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Abstract

Prevalent imitation learning methods seek to pro-
duce behavior that matches or exceeds average hu-
man performance. This often prevents achieving
expert-level or superhuman performance when
identifying the better demonstrations to imitate is
difficult. We instead assume demonstrations are
of varying quality and seek to induce behavior
that is unambiguously better (i.e., Pareto domi-
nant or minimally subdominant) than all human
demonstrations. Our minimum subdominance
inverse optimal control training objective is pri-
marily defined by high quality demonstrations;
lower quality demonstrations, which are more
easily dominated, are effectively ignored instead
of degrading imitation. With increasing proba-
bility, our approach produces superhuman behav-
ior incurring lower cost than demonstrations on
the demonstrator’s unknown cost function—even
if that cost function differs for each demonstra-
tion. We apply our approach on a computer cursor
pointing task, producing behavior that is 78% su-
perhuman, while minimizing demonstration sub-
optimality provides 50% superhuman behavior—
and only 72% even after selective data cleaning.

1. Introduction
Learning from human demonstrations is a desirable alter-
native to hand-crafting an autonomous system’s policy or
specifying its cost function (Osa et al., 2018). Inverse re-
inforcement learning (Ng & Russell, 2000; Abbeel & Ng,
2004) seeks to learn cost functions that reflect human pref-
erences and induce human-like behaviors across different
decision processes. However, human demonstrations of se-
quential control (even from experts) often vary in quality due
in part to visuomotor system imprecisions (Wolpert et al.,
1995) and/or bounded rationality (Simon, 1997). Low qual-
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Figure 1. Combining high quality demonstrations (black points
A) with low quality demonstrations (gray points B or C) to train
existing methods shifts the high quality learned behavior (red point,
learned from A only) to lower quality (magenta points, A ∪ B and
A ∪ C) on the Pareto frontier (blue curve). Our approach instead
seeks to Pareto dominate (red dashed lines) all demonstrations.

ity demonstrations (Figure 1) pose significant challenges to
existing cost function learning approaches that seek to min-
imize the suboptimality of demonstrated behavior (Ratliff
et al., 2006; Ziebart et al., 2008). The set of training demon-
strations may be carefully cleansed of harmful outliers, but
this can become more art than science, with undesirable
sensitivities to laborious or haphazard cleaning processes.

We instead seek uniformly superhuman behavior that is
unambiguously better than all demonstrations (i.e., Pareto
dominant or smaller in all cost features). Achieving this by
a large margin enables better generalization to the broader
population distribution of human behaviors. Since low qual-
ity demonstrations are typically easy to Pareto dominate,
their influence on learned behavior is minimal. Unfortu-
nately, strict improvement over all demonstrated behaviors
is often impossible, so we relax our objective to minimiza-
tion of subdominance. This hinge-loss surrogate of the
Pareto dominance measures the largest (or sum of) differ-
ence(s) in costs preventing induced behavior from Pareto
dominating a demonstration. This is reminiscent of struc-
tured support vector machines (Tsochantaridis et al., 2004;
Taskar et al., 2003): higher quality demonstrations that are
not sufficiently dominated by the learned behavior serve as
support vectors for the learned cost function.

Our learned behavior’s superhuman percentile (i.e., per-
centage of demonstrations that it Pareto dominates) on un-
seen demonstrations is bounded in expectation by the rela-
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tive frequency of non-support vectors (Vapnik & Chapelle,
2000) and by the relationship between the sample mean and
sample deviation of demonstration subdominances. Addi-
tionally, unlike previous margin-based approaches for imita-
tion learning (Ratliff et al., 2006), subdominance minimiza-
tion is Fisher consistent, meaning that under ideal learning
conditions it learns to produce behaviors that are maximally
superhuman for the given demonstrations.

We evaluate our approach on a computer cursor pointing
task that illustrates the varying qualities of demonstrated
behaviors. By minimizing subdominance, our approach
produces behavior that is 78% superhuman, while maximum
entropy inverse reinforcement learning (Ziebart et al., 2008),
which minimizes demonstration costs relative to the softmin
distribution of trajectories, is only 50% superhuman—and
only achieves 72% even after selective data cleaning.

2. Problem Formulation & Related Work
2.1. Imitation Learning Task

Imitation learning is often framed using a Markov Decision
Process, M = (S,A, T ,R), from which a demonstrator
produces trajectories, ξ̃ = (s̃1, ã1, . . . , ãT−1, s̃T ), of states,
s̃t ∈ S, and actions, ãt ∈ A, according to the demonstra-
tor’s policy, π, and the state transition dynamics, T . Often,
trajectories are obtained from related decision processes
(e.g., differing initial/goal states). The imitation learning
task is to estimate a policy, π̂ : S → A, (or stochastic
policy, π̂ : S → ∆A) producing behavior that is similar,
in some sense, to the demonstrated trajectories, {ξ̃}, even
when applied to states or entire decision processes that have
not previously been demonstrated. Though a reward or cost
functionR may motivate the demonstrator’s behavior, it is
unknown to the imitation learner. Instead, state features,
f : S → RK>0 (or state-action features, f : S ×A → RK>0),
and other characteristics of the decision process, are often
assumed to be available for the imitation learner to appro-
priately generalize to new settings.

2.2. Behavioral Cloning

Behavioral cloning (Pomerleau, 1989) frames policy esti-
mation as a direct supervised learning problem in which
the action ãt should be predicted given the state s̃t. Newell
(1994) describes this as “treat[ing] the mind as one big mon-
ster response function.” The advantages are in the simplicity
of the approach: reasoning about state-transition dynamics
T or reward/cost functionR is completely avoided, as is in-
teracting with or simulating the decision process. However,
policies learned in this manner may be much less compact
than the underlying structure of the decision process from
which they were produced, making learning much less data
efficient. Additionally, estimating actions independently

allows errors to compound over time, potentially leading to
a shift between the distribution of states encountered by the
demonstrator and those encountered by the imitator (Ross
et al., 2011). Covariate shift correction methods may ade-
quately address this when demonstrations have sufficient
coverage of the state space (Spencer et al., 2021), but solic-
iting additional demonstrations may be required when the
shift is substantial (Ross et al., 2011). Lastly, behavioral
cloning generally limits the imitation learner, at best, to the
plurality action of multiple noisy demonstrators rather than
extrapolating beyond them to provide better performance.

2.3. Feature Matching & Suboptimality

Cost function learning methods—known as inverse rein-
forcement learning (IRL) (Ng & Russell, 2000) or inverse
optimal control (IOC) (Kalman, 1963)—seek to rational-
ize demonstrations by making them (near) optimal solu-
tions of the decision process. Feature matching (Abbeel &
Ng, 2004) is a foundational idea for accomplishing this. It
guarantees the estimated policy π̂ has expected cost under
the demonstrator’s unknown fixed cost function weights
w̃ ∈ RK equal to the average of the demonstration policies
{π̃i} if the expected feature counts match:

Eξ∼π [fk(ξ)] =
1

N

N∑
i=1

fk(ξ̃i),∀k (1)

=⇒ Eξ∼π̂ [costw̃(ξ)] =
1

N

N∑
i=1

costw̃(ξ̃i),

where fk(ξ) =
∑
st∈ξ fk(st). This feature-matching con-

straint (1) can be enforced using a potential term measuring
the suboptimality of the demonstrations ξ̃ relative to the
induced behavior ξ,

suboptŵ(ξ̃, ξ) ,
K∑
k=1

ŵk

(
fk(ξ̃)− fk(ξ)

)
, (2)

where ŵTf(ξ) is interpreted as the cost of the trajectory
parameterzied by learned cost weights ŵ.

Existing methods minimize the expected demonstration
suboptimality in various ways—for example, by augment-
ing it with a structured loss (Ratliff et al., 2006) or using
probabilistic induced behavior (Baker et al., 2007; Neu &
Szepesvári, 2007; Ramachandran & Amir, 2007; Ziebart
et al., 2008; Babes et al., 2011; Finn et al., 2016; Bobu et al.,
2020). Many recent methods do not assume a fixed feature
representation and instead minimize an integral probabil-
ity metric (Sun et al., 2019; Swamy et al., 2021) or use a
generative-adversarial discriminator (Ho & Ermon, 2016).

Maximum entropy IRL (Ziebart et al., 2008) might seem
to appropriately facilitate superhuman imitation. The cost
function it learns from noisy demonstrations can be opti-
mized, via optimal control or reinforcement learning, to a
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degree that none of the demonstrations achieve. However,
MaxEnt IRL’s Boltzmann distribution for demonstration
noise makes the method particularly sensitive to low qual-
ity outlier demonstrations that often do not reflect the cost
feature trade-offs of high quality demonstrations.

Noise models for specific human biases have been devel-
oped (Evans et al., 2016; Majumdar et al., 2017; Reddy et al.,
2018; Kwon et al., 2020; Zhi-Xuan et al., 2020) primarily us-
ing simple controlled cognitive science experiments. Unfor-
tunately, choosing appropriate noise models automatically
for more complex tasks is impossible in general (Armstrong
& Mindermann, 2018) without strong assumptions, and of-
ten difficult even when imposing unrealistic ones (Shah
et al., 2019). We argue that generatively modeling demon-
strations is inherently more difficult than imitation, and
propose a more discriminative imitation learning approach
that avoids the challenges of human bias modeling.

Closer to our approach, Syed & Schapire (2008) leverages
known signs of each feature’s contribution to the cost func-
tion to outperform the demonstrator by considering the
worst possible w̃:

max
π

min
ŵ:||ŵ||1=1,ŵ�0

Eξ∼π[suboptŵ(ξ̃, ξ)]. (3)

Unfortunately, when demonstration quality widely varies,
neither matching nor outperforming demonstration aver-
ages guarantees good performance relative to high quality
demonstrations. As illustrated by Figure 1, sacrificing low
suboptimality on high quality demonstrations to lower the
average suboptimality is preferred by these methods.

2.4. Ranking & Confidence Outperformance Methods

Manually ranked sets of demonstrations (Ibarz et al., 2018;
Brown et al., 2019; Novoseller et al., 2020; Zhang et al.,
2021; Myers et al., 2021; Bıyık et al., 2022) or demonstra-
tion significance weights (Wu et al., 2019) can enable the
imitator to match or outperform the highest quality demon-
strations. However, providing this information, like data
cleaning, is an annotation burden we seek to avoid, despite
active learning methods that have been designed to reduce
this burden (Sadigh et al., 2017; Bıyık & Sadigh, 2018).

Extensions that automatically learn to rank or provide sig-
nificance weights assume that demonstration-based pol-
icy estimates have better rank than more random policies
(Brown et al., 2020), that demonstrations follow specific
noise models or optimality prevalences (Tangkaratt et al.,
2020; 2021; Wang et al., 2021a), or relationships between
weights and the advantage function (Wang et al., 2021b).
Chen et al. (2020) also uses noise-augmented demonstra-
tions, but learns how rewards degrade as a function of the
noise. Unfortunately, available demonstrations can violate
these assumptions (e.g., the majority of demonstrations be-

ing extremely low quality), producing negative end results.

3. Subdominance Minimization
We seek to learn cost weights that induce uniformly su-
perhuman behavior in deterministic decision processes.1

Pareto dominance (§3.1) and subdominance (§3.2) with re-
spect to demonstrations are key measures for achieving this.
We employ a margin-based formulation for our learning task
(§3.3) that provides generalization bounds (§3.4) and Fisher
consistency (§3.5).

3.1. Pareto Dominance & Superhuman Behavior

A bolder aim than matching (1) or outperforming (3) aver-
age human performance is outperforming all demonstra-
tions—ideally from the population distribution. Pareto
dominance of behavior ξ over behavior ξ̃, f(ξ) � f(ξ̃),
is a concept from multi-objective optimization that helps
formalize this aim. It requires demonstration ξ̃ to have larger
feature counts, guaranteeing the imitator, ξ, no worse cost
than the demonstrator’s cost, as described in Theorem 1.

Theorem 1. If ξ Pareto dominates ξ̃i, then it has an ex-
pected cost no worse than the demonstrator under the
demonstrator’s unknown cost weights w̃(i) ∈ RK≥0:

f(ξ) � f(ξ̃i) ⇐⇒ fk(ξ) ≤ fk(ξ̃i),∀k
=⇒ costw̃(i)(ξ) ≤ costw̃(i)(ξ̃i). (4)

This guarantee holds even if each demonstration has dis-
tinct cost function weights w̃(i), which is more realistic
than assuming static weights (or human biases, §2.3) for all
demonstrations (e.g., due to unmodeled side information).
We refer to autonomous behavior that is unambiguously
better than human demonstrations as superhuman.

Definition 2 (Superhuman percentile). An autonomous sys-
tem with behavior ξ is γ−superhuman with percentile γ
for features f if: P (f(ξ) � f(ξ̃i)) ≥ γ.

We argue that the ideal goal of imitation learning—and arti-
ficial intelligence more broadly—is to produce uniformly
superhuman behavior (i.e., 1-superhuman) on the popula-
tion distribution of human behaviors.

3.2. Subdominance: Variants & Properties

Directly seeking uniformly superhuman behavior (or max-
imization of γ), poses some technical challenges. First,
achieving it on training demonstrations may not generalize
to the population distribution of human behaviors. We ad-
dress this weakness by seeking to outperform each demon-

1We consider deterministic dynamics in our derivations and
analyses, and generalize to stochastic dynamics, albeit with more
complicated notation, in Appendix B.
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stration in each feature fk by a margin βk. Second, uni-
formly superhuman behavior may be impossible to achieve
when no single behavior Pareto dominates all demonstra-
tions. To deal with this potential impossibility, we define
(using [x]+ , max(x, 0) to denote the hinge function) two
generalized feature-based notions of subdominance:

subdomk
αk,βk

(ξ, ξ̃) ,
[
αk

(
fk(ξ)− fk(ξ̃)

)
+ βk

]
+

; (5)

relsubdomk
αk,βk

(ξ, ξ̃) ,

[
αk

(
fk(ξ)

fk(ξ̃)
−1

)
+ βk

]
+

. (6)

Figure 2. Sum-aggregated sub-
dominance (black lines) mea-
sures how far demonstrations
(black points) are from margin
boundaries (dotted red lines)
defined by behavior ξ (red point)
and margin parameters α and β.

These measure how far
behavior ξ is from Pareto
dominating demonstra-
tion ξ̃ absolutely (5) or
relatively (6) by a mar-
gin βk ≥ 0 with weight
αk ≥ 0 for cost dimen-
sion k. To incorporate
multiple feature dimen-
sions, we introduce max-
based (7) and sum-based
(8) aggregations (Figure
2) of the individual (rela-
tive) subdominances over
the k ∈ {1, . . . ,K} fea-
tures:2

[rel]subdomα,β(ξ, ξ̃) , max
k

[rel]subdomk
αk,βk

(ξ, ξ̃); (7)

[rel]subdomΣ
α,β(ξ, ξ̃) ,

K∑
k=1

[rel]subdomk
αk,βk

(ξ, ξ̃). (8)

The sum-aggregated subdominance relates to suboptimality
as an α-limited worst-case suboptimality (Theorem 3) and
as a complementary loss that together define an α-weighted
L1 distance (Theorem 4).

Theorem 3. The worst case suboptimality with weights w̃
bounded by α (i.e., 0 ≤ wk ≤ αk ∀k) is the subdominance:

max
0�w̃�α

suboptw̃i(ξ, ξ̃) = subdomΣ
α,0(ξ, ξ̃). (9)

Theorem 4. The α-weightedL1-norm of feature differences,
L1
α ,

∑K
k=1 αk

∣∣∣fk(ξ)− fk(ξ̃)
∣∣∣, equals the demonstration

suboptimality plus twice the subdominance:

L1
α(ξ, ξ̃) = suboptα(ξ̃, ξ) + 2 subdomΣ

α,0(ξ, ξ̃).

Theorem 4 provides additional justification for the subdomi-
nance as an imitation learning loss function. Since some

2We use [rel]subdom[Σ]
α,β(ξ, ξ̃) to denote relative or abso-

lute and max- or sum-aggregated subdominance. We refer to
[rel]subdom[Σ]

α,β(ξ̃, ξ) as the “reverse” subdominance.

suboptimality is inherent for demonstrations of varying qual-
ity, seeking to minimize suboptimality is unnecessary. When
it is removed from a natural measure of the difference be-
tween trajectories (L1

α distance), the subdominance that our
approach seeks to minimize is what remains. We analyze
this decomposition in our experiments (§4.4) to understand
what is learned by different methods.

3.3. Margin-Based Formulation and Optimization

Degenerate solutions are a well-known problem for in-
verse reinforcement learning (Ng & Russell, 2000). The
0 weight vector, for example, minimizes suboptimality,
subopt0(ξ̃, ξ) = 0. However, using a margin threshold
β > 0 in our defined subdominance avoids this degeneracy:3

subdom0,β(ξ̃, ξ) = β. This can equivalently be viewed as
leveraging margin-based learning ideas from structured sup-
port vector machines (Tsochantaridis et al., 2004) and maxi-
mum margin structured prediction (Taskar et al., 2003) by
employing a hinge loss surrogate of the Pareto dominance:
the subdominance.
Definition 5 (MinSub IOC). Minimally subdominant in-
verse optimal control minimizes the subdominance of the
minimum cost trajectory, ξ∗(w), induced by learned weights
w, with respect to the set of demonstration trajectories {ξ̃i}
using hinge slopes α:

min
w�0

min
α�0

1

N

N∑
i=1

[rel]subdom
[Σ]
α,1

(
ξ∗(w), ξ̃i

)
+
λ

2
||α||2.

We fix the margin amounts β in this training objective to one
in this paper, and learn the hinge loss slopes α from data.
These α values provide the relative sensitivity for failing to
sufficiently outperform the demonstrations on the different
cost features, i.e., a larger αk implies greater sensitivity to
that feature, and are chosen to minimize subdominance since
it upper bounds the generalization error of this approach
(§3.4). Regularizing α provides a max margin solution when
all demonstrations can be Pareto dominated.

Algorithm 1 Update w and α from demonstration(s) ξ̃
Obtain optimal behavior ξ∗(w) for weights w (Step 1)
Find support vectors: Ξ̃SVk(w, αk) given ξ∗ (Step 2)
for k, ξ̃ ∈ Ξ̃SVk do

Update αk: αk ← αke
ηt(fk(ξ̃)−fk(ξ∗)−λαk) (Step 3)

Update wk: wk ← wke
ηtαk (Step 4)

end for

Algorithm 1 describes the four main steps for updating
our model parameters from a mini-batch of demonstrations

3Maximum margin planning (Ratliff et al., 2006) employs a
similar margin-based approach for the suboptimality, but is suscep-
tible to the degeneracy w=0 when demonstrations are sufficiently
noisy (Fisher inconsistency), which our approach avoids (§3.5).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. The process for updating model parameters α and w. The optimal behavior ξ∗ (red dot) for an initial weight vector w is obtained
(a). The optimal slopes α1 (b) and α2 (c) are chosen from all possible slopes (gray regions) to minimize the subdominance, which is
achieved by including just enough dominated support vectors (blue) to offset the gradients from nondominated support vectors (orange).
These define the margin boundaries (dotted red lines) in (d). Since the number of demonstrations with positive subdominance from
feature f1 (weighted by α1) is much larger than that of feature f2 (e), the weight for feature f1 is increased and a new optimal behavior is
obtained (f). Optimizing α1 (g) and α2 (h) for this new optimal behavior provides new margin boundaries in (i) and weight gradients (j).

and Figure 3 provides geometric interpretations. Parameter
updates are repeatedly applied until convergence.

Step 1: Optimal behaviors. Existing optimal control
techniques (or reinforcement learning algorithms, partic-
ularly when using a simulator) are used to obtain optimal
behavior ξ∗ for cost weights w in the first step of Algorithm
1 (Figures 3a and 3f). Function classes for the policy (with
different parameterizations) that avoid solving optimal con-
trol problems could instead be employed, but we defer this
to future work.

Step 2: Support vectors. The support vector demonstra-
tions of feature k are defined by the optimal trajectory from
Step 1 and αk for the relative subdominance (10) as the set
of demonstrations residing exactly on or below the margin
boundary (i.e., where the subdominance becomes zero):

Ξ̃SVk(ξ∗, αk) =

{
ξ̃ :fk(ξ̃) ≤ αk

αk − 1
fk
(
ξ∗
)}

. (10)

For max-based subdominance, each demonstration may only
belong to one set of support vectors.

Step 3: Hinge slope α updates. The slope parameters α
defining the subdominance margins are chosen to minimize

the subdominance. As shown in Figures 3b, 3c, 3g, and
3h, this is achieved when the gradients from dominated
support vectors match or minimally exceed the gradients
from nondominated support vectors:

0 ∈ ∂αk

N∑
i=1

subdom[Σ]
αk,1

(
ξ∗(w), ξ̃i

)∣∣∣∣∣
αk=α∗

k

(11)

⇐⇒ α∗k = argmin
αk

∑
ξ̃i∈Ξ̃SVk (w,αk)

(
fk(ξ∗)− fk(ξ̃i)

)
≥ 0.

We optimize each αk using stochastic exponentiated gradi-
ent descent: αk ← αke

ηt(fk(ξ̃)−fk(ξ∗)−λαk) using an appro-
priately decaying learning rate ηt, as shown in Algorithm 1.
In other words, we increase αk for feature k when the opti-
mal behavior outperforms a support vector demonstration,
and decrease αk when it is outperformed by one.

Step 4: Cost weight w updates. We employ a similar
exponentiated subgradient update for cost weights w:

w← w � exp
(
−ηt∂w subdomk

αk,1
(ξ∗(w), ξ̃)

)
, (12)

for the k in which ξ̃ is a support vector, and where� denotes
element-wise multiplication. We first note that 0 is a sub-
gradient for all examples ξ̃i with zero subdominance, and
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the objective is smooth for examples with positive subdomi-
nance, assuming the underlying optimal control problem is
smooth. Thus, we can focus our attention strictly on cal-
culating: ∇w subdomk

αk,1
(ξ∗(w), ξ̃) for examples ξ̃ with

positive subdominance for k using the chain rule. We in-
troduce an intermediary variable, f∗k (w) = fk(ξ∗(w)), to
facilitate this (rather than differentiating with respect to ξ∗):

∇w subdomk
αk,1

(f∗k (w), ξ̃) =

∂

∂f∗k
subdomk

αk,1
(f∗k (w), ξ̃) ∇wf

∗
k (w).

The first partial derivative is simply αk. The remaining
portion,∇wf

∗
k (w), can either be: (1) computed analytically

(Amos et al., 2018), when possible; (2) approximated using
a set of finite differences:

∂

∂wj
f∗k (w) ≈ fk(ξ∗(w + εej))− fk(ξ∗(w))

ε
, (13)

where ek is the kth standard unit vector; or (3) approximated
using pseudo-gradient optimization (Poljak & Tsypkin,
1973) that only updates the weights corresponding to the
features that incur subdominance loss, i.e., wk ← wke

ηtαk ,
as shown in Algorithm 1. The latter two approaches have
the benefit of remaining applicable when the underlying
optimal control problem is discrete or continuous but not
smooth, and therefore not differentiable.

3.4. Generalization Bounds

How well does the learned cost function from this approach
generalize to new demonstration samples? Similarly to
support vector machines (Vapnik & Chapelle, 2000), the
frequency of non-support vectors in the training set bounds
the average generalized loss.

Theorem 6. A MinSub IOC policy with {Ξ̃SVk(w, αk)}
support vectors trained on a set of N IID exam-
ples to minimize absolute or relative subdominance,
[rel]subdomα,1(ξ∗(w), ξ̃i) is on average (over training
samples) γ-superhuman on the population distribution
with: γ ≥ 1− 1

N

∣∣∣∣∣∣⋃Kk=1 Ξ̃SVk(w, αk)
∣∣∣∣∣∣.

Minimizing the sum-aggregated subdominance,
[rel]subdomΣ

α,1(ξ∗(w), ξ̃i), instead provides per-feature
guarantees:

E
[
fk(ξ∗(w)) ≤ fk(ξ̃)

]
≥ 1− 1

N

∣∣∣∣∣∣Ξ̃SVk(w, αk)
∣∣∣∣∣∣.

The superhuman generalization is also bounded using the
sample mean and sample standard deviation of the subdomi-
nance of training demonstrations.

Theorem 7. A MinSub IOC policy with N IID subdomi-
nance samples {[rel]subdom[Σ]

α,1(ξ∗(w), ξ̃i)}i=1:N with

sample mean µ̃ and sample standard deviation σ̃, is γ-
superhuman on the population distribution with: γ ≥
1− 1

N −
(N2−1)
N2

σ̃2

(1−µ̃)2 when µ̃ < 1.

Thus, when margins can be chosen that make this sample
mean and standard deviation small, the rightmost expression
approaches zero and the bound on γ tightens towards N−1

N .
Tighter bounds may also be realized by incorporating physi-
ological limitations of human demonstrators (e.g., reaction
times).

3.5. Fisher Consistency

Fisher consistency guarantees that under ideal learning
conditions (i.e., learning over the class of all measurable
functions using the population distribution), the supervised
learner produces the Bayes optimal decision. Unfortu-
nately, margin-based methods for structured prediction gen-
erally inherit the Fisher inconsistency of multiclass support
vector machines: if no majority label exists in the popu-
lation distribution conditioned on a particular input (i.e.,
maxy P (y|x) < 0.5), the Crammer-Singer SVM (Crammer
& Singer, 2001) can fail to learn to predict a plurality label
(i.e., argmaxy P (y|x)) (Liu, 2007).

Does minimizing the margin-augmented subdominance suf-
fer from similar Fisher inconsistency as these previous
margin-based methods? Permitting learning over all measur-
able functions is too flexible for the Pareto dominance objec-
tive; all the demonstrations can be made Pareto dominatable
by any planner behavior. Instead, we consider strictly in-
creasing functions that preserve the Pareto dominance of
the original feature space.
Theorem 8. Letting a new set of feature mappings {φk}
that are strictly increasing functions of the original fea-
tures {fk} be learned from the population distribution, the
minimization of absolute or relative subdomα,1(ξ∗(w), ξ̃i)
maximizes the the γ frequency of superhuman behavior:

ξ∗(w) ∈ argmax
ξ

max
γ

γ-superhuman(ξ),

or, for the sum-aggregated subdominance, ξ∗(w) ∈
argmaxξ

∑K
k=1 P (fk(ξ) ≤ fk(ξ̃)); with the optimal tra-

jectory redefined in terms of {φk} and {fk} as: ξ∗(w) =

argminξ
∑K
k=1 wkφk(fk(ξ)).

4. Cursor Pointing Inverse Optimal Control
To substantiate our approach’s premises and demonstrate
its benefits, we consider a simple, but ubiquitous control
task: navigating the computer cursor to a target position
(i.e., pointing). Though performed virtually on a computer
screen, this task—and the variability in human demonstra-
tion quality—is representative of many physical pointing
tasks (Fitts, 1954).
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Figure 4. Twenty cursor trajectories for pointing at a target cen-
tered at (0, 0) with a 10 pixel radius starting from near (−450, 0).

4.1. Cursor Pointing Tasks & Dataset

In contrast with previous work on learning from demonstra-
tions of varying quality, which have been evaluated almost
exclusively on computer-generated demonstrations, we fo-
cus our experiments on human-generated demonstrations.
We analyze pointing task data gathered from 20 non-motor
impaired individuals each performing 300 pointing tasks.
Each pointing task requires navigating the computer cursor
to a circle of radius 10, 20, or 40 pixels located in a ran-
domized position of the graphical user interface at least 200
pixels (Euclidean distance) away from the starting point.
Cursor positions are recorded at a rate of 100Hz.

Following previous work (Ziebart et al., 2012), the state
of the cursor is defined using xt as the cursor position at
timestep t along the axis between the starting position and
the target position, and using yt to define the cursor position
along the orthogonal axis. The center of the target circle is
defined as the origin (0, 0) of the coordinate system. We
clean the raw demonstration trajectories in two ways: (1)
by removing repeated positions at the beginning (x1 =
x2 ∧ y1 = y2) and end (xT = xT−1 ∧ yT = yT−1) of
the trajectory; and (2) by removing single timestep “jitters”
defined at timestep t by:∣∣∣∣∣∣∣∣[xtyt

]
−
[
xt−1

yt−1

]∣∣∣∣∣∣∣∣
2

/∣∣∣∣∣∣∣∣[xt+1

yt+1

]
−
[
xt−1

yt−1

]∣∣∣∣∣∣∣∣
2

> 5.0.

Figure 4 shows demonstrated trajectories in this coordinate
frame. The positions of the demonstrated trajectories over
time in this frame are plotted in Figure 5. Some pointing mo-
tions appear to consist of a coarse initial movement followed
by a more precise corrective movement. Others appear to be
smoother single motions. Outliers in position and time are
both common. We randomly split the dataset into a training
set of 200 tasks and a testing set of 100 tasks.

4.2. Inverse Optimal Control Formulation & Methods

Maximum entropy inverse reinforcement learning has been
previously applied using a linear-quadratic regulation (LQR)
formulation for this pointing task (Ziebart et al., 2012). The
state at timestep t is defined as the position (xt, yt), ve-
locity (ẋt = xt − xt−1, ẏt = yt − yt−1), and acceleration
(ẍt = ẋt−ẋt−1, ÿt = ẏt−ẏt−1): st = [xt yt ẋt ẏt ẍt ÿt]

T .
The cost function is linear in the outer product of the state

Figure 5. Cursor positions over time in the target-aligned (top) and
target-orthogonal (bottom) dimensions.

and can be written using a weight matrix W and the Froebe-
nius inner product as: costW(s1:T ) =

〈
W,

∑
t sts

T
t

〉
F

.
We consider a subset of the features employed in that previ-
ous work:

{∑
t x

2
t ,
∑
t ẋ

2
t ,
∑
t ẍ

2
t ,
∑
t y

2
t ,
∑
t ẏ

2
t ,
∑
t ÿ

2
t

}
,

and denote the corresponding cost function weights as:
{wx,x, wẋ,ẋ, wẍ,ẍ, wy,y, wẏ,ẏ, wÿ,ÿ}. We note that demon-
strations cleaned (§4.1) using either of our procedures (or
both) Pareto dominate the original demonstrations. We
expect this relationship to frequently hold for observation
noise and model misspecification in imitation learning tasks.

We compare against MaxEnt IRL apprenticeship learning
for LQR tasks (Ziebart et al., 2012), which employs the opti-
mal trajectory for the cost function learned via MaxEnt IRL.
Rather than learning confidences or significance weights
(§2.4), we employ additional data cleaning via demonstra-
tion selection in §4.5 using an auxiliary performance met-
rics: the task completion time. To evaluate MinSub IOC,
we employ sum-aggregated (8), relative subdominance (6)
minimization in Algorithm 1, so that short and long dis-
tance pointing tasks more equally contribute to the training
objective.
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4.3. Learned Cost Function Weights

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

wx,x wx. ,x. wx..,x.. wy,y wy. ,y. wy..,y..

MaxEnt	IRL
MinSub	IOC

Figure 6. Learned cost weights
(log scale, normalized) for Max-
Ent IRL and MinSub IOC.

The cost weights learned
by each approach are
shown in Figure 6. We
first focus on the orthog-
onal y dimension of the
trajectories. MaxEnt IRL
seeks to fit to the demon-
stration data by maximiz-
ing its likelihood, and
therefore learns appro-
priate weights for wy,y,
wẏ,ẏ, and wÿ,ÿ for the
demonstrated variance of those features. In contrast, all
demonstrations are trivially dominated with ε > 0 values
for wy,y, so MinSub IOC does not optimize further. Simi-
larly, MaxEnt IRL learns a large value for wẍ,ẍ. However,
since dominating demonstrations in terms of squared veloc-
ity often implies dominance in terms of squared accelera-
tion, MinSub IOC focuses on the trade-off between wx,x
and wẋ,ẋ with minimal weight learned for wẍ,ẍ. This is
illustrated in Figure 7 by the learned optimal trajectory and
margin boundaries for a single task.

Figure 7. Demonstrations and Pareto frontier in the space of fea-
tures for the pairs:

∑
t ẋ

2
t (y axis) and

∑
t x

2
t (x axis) in the top

plot;
∑
t ẍ

2
t (y axis) and

∑
t x

2
t (x axis) in the bottom plot. The

pointing task corresponds to Figures 4 and 5.

4.4. Demonstration Loss Analysis

Motivated by the decomposition of the L1 distance (The-
orem 4), we compare the average subdominance, demon-
stration suboptimality, and L1 distance of MinSub IOC and
MaxEnt IRL on test data in Figure 8. The differences in
MinSub IOC and MaxEnt IRL training objectives are ap-
parent from this analysis: the MinSub IOC policy generally
has much lower subdominance, while the MaxEnt IRL pol-
icy provides lower suboptimality for both learned MinSub
IOC weights. Loss analysis using the MaxEnt IRL weights
illustrates additional weaknesses of MaxEnt IRL. As shown,
the learned weights emphasize suboptimality and deempha-
size subdominance, reducing alignment with higher quality
demonstrations. Additionally, though trained so that ex-
pected features match the mean demonstration features, the
mode of the MaxEnt IRL distribution differs more greatly
from demonstrations than the MinSub IOC policy on all
three loss measures.

wsub αsub wmaxent

Figure 8. The subdominance (β = 0), suboptimality, and L1 fea-
ture distance weighted using the MinSub cost weights wsub (left)
and αsub values (center), and MaxEnt cost weights wmaxent (right).

The lower subdominance of MinSub IOC corresponds to
more frequent Pareto dominance, with MinSub IOC achiev-
ing 78% superhuman behavior and MaxEnt IRL only achiev-
ing 50% superhuman behavior. In other words, for 28%
more test demonstrations, no possible weights w̃(i) exist
that make the demonstration lower cost than the produced
behavior from MinSub IOC compared to MaxEnt IRL.

4.5. Data Cleaning Impact on Superhuman Percentile

We next analyze the impact of additional data cleaning, in
the form of training demonstration selection, on the super-
human percentile of learned behavior. We remove various
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percentages of the training trajectories with the longest dura-
tions (task completion time) for each task. Though we argue
that completion time is an adequate (or better) surrogate
of learned data selection criteria (§2.4) for this task, such
demonstration quality signals are not generally available for
more complex tasks in which completion time may be one
of many competing cost features.

Figure 9. Pareto dominance over withheld test data when demon-
strations with longer durations are removed from training data only
(solid lines) and from both training and testing data (dashed lines).

Figure 9 shows that this data cleaning improves MaxEnt
IRL as it learns from a pool of higher quality demonstra-
tions with fewer large

∑
t x

2
t terms. The sharpest increase

is when the initial lowest quality demonstrated are removed,
reflecting the strong sensitivity of the MaxEnt IRL approach
to outliers. In contrast, data cleaning slowly degrades Min-
Sub IOC as it increasingly removes support vectors that are
representative of testing data. At the 70% level of cleaning
and above, MaxEnt IRL’s performance exceeds MinSub
IOC. However, when the testing data is similarly cleaned,
providing an IID learning problem, MinSub IOC’s perfor-
mance advantage over MaxEnt IRL remains for all levels of
cleaning. Furthermore, for all levels of cleaning, MaxEnt
IRL is unable to achieve MinSub IOC’s performance on the
uncleaned demonstration dataset.

4.6. Sensitivity to Sample Noise

We lastly investigate robustness to sample noise by mea-
suring how learning from single pointing tasks and from a
large training set differ. We learn a cost function for each of
the 100 testing set tasks and evaluate the suboptimality of
the resulting behavior compared to the cost function learned
from the entire training set (200 tasks). A scatterplot with
the suboptimality for each method is shown in Figure 10.

The correlation in suboptimality across methods is moder-
ate (r = 0.5) for the entire set, but weak (r = 0.3) when
the rightmost outlier is removed. This weak or moderate
correlation is due to the sensitivity of each method to dif-
ferent types of noise: suboptimality for MaxEnt IRL and

Figure 10. The relative suboptimality of the behavior learned from
a single task relative to the behavior produced from 200 tasks:
suboptwfull

(ξsingle, ξfull)/costwfull(ξfull).

subdominance for MinSub IOC. On average, MinSub IOC
is 1.03% suboptimal and MaxEnt IRL is 3.68% suboptimal.
This indicates that MaxEnt IRL is over three times more
sensitive to sample noise than MinSub IOC.

5. Discussion & Future Work
The variability of human demonstration quality often poses
significant challenges that prevent existing imitation learn-
ing methods from producing behaviors that reliably match
or exceed expert human performance. We argue that outper-
forming all demonstrations—or minimizing the degree to
which this is not achieved—is a better objective for guiding
imitation than objectives based on averages over demon-
strations. Our approach is more discriminative and avoids
the daunting task of understanding human biases—either
to construct generative noise models or to automatically
rank demonstrations. Our margin-based approach provides
useful generalization guarantees for outperforming human
behavior under relaxations of classical inverse reinforce-
ment learning assumptions that more realistically allow cost
function weights to vary for each demonstration.

We investigate a smooth optimal control problem with de-
terministic dynamics using a linearly-parameterized cost
function in this paper. Extensions to discrete or non-smooth
continuous control tasks, stochastic dynamics, and/or non-
linear cost feature functions are important areas for future
investigation. Additionally, we assume the dynamics of the
decision process are known, or at least can be simulated,
and that cost features are provided to the imitation learner.
Appropriately incorporating dynamics estimation and cost
feature representation learning into our imitation learning
approach while maintaining useful generalization guaran-
tees is an important topic of future work. We plan to explore
these future directions on more complex decision processes,
including Atari (Bellemare et al., 2013) and OpenAI Gym
(Brockman et al., 2016) testbeds.
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A. Proofs
A.1. Domination and Subdominance Properties

Proof of Theorem 1. The first relationship,

f(ξ) � f(ξ̃i) ⇐⇒ fk(ξ) ≤ fk(ξ̃i),∀k,

is the definition of Pareto dominance. Under the assumption
that fk(ξ) ≥ 0,∀k, multiplication by all positive weights
and addition maintains the inequality:

fk(ξ) ≤ fk(ξ̃i),∀k =⇒ wkfk(ξ) ≤ wkfk(ξ̃i) ∀k,wk ≥ 0,

=⇒
K∑
k=1

wkfk(ξ) ≤
K∑
k=1

wkfk(ξ̃i) ∀wk ≥ 0,

=⇒ costw(ξ) ≤ costw(ξ̃i) ∀w � 0.

Proof of Theorem 3.

max
0�w�α

suboptw(ξ, ξ̃)

(a)
= max
{wk∈{0,αk}}

K∑
k=1

wk

(
fk(ξ)− fk(ξ̃)

)
(b)
=

K∑
k=1

max
wk∈{0,αk}

wk

(
fk(ξ)− fk(ξ̃)

)
(c)
=

K∑
k=1

[
αk

(
fk(ξ)− fk(ξ̃)

)]
+

(d)
= subdomΣ

α,0(ξ, ξ̃)

We expand the definition of suboptimality in (a), and since
the function is linear in each wk only its extreme values,
{0, αk} need be considered. After algebraic rearrangement
(b) and employing the definition of the hinge function (c),
we arrive at the definition of the subdominance (d).

Lemma 9. The L1
α feature distance decomposes into the

forward subdominance and the reverse subdominance:

L1
α(ξ, ξ̃) = subdomΣ

α,0(ξ, ξ̃) + subdomΣ
α,0(ξ̃, ξ).

Proof. This follows from the basic hinge function identity:
|x− y| = [x− y]+ + [y − x]+.

∀k, |fk(ξ)− fk(ξ̃)| (14)

= [fk(ξ)− fk(ξ̃)]+ + [fk(ξ̃)− fk(ξ)]+

=⇒
∑
k

αk|fk(ξ)− fk(ξ̃)| (15)

=
∑
k

αk
(
[fk(ξ)− fk(ξ̃)]+ + [fk(ξ̃)− fk(ξ)]+

)

(Lemma 9) (Lemma 10)

Figure 11. Lemma 9: The forward (thick gray lines) and re-
verse (black lines) subdominances additively form the L1 loss:
L1
α(ξ, ξ̃) = subdomΣ

α,0(ξ, ξ̃) + subdomΣ
α,0(ξ̃, ξ). Lemma 10:

Suboptimality (black lines) and reverse subdominance differ only
for examples with positive forward subdominance, with resulting
losses equivalent to “clipping” the losses of (a) at the optimal tan-
gent plane (solid red line): suboptα(ξ̃, ξ) = subdomΣ

α,0(ξ̃, ξ)−
subdomΣ

α,0(ξ, ξ̃).

Lemma 10. The suboptimality is equal to the reverse sub-
dominance minus the forward subdominance:

suboptα(ξ̃, ξ) = subdomΣ
α,0(ξ̃, ξ)− subdomΣ

α,0(ξ, ξ̃).

Proof. This follows from the basic hinge function identity:
x− y = [x− y]+ − [y − x]+

∀k, fk(ξ̃)− fk(ξ) (16)

= [fk(ξ̃)− fk(ξ)]+ − [fk(ξ)− fk(ξ̃)]+

=⇒
∑
k

αkfk(ξ̃)− fk(ξ)| (17)

=
∑
k

αk
(
[fk(ξ̃)− fk(ξ)]+ − [fk(ξ)− fk(ξ̃)]+

)

Proof of Theorem 4. The result follows by applying Lem-
mas 9 and 10:

L1
α(ξ, ξ̃) = subdomΣ

α,0(ξ, ξ̃) + subdomΣ
α,0(ξ̃, ξ)

= suboptα(ξ̃, ξ) + 2 subdomΣ
α,0(ξ̃, ξ).

Corollary 11. A corresponding relative decomposition of
the L1

α feature distances exists when fk(ξ̃) > 0 ∀k,

relL1
α(ξ, ξ̃) = relsuboptα(ξ̃, ξ) + 2 relsubdomα(ξ̃, ξ),

in which the relative L1 distance and relative suboptimality
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are defined as:

relL1
α(ξ, ξ̃) =

∑
k

αk
|fk(ξ)− fk(ξ̃)|

fk(ξ̃)
and (18)

relsuboptα(ξ̃, ξ) =
∑
k

αk
fk(ξ)− fk(ξ̃)

fk(ξ̃)
. (19)

Proof. Lemma 9 and Lemma 10 are easily extended to the
relative case by dividing both sides of (14) and (16) by
fk(ξ̃), which then carries through for both lemmas and the
corollary when the reverse relative subdominance is also
relative to the demonstrated trajectory features.

A.2. Generalization Bounds

Proof of Theorem 6. The leave-one-out cross validation er-
ror (i.e., failing to Pareto dominate or achieve superhuman
performance) on n demonstrations is an unbiased estimate
of the loss with (n−1) demonstrations, which upper bounds
the loss with n demonstrations (and is an almost unbiased
estimate) under IID assumptions (Vapnik & Chapelle, 2000;
Mohri et al., 2018).

Consider the model trained using all n demonstrations. By
definition, non-support vectors are Pareto dominated by the
induced behavior in this model, incurring no error. If one of
these non-support vectors is removed from the training set,
the learned model does not change. Thus, each non-support
vector contributes no error to the overall leave-one-out cross
validation error. Each support vector may, in the worst case,
incur an error when removed from the training set during
leave-one-out cross validation. Together, these provide the
bound.

Proof of Theorem 7. Letting µ̃ and σ̃ represent the sam-
ple mean and sample variance of the subdominance mea-
surements of N IID samples {X1, X2, . . . , XN} where
Xi = [rel]subdom[Σ]

α,1(ξ∗(w), ξ̃i) drawn from an unknown
distribution (formally, with zero probability that all samples
are equal to zero), we start from Kabán (2012)’s simplified
bound for a new sample based on a finite sample Cheby-
shev’s inequality (Saw et al., 1984) for ε > 0:

P (|X − µ̃| ≥ εµ̃) ≤ N2 − 1

N2

1

ε2
σ̃2

µ̃2
+

1

N

(a)
=⇒ P (X − µ̃ ≥ εµ̃) ≤ N2 − 1

N2

1

ε2
σ̃2

µ̃2
+

1

N

(b)
=⇒ P (X − µ̃ ≥ 1− µ̃) ≤ N2 − 1

N2

σ̃2

(1− µ̃)2 +
1

N

(c)
=⇒ P (X ≥ 1) ≤ N2 − 1

N2

σ̃2

(1− µ̃)2 +
1

N
,

where: (a) follows from taking just one of the two-sided
bounds; (b) is obtained by substituting ε = 1

µ̃ − 1 = 1−µ̃
µ̃ >

0; and (c) results from adding the sample mean to both sides.

Then, P (X ≥ 1) ≥ P (
⋃
k fk(ξ) ≥ fk(ξ̃)), thus providing

the overall bound.

A.3. Fisher Consistency

Definition 12. A learner is Fisher consistent if it learns
to make Bayes optimal decisions when trained from any
population distribution using a fully expressive function
class (e.g., all measurable functions).

Remark 13. Maximum margin planning (Ratliff et al.,
2006) inherits the Fisher inconsistency of the Crammer
& Singer (2001) multiclass support vector machine (Liu,
2007) and is therefore also not Fisher consistent.

This inconsistency arises when demonstrations are suffi-
ciently noisy—for example, when no majority action exists
under the distribution of demonstrations. More concretely,
maximum margin planning (MMP) is Fisher inconsistent
for the Markov decision process in Figure 12 when the
demonstration distribution is P (a1) = 0.4, P (a2) = 0.3,
and P (a3) = 0.3, in which case cost(s1) = cost(s2) =
cost(s3) = 0 minimizes the MMP training objective, but
does not induces the Bayes optimal policy (under 0-1 loss).

Figure 12. A simple one timestep Markov decision process with
three actions.

Proof of Theorem 8. We first note that optimization of φ
completely subsumes the optimization of α, leaving:

min
w≥0

sup
φ:∇φ>0

N∑
i=1

max
k

[
φk(fk(ξ∗(w)))− φk(fk(ξ̃i)) + 1

]
+︸ ︷︷ ︸

subdomφ,1(ξ∗(w),ξ̃i)

.

We assume,4 having been selected from a numerical
optimization procedure or noisily produced from a hu-
man demonstrator, that fk(ξ∗(w)) 6= fk(ξ̃i). The op-
timal {φk} for some ξ(w) has two cases. If behavior
ξ̃i is not dominated in k (i.e., fk(ξ̃i) < fk(ξ∗(w))),
subdomk

φk,1
(ξ∗(w), ξ̃i) is minimized to 1 by choosing

supφk φk(fk(ξ̃i)) < φk(fk(ξ∗(w))).

4Alternatively, the Hamming loss (or similar loss function) can
be used for the subdominance margin rather than a fixed value.



Towards Uniformly Superhuman Autonomy via Subdominance Minimization

(a) (b)

Figure 13. Feature mapping φ transforms the original feature space
(a) based on the green arrows so that all Pareto-dominated demon-
strations have zero subdominance and all non-dominated demon-
strations have subdominance of one (b).

For the remaining behaviors, fk(ξ̃i) > fk(ξ∗(w)), φk can
be made arbitrarily large at fk(ξ̃), providing a subdomi-
nance of 0 for those examples. We have ignored the require-
ment that φk be strictly increasing in fk across demonstra-
tions, but this added constraint does not change the solution.
Given this, the training objective for choosing the optimal
behavior weights w is equivalent to the frequency of non-
Pareto-dominated demonstrations in the training set:

min
w≥0

1

N

N∑
i=1

I
[
f(ξ∗(w)) 6� f(ξ̃i)

]
,

using I to denote a binary-valued indicator function. As
N → ∞, the training set converges to the population dis-
tribution and the objective is equivalent to maximizing the
probability of Pareto dominance on the population distribu-
tion.

B. Formulation for Stochastic Dynamics
For tasks with stochastic dynamics, we must reason
about demonstrated policies, π̃ ∈ Πdp. Conceptually, if
each demonstration corresponds with observing the entire
stochastic policy of the demonstrator, e.g., π̃ : S → ∆A,
then f(ξ̃) can be simply replaced with f(π̃) , Eξ∼π̃ [f(ξ)]
in our subdominance definitions (5)-(8) and then demon-
stration policies π̃ can be used throughout the remainder of
our formulation. Similarly, the optimal trajectory ξ∗(w) is
replaced by the optimal policy π∗(w).

When trajectory samples ξ̃ ∼ π̃ × T are instead available,
expected feature counts can be estimated from repeated
samples from the same demonstrator: f(π̃) = 1

N

∑N
i=1 f(ξ̃).

Developing methods if N is small (or a single trajectory)
for each task is a topic worthy of future investigation.

C. Additional Experimental Results /Analyses
C.1. Cleaning Raw Demonstration Data

We provide examples of the impact of our two data cleaning
procedures in this section. Figure 14 show the differences
in position over time between raw and repetition-cleaned
data on a single task. Removing initial state repetitions from
demonstration trajectories reduces position-based features,
such as

∑
t x

2
t , while not changing velocity-based features.

Note that this procedure is imperfect: small initial move-
ments may be present before the demonstrator responds to
the revealed target. This phenomenon appears to be present
for some demonstrations in Figure 5 and Figure 14.

Figure 14. Demonstrations for a single task with initial and final
repeated states included (left) and removed (right).

Figure 15 shows the differences in x and y position for data
without and with single-timestep “jitters” removed. For this
particular task, three demonstration trajectories have single
timestep anomalous positions corresponding to the corner of
the display. Removing these jitters significantly decreases
both position-based features and velocity-based features.

Figure 15. Demonstrations for a single task with single timestep
“jitter” included (top) and removed (bottom).

We note that demonstrations cleaned using either or both
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procedures Pareto dominate the corresponding raw demon-
stration trajectories in the salient cost features of interest.
This shows that the noise being cleaned by these techniques
do not increase subdominance, but would significantly im-
pact methods based on suboptimality minimization.

C.2. Margin Comparisons for Absolute and Relative
Subdominance Minimization

We show the differences between absolute subdominance
and relative subdominance using a long-distance and a short-
distance pointing task in Figure 16.

Figure 16. Twenty cursor trajectories for a long-distance (top) and
a short-distance (bottom) pointing task.

The differences in margin boundaries for these two tasks are
shown in Figure 17. These boundaries are extremely sensi-
tive to the pointing task distance when using the absolute
subdominance (left figures). Specifically, the long-distance
pointing task has tight margin boundaries (relative to the
demonstrations) and a small number of support vectors,
while the short-distance pointing task has overly wide mar-
gin boundaries and many more support vectors. Though
there are fewer of them, the support vectors for the long-
distance task have an overly strong influence on the learned
cost weights compared to short-distance support vectors.

The margin boundaries are much more similar between
long-distance and short-distance pointing tasks using the
relative subdominance (right figures). As a result, support
vectors for both the short-distance and the long-distance
pointing tasks have similar influence on the optimization of
the learned cost weights.

Though we primarily emphasize the sensitivity of subopti-
mality minimization methods to lower quality demonstra-
tions in this paper, those methods also tend to employ abso-
lute differences in their suboptimality definitions and thus
suffer from a sensitivity to demonstrations from tasks with

inherently larger absolute costs.
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Figure 17. Pareto dominance and margin boundaries for absolute subdominance (left) and relative subdominance (right) on the long-
distance (top) and short-distance (bottom) pointing tasks.


