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Abstract  
 
The Next Generation Science Standards and the National Research Council recognize 
systems thinking as an essential skill to address the global challenges of the 21st century. But 
the habits of mind needed to understand complex systems are not readily learned through 
traditional approaches. Recently large-scale interactive multi-user immersive simulations are 
being used to expose the learners to diverse topics that emulate real-world complex systems 
phenomena. These modern-day mixed reality simulations are unique in that the learners are 
an integral part of the evolving dynamics. The decisions they make and the actions that 
follow, collectively impact the simulated complex system, much like any real-world complex 
system. But the learners have difficulty understanding these coupled complex systems 
processes, and often get “lost” or “stuck,” and need help navigating the problem space. 
Formative feedback is the traditional way educators support learners during problem solving. 
Traditional goal-based and learner-centered approaches don’t scale well to environments that 
allow learners to explore multiple goals or solutions, and multiple solution paths 
(Mallavarapu & Lyons, 2020). In this work, we reconceptualize formative feedback for 
complex systems-based learning environments, formative fugues, (a term derived from music 
by Reitman, 1964) to allow learners to make informed decisions about their own exploration 
paths. We discuss a novel computational approach that employs causal inference and pattern 
matching to characterize the exploration paths of prior learners and generate situationally 
relevant formative feedback. We extract formative fugues from the data collected from an 
ecological complex systems simulation installed at a museum. The extracted feedback does 
not presume the goals of the learners, but helps the learners understand what choices and 
events led to the current state of the problem space, and what paths forward are possible. We 
conclude with a discussion of implications of using formative fugues for complex systems 
education.  
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INTRODUCTION 

To prepare learners for the future workforce, educational researchers and 

policymakers have been drawing increasing attention to exposing learners to the skills, 

disciplinary processes and dispositions required to solve the 21st century problems 

(National Research Council, 2010). One of these essential skills is systems thinking (NGSS, 

2013; National Research Council, 2012), which can help learners understand and address 

many of the social and global problems that we face today. Since the behavior in many of 

these systems is intrinsically difficult to understand (due to the uncertainties in the 

dependencies and the dynamic interactions among the various components at different 

levels of organization), they have been termed complex systems. The disciplinary skills, 

practices, and habits of mind needed to comprehend such systems, are not readily 

understood or adopted (Hmelo-Silver & Azevedo, 2006; Yoon et al, 2018; Jacobson & 

Wilensky, 2006). For example, one of the properties that complex systems can exhibit is 

emergence - meaning that a given outcome arises from the interactions of many smaller 

factors, without any centralized control (Yoon, 2008; Jacobson, 2001). Coming to 

understand a complex system thus requires learners to master not just the content, but to 

also adopt an epistemological stance that rejects a deterministic, “clockwork” 

understanding of how systems function (Yoon, 2008; Jacobson, 2001; Chi et al., 2012). To 

understand emergence, learners need to recognize that their every action contributes to 

the emergent outcome emulating the decentralized operation. It can have effects that are 

separated spatially and temporally across the different system components. To introduce 

learners to concepts like these, researchers have been exploring a host of new digitally 

supported learning environments that expose learners to complex open ended, real-world 

problems. These environments allow learners to work collaboratively to both experience 

and comprehend the complex real-world problems in which they are immersed (Yoon et 

al., 2018). 

Importantly, the immersiveness in these environments demands that the learners 

play a part in the evolving complex system, much like the real-world complex systems that 

are a product of interacting human and natural systems. The nature of these problems 

requires learners to engage in exploration-based learning (Moradi et al., 2020) and apply 

disciplinary skills and practices to solve problems, imposing learning goals that prioritize 

the process of solving the problem over the quality of the solution. However, in addition to 

the complex systems phenomena with which the learners engage, the skills and practices 

the learners deploy for exploration-based learning (like keeping track of the explorations, 

regulating the problem-solving activities by constantly engaging in planning, monitoring, 

or evaluating) are notoriously hard to measure (Mallavarapu et al., 2015). These challenges 

have held back the support and scaffolds that can be provided to the learners to help them 
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understand the disciplinary processes, in turn hampering the very goal of effectively 

implementing these digital learning environments (Goh et al., 2012; Slattery et al., 2012; 

Mallavarapu et al., 2015).  

Formative feedback is the traditional way educators support learners during problem 

solving, by giving learners information based on their distance or deviation from the goal. 

But open-endedness in these new digital environments imparts loosely bound goals or 

reward functions, thus affording a very large solution space - with multiple possible 

solutions, multiple strategies for reaching the solutions, and multiple actions that make up 

the strategies (Mallavarapu & Lyons, 2020). Additionally, complex systems properties 

encapsulate nonlinear and dynamic state changes that require the learners to evolve their 

goals, redefine the sub-problems and the associated solutions they will tackle as they 

discover previously unknown or emergent parts of the problem. This makes their 

experience non-deterministic and unrepeatable, which in-turn renders the traditional goal-

based methods unfit for tracking their progress in these environments. For example, certain 

phenomena likely to happen within a complex system may not emerge in exactly the same 

way, or at the same time, each time a system is enacted or simulated. This means that any 

feedback given to the learners to help them internalize the concepts and epistemologies 

needs to be relevant to the learners’ current context. Thus, to aid learners understand and 

acquire the complex systems disciplinary processes we need to develop methods that can 

make visible the complex systems processes that the learners experience, monitor the skills 

and practices the learners exhibit while solving these problems as a process and provide 

them as formative feedback. Indeed, even in more traditional educational scenarios, 

contextual feedback has been shown to be useful as a driving force for motivation, 

effectiveness and efficiency in learning (Fancsali, 2015; Verbert et al., 2013).  

Our motivation for this work is to provide contextually relevant formative feedback 

for learners who are engaged with an ecology-based, complex systems, open-ended 

learning environment called Connected Worlds, installed at a science museum. The exhibit 

has won multiple design awards and engages groups of visitors to cooperate or interfere 

with one another, encouraging them to disrupt or improve the state of an ecological 

simulation (Mallavarapu et al., 2019). The exhibit was designed to evidence the critical 

phenomena hard to comprehend when just viewing the simulation, as a third party. It 

instead makes a large group of learners part of the emergent complex system, allowing 

them to trigger and interrupt the complex systems phenomena. However, the coupled 

nature of the human and natural systems simulation makes it difficult for the learners to 

identify the processes they trigger and interrupt collectively, and they often express 

confusion about “what was really going on.” To be fair, when a human-based complex 

system couples with a natural complex system, they together form a completely new 

complex, dynamic, interconnected system which has its own unique feedbacks, behaviors 



8     A. Mallavarapu1, S. Uzzo, & L. Lyons 

 

and functions that can be triggered by events in either constituent system (Ferraro, 

Sanchirico, & Smith, 2019). Understanding these behaviors and functions is crucial to make 

an informed decision about what actions to take next. 

 We present this work to address the need to provide learners of Connected Worlds 

situationally relevant formative feedback that can help them understand the current 

situations, make decisions, and take actions in order to guide their explorations in the 

open-ended solution space. Through this work we provide two contributions: conceptual 

contribution of newly conceived formative feedback, called formative fugues, and 

methodological contribution of a data-driven computational method for extracting 

formative fugues from prior learners’ data.  

After a review of existing work in the area, we first discuss the conceptual 

contributions, in which we reconceptualize the traditional definition and functions of 

formative feedback as formative fugues, modifying it to meet the demands of these modern-

day complex systems open-ended learning environments. We then address the 

methodological contributions and discuss a computational approach that can expose the 

learners’ exploration paths to generate formative fugues for Connected Worlds. The 

formative fugues generated through this process highlight the different cause-effect chains 

that connect the actions by different visitors at different times and at spatially different 

locations, exposing the complex systems processes under play in a meaningful manner. Our 

approach uses collective visitor interaction logs that record the changes in the simulated 

system state due to the different visitor actions and decisions to model the complex system. 

Our decision to collect data at the system level, instead of tracking individual learners in 

the space, was set to maximize the possibility of surfacing the effects of the decentralized 

actions on the system. The causal relationships are then used as embeddings to extract 

contextual formative feedback as salient patterns from the interaction data. We further 

elaborate on the implications of using formative fugues, for three stakeholders: the learners, 

educators and educational researchers, and its delivery mechanisms.  

 

RELATED WORK  
 

Digital learning environments have made way for “living labs” (Salgado, 2004) that 

expose learners to real-world problems and provide the instrumentation to observe 

learning. In this section we describe with examples the features of such complex open-

ended learning environments that allow learners to experience the real-world problems. 

The very complex nature of these problems presents a need for contextually relevant 

formative feedback to guide and motivate the learners to explore the concepts. We survey 

the implications of analytically monitoring learning in these environments and the 

correlation between the nature of the analytical techniques used by researchers to extract 

formative feedback and the learning goals defined by the environment.  
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 Complex Open-ended Learning Environments (COpELE)  

Ideally, the open-endedness of digital learning environments that enable multiple 

solutions, multiple strategies to solve each solution and multiple paths to each of those 

strategies (Le et al., 2013) arises from the absence of, or loosely defined goals or reward 

functions. The learners are expected to evolve their goals, strategies and actions according 

to the context of their interaction. Additionally, complex systems exhibit special qualities 

like: 1. Hysteresis, or path dependence (meaning that the actions that are possible to 

undertake are dependent on events early on in the unfolding of the system, preventing 

backtracking); 2. A near-infinite number of system states that include both stable states 

(where the system can resist changes to this state for a longer period of time) and nonlinear 

rapid regime shifts (tipping points which cause abrupt changes in the system states); and 

3. Emergence of unique phenomena at the global level, which are not visible at the local 

level but arise due to the interactions among system elements present at the local levels. 

All these dimensions together portray a sense of randomness in the behavior of the complex 

system.  

So, with each goal and strategy implementation that the learners explore - hysteresis 

imposes restrictions on which alternatives are propagated forward, thus constraining 

learner choices (Lynch et al., 2012), while nonlinearities and emergence makes learner 

progress non-monotonic and dynamic. The learners need to adopt a non-reductive 

systems-thinking approach to understand the order and structure of multiple causes and 

consequences that coexist at many different scales of time, space, and organization 

(Jacobson, 2001). This perspective requires constantly shifting focus between local and 

global thinking - understanding how the action at a local level impacts the behavior of the 

local entities and the processes at both the local and the global levels, to unravel 

emergence. This can be a difficult perspective to attain while enmeshed in the problem-

solving process. Researchers have suggested that learners can begin to comprehend 

emergence by performing mental exercises that juxtapose local-level perspectives with 

global-level perspectives (Jacobson & Wilensky, 2006; Goldstone & Wilensky, 2008) and 

have stressed the importance of learners coming to understand the causal connections 

present in the complex system (Grotzer, 2012) to help them transition from an event-based 

way of experiencing systems phenomena to a process-based understanding (Grotzer et al., 

2013). Learners need opportunities to experience complex systems phenomena firsthand, 

motivating challenges to encourage them to explore the phenomena, and they need 

assistance to orient them to these new forms of decentralized thinking. While this kind of 

learning can be accomplished via technology-free activities, like the classic 1960s “Beer 

Game” participatory simulation, the affordances of simulation technologies for enacting 

complex systems and permitting learner engagement with them are undeniable.  
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 Simulation Based COpELE 

The need to expose learners to complex systems has led to a range of simulation-

based learning environments which engage learners in different ways. There are a number 

of single-user simulation environments, some which engage learners in programming the 

behavior of local-level agents, like NetLogo (Wilensky, 1999), StarLogo (Klopfer, 2003; 

Klopfer et al., 2005), and AgentSheets (Repenning et al., 2000). Others, like STELLA 

(Richmond & Paterson, 2001) and Model-It (Jackson et al., 1996), ask learners to model the 

system itself. Asking learners to model agents and systems can be very effective for 

supporting their understanding of systems but is very challenging for learners - it requires 

a lot of teacher support, and is not an inherently motivating task.  

As a consequence, a number of researchers have looked towards more participatory 

and collaborative methods for exposing learners to complex systems, from in-person 

participatory simulations where learners enact a complex system while digitally supported 

in their role-play by mobile devices (Colella, 2000; Ioannidou et al., 2010; Danesh et al., 

2001; Soloway et al., 2001) to purely online Multi-User Virtual Environments (MUVEs), 

which help learners explore systems by practicing scientific inquiry and reasoning skills by 

virtually interacting with their peers through discussions and chat windows [e.g., 

EcoMUVE (Grotzer et al., 2011), EcoXPT (Thompson et al., 2016; Dede et al., 2017)], to more 

involved co-located full body participatory simulations [e.g. RoomQuake (Moher, 2008), 

WallCology (Malcolm et al., 2008), BeeSim (Peppler et al., 2010)], and more recently 

collaborative mixed reality and virtual reality based immersive simulations [e.g. MEteor 

(Tscholl et al., 2013), Evoroom (Slotta et al., 2013), Learning Physics through Play (LPP) 

project (Enyedy et al., 2015), ELASTIC3S (Planey & Lindgren, 2018), and Connected Worlds 

(Mallavarapu et al., 2019)]. The immersive mixed reality simulations have evolved from 

affording the learner a passive role (like in the programming-based environments and the 

MUVEs) to an active role, where the learners (their actions and interactions with each other 

and with the system) influence the complex-systems phenomena.  

The learning environments expose the learners to diverse complex system topics that 

extend into the real world, spanning digital and real-world artifacts (Mallavarapu & Lyons, 

2021). These experiences emulate real-world complex systems and problems, which couple 

a human-based system (that the participants bring through their interactions with each 

other) and a natural system (the simulation) - each affecting the other. The goal of these 

environments is to make the learners aware of both the global and local perspectives for 

the complexities present in the problems, with the ecological validity and educational 

rationale of letting learners face challenges they would face in the real world. Presenting 

open-ended problems that are less constrained, permits learners to set their own goals and 

coordinate actions to explore these problems in service of those goals. This exploration acts 
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as motivation for engaging learners to investigate such phenomena. Many real-world 

complex systems problems, like climate change, require deep understanding and skills for 

managing the phenomena. It especially requires an understanding of how the human-

based complex system, where people, and their individual decisions, co-constitute the 

natural complex system triggering complex phenomena. The system requires people to 

continuously coordinate their actions as they strive to explore the system, devise goals, and 

attain or maintain desirable system states. Illustrating how each simple action impacts the 

current state and/or future actions while the learners are engaged in maintaining the 

system, can help the learners adopt and understand the new perspective of systems 

thinking.  
 

Implications of Complex Open-ended Solution Space  

The learning environments reviewed above succeed at exposing learners to complex 

open-ended problem solving. While the more collaborative and immersive versions are 

highly successful at motivating learners’ engagement, these elements also make it much 

harder for educators to offer guidance and support to learners. The vague (or emergent) 

goals and few (or no) constraints that allow the learners the opportunity to explore more 

of the complex problem domain (Bauer et al., 2017), limit the ability of the researchers and 

educators to easily monitor and track learning processes. The exploration-based learning 

that goes along with these open-ended problems presents unique opportunities often 

missing in traditional learning experiences. Traditionally, learning experiences have been 

known to pose “simple” problems, with well-defined goals that impose restrictions on the 

actions, and the order of the actions the learners can take to implement strategies to reach 

the unique solution. The greater the constraints, the more precise is the learner’s goal, 

which can hamper a learner’s exposure to the full problem space - as the learner is 

incentivized to exploit the problem domain rather than explore it. This is true for open-

ended problems that also are complex systems based, where constraining the learners’ 

goals and actions through well-defined functions can lead to systematically ignoring or 

oversimplifying the processes that account for the “complex” nature of these problems 

(Jacobson & Wilensky, 2006), hiding the very properties that these problems and learning 

environments were designed to expose the learners to.  

Some problems embedded within the complex systems are even described as having 

no correct or incorrect answers, but only answers that are better or worse when compared 

to each other in terms of some domain dependent heuristics (e.g., the problems in Bauer 

et al., 2017 and Mallavarapu et al., 2015). Such problems with non-verifiable solution states 

ensure that the learning goal is not to achieve a certain “terminal” state but rather the 

learners are required to actively manage the system. However, this requires that the 

learners have considerable prior knowledge that they search, update and filter during the 
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exploration process while keeping track of the historical events that elicit these changes. 

While, this has educational benefits, as it places learners in a position to make evaluative 

judgements, engaging exploratively with complex systems demands additional support to 

understand, search, filter and update the exploration paths.  
 

Challenge of Adapting Traditional Formative Feedback to Complex Open-ended 

Problems  

Traditionally, formative feedback has been defined as “information communicated to 

the learner that is intended to modify the learner’s thinking or behavior for the purpose of 

improving learning” (Shute, 2008, p.2). This definition portrays formative feedback as being 

provided in response to the learner’s actions in the form of a verification of the accuracy of 

the action, a hint for the next action, or a content-based explanation guiding the learners 

towards the correct action. These kinds of formative feedback work well with individual 

learners. They have been used extensively to support them while solving simple well-

defined problems, and they are inherently tied to an assumption of one fixed goal, making 

them unsuitable for solving complex open-ended problems, which can have a dynamically 

evolving solution space. Moreover, it can be challenging to fit a fixed goal perspective to 

collaborative learning environments, both pragmatically (instrumentation is a challenge) 

and conceptually (how one can go about ascribing “credit” to multiple learners when they 

jointly create a solution is a theoretically undefined proposition). The theories of learning 

that could conceptually fully account for and embrace the multifaceted ways groups of 

learners support one another and their joint endeavors are currently very fragmented and 

underdeveloped (Mallavarapu & Lyons, 2020).  

To supply formative feedback for these newly conceived COpELE, a fundamental re-

conceptualization of how formative feedback is structured, and the techniques used to 

distill it from collected data, are needed. Black and Wiliam (1998) identified two main 

functions of formative feedback to manage the cognitive aspects of the learning process: 1. 

The directive aspect, which communicates the gap between the current level of 

performance and the desired level of performance, and 2. The facilitative aspect that 

explains the concepts to the learner and guides them towards the revision or 

conceptualization. For these functions to hold for collaborative, open-ended learning 

environments, we need to relax the assumptions on what the desired level of performance 

is, and help the learners visualize the many different possibilities of goals, strategies, and 

actions.  

Because of the immense amount of detail and multiple parallel processes interacting 

to shape the complex system, extracting feedback that is specific to the learners’ experience 

and that can serve either the facilitative or directive aspects is non-trivial. The feedback 

generation mechanism should first be able to extract the details of individual processes and 
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then clearly relate the processes to the larger complex systems phenomena. In complex 

systems there may actually be a near-infinite number of states a system can assume, thanks 

to systemic nonlinearity, and a near-infinite number of paths that learners take through 

that state space. It is thus impossible to map out the state space, or the learners’ action 

space, a priori. We argue that data-mining the learners’ interaction data offers a great 

potential to extract specific nuances highlighting the complex systems processes and 

deliver them as formative feedback in these novel learning environments. If applied 

correctly, data mining can build a picture of the space of possible states and actions, 

experienced by learners, and generalize them in usefully bounded ways. It has the ability 

to capture the fundamental functions and elements of formative feedback highlighted in 

the literature, while complementing the features of complex systems processes with which 

learners are engaged. 
 

Computational Methods for Extracting and Delivering Formative Feedback  

Computational methods have been successfully used to monitor learner progress with 

a wide range of simple problems (e.g., Harpstead et al., 2013; Andersen et al., 2010; 

Martinez-Maldonado et al,, 2013; Gobert et al., 2013; Rafferty et al., 2013; Biswas et al., 2013; 

Desmarais & Lemieux, 2013; Jarušek et al., 2013; DiCerbo & Kidwai, 2013; Müller et al., 2013), 

largely due to the simplifying assumptions researchers can make when representing 

learners’ engagement with such problems. But computationally monitoring learners’ 

engagement with COpELE entails accounting for all possible actions, strategies, and goals, 

which can be difficult to map especially when open-ended learning environments present 

complex systems problems, because - 1. there may be many unexplored and unknown 

exploration paths that need to be mapped to provide the full picture, and 2. there are 

multiple strands of processes in play simultaneously. Surfacing the process most relevant 

to the learner requires knowledge of their goals, intentions, and the cause-effect 

relationships at varying scales of time, space, and organization. Computational methods 

used to document the problem spaces of open-ended complex systems learning 

environments should expose the details of the complex systems properties like 

randomness, nonlinear dynamics, and emergence that arises due to the learners’ 

explorations, but do so without constraining the sprawl of learners’ idiosyncratic 

exploration activity.  

Although limiting the learners’ ability to explore, the predictable order and 

consequences of actions in traditional “simple” problems lend the advantage of allowing 

the use of learner-centric computational methods to provide the learners with feedback 

that is fit to their own progress. These approaches build “expert” models that map the 

possible actions and strategies for each well-defined goal. At each step these techniques 

compare the learners’ actions to the “expert” model, providing them feedback based on 



14     A. Mallavarapu1, S. Uzzo, & L. Lyons 

 

distance or deviation from the goal or next permissible action. However, these learner-

centric methods are not practical in collaborative settings, and do not scale well for open-

ended experiences with a large and evolving solution space where the learners’ goals and 

understanding of the problem space evolve with it.  

Due to the presence of this large solution space, some researchers have argued that 

open-ended learning environments, and the exploratory learning styles often promoted to 

go along with them, are simply not workable in educational settings (Kirschner & Clark, 

2006). While other educational researchers have argued that rather than giving up on 

exposing learners to complex open-ended problems, educators and researchers should 

instead seek to support learners in their explorations via proper supports (Hmelo-Silver, 

Duncan, & Chinn, 2007), like scaffolds and formative feedback. Should such support be 

viable and feasible to produce, the argument against complex, open-ended learning 

environments would no longer carry weight. Given the potential benefits of open-ended 

learning, then, there is a compelling argument for devising efficient and effective formative 

feedback.  

We argue that the need to support learner explorations by exposing the underpinning 

complex systems processes to help the learners internalize the concepts, goes beyond the 

traditional supports that monitor the “quality” or “completeness” of the solutions. Thus, 

the rethinking and remodeling of complex systems education that has been initiated 

through the virtual and participatory simulations must be followed by reconceptualizing 

formative feedback. Exploration support could provide the contextual feedback that not 

only highlights learners’ own experiences but also provides them a mechanism for 

“informed discovery” by surfacing alternatives for how complex systems could evolve. To 

this end, we present a reconceptualization of the formative feedback that complements 

COpELE, and devise a novel computational technique that can extract contextual formative 

feedback to surface the different complex systems process at play during learners’ 

explorations.  

 

 

FORMATIVE FUGUES: RECONCEPTUALIZATION OF FORMATIVE 
FEEDBACK FOR COpELE 

 

We have reconceptualized the nature of formative feedback for COpELE by shifting 

the focus of the analysis that generates learner-centric feedback to problem-space-centric 

feedback. As an analogy - if traditional formative feedback was akin to giving a tourist step-

by-step direction to reach a destination, the COpELE formative feedback attempts to 

produce an “annotated map”, highlighting the crucial decision points, while paring away 

unnecessary details. Embracing the exploration-based learning supported by these 

environments, we resituate the decision-making power with the learners themselves, and 
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see our mission as providing them with relevant, situationally salient information to make 

those decisions. The annotated map to this problem space is drawn from the explorations 

of prior learners, which necessitates finding commonalities across these learner 

experiences. While it may be the case that a given end-to-end use of a complex system 

simulation is completely unique, there will be a number of self-similar chains of events, 

even if they may occur at different times and places from one simulation session to another. 

We have dubbed these self-similar chains formative fugues, drawing on the notion of 

“fugue” as described by Reitman (1964), which in music is a short motif, melody or phrase 

that can be taken up by other instruments, or musicians and developed further. Each fugue 

has an initial state. However, the terminal state and the series of intentional actions leading 

up to the terminal state, dubbed the transformation path, are objects of the learners’ 

evolving goals and interactions. In other words: fugues may not be identical, but they 

“rhyme.” The flexibility and multiplicity in the choice of transformation paths from the 

starting state leading up to the same or different terminal state is what makes the fugues 

suitable for the reconceptualized formative feedback for COpELE. Thus, the annotated map 

is more like a crowd-sourced travel guide annotated by multiple travelers, where the 

annotations are binned and summarized to represent certain kinds of engagement with the 

city (e.g., a number of them sought out a fancy dining experience, whereas others sought 

to peruse a museum).  

We define the formative fugues as information that is communicated to support 

explorations and exposes the different possibilities in the problem space. To specifically 

support the complex systems facet of the problems, this definition captures the context of 

the actions. This answers three very important questions that learners exploring a complex 

systems-based learning environment often ponder: 1. Which action(s) can produce the 

desired effects?, an important yet difficult to predict property in complex systems due to 

emergence which we dub as “extrapolative feedback”, 2. How did the system arrive at the 

current state?, which can be hard for a casual observer to infer given the nonlinear 

dynamics of state evolution and the multiplicity of possible causal chains at play, we call 

“explanatory feedback” and 3. What other possibilities exist that have been explored by the 

prior learners?, exposing the different exploration paths in the exploration map that can 

expose learners to complex systems processes that have not been explored by them yet, 

which we call “exemplary feedback”. We call these three types the “3Es” of formative fugues 

and together they help the learners relate their actions and outcomes to larger causal chains 

to answer these questions.  

The 3Es draw strong parallels with the functional aspects of formative feedback as 

defined by Black and Williams (1998) discussed earlier but parsing it into three distinct 

functions that can support explorations in COpELE. Extrapolative feedback is similar to the 

directive definition in Black and Wiliam (1998), but with the assumptions of fixed goals or 
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standards relaxed to accommodate multiple solutions and strategies. This function 

provides actionable insights that could suggest the possible options for steps the learners 

could take but without making restrictive assumptions about the learners’ goals. It 

specifically provides the learners with a “contextualizing function” that can help learners 

understand the causal interconnections and other complex semantics between the actions 

they can take and the consequences of those actions on the system state. We further divide 

the facilitative function as defined by Black and Wiliam (1998) into explanatory feedback 

that makes relevant the causal chains available for the learners’ reflection of their 

experiences. These expose the various interconnections that were triggered by the learners’ 

decisions explaining the sequence of events that has brought them to the current state or 

phenomenon. Exemplary feedback shows the learners the scope of possibilities within the 

learning environment and allows them to make their own choices about what to do next, 

thus guiding the “informed inquiry”. In the next section, we discuss the novel 

computational method that extracts formative feedback that complements the 

reconceptualised functions for a simulated complex systems learning environment.  
 
 

CONNECTED WORLDS: ECOLOGICAL COMPLEX SYSTEMS 
 MUSEUM EXHIBIT 

 

 
Figure 1. Connected Worlds exhibit showing the biomes and water sources (clockwise): desert, 
mountain valley, plains, waterfall, jungle, reservoir, and wetlands.  
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We highlight the potential of the computational method as we design formative 

feedback to be used in the context of a mixed reality, simulation-based participatory 

museum exhibit, Connected Worlds, that is currently installed at the New York Hall of 

Science. The exhibit allows learners to explore the concepts of ecological complexity and 

systems thinking. Connected Worlds is an immersive open-ended complex system exhibit 

that can support up to 50 simultaneous users to explore and manipulate the ecosystem. 

The exhibit is composed of four plantable biomes and three sources of water (see Figure 1). 

Visitors interact with the simulation by diverting the flow of water projected on the gallery 

floor from the water sources (see Figure 2), and by planting seeds in the biomes on the wall 

projections. They can plant seeds by holding their hand up in front of the screens and 

dropping their hand when the seed they want to plant appears on-screen (visitor gestures 

detected by Kinect cameras). If sufficient water is present, the seed will sprout. Different 

plants attract and support different animals as sources of food or shelter. The simulation 

includes a simplified model of “ecological succession”, meaning that initially visitors can 

only plant small plants like grasses, but when sufficient grasses are present, the “soil” can 

support larger, more elaborate plants. Visitors supply water to the biomes by dragging large 

stuffed “logs” around the floor of the exhibit (detected by infra-red cameras), diverting the 

flow of water from the 6-story Waterfall and the Mountain Valley and Reservoir screens 

(water sources). When water is supplied to a biome it gets collected as “groundwater.” The 

plants in the biomes cause water from the biomes to evaporate and form clouds, which 

return water to the ecosystem through rain, emulating a real-world water cycle.  
 

 
Figure 2. A top-down view of the exhibit with visitors interacting with the exhibit. The tangible 
logs are being used to direct water towards the biomes.  
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The visitors are tasked with maintaining the diversity within and among four different 
biomes via planting and managing water resources. It serves as a perfect testing ground for 
observing the evolution and interaction of the coupled natural and human systems because 
the exhibit, like any real-world complex system, does not provide the learners with fixed 
goals or constraints for strategies and actions encapsulating the three characteristics of 
open-ended learning environments. There are no verifiable solutions or explicit end goals, 
no clear strategies, and no fixed paths to solve/maintain the diversity. The visitors must 
constantly work together to maintain diversity and manage resources across the ecosystem, 
and there can be a variety of different ways of doing so, with interactions varying 
substantially across contexts nominally of the same type, producing different results 
across-context, a recognized quality of complex open-ended environments (Mallavarapu et 
al., 2019). The entire experience is a dynamic system in which many complex interactions 
result in emergent phenomena, which can be local, teleconnected, or global that visitors 
must cogitate about and seek solutions that demand causal reasoning, cooperation, and 
experimentation. However, the open-endedness of the experience and the complex 
properties that present themselves at varying scales of time, space and organization often 
makes it difficult for the learners to identify and hence engage in informed inquiry. Thus, 
formative feedback becomes very important for the learners engaged with Connected 
Worlds to transform their experience from a mere playful experience to that of “informed 
inquiry” where they uncover new properties and understand the ecological phenomena 
within Connected Worlds.  

 
 

METHOD 
 

Data Collection 
Connected Worlds is equipped with an automatic data logging system which 

unobtrusively records the simulation settings and its state every second, producing rows of 
time-stamped information that is saved as a CSV file at the end of the session (which we 
consider “raw” data). At each second, the log records state information as 93 variables, 
including: types and number of plants (both alive and dead), types and number of animals, 
water and clouds present in biomes and water sources, and number of users in front of each 
screen.  

The exhibit is frequented by visitors between the age groups 3-60 years (up to 50 
persons at a time), with about 3000 visitors a day. The large footprint makes it 
pragmatically impossible to instrument each visitor with tracking devices. Moreover, 
tracking visitors through sensors or camera-based equipment requires the devices be 
calibrated to the space and the visitors, while maintaining identity records of the visitors, 
which has serious ethical implications. Our museum serves populations for whom 
identifiable information can become politically weaponized (e.g., undocumented 
residents). Collecting and storing sensitive data has implications (perhaps against the 
intentions of the researchers) that could negatively impact the learners (Mallavarapu & 
Lyons, 2021). We thus avoid using these methods. Additionally, video recording school 
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groups or young visitors in general requires special considerations about parental consent. 
So, in keeping with the ethical data logging parameters, the data includes no identifiable 
information about the visitors. This ensures that we do not record data on who performed 
which actions, and the way the log files are structured there is no clear indication of any 
individual goals, strategies, or even causal chains of events to help explain how the system 
state evolved due to a single visitor’s action. The data, however, indicates how the group’s 
decisions in the space collectively impacts the complex system.  

To shortlist groups and select log files for analysis, we used school group reservations 
data from the museum’s Visitor Services department (collected under IRB-approved 
protocol), to guarantee that the same facilitation script and simulation parameter settings 
were used for the Connected Worlds simulation, and to obtain the size of each school group 
and their grade levels. Similar to the interaction log data, these visitor logs did not include 
any identifiable visitor information. No other demographic information was collected by 
our Visitor Services department. The data was analyzed retrospectively years after it was 
collected, we obtained implied consent at the time of data collection by posting a sign at 
the entrance indicating that research is in progress (because our data does not include any 
identifiable visitor information our IRB only requires that we obtain implied consent).  

 
Participants  

This work uses the raw exhibit interaction data collected during the visits of 67 school 
groups over the period of October 2017- October 2019. In these planned visits, each school 
group had exclusive access to the Connected Worlds environment for a 12-minute open 
interaction session, that followed a 3-minute orientation to Connected Worlds (an 
introduction on how to interact with it, how to plant and how to divert water) and an 
orientation to the learning goal of promoting and sustaining diversity. The selected school 
group sessions averaged 28.5 participants in size, of an average age of 11 years, ranging from 
grade 2 (typically 7-8 years old) to grade 9 (typically 14-15 years). We opted to include 
multiple age cohorts in our sample because of our interest in identifying and listing the 
nuances in the response of the system to the visitors’ Connected Worlds interactions and 
their multiplicity, embracing both the diversity of the learners’ approaches and the age-
groups of learners interacting with the system.  

 
Procedure: Computationally Extracting Formative Fugues  

Researchers have exploited the absence of concrete descriptions of behavior or action 
patterns in open ended learning environments through unsupervised methods like 
sequence mining (e.g., Segedy et al., 2015; Paaßen et al., 2017; Price et al., 2017; Wallner, 
2015; Saadat & Sukthankar, 2020; Martinez et al., 2011). The advantage of these techniques 
is that they bootstrap the definition of a “pattern”, sequences of learners’ actions or 
behaviors, from the data, which evolves as more and more data becomes available. This 
representational strategy is useful because, unlike close-ended learning environments 
where the outcomes of interest are end states (e.g., learner’s answer to a problem), in open 
ended learning environments the “outcomes” of interest are actually the processes by which 
learners engage with the different aspects of the problem domain (e.g., the step-by-step 
process).  
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This technique works for open-ended learning environments, where at any given 

moment the changes to the system state can be readily mapped to a single action-event 

triggered by the learner (e.g., click of a button). However, in environments which portray 

complex system behaviors, characteristic of Connected Worlds, there often exist multiple 

action-events occurring simultaneously. Additionally, each event influences the system at 

varying scales of time, adding a temporal dimension to the definition of the event. We 

wanted to capture how the state of a dynamic open-ended simulation changes as a result 

of the co-evolutionary process between learners’ actions and system responses to provide 

formative feedback. But without the knowledge of the correct causal and the temporal 

order for a specific system, extracting sequences that reveal the behavior of the system is 

non-trivial. Applying sequence mining would produce a large number of patterns with 

spurious, causally invalid sequences. Identifying the causal order of events, both 

sequentially and temporally is necessary to automatically prune out sequences that are 

spurious. We devise a novel computational method that allows us to identify the specific 

causal relationships and specific temporal latencies between the actions, and we use those 

details to provide formative feedback to the educators for them to use to help the learners. 

  

Computational Pipeline to Extract Causally Valid Patterns  

Researchers have used causal modelling to uncover the rules followed by the local 

entities in complex systems automatically from observed data. They are also able to assess 

the sensitivity and validity (Chen et al., 2012) of the extracted rules. However, crucial to this 

is first representing the components that constitute the dynamic interactions while also 

capturing the relationships between these components to make the underlying complex 

systems processes observable. In the case of Connected Worlds, we have a human-based 

complex system (formed by the group of visitors interacting among themselves) interacting 

with the simulated complex (natural) system. To represent the combined complex system 

resulting from this interaction, the behavior and/or functions of both the constituent 

systems need to be correctly represented. Although a virtually designed environment might 

have a predictable response to each individual action, the collective learners’ interactions 

constitute a complex system whose dynamics are not completely known or predictable. 

Additionally, when the two systems interact it makes the effects of collective actions for 

these systems difficult to comprehend let alone provide useful feedback to the participant.  

Researchers have used causal modelling to uncover the rules followed by the local 

entities in complex systems automatically from observed data. They are also able to assess 

the sensitivity and validity (Chen et al., 2012) of the extracted rules. However, crucial to this 

is first representing the components that constitute the dynamic interactions while also 

capturing the relationships between these components to make the underlying complex 

systems processes observable. In the case of Connected Worlds, we have a human-based 

complex system (formed by the group of visitors interacting among themselves) interacting 
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with the simulated complex (natural) system. To represent the combined complex system 

resulting from this interaction, the behavior and/or functions of both the constituent 

systems need to be correctly represented. Although a virtually designed environment might 

have a predictable response to each individual action, the collective learners’ interactions 

constitute a complex system whose dynamics are not completely known or predictable. 

Additionally, when the two systems interact it makes the effects of collective actions for 

these systems difficult to comprehend let alone provide useful feedback to the participant. 

 

Figure 3. Novel computational pipeline for generating formative fugues with the sub-processes 
generating the 3Es. The processes are highlighted in the boxes with red borders and labeled 
outside of the figure margins. The Extrapolative feedback is extracted from the causal details 
(temporal lags and cause-effect relationships) learnt from the prior learners’ interactions by the 
causal model. Causal chains are generated using these causal details, which are used as query 
sequences with the pattern matching algorithm to generate contextual Explanatory feedback 
from the real-time log data. The entire corpus of matched query sequences combines to produce 
a library of formative fugues, which provides Exemplary feedback, and contributes exploration 
paths for the exploration map. 

 

To provide formative feedback that is useful, the Connected Worlds model should 

capture the different component relationships between the two complex systems, while 

also capturing relationships within the individual systems. Additionally, because there are 

apparent temporal delays between the time at which changes take place at the cause and 

the time at which its effect actually becomes apparent, we also needed to model the 

temporal delays between the different components. Since, in our case, we did not have the 

knowledge of all the semantics of the coupled system to model it effectively, we adopted 

an unsupervised machine learning method called causal modelling.  
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Figure 4. Connected Worlds causal model. The biome “health” metrics (blue nodes), human 
controlled (yellow nodes) components, system (green nodes) components. Red arrows represent 
nonzero time lag between the change in the cause and the occurrence of the effect.  

 

 

The causal model (see Figure 4) characterizes the valid causal order and identifies the 

temporal lags between each causal pair, in turn revealing the complex system processes. 

We used that information to mine patterns that preserve causal context, we dub these 

patterns causal chains. We use a custom-tailored subsequence pattern matching algorithm 

to find these causal chains in the learners’ interaction data. The sequences obtained from 

this novel computational pipeline (shown in Figure 3) with causal model followed by the 

pattern matching technique are included as a part of the fugue library and conform with 

three different functions of the reconceptualized formative feedback. In the next section, 

we discuss each component of this pipeline in detail and describe with examples the 3Es 

we were able to extract for Connected Worlds. Extrapolative feedback is extracted from the 

causal modelling approach. Explanatory feedback is derived from the sequences extracted 

after pattern matching the causal chains, indicating explanations for “how did we get here”. 

Exemplary feedback is distilled from the complete set of mined sequences exposing the 

different exploration paths in the learning environment as experienced by previous 

learners. The 3Es of the fugues allow us to characterize the processes that are an interplay 

between the action-events (those triggered by learners) and system-events (events arising 

due to intra-system interactions). Bringing these processes to the surface allows us to tell 

stories of how an event evolved, how learners responded to that event, and for providing 

the learners choices by showing them what is possible in the space.  
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Modelling Connected Worlds 

Causal modelling and the computational methods that go along with it can represent 

the complexity of the system generated by the data. An advantage of causal models is that 

they can capture the details of what changes could lead to what effects, without human 

intervention. Causal modelling is an unsupervised machine learning approach that 

characterizes observed data as pseudo randomized trials and quantifies the effects of one 

variable on the other by learning the semantics directly from the data – without an 

extensive labelling process (as is followed in supervised machine learning approaches).  The 

Directed Acyclic Graph (DAG) representing a causal model, has nodes that represent 

variables, and edges that represent the relationships between those variables. The model 

supports the computational quantification of the effect of manipulation of one variable on 

another.  

Drawing from the knowledge of how learners interact with the exhibit, how the 

exhibit responds and the kinds of challenges that the educators on the exhibit floor 

experience responding to questions from the visitors, we constructed the causal model for 

Connected Worlds (see Figure 4), generalized at the biome level. The model exploits the 

fact that each biome in Connected Worlds is designed to have analogous behavior - 

representing the self-similarity property of complex systems. The model includes the 

different systemic causes that capture how the system behaves indicated by the green 

nodes, DeltaWaterfallWater, DeltaMoutainValleyWater, DeltaReservoirWater, 

DeltaFloorWater represent the changes in the water levels at each of the sources and the 

nodes WaterfallWater, MoutainValleyWater, ReservoirWater, FloorWater represent the 

water levels in the water sources, Waterfall, Mountain Valley, Reservoir and the floor 

respectively; the water levels in the biomes represented by the nodes WaterAmount and 

WaterInOther Biomes; number of plants in the biome are represented by the 

HealthyPlantLevel nodes; the change in number of clouds in the biome are represented by 

the DeltaClouds and the number of clouds represented by Clouds. The learner actions and 

learner controlled causes are indicated in yellow nodes, with the changes in the number of 

users on floor and at the biomes represented by the UsersOnFloor and UsersAtBiome nodes 

respectively, the planting actions for different levels of plants is represented by 

PlantsAddedLevel nodes and water diversion decision, #BiomeWaterDiverted, indicating 

the number of biomes water was simultaneously diverted to, the water diversion actions 

represented by DeltaWaterAmount and DeltaWaterInOtherBiomes nodes indicate the 

amount of water diverted towards the biomes.  
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Table 1 
Causal Model Identified Time Lags Between Crucial Cause-Effect Pairs 

Cause variable Effect variable Identified time lag (in seconds) 

UsersAtBiome  PlantsAddedLevel1  4 

UsersAtBiome  PlantsAddedLevel2  6 

UsersAtBiome  PlantsAddedLevel3  10 

UsersAtBiome  PlantsAddedLevel4  15 

UsersOnFloor  DeltaWaterInOtherBiomes  1 

UsersOnFloor  DeltaWaterAmount  1 

OverPlanting  DeltaDeadPlantsLevel1  50 

OverPlanting  DeltaDeadPlantsLevel2  50 

OverPlanting  DeltaDeadPlantsLevel3  50 

OverPlanting  DeltaDeadPlantsLevel4  50 

WaterNeglect  DeltaDeadPlantsLevel1  1 

WaterNeglect  DeltaDeadPlantsLevel2  4 

WaterNeglect  DeltaDeadPlantsLevel3  10 

WaterNeglect  DeltaDeadPlantsLevel4  15 

 
The different touch points between the two complex systems (human and natural) and 

within the individual system define the edges between the nodes. To qualitatively 

understand the effect of these human systemic interactions on the simulated ecological 

system, we defined a few outcome metrics that reflect the health of the system represented 

as a function of the various systemic and human-action nodes, indicated in blue in the 

model. Specifically, we have two metrics: 1. The PlantDiversity metric (adopted from the 

domain of ecology) to reflect on the diversity of the plant life in the biomes and 2. The 

WaterSufficiency metric which is indicative of the ability of the biome to support plant life. 

Additionally, to explain the death of plants - we defined two nodes OverPlanting and 

WaterNeglect reflecting the situation leading to plant death in the biome. The red arrows 

indicate relationships with a non-zero temporal latency (i.e., the influence on the system 

is not instantaneous, but becomes apparent after a certain unknown temporal lag), black 

arrows indicate relationships that influence the system instantly.  
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Identifying Causal Temporal Lags 

Analytically, given a set of observations of the variables represented by the nodes and 

the set of all conditional independence claims as seen in a causal diagram, a causal model 

can be used to inform statistical tests that can quantify the effect of one variable on 

another. We use this quantified effect to identify the causally valid unknown temporal lags 

between the pairs of nodes connected by red arrows in the causal model (see Figure 4). We 

use the causal model to perform sensitivity analysis, by systematically varying the latency 

between observed cause and effect pair values and identify the time lag which yields 

maximum effect for the particular pair of variables. Additional details about model 

construction, choice for nodes and edges, effect estimation methods and time-lag 

identification computation methods can be found in (Mallavarapu, Lyons, Zheleva, & 

Uzzo, in prep.).  

Table 1 shows the different cause-effect pairs and the identified temporal lag for that 

pair. Surprisingly, the temporal lags between the UsersAtBiome and the PlantsAddedLevel 

variables is clearly indicative of ecological succession programmed into the Connected 

Worlds “soil”, where the increase in the temporal lag with the increase in the plant levels - 

indicates that the visitors first plant smaller grass-like plants (Level1 plants) to be able to 

make the “soil” fit for larger shrubs and trees (represented by Level2, Level3 and Level4 

plants). Another important detail to notice is that out of the two causes for plant death in 

Connected Worlds, WaterNeglect ought to kill the plants faster than OverPlanting. An 

important semantic captured in the identified temporal lags, is that the plants in 

Connected Worlds “store” small amounts of water as they absorb groundwater. When the 

biome has been neglected of water, smaller plants - which have smaller capacities to store 

water are seen to perish first followed by larger shrubs and trees - which survive a little 

longer due to the stored water. However, when the biome experiences an overplanting 

situation, the lack of ground water gradually withers away all plants irrespective of their 

size in 50 seconds. The effect of UsersOnFloor on the water levels in the biomes (indicated 

by the nodes DeltaWaterInOtherBiomes and DeltaWaterAmount, as they adjust the logs 

on the floor to divert water towards one or more biomes, is almost immediate, indicated 

by the one- second lag.  

 

Generating Causal Chains 

The causal order of the events as represented in the model and the temporal lags as 

learnt from the data by the model, were used to generate event sequences that we call as 

causal chains. To generate an exhaustive set of causal rules of behavior defining Connected 

Worlds complex system, we generated causal chains of varying length to capture all 

possible interactions. We manually constructed 261, 2-event causal chains tallying each 

cause-effect pair from the causal model and the causally valid temporal lags between them 

for each of the four biomes in Connected Worlds. Because complex systems can exhibit 

nonlinear dynamics, it was necessary to consider the direction of the change in the variable 
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(whether the value increased or decreased). We modified the definition of the event to 

include the direction of change generating an exhaustive set of rules as per the causal 

model. So, each event captured four attributes: the change direction, the name of the 

variable, the biome (spatial location) in which the variable value changed and the temporal 

lag at which its consequent event would follow (refer to figure 5).  

 

 
Figure 5. Multivariate definition of the event considered for causal chain generation. Direction 
defines whether the value of the variable increased or decreased; Event represents the name of the 
variable. Biome indicates the location at which the event took place and Lag represents the 
temporal lag at which the next causally valid event should follow.  

 
For example, a 2-event causal chain for the variable pair MountainValleyWater and 

FloorWater is: A decrease in Mountain Valley water leads to an increase in floor water 

within zero seconds. Here, the order of the variables is captured from the causal model - 

where the cause variable, the MountainValleyWater should precede the effect variable, i.e., 

the FloorWater, and the temporal lag is zero seconds (the effect is instantaneous). Another 

example would be, detection of over planting in Desert is followed by the death of level 3 

plants in the Desert after 50 seconds, here the temporal lag identified in Table 1 is used to 

construct the 2-event causal chain. Similar sequences will exist for other three biomes as 

well.  

To automate the process of creating causal chains, we used a custom feed-forward sub-

sequence algorithm (see Appendix A). The algorithm seeds the longer causal chains from 

the manually created list of short 2-event causal chains incrementally. For example, the 2-

event causal chains would be used to generate 3-event causal chains, which are then used 

to generate 4-event causal chains, and so on. For example, for the set of 2-event causal 

chains: {a,b} and {b,c}, the 3-event causal chain formed from these constituent sequences: 

{a,b,c} strictly follows the causal model as three nodes chained in that order. Figure 6 shows 

the examples of causal connections between three hypothetical nodes a, b, and c. This sub-

sequence generator only allows causally valid sequences to propagate into longer event 

sequences, while pruning out other non-causal event sequences.  
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Figure 6. Selection of causally valid chains during the feed-forward sub-sequence generation. 
This process generates only causally valid chains. {a, b, c} represents three events, where a 
connects to b and precedes b, and b connects to c and precedes c. For the 2-event causal chains 
{a,b} and {b,c} the only valid 3-event causal chain is {a,b,c} which follows the causal model: a is 
connected to b and precedes b, and b is connected to c and precedes c.  

 
 

The algorithm stops when shorter chains cannot be causally combined further. Figure 

7 shows an example of 3-event and 4-event Connected Worlds causal chain generation 

from the seed of three 2-event causal chains, considering the multi-variate description of 

the events. This exhaustive set of causal chains represents the query set for the next process 

in the computational pipeline: the pattern matching algorithm.  

 

Pattern Matching Causal Chains 

Computationally, pattern matching is the problem of identifying a pattern of 

sequence from the database of large numbers of sequences that match the query sequence. 

It has been traditionally used for retrieving information of interest from large repositories, 

in applications like keyword-based search in handwritten and digital documents, DNA and 

protein matching, etc. (Papapetrou et al., 2011). Pattern matching becomes 

computationally expensive when 1. The number of sequences that can be formed using 

different event combinations is exceptionally large (the search space) and 2. The number 

of sequences to be searched is large (the query space). In our case, the search space was 

limited by generating it in real-time, using the real-time log data. The data being collected 

from the learners’ interactions (representing the changes in state of the system), is 

converted to represent events (in real-time), where an event is a non-zero change in the 

value of the variable. The Method section above has more details. These events are used to 

construct causal chains, which we call samples. Like the causal chains that represent the 

query space, these are also generated by the feed-forward generation technique and follow 

the causal model. The pattern matching algorithm then performs a look-up of each query 

causal chain in the set of sample causal chains to select the ones that were found. This 

process is done in a recursive fashion, such that for comparing the longer causal chains the 
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filtered sample set should contain all the shorter components of the longer causal chain. 

This allows us to limit both the query space and the search space further by only looking 

for causal chains that match the current context.  

 

 
Figure 7. The feed-forward sub-sequence generation process. Seeding from three 2-event causal 
chains for the Wetlands biomes, the algorithm forms two 3-event causal chains and one 4-event 
causal chains. Each event is defined with four attributes: the change direction, the name of the 
variable, the biome (spatial location) in which the variable value changed and the temporal lag at 
which its consequent event would follow. The longer the causal chain, the more detailed it is. The 
algorithm stops at 4-event causal chains, as there is no other 4-event causal chain to extend it to a 
5-event causal chain.  

 
 

RESULTS 
 

To understand the kinds of causal chains and formative feedback that this method 

yields for Connected Worlds, we performed the pattern matching on the entire corpus of 

67 files of prior learners’ interaction data (see section 5 for more details on the data). 

Considering the 26 nodes represented in the causal model with respect to each biome in 

Connected Worlds, we recognized 10037 total causal chains (the query space) that range 

from 2-events to 8-events in length. These were matched to the causal chains in the data 

(see Table 2). Most of the short causal chains were found in the data while the longer causal 

chains were rare.  

Figure 8 shows the distribution of the match counts of causal chains across the biomes. 

The fugues have similar distributions across the biomes, with Desert having the most 

fugues, followed by Wetlands, Jungle and Plains (without any significant differences). This 

distribution of fugues echoes how visitors interact with Connected Worlds, e.g., the Desert 
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Table 2 
Descriptive Fugue Counts per Sequence Length: The query space is the 
total number of possible fugues, and sample space is the number of 
fugues detected in the data corpus. 

Sequence length  
# possible fugues (query 

space) 
# causal chains matched 

(sample space) 

2-event  261 257 

3-event  400 387 

4-event  672 558 

5-event  1344 1052 

6-event  1984 1459 

7-event  3072 1608 

8-event  2304 11 

Total  10037 5332 

 

and Wetlands permit the richest engagement because their spatial arrangement allows 

visitors to easily divert water. We next discuss the examples of 3E formative fugues that 

were extracted from the computational pipeline, drilling deeper into the nature of the 

information the fugues could deliver as formative feedback. 

 

 
Figure 8. Distribution of the match frequencies of the causal chains across the biomes. 
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Extracted Fugues  

Moving away from traditional directive and facilitative feedback (Black & Wiliam, 

1998), common in the closed-ended and simple learning environments that use learner-

centric methods, we conceptualized the 3Es of COpELE formative fugues: extrapolative, 

exploratory and exemplary feedback.  

1. Extrapolative feedback supports the multiple actions dimension of open-ended 

learning and elicits the “contextualizing function” that can help the learners make a 

knowledgeable choice about their next actions. The contextualizing function is 

provided in the form of exposing the nuances between the various causes and their 

corresponding effects. This function of the feedback is mostly extracted from the 

semantics learnt by the causal model.  

2. Explanatory feedback supports the multiple strategies dimension and often reflects 

back in exposing the causal chain that can help answer “how did we get here?” This 

function of feedback is extracted post-pattern matching in the computational 

pipeline.  

3. Exemplary feedback supports the multiple goals dimension of the open-ended 

learning and exposes the possibilities in the space showing the different complex 

systems phenomena that the learners can expose. The different causal chains in the 

fugue library provide the exemplary candidates.  

In this section we provide one example for each type of formative fugue for the 

Connected Worlds exhibit data.  

 

Extrapolative Formative Feedback  

We used the causal model to “extrapolate” the possibilities of what can happen given 

the situation. This gives the learners an opportunity to make informed decisions about 

their explorations. What we call extrapolative feedback is similar in some aspects to a hint 

or a recommendation that is provided to the learner in “simple” learning environments 

(e.g., intelligent tutoring systems), but also differs from them as it does not give learners a 

“closed” option of what they have to do next, instead it makes them aware of the range of 

possibilities of what could happen.  
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Figure 9. Example of Extrapolative formative fugues (top), showing over planting situation in 
Wetlands resulting in level 3 plant death in 50 seconds, and water neglect situation in Plains 
resulting in level 3 plant death in 10 seconds. (The numbers shown above the arrows indicate 
temporal lag in seconds). These fugues are drawn from the shaded region of the causal model 
(bottom left). The partial causal tree (bottom right) shows the causal events in the fugues. 

 
 

An important component of the design of formative feedback is the timing of its 

delivery (Shute, 2008). This is especially true when learners are interacting in an immersive 

learning environment, where they may only have a certain amount of time to act before 

events transpire. The time lag between causes and effects is an important piece of 

information and the causal model allows us to extrapolate this information. For example, 

one important question that emerges is how long plants can survive in biomes without 

tending. Plants in a biome can die due to two causes: 1. Because they haven’t been watered 

recently (represented in the model as WaterNeglect node) or 2. The visitors planted more 

plants than the biome’s groundwater can support (represented as Overplanting node in the 

causal model). Both of these actions take place sometime before plant death (see Figure 

9). Figure 9 shows two fugues that matched the learners experience with the exhibit, one 

with OverPlanting leading to plant death after 50 seconds and other with WaterNeglect 

leading to plant death in 10 seconds after the event. We can use the information in real 

time when neglect or over planting begins, to notify visitors that they have a 10-second 

window or a 50-second window respectively, in which to act to prevent level 3 plant deaths 

in the respective biomes. The extrapolative formative feedback can thus provide the 

learners a triage list that can help them prioritize and plan their actions and decisions in 

the exhibit.  
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Explanatory Formative Feedback  

We used the feed-forward sub-sequence generation and the pattern matching 

algorithms discussed above to mine the Explanatory fugues. The fugues identify the 

specific causal chains that lead to the particular state of interest, explaining the evolution 

of a phenomenon that they have experienced. Each causal chain of interest represents a 

very short episode, explaining the evolution and interactions between various components 

of the complex system that led to the current state. Learners in Connected Worlds often 

express confusion about “what was really going on” in the simulation and often comment 

- “I was doing well with plants and then suddenly all my plants died, I don’t know why!”. 

The explanatory feedback is able to address such questions by revealing causal chains that 

match the learners’ concerns. The explanatory feedback presents the longest available 

causal chain from the data. For example, one of the causal chains that was most frequent 

in the prior learners’ data is shown in Figure 10.  

 

 
Figure 10. Explanatory formative fugue example (left), showing a causal chain starting with 
users at the Wetlands planting large trees which pushes the Wetlands into a state of water 
neglect leading to death of smaller plants in Wetlands. The partial causal tree shows the 
variables contributing to the fugue color coded to match the fugue sample (right). The lags are 
annotated in red by the arrows. Some zero lag nodes have been omitted from the fugue for 
clarity indicated by a dotted arrow in the partial tree.  

 
Figure 10 shows the number of users at the Wetlands, who then plant large trees at the 

Wetlands. The planting pushes the Wetlands in a water neglect condition, ultimately 

leading to the death of the smaller plants in Wetlands. Such explanatory feedback can be 

used in reflection to highlight the complex systems dynamics at play (e.g., in this case small 

actions large effects, where the action of planting leads to the death of plants already 

planted in the biome).  
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Exemplary Formative Feedback  

The set of matched causal chains extracted from the computational process 

contributes to building exploration maps that can be used by the educators as examples 

and to understand visitors’ exploration patterns. Each exploration path exemplifies the 

multiplicity of the possibilities in the complex system. For example, learners often question 

if they can divert water to more than one biome at a time and what its influence will be on 

the biome’s or other biome’s health. Consider the two candidate fugues, F1 and F2 shown 

in Figure 11.  

 

 
Figure 11. Exemplary formative fugue examples F1 and F2. The fugue sequences start with 
different events (decrease of water levels on the floor and increase in the number of users 
on the floor), followed by water diversion events ultimately leading to death of plants in 
some other biome.  
 

F1, shows a fugue that is an attempt to share water between the desert and the 

Wetlands, because they were dealing with scarcity in the Wetlands, which intensified into 

a neglect situation. The shared water did not reach the Wetlands fast enough to save the 

plants. On the other hand, F2 shows how diverting water selfishly to the Plains killed the 

plants in the Jungle. In this case they ignored the water scarcity in the Jungle and diverted 

their water resources to the Plains, so the situation that could have been salvaged was 

ignored. Although both examples lead to death of plants, they show two different decisions 

can lead to similar outcomes indicating the non-linear dynamics at play in the complex 

system. The exemplary feedback could therefore be useful in surfacing the different 

strategies that are being used in a particular context (plant death for F1 and F2 in the above 

example). We can use such examples to provide pointers for educators to engage the 

learners in a discussion about their intentions and their consequences as reflected from 

these fugues.  
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DISCUSSION 
 

This work distinguishes three kinds of formative feedback for COpELE, (extrapolative 

feedback, explanatory feedback and exemplary feedback which highlights the big picture 

for the learners - showing the learners the scope of possibilities within the learning 

environment and allowing them to make their own choices about what to do next in the 

learning process. We envision a formative fugues library built with this method that grows 

as learners interact with the learning environment, documenting and exposing larger 

“exploration maps”, augmenting it with their own exploration paths together with 

alternative exploration paths for a particular “context”. For each component of the fugue, 

the causal semantics and the exploration paths used to build exploration maps. They are 

extracted from the various methods in the computational data driven pipeline. Since the 

emphasis of the formative fugues, and the library constructed from this method is on the 

problem space rather than an individual learner’s cognition, this method readily supports 

collaborative problem solving. Overcoming the issues that made traditional formative 

feedback and the computational methods used to extract them unsuitable for COpELE, the 

3Es of formative fugues embrace exploration-based learning inherent in COpELE. The 

generalizability of this approach lies in its suitability for both complex open-ended 

experiences such as Connected Worlds, as well as traditional “simple,” open-ended 

learning environments, providing formative feedback to learners across a range of learning 

settings.  

The computational method devised to support the reconceptualized formative 

feedback provides three advantages. Because it bootstraps on the explorations of prior 

learners, it has the ability to expose the crucial decision points and the complex systems 

dynamics that arise due to the different decisions. moreover, the extraction process makes 

the fugue library easily extendable, adding previously missing exploration paths as they 

become evident in learners’ interactions. Most importantly, it exposes the learners to the 

possibilities in the space without levying any presumptions about their goals.  

These advantages bring to the surface new possibilities for formative feedback and 

teaching methods for complex systems, such as: 1. A view into how exploration based 

learning takes place, useful for educational researchers for understanding learning 

processes; 2. Revealing activity patterns for designers to improve the design of the learning 

environments; 3. Provide guidance for intervention by humans-in-the-loop (e.g., 

educators); 4. Use the fugue library to design context-specific (for learners directly) 

feedback; and 5. As a foundation for designing adaptive learning environments for complex 

problems, where the problems can change difficulty level by tracking the kinds of complex 

systems phenomena the learners have explored.  
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LIMITATIONS 
 

Currently, the causal model constructed for Connected Worlds considers limited 

cross-biome interactions (the DeltaWaterInOtherBiome node), by modelling the causality 

as a function of the subsystem or local level processes. The current model is unable to bring 

other important complex systems properties to the surface, like emergence, which could 

explain how the cumulative and distributed changes at spatially distant local levels 

influence the behaviors at the global level. Modelling global effects requires a major effort 

to resituate causality as the function of the processes across the individual biomes and 

devising new health metrics that indicate effects at both local and global scales. Such a new 

model would need to consider the heterogeneity among the biomes, (e.g. the biomes could 

differ in the attention or the extent and types of interactions from the visitor groups due 

to the visual effects or the physical location of the biome), which might have an impact on 

the dynamics of the global system health. Since the current goal of feedback is to motivate 

the learners to “act” or “understand the effects of their actions,” the causal model was 

scoped at the local-subsystem level, which is internally homogenous.  

Technically, as the causal model becomes more complex, the fugue library will expand, 

and pragmatic issues in searching and time of the search will need to be resolved to make 

it efficient and effective for feedback. For example, when using the fugue library to provide 

real-time feedback, the running time constraints for processing the data (e.g., constructing 

samples and matching it with query fugues of interest) may make effectiveness rather than 

efficiency of the feedback a priority. Another important consideration is detecting and 

referencing the most commonly occurring “fugue” from the learners’ interactions, which 

might potentially indicate confusion or misunderstanding, so helping the learners diversify 

“fugues” by annotating the fugues with more high-level complex systems properties while 

preventing recursion problem must take precedence. Maintaining an effective balance to 

resolve these limitations would be a major part of design tools for formative fugue delivery 

systems. Additionally, the current model prevents us from studying complex system 

properties like nonlinear state dynamics, which involve studying and understanding state 

evolution trajectories of a single variable through a series of different stable and unstable 

states due to external variables.  

 

 

FUTURE WORK 
 

The conceptualization of formative fugues and the innovation of the methods that are 

compatible with it are at its very inception, in this work we highlighted a novel 

computational method that is able to bring the reconceptualized formative fugue functions 
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(the 3Es) to the surface. The next step is to fully validate the formative fugues with respect 

to the learning environment and identify the complex systems properties that are missing 

and those that are evidently present in these fugues. The evaluation would include looking 

into the nature of the missing properties and correlating the ability of the computational 

methods to capture them. Once we enlist the properties that can be readily captured by 

the method, we need to identify the hurdles for learners in adopting/enacting them during 

their interactions, which could be due to system capabilities or pragmatic difficulties (e.g., 

very short response times).  

Further, in thinking about usage of the formative fugues, consideration of the 

presentation medium (e.g., mobile tablets), representation forms of the fugues (e.g., 

textual, visual, through notifications, etc.) and interpretability of the representation within 

the pragmatic constraints of its use are needed. To this effect, we are in the process of 

incorporating the insights we gained via formative fugues into a data-driven mobile tablet 

tool that is being used by educators on the exhibit floor, similar to (Mallavarapu et al., 

2019). We are in the midst of building a “Human-in-the-Loop” socio-technical system that 

can allow educators to help visitors engage with the exhibit in real time, providing 

formative guidance at critical, “just-in-time” moments through these extracted fugues. 

Future work will examine if these educator interventions distilled from formative fugues 

shift learner engagement with the complex system in more productive directions, and what 

lessons visitors learn about the system as a consequence.  

 
 

CONCLUSIONS 
 

Complex open-ended interactive simulations permit educators to create ever more 

engaging learning environments, and to showcase learning problems and scientific 

phenomena that are not well-suited for traditional media like textbooks (Barab & Dede, 

2007). A number of classroom-based simulated learning environments have proliferated 

out-of-pace with our ability to effectively support learners as they engage with and learn 

from these simulations. (Grotzer & Solis, 2015; Wilensky, 1999), web-based (Amplify, 2000; 

Concord Consortium, 2020; Azevedo et al., 2004), and museum-based (Ma et al., 2015; 

Lyons et al., 2015; Mallavarapu et al., 2019; D’Angelo et al., 2015). Data-driven 

computational approaches offer potential for scaffolding the learning that takes place 

within these learning environments, but this promise can be realized only if the analytic 

techniques chosen suit the problem domain and the explorative learning goals that these 

environments afford. Methods that look past the “solutions” to the “processes” enmeshed 

with learning are needed for providing feedback. The vision for these methods is to support 

the learners with insights and opportunities to contemplate the implications of their 
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decisions and understand the complex processes leading to the consequences through a 

Socratic method (Lynch et al.,2010) of providing feedback to enable explorations. Complex-

system problems have an emergent and dynamic nature, where the learners’ actions co-

constitute the situations and the future actions. The need to surface these semantics makes 

using traditional educational data mining techniques challenging to glean insights for 

formative feedback intended to improve learner engagement with the system.  

The “fugue”-based approach to characterizing formative feedback for complex systems 

learning offers the following potentials: 1. Through the extrapolative, explanatory and 

exemplary functions of formative feedback, the formative fugues library encourages the 

learners to explore. By providing actionable insights the extrapolative feedback engages 

the learners to engage in “informed inquiry”. The exemplary feedback contextualizes the 

learners to see “how else did people get themselves into this state?” and “where else can we 

go from here?” without constraining their choices or making assumptions about their 

goals; The explanatory feedback can help learners build a robust understanding of the 

complex systems processes by connecting the abstract simulation patterns (observed in 

the “fugues”) with their real-world learning experiences, learners can create the strong 

mental models needed to comprehend complex systems (Grotzer & Solis, 2015); 2. Fugues 

support research into the process of open-ended learning, as they expose learning 

trajectories (mapping the breadth and depth of explorations) to allow educators and 

researchers to characterize and track learners’ understandings and explorations; and 3. The 

fugues could be used as conceptual seeds provided to the educator (human-in-the-loop), 

so that they can help learners better engage with complex systems beliefs.  
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Appendix A 
 
The Feed-forward Causal Chain Generation Algorithm 
Given:  

CQ = Empty set of causal chains  
L = Set of manually constructed 2-event causal chain  
n= 2  

Function Feed-forward (n, L):  
1. L = Set of constructed n-event causal chain (n ¿=2)  
2. M = Empty set of (n+1)-event causal chain  
3. For every pair (S1, S2) of n-event causal chains in L  

// For e.g. for 2-event causal chains S1 and S2  
// // S1: candidate-query with events a,b  
// S2: candidate-query with events b,c  

(a) If S1- first event is equal to S2 - last event:  
i. Construct S’ which is a (n+1)-event sequence by appending last 

event of S2 to S1 ii. Add S’ to the set to M  

4. L = M  
5. Append L to CQ  
6. If L = null: Return CQ  
7. else: Call Feed-Forward (n+1, L)  
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