleva, &
Uzzo, in prep.).

Table 1 shows the different cause-effect pairs and the identified temporal lag for that
pair. Surprisingly, the temporal lags between the UsersAtBiome and the PlantsAddedLevel
variables is clearly indicative of ecological succession programmed into the Connected
Worlds “soil”, where the increase in the temporal lag with the increase in the plant levels -
indicates that the visitors first plant smaller grass-like plants (Level1 plants) to be able to
make the “soil” fit for larger shrubs and trees (represented by Level2, Level3 and Levelg
plants). Another important detail to notice is that out of the two causes for plant death in
Connected Worlds, WaterNeglect ought to kill the plants faster than OverPlanting. An
important semantic captured in the identified temporal lags, is that the plants in
Connected Worlds “store” small amounts of water as they absorb groundwater. When the
biome has been neglected of water, smaller plants - which have smaller capacities to store
water are seen to perish first followed by larger shrubs and trees - which survive a little
longer due to the stored water. However, when the biome experiences an overplanting
situation, the lack of ground water gradually withers away all plants irrespective of their
size in 50 seconds. The effect of UsersOnFloor on the water levels in the biomes (indicated
by the nodes DeltaWaterInOtherBiomes and DeltaWaterAmount, as they adjust the logs
on the floor to divert water towards one or more biomes, is almost immediate, indicated
by the one- second lag.

Generating Causal Chains

The causal order of the events as represented in the model and the temporal lags as
learnt from the data by the model, were used to generate event sequences that we call as
causal chains. To generate an exhaustive set of causal rules of behavior defining Connected
Worlds complex system, we generated causal chains of varying length to capture all
possible interactions. We manually constructed 261, 2-event causal chains tallying each
cause-effect pair from the causal model and the causally valid temporal lags between them
for each of the four biomes in Connected Worlds. Because complex systems can exhibit
nonlinear dynamics, it was necessary to consider the direction of the change in the variable
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(whether the value increased or decreased). We modified the definition of the event to
include the direction of change generating an exhaustive set of rules as per the causal
model. So, each event captured four attributes: the change direction, the name of the
variable, the biome (spatial location) in which the variable value changed and the temporal
lag at which its consequent event would follow (refer to figure 5).

Lag between

Variable or this event and
event name next
Lag
Increase or Location
decrease in of the
the event

quantity

Figure 5. Multivariate definition of the event considered for causal chain generation. Direction
defines whether the value of the variable increased or decreased; Event represents the name of the
variable. Biome indicates the location at which the event took place and Lag represents the
temporal lag at which the next causally valid event should follow.

For example, a 2-event causal chain for the variable pair MountainValleyWater and
FloorWater is: A decrease in Mountain Valley water leads to an increase in floor water
within zero seconds. Here, the order of the variables is captured from the causal model -
where the cause variable, the MountainValleyWater should precede the effect variable, i.e.,
the FloorWater, and the temporal lag is zero seconds (the effect is instantaneous). Another
example would be, detection of over planting in Desert is followed by the death of level 3
plants in the Desert after 50 seconds, here the temporal lag identified in Table 1 is used to
construct the 2-event causal chain. Similar sequences will exist for other three biomes as
well.

To automate the process of creating causal chains, we used a custom feed-forward sub-
sequence algorithm (see Appendix A). The algorithm seeds the longer causal chains from
the manually created list of short 2-event causal chains incrementally. For example, the 2-
event causal chains would be used to generate 3-event causal chains, which are then used
to generate 4-event causal chains, and so on. For example, for the set of 2-event causal
chains: {a,b} and {b,c}, the 3-event causal chain formed from these constituent sequences:
{a,b,c} strictly follows the causal model as three nodes chained in that order. Figure 6 shows
the examples of causal connections between three hypothetical nodes a, b, and c. This sub-
sequence generator only allows causally valid sequences to propagate into longer event
sequences, while pruning out other non-causal event sequences.
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Figure 6. Selection of causally valid chains during the feed-forward sub-sequence generation.
This process generates only causally valid chains. {a, b, c} represents three events, where a
connects to b and precedes b, and b connects to ¢ and precedes c. For the 2-event causal chains
{a,b} and {b,c} the only valid 3-event causal chain is {a,b,c} which follows the causal model: a is
connected to b and precedes b, and b is connected to c and precedes c.

The algorithm stops when shorter chains cannot be causally combined further. Figure
7 shows an example of 3-event and 4-event Connected Worlds causal chain generation
from the seed of three 2-event causal chains, considering the multi-variate description of
the events. This exhaustive set of causal chains represents the query set for the next process
in the computational pipeline: the pattern matching algorithm.

Pattern Matching Causal Chains

Computationally, pattern matching is the problem of identifying a pattern of
sequence from the database of large numbers of sequences that match the query sequence.
It has been traditionally used for retrieving information of interest from large repositories,
in applications like keyword-based search in handwritten and digital documents, DNA and
protein matching, etc. (Papapetrou et al, 20m). Pattern matching becomes
computationally expensive when 1. The number of sequences that can be formed using
different event combinations is exceptionally large (the search space) and 2. The number
of sequences to be searched is large (the query space). In our case, the search space was
limited by generating it in real-time, using the real-time log data. The data being collected
from the learners’ interactions (representing the changes in state of the system), is
converted to represent events (in real-time), where an event is a non-zero change in the
value of the variable. The Method section above has more details. These events are used to
construct causal chains, which we call samples. Like the causal chains that represent the
query space, these are also generated by the feed-forward generation technique and follow
the causal model. The pattern matching algorithm then performs a look-up of each query
causal chain in the set of sample causal chains to select the ones that were found. This
process is done in a recursive fashion, such that for comparing the longer causal chains the
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filtered sample set should contain all the shorter components of the longer causal chain.
This allows us to limit both the query space and the search space further by only looking
for causal chains that match the current context.

2-event candidate-query sequences:
Increase: Users: Wetlands (4) —

(0) — Increase: Water Neglect: Wetlands
Increase: Water Neglect: Wetlands (0) — Increase: Plant death Level 2: Wetlands

3-event candidate-query sequences:
Increase: Users: Wetlands (4) — — Increase: Water Neglect:
Wetlands

(0) — Increase: Water Neglect: Wetlands (0) — Increase: Plant death
Level 2: Wetlands

4-event candidate-query sequences:
Increase: Users: Wetlands (4) — — Increase: Water Neglect:
Wetlands (0) — Increase: Plant death Level 2: Wetlands

Figure 7. The feed-forward sub-sequence generation process. Seeding from three 2-event causal
chains for the Wetlands biomes, the algorithm forms two 3-event causal chains and one 4-event
causal chains. Each event is defined with four attributes: the change direction, the name of the
variable, the biome (spatial location) in which the variable value changed and the temporal lag at
which its consequent event would follow. The longer the causal chain, the more detailed it is. The
algorithm stops at 4-event causal chains, as there is no other 4-event causal chain to extend it to a
5-event causal chain.

RESULTS

To understand the kinds of causal chains and formative feedback that this method
yields for Connected Worlds, we performed the pattern matching on the entire corpus of
67 files of prior learners’ interaction data (see section 5 for more details on the data).
Considering the 26 nodes represented in the causal model with respect to each biome in
Connected Worlds, we recognized 10037 total causal chains (the query space) that range
from 2-events to 8-events in length. These were matched to the causal chains in the data
(see Table 2). Most of the short causal chains were found in the data while the longer causal
chains were rare.

Figure 8 shows the distribution of the match counts of causal chains across the biomes.
The fugues have similar distributions across the biomes, with Desert having the most
fugues, followed by Wetlands, Jungle and Plains (without any significant differences). This
distribution of fugues echoes how visitors interact with Connected Worlds, e.g., the Desert
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Table 2

Descriptive Fugue Counts per Sequence Length: The query space is the
total number of possible fugues, and sample space is the number of
fugues detected in the data corpus.

Sequence length # possiblipf;lcg;es (query # cau(sszlncll})llaeir;; :::;Ched

2-event 261 257
3-event 400 387
4-event 672 558
5-event 1344 1052
6-event 1984 1459
7-event 3072 1608
8-event 2304 1

Total 10037 5332

and Wetlands permit the richest engagement because their spatial arrangement allows
visitors to easily divert water. We next discuss the examples of 3E formative fugues that
were extracted from the computational pipeline, drilling deeper into the nature of the
information the fugues could deliver as formative feedback.

500000

400000

300000

200000

Fugue match count frequencies

100000

Desert Plains Jungle Wetlands

Biomes
Figure 8. Distribution of the match frequencies of the causal chains across the biomes.
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Extracted Fugues

Moving away from traditional directive and facilitative feedback (Black & Wiliam,
1998), common in the closed-ended and simple learning environments that use learner-
centric methods, we conceptualized the 3Es of COpELE formative fugues: extrapolative,
exploratory and exemplary feedback.

1. Extrapolative feedback supports the multiple actions dimension of open-ended
learning and elicits the “contextualizing function” that can help the learners make a
knowledgeable choice about their next actions. The contextualizing function is
provided in the form of exposing the nuances between the various causes and their
corresponding effects. This function of the feedback is mostly extracted from the
semantics learnt by the causal model.

2. Explanatory feedback supports the multiple strategies dimension and often reflects
back in exposing the causal chain that can help answer “how did we get here?” This
function of feedback is extracted post-pattern matching in the computational
pipeline.

3. Exemplary feedback supports the multiple goals dimension of the open-ended
learning and exposes the possibilities in the space showing the different complex
systems phenomena that the learners can expose. The different causal chains in the
fugue library provide the exemplary candidates.

In this section we provide one example for each type of formative fugue for the
Connected Worlds exhibit data.

Extrapolative Formative Feedback

We used the causal model to “extrapolate” the possibilities of what can happen given
the situation. This gives the learners an opportunity to make informed decisions about
their explorations. What we call extrapolative feedback is similar in some aspects to a hint
or a recommendation that is provided to the learner in “simple” learning environments
(e.g., intelligent tutoring systems), but also differs from them as it does not give learners a
“closed” option of what they have to do next, instead it makes them aware of the range of
possibilities of what could happen.
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Figure 9. Example of Extrapolative formative fugues (top), showing over planting situation in
Wetlands resulting in level 3 plant death in 50 seconds, and water neglect situation in Plains
resulting in level 3 plant death in 10 seconds. (The numbers shown above the arrows indicate
temporal lag in seconds). These fugues are drawn from the shaded region of the causal model
(bottom left). The partial causal tree (bottom right) shows the causal events in the fugues.

An important component of the design of formative feedback is the timing of its
delivery (Shute, 2008). This is especially true when learners are interacting in an immersive
learning environment, where they may only have a certain amount of time to act before
events transpire. The time lag between causes and effects is an important piece of
information and the causal model allows us to extrapolate this information. For example,
one important question that emerges is how long plants can survive in biomes without
tending. Plants in a biome can die due to two causes: 1. Because they haven’t been watered
recently (represented in the model as WaterNeglect node) or 2. The visitors planted more
plants than the biome’s groundwater can support (represented as Overplanting node in the
causal model). Both of these actions take place sometime before plant death (see Figure
9). Figure 9 shows two fugues that matched the learners experience with the exhibit, one
with OverPlanting leading to plant death after 50 seconds and other with WaterNeglect
leading to plant death in 10 seconds after the event. We can use the information in real
time when neglect or over planting begins, to notify visitors that they have a 10-second
window or a 50-second window respectively, in which to act to prevent level 3 plant deaths
in the respective biomes. The extrapolative formative feedback can thus provide the
learners a triage list that can help them prioritize and plan their actions and decisions in
the exhibit.
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Explanatory Formative Feedback

We used the feed-forward sub-sequence generation and the pattern matching
algorithms discussed above to mine the Explanatory fugues. The fugues identify the
specific causal chains that lead to the particular state of interest, explaining the evolution
of a phenomenon that they have experienced. Each causal chain of interest represents a
very short episode, explaining the evolution and interactions between various components
of the complex system that led to the current state. Learners in Connected Worlds often
express confusion about “what was really going on” in the simulation and often comment
- “I was doing well with plants and then suddenly all my plants died, [ don’t know why!”.
The explanatory feedback is able to address such questions by revealing causal chains that
match the learners’ concerns. The explanatory feedback presents the longest available
causal chain from the data. For example, one of the causal chains that was most frequent
in the prior learners’ data is shown in Figure 10.

UsersAtBiome

15

15
Increase: Users: Wetlands = o PlantsAddedLevel

9
Increase: Water Neglect: Wetlands=>

Increase: Plant Death Level 2: Wetlands @

4

@taDead PIantsLevD

Figure 10. Explanatory formative fugue example (left), showing a causal chain starting with
users at the Wetlands planting large trees which pushes the Wetlands into a state of water
neglect leading to death of smaller plants in Wetlands. The partial causal tree shows the
variables contributing to the fugue color coded to match the fugue sample (right). The lags are
annotated in red by the arrows. Some zero lag nodes have been omitted from the fugue for
clarity indicated by a dotted arrow in the partial tree.

Figure 10 shows the number of users at the Wetlands, who then plant large trees at the
Wetlands. The planting pushes the Wetlands in a water neglect condition, ultimately
leading to the death of the smaller plants in Wetlands. Such explanatory feedback can be
used in reflection to highlight the complex systems dynamics at play (e.g., in this case small
actions large effects, where the action of planting leads to the death of plants already
planted in the biome).
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Exemplary Formative Feedback

The set of matched causal chains extracted from the computational process
contributes to building exploration maps that can be used by the educators as examples
and to understand visitors’ exploration patterns. Each exploration path exemplifies the
multiplicity of the possibilities in the complex system. For example, learners often question
if they can divert water to more than one biome at a time and what its influence will be on
the biome’s or other biome’s health. Consider the two candidate fugues, F1 and F2 shown
in Figure 1.

F1:
Decrease: Water: Floor & Water Diverted to two biomes (Desert and
Wetlands)®™> Increase: Water: Desert 2

= 3 Increase: Plant
Death Level2: Wetlands

F2:
Increase: Users: Floor éo Water Diverted to one biome (Plains) %
Increase: Water: Plains - N

Increase: Over Planting: Jungle 3 Increase: Plant Death Levell: Jungle

Figure 11. Exemplary formative fugue examples F1 and F2. The fugue sequences start with
different events (decrease of water levels on the floor and increase in the number of users
on the floor), followed by water diversion events ultimately leading to death of plants in
some other biome.

F1, shows a fugue that is an attempt to share water between the desert and the
Wetlands, because they were dealing with scarcity in the Wetlands, which intensified into
a neglect situation. The shared water did not reach the Wetlands fast enough to save the
plants. On the other hand, F2 shows how diverting water selfishly to the Plains killed the
plants in the Jungle. In this case they ignored the water scarcity in the Jungle and diverted
their water resources to the Plains, so the situation that could have been salvaged was
ignored. Although both examples lead to death of plants, they show two different decisions
can lead to similar outcomes indicating the non-linear dynamics at play in the complex
system. The exemplary feedback could therefore be useful in surfacing the different
strategies that are being used in a particular context (plant death for F1and F2 in the above
example). We can use such examples to provide pointers for educators to engage the
learners in a discussion about their intentions and their consequences as reflected from
these fugues.
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DISCUSSION

This work distinguishes three kinds of formative feedback for COpELE, (extrapolative
feedback, explanatory feedback and exemplary feedback which highlights the big picture
for the learners - showing the learners the scope of possibilities within the learning
environment and allowing them to make their own choices about what to do next in the
learning process. We envision a formative fugues library built with this method that grows
as learners interact with the learning environment, documenting and exposing larger
“exploration maps”, augmenting it with their own exploration paths together with
alternative exploration paths for a particular “context”. For each component of the fugue,
the causal semantics and the exploration paths used to build exploration maps. They are
extracted from the various methods in the computational data driven pipeline. Since the
emphasis of the formative fugues, and the library constructed from this method is on the
problem space rather than an individual learner’s cognition, this method readily supports
collaborative problem solving. Overcoming the issues that made traditional formative
feedback and the computational methods used to extract them unsuitable for COpELE, the
3Es of formative fugues embrace exploration-based learning inherent in COpELE. The
generalizability of this approach lies in its suitability for both complex open-ended
experiences such as Connected Worlds, as well as traditional “simple,” open-ended
learning environments, providing formative feedback to learners across a range of learning
settings.

The computational method devised to support the reconceptualized formative
feedback provides three advantages. Because it bootstraps on the explorations of prior
learners, it has the ability to expose the crucial decision points and the complex systems
dynamics that arise due to the different decisions. moreover, the extraction process makes
the fugue library easily extendable, adding previously missing exploration paths as they
become evident in learners’ interactions. Most importantly, it exposes the learners to the
possibilities in the space without levying any presumptions about their goals.

These advantages bring to the surface new possibilities for formative feedback and
teaching methods for complex systems, such as: 1. A view into how exploration based
learning takes place, useful for educational researchers for understanding learning
processes; 2. Revealing activity patterns for designers to improve the design of the learning
environments; 3. Provide guidance for intervention by humans-in-the-loop (e.g.,
educators); 4. Use the fugue library to design context-specific (for learners directly)
feedback; and 5. As a foundation for designing adaptive learning environments for complex
problems, where the problems can change difficulty level by tracking the kinds of complex
systems phenomena the learners have explored.
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LIMITATIONS

Currently, the causal model constructed for Connected Worlds considers limited
cross-biome interactions (the DeltaWaterInOtherBiome node), by modelling the causality
as a function of the subsystem or local level processes. The current model is unable to bring
other important complex systems properties to the surface, like emergence, which could
explain how the cumulative and distributed changes at spatially distant local levels
influence the behaviors at the global level. Modelling global effects requires a major effort
to resituate causality as the function of the processes across the individual biomes and
devising new health metrics that indicate effects at both local and global scales. Such a new
model would need to consider the heterogeneity among the biomes, (e.g. the biomes could
differ in the attention or the extent and types of interactions from the visitor groups due
to the visual effects or the physical location of the biome), which might have an impact on
the dynamics of the global system health. Since the current goal of feedback is to motivate
the learners to “act” or “understand the effects of their actions,” the causal model was
scoped at the local-subsystem level, which is internally homogenous.

Technically, as the causal model becomes more complex, the fugue library will expand,
and pragmatic issues in searching and time of the search will need to be resolved to make
it efficient and effective for feedback. For example, when using the fugue library to provide
real-time feedback, the running time constraints for processing the data (e.g., constructing
samples and matching it with query fugues of interest) may make effectiveness rather than
efficiency of the feedback a priority. Another important consideration is detecting and
referencing the most commonly occurring “fugue” from the learners’ interactions, which
might potentially indicate confusion or misunderstanding, so helping the learners diversify
“fugues” by annotating the fugues with more high-level complex systems properties while
preventing recursion problem must take precedence. Maintaining an effective balance to
resolve these limitations would be a major part of design tools for formative fugue delivery
systems. Additionally, the current model prevents us from studying complex system
properties like nonlinear state dynamics, which involve studying and understanding state
evolution trajectories of a single variable through a series of different stable and unstable
states due to external variables.

FUTURE WORK

The conceptualization of formative fugues and the innovation of the methods that are
compatible with it are at its very inception, in this work we highlighted a novel
computational method that is able to bring the reconceptualized formative fugue functions
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(the 3Es) to the surface. The next step is to fully validate the formative fugues with respect
to the learning environment and identify the complex systems properties that are missing
and those that are evidently present in these fugues. The evaluation would include looking
into the nature of the missing properties and correlating the ability of the computational
methods to capture them. Once we enlist the properties that can be readily captured by
the method, we need to identify the hurdles for learners in adopting/enacting them during
their interactions, which could be due to system capabilities or pragmatic difficulties (e.g.,
very short response times).

Further, in thinking about usage of the formative fugues, consideration of the
presentation medium (e.g., mobile tablets), representation forms of the fugues (e.g.,
textual, visual, through notifications, etc.) and interpretability of the representation within
the pragmatic constraints of its use are needed. To this effect, we are in the process of
incorporating the insights we gained via formative fugues into a data-driven mobile tablet
tool that is being used by educators on the exhibit floor, similar to (Mallavarapu et al.,
2019). We are in the midst of building a “Human-in-the-Loop” socio-technical system that
can allow educators to help visitors engage with the exhibit in real time, providing
formative guidance at critical, “just-in-time” moments through these extracted fugues.
Future work will examine if these educator interventions distilled from formative fugues
shift learner engagement with the complex system in more productive directions, and what
lessons visitors learn about the system as a consequence.

CONCLUSIONS

Complex open-ended interactive simulations permit educators to create ever more
engaging learning environments, and to showcase learning problems and scientific
phenomena that are not well-suited for traditional media like textbooks (Barab & Dede,
2007). A number of classroom-based simulated learning environments have proliferated
out-of-pace with our ability to effectively support learners as they engage with and learn
from these simulations. (Grotzer & Solis, 2015; Wilensky, 1999), web-based (Amplify, 2000;
Concord Consortium, 2020; Azevedo et al., 2004), and museum-based (Ma et al., 2015;
Lyons et al., 2015, Mallavarapu et al., 2019; D’Angelo et al., 2015). Data-driven
computational approaches offer potential for scaffolding the learning that takes place
within these learning environments, but this promise can be realized only if the analytic
techniques chosen suit the problem domain and the explorative learning goals that these
environments afford. Methods that look past the “solutions” to the “processes” enmeshed
with learning are needed for providing feedback. The vision for these methods is to support
the learners with insights and opportunities to contemplate the implications of their
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decisions and understand the complex processes leading to the consequences through a
Socratic method (Lynch et al.,2010) of providing feedback to enable explorations. Complex-
system problems have an emergent and dynamic nature, where the learners’ actions co-
constitute the situations and the future actions. The need to surface these semantics makes
using traditional educational data mining techniques challenging to glean insights for
formative feedback intended to improve learner engagement with the system.

The “fugue”-based approach to characterizing formative feedback for complex systems
learning offers the following potentials: 1. Through the extrapolative, explanatory and
exemplary functions of formative feedback, the formative fugues library encourages the
learners to explore. By providing actionable insights the extrapolative feedback engages
the learners to engage in “informed inquiry”. The exemplary feedback contextualizes the
learners to see “how else did people get themselves into this state?” and “where else can we
go from here?” without constraining their choices or making assumptions about their
goals; The explanatory feedback can help learners build a robust understanding of the
complex systems processes by connecting the abstract simulation patterns (observed in
the “fugues”) with their real-world learning experiences, learners can create the strong
mental models needed to comprehend complex systems (Grotzer & Solis, 2015); 2. Fugues
support research into the process of open-ended learning, as they expose learning
trajectories (mapping the breadth and depth of explorations) to allow educators and
researchers to characterize and track learners’ understandings and explorations; and 3. The
fugues could be used as conceptual seeds provided to the educator (human-in-the-loop),
so that they can help learners better engage with complex systems beliefs.
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Appendix A

The Feed-forward Causal Chain Generation Algorithm
Given:
CQ = Empty set of causal chains
L = Set of manually constructed 2-event causal chain
n=2
Function Feed-forward (n, L):
1. L = Set of constructed n-event causal chain (n ;=2)
2. M = Empty set of (n+1)-event causal chain
3. For every pair (S1, S2) of n-event causal chains in L
/] For e.g. for 2-event causal chains S1 and S2
/1 /] S1: candidate-query with events a,b
// S2: candidate-query with events b,c
(a) If S1- first event is equal to S2 - last event:
i. Construct S’ which is a (n+1)-event sequence by appending last
event of Sz to S1ii. Add S’ to the set to M
4.L=M
5. Append L to CQ
6. If L = null: Return CQ
7. else: Call Feed-Forward (n+1, L)
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