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Abstract

We study the proximal sampler of Lee et al. (2021a) and obtain new convergence guarantees under
weaker assumptions than strong log-concavity: namely, our results hold for (1) weakly log-concave
targets, and (2) targets satisfying isoperimetric assumptions which allow for non-log-concavity. We
demonstrate our results by obtaining new state-of-the-art sampling guarantees for several classes
of target distributions. We also strengthen the connection between the proximal sampler and the
proximal method in optimization by interpreting the proximal sampler as an entropically regularized
Wasserstein proximal method, and the proximal point method as the limit of the proximal sampler
with vanishing noise.

Keywords: functional inequality, isoperimetry, optimization, proximal point method, proximal
sampler, sampling

1. Introduction

The problem of sampling from a target density 7% oc exp(—f) on R? has seen a resurgence of
interest due to its staple role in scientific computing (Robert and Casella, 2004), as well as its
surprising and deep connections with the field of optimization. Indeed, the standard Langevin
algorithm can be viewed as a gradient flow of the Kullback—Leibler (KL) divergence on the space
of probability measures equipped with the geometry of optimal transport, a perspective which has
led to new analyses (Durmus et al., 2019; Salim and Richtarik, 2020; Ahn and Chewi, 2021) and
algorithms (Pereyra, 2016; Zhang et al., 2020; Ding and Li, 2021; Ma et al., 2021) inspired by the
theory of convex optimization.

Among the algorithms in the optimization toolkit, we focus on proximal methods. Classically,
proximal methods are used to minimize composite objectives of the form f + g, where ¢ is smooth
and convex and f is non-smooth but simple enough to allow for evaluation of the proximal map
prox; : y = argmingcpa{ f(v) + ﬁ lz — y||?}. However, the setting of our investigation is more
closely related to the minimization of a non-composite objective f, for which the proximal method is
known as the proximal point algorithm (Martinet, 1970; Rockafellar, 1976).

As a natural first step towards developing a proximal point algorithm for sampling, one can
combine the proximal map with the standard Langevin algorithm, leading to the proximal Langevin
algorithm. This algorithm was introduced in Pereyra (2016) and analyzed in the papers Bernton
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(2018); Wibisono (2019); Salim and Richtarik (2020). Although these results are encouraging,
the analogy between optimization methods and Langevin-based algorithms is imperfect because
the discretization of the latter leads to asymptotic bias, a feature which is typically not present in
optimization (see Wibisono (2018) for a thorough discussion).

Remarkably, a new proximal algorithm for sampling was proposed recently in Lee et al. (2021a)
which overcomes this issue via a novel Gibbs sampling approach. Briefly, the proximal sampler
is a sampling algorithm which assumes access to samples from an oracle distribution, known as
the restricted Gaussian oracle (RGO); the RGO is a sampling analogue of the proximal map from
optimization. Under this assumption, as well as the additional assumption that the target 7~ is
strongly log-concave, Lee et al. (2021a) proved! that the proximal sampler converges exponentially
fast to 7% in total variation distance. In their paper, the proximal sampler was used as a reduction
framework to improve the condition number dependence of other sampling algorithms. Indeed, the
RGO is a better conditioned distribution than the target distribution, so that implementing the RGO
is easier than solving the original sampling task. In turn, the reduction framework allowed them to
establish improved complexity results for a variety of structured log-concave sampling problems. We
review the proximal sampler and its implementability in Section 3.

Our contributions. Prior to our work, the convergence of the proximal sampler was only known in
the case when 7% oc exp(— f) is strongly log-concave. In this paper, we greatly expand the classes
of targets to which the proximal sampler is applicable by providing new convergence guarantees.

First, we consider the case when f is weakly convex. We show that after k iterations, the proximal
sampler outputs a distribution whose KL divergence to the target is O(1/k). Our proof is analogous
to, and is inspired by, the corresponding guarantee for minimizing a weakly convex function (in
particular, the O(1/k) rate matches the optimization result).

Next, we assume that 7% satisfies a functional inequality, e.g., a Poincaré inequality or a log-
Sobolev inequality. Such functional inequalities have been employed in the sampling literature as
tractable settings for non-log-concave sampling; see Vempala and Wibisono (2019); Chewi et al.
(2021a). For these distributions, we show that the proximal sampler converges to the target in Rényi
divergence (or any other weaker metric, such as KL divergence) with a rate that matches the known
convergence rates for the continuous-time Langevin diffusion under the same assumptions.

In each of these settings, if we additionally assume that V f is Lipschitz, then the RGO is
implementable, as it becomes a smooth strongly log-concave distribution. Hence, we obtain new
sampling guarantees for gradient Lipschitz potentials when the target is weakly log-concave or
satisfies a functional inequality. In all cases, our results are stronger than known results in the
literature. Subsequent works have also considered implementability of the RGO under weaker
smoothness conditions (LLiang and Chen, 2021; Gopi et al., 2022; Liang and Chen, 2022a,b).

Finally, we clarify the connection between the proximal sampler and the proximal point algorithm
in optimization in the following ways: (1) We show that convergence proofs for the proximal sampler
can be translated to yield convergence proofs for the proximal point algorithm. As a consequence,
we obtain a new convergence guarantee for the proximal point method under a gradient domination
condition with optimal rate, which is (to the best of our knowledge) a new result. (2) We show that
the RGO can be interpreted as a proximal mapping on Wasserstein space, and that the proximal
sampler can be interpreted as an entropically regularized Wasserstein proximal method (i.e., JKO

1. There is an error in the conference version of the paper which is fixed in the arXiv version (Lee et al., 2021b).
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scheme). The latter perspective allows us to recover the proximal point algorithm as a certain limit of
the proximal sampler as the “noise level” (corresponding to the entropic regularization) tends to zero.

Other related work. Sampling algorithms which are conceptually similar or directly related to the
proximal sampler have been previously proposed in the literature (Girolami and Calderhead, 2011;
Marnissi et al., 2016; Titsias and Papaspiliopoulos, 2018; Vono et al., 2022). The RGO has also
been considered as an adjoint of the heat semigroup in Klartag and Putterman (2021), which was
then used in the recent breakthrough on the KLS conjecture in Klartag and Lehec (2022). After the
first version of our work appeared online, our result under LSI (Theorem 3) was recovered via the
framework of localization schemes in Chen and Eldan (2022).

Organization. The rest of the paper is organized as follows. We begin with background on
distances between probability measures in Section 2 and on the proximal sampler in Section 3.

We give our main results in Section 4. In particular, we state our new convergence guarantees for
the proximal sampler in Section 4.1, and we give applications of our results in Section 4.2. We then
describe the connections between the proximal sampler and the proximal point method in Section 4.3.
All proofs are given in Section A.

Finally, we conclude and list open directions in Section 5.

2. Background and notation

Throughout the paper, we abuse notation by identifying a probability measure with its density w.r.t.
Lebesgue measure. For a probability measure p < m, we define the KL divergence, the chi-squared
divergence, and the Rényi divergence of order ¢ > 1 respectively via

2 q
_ p 2, v._ [P _ 1 p
Hx(p) = /plogw, X=(p) -—/W -1, Ryx(p) = - llog/ 5

with Ry . = H,. We recall that for 1 < ¢ < ¢’ < oo, we have the monotonicity property
Ryx < Ry, and that Ry = log(1 + x2).
We also define the 2-Wasserstein distance between p and 7 to be

Wip.m) = _int  [lle =yl dr(ay).

where C(p, 7) is the set of couplings of p and T, i.e., joint distributions on R? x R? whose marginals
are p and m. We refer readers to Villani (2003) for an introduction to optimal transport, and
to Ambrosio et al. (2008) for a detailed treatment of Wasserstein calculus.

3. The proximal sampler

Our goal is to sample from a target probability distribution 7% on R¢ with density 7% o exp(—f)
and finite second moment, where f: R — R is the potential.
Following Lee et al. (2021a), we define the joint target distribution 7 on R¢ x R? with density

n(o.9) xexp(=f(a) = 5 e =)

where 17 > 0 is the step size of the algorithm.
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Observe that the X -marginal of 7 is equal to the original target distribution 7%, whereas the
conditional distribution of Y given X is Gaussian: 7YX (- | ) = N(z,nI). Therefore, the Y-
marginal is the convolution of 7% with a Gaussian, 7¥ = 7% % N'(0, 7). The perspective that we
adopt in our proofs is that ¥ is obtained by evolving 7% along the heat flow for time 7.

The conditional distribution of X given Y is the “regularized” distribution

TrX‘Y(x | y) g exp(—f(:c) — 2177 |z — y”z) .

The restricted Gaussian oracle (RGO) is defined as an oracle that, given y € R, outputs a
random variable distributed according to 7Y (- | ). We also write 75/Y (- | y) = nXIY=v,

Proximal Sampler: The proximal sampler is initialized at a point g € R? and performs Gibbs
sampling on the joint target 7. That is, the proximal sampler iterates the following two steps:

1. From z, sample y;, | 25 ~ 77X (- | 1) = N(xp,nl).

X\Y(

2. From yy, sample xp 11 [ yx ~ 777 (- | yp).

The first step consists in sampling a Gaussian random variable centered at xj, and is therefore easy
to implement. The second step calls the RGO at the point yy.

As is well-known from the theory of Gibbs sampling, the iterates (2, yx ),y form a reversible
Markov chain with stationary distribution 7. That is, the proximal sampler is an unbiased sampling
algorithm, unlike algorithms based on discretizations of stochastic processes such as the unadjusted
Langevin algorithm. This is because the proximal sampler is an idealized algorithm in which we
assume exact access to the RGO. For our applications, we implement the RGO via rejection sampling;
see Section 4.2 for details and Section 4.4 for an explicit example in the Gaussian case.

4. Results

4.1. New convergence results for the proximal sampler

In this section, we describe our new convergence results for the proximal sampler under various
assumptions, beginning with the strongly log-concave and weakly log-concave cases, and then
proceeding to targets satisfying functional inequalities which allow for non-log-concavity.

4.1.1. STRONG LOG-CONCAVITY

We start by recalling the Wy contraction result from Lee et al. (2021b) for the proximal sampler
under strong log-concavity.

Theorem 1 (Lee et al. (2021b, Lemma 2)) Assume that 7~ o< exp(— f) is a-strongly log-concave
(i.e., f is a-strongly convex), where o > 0. For any n > 0 and for any two initial distributions pé( ,
;38( , after k iterations of the proximal sampler with step size 1), the respective distributions p? , ﬁ?
satisfy the bound

WZ(pé(a ﬁ())(>

W2(p§>:§i{) < (1+Oé77)k

ey
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Although this result was stated in Lee et al. (2021b) as a convergence result rather than a
contraction, the latter is implicit in the proof. From the proof of Lee et al. (2021b), one can also
read off a convergence guarantee in KL divergence, although this will be a corollary of our result in
Section 4.1.3.

We revisit Theorem 1 in Section A.2 and provide a proof which more closely resembles a classical
convergence proof of the proximal point algorithm. We use Wasserstein subdifferential calculus.

We note that this is the sampling analogue of the classical fact that the proximal map for an
a-strongly convex function with step size 7 is a ﬁ—contraction. In Appendix B.1, we give a new

proof of this fact by translating the proof of Lee et al. (2021b) into optimization.

4.1.2. LOG-CONCAVITY

The preceding result does not yield convergence when o« = 0. We provide a new convergence
guarantee for the weakly convex case which mirrors a Lyapunov analysis of gradient flows for convex
functions.

Theorem 2 Assume that % oc exp(—f) is log-concave (i.e., f is convex). For the k-th iterate pi(
of the proximal sampler,

Proof Section A.3. |

4.1.3. LOG-SOBOLEV INEQUALITY

Recall that a probability distribution 7 satisfies the log-Sobolev inequality (LSI) with constant o > 0
(a-LSI) if for any probability distribution p, the following inequality holds:

1

— Jx(p). 2

H,(p) <
(p) o

Here J;(p) is the Fisher information of p w.r.t. 7; see Section A.4. Recall that strong log-concavity
implies LSI, and that LSI is equivalent to the gradient domination condition for relative entropy
H.,. (Otto and Villani, 2000); see also Section 4.3.1.

Theorem 3 Assume that 7™~ o exp(— f) satisfies a-LSI. For any n > 0 and any initial distribution
pff , the k-th iterate pi( of the proximal sampler with step size 1 satisfies

Hox(py)
H_x(py) < —=L0 7 (3)
s ( k ) (1 4 Oﬂ])zk
Furthermore, for all ¢ > 1:
Ry x(pg)
X\ < q,T 0 )
RqﬂrX (pk ) = (1 N an)Zk/q (4)
Proof Section A.4. [ ]
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4.1.4. POINCARE INEQUALITY

Recall that a probability distribution 7 satisfies the Poincaré inequality (PI) with constant o« > 0
(a-PI) if for any smooth bounded function 1 : R? — R, the following inequality holds:

1
var () < TE[I VeI ®)
Recall also that a-LSI implies a-PI.

Theorem 4 Assume 1% exp(— f) satisfies a-PI. For any 1 > 0 and any initial distribution pé( ,

the k-th iterate pi( of the proximal sampler with step size 1 satisfies

X?rx (p())()

2 (p¥) < . 6
Xr (pk)_ (1+Oé?7)2k (6)

Furthermore, for all ¢ > 2,
2k log(14a .
Ry ox(pff) — 218Uk - pp < o (R, o (08) — 1),
L/ am)P B0 ik > ko = iy (Ryax (03) = D]

Proof Section A.5. |

)

RquX (pi() <

4.1.5. LATALA—OLESZKIEWICZ INEQUALITY

We next consider a family of functional inequalities which interpolate between PI and LSI. A
probability distribution 7 satisfies the Latata—Oleszkiewicz inequality (LOI) of order r € [1, 2] and
constant a > 0 ((r, a)-LOI) if for any smooth bounded function ¢ : RY — R, the following
inequality holds:

Cvane() o Ee[Y?] - BT 1

sup ‘= sup < —EIVY?].
2017 S T g 217 o Ex[lIVel]

pe(12) (2—p
This inequality was introduced in Latata and Oleszkiewicz (2000), and sampling guarantees for the
Langevin algorithm under LOI were given in Chewi et al. (2021a). The LOI for r = 1 is equivalent
to PI and the LOI for » = 2 is equivalent to LSI, up to absolute constants. Generally speaking,
(r, )-LOI captures targets m o< exp(— f) such that the tails of f grow as ||-||".

Theorem 5 Assume 7~  exp(— f) satisfies (r,)-LOI with v € [1,2). Foranyn > 0, ¢ > 2, and
any initial distribution ,03( , the k-th iterate pi( of the proximal sampler with step size 1) satisfies

2/r—1 r—1) klog(14an) /2= |
(Rq’ﬁx(pgf)/ _ Qlronbogs m) k<

R, .x(pi) <
q7Tr
1/(1+ an)(k%co])/(%q) , ifk > [co] .

®)

where
68¢q
@/r T log(1 + ) L

(For r = 2, we can instead use Theorem 3.)

2/r—1
Co = (pé() / - 1) .
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Proof Section A.6. |

To interpret the result, suppose that R, . x (pj") = O(d) at initialization and that 7 < 1/cv. Then,
the theorem states that after an initial waiting period of [co] = O(d?/"~'/n) iterations, in which
the Rényi divergence decays to O(1), the Rényi divergence decays exponentially thereafter. This
interpolates between a waiting time of O(d/n) under PI (r = 1; Theorem 4) and a waiting time of
O((log d)/n) under LSI (r = 2; Theorem 3).

4.2. Applications of the convergence results

We start with a corollary of Theorem 2. Suppose that f is S-smooth, i.e., V f is S-Lipschitz. Then,
provided % > f3, the RGO mX1Y is strongly-log-concave, with condition number (1 + £7)/(1 — 7).
We can implement the RGO via rejection sampling.

Rejection Sampling: Given a target distribution 7 o exp(— f ), where f is a-strongly convex,
perform the following steps.

1. Compute the minimizer 2* of f.

2. Repeat until acceptance: draw a random variable Z ~ N (z*,a~1I) and accept it with
probability exp(—f(Z) + f(z*) + § || Z — *|?).

The resulting sample is distributed according to 7, and one can show that the expected number of
iterations of the algorithm is bounded by &2 with & = B /& and B is the smoothness of f ; see,
e.g., Chewi et al. (2021b, Theorem 7).

We apply this to f given by f(z) = f(z) + ﬁ |z — yl||?. The algorithm above requires exact
minimization of f , which we assume for simplicity (since it is well-known how to efficiently
minimize a strongly convex and smooth function). With the choice 1 =< %, the expected number of
iterations is O(1). Combining this implementation of the RGO with Theorem 2, we obtain:

X

Corollary 6 Suppose * o exp(—f) where f is convex and B-smooth. Take n < ﬁ and implement

the RGO with rejection sampling as described above. Then, the proximal sampler outputs pi( with
H_x(p) < € and the expected number of calls to an oracle for f is O(Bd W3 (pi, %) /e).

More precisely, our algorithm requires access to an oracle of f which can evaluate f and compute
the proximity operator for f.

We now compare this rate with others in the literature. Let ms denote the second moment
of 7X. For example, my = O(d) for a product measure, and my = O(d?) when f(z) =
\/1+ ||z|]2. Tt is reasonable to assume that the Poincaré constant a of 7 is Q(d/msz) and that
W2(pf, 7%) = O(mz). With these simplifications, our complexity is O(Bdms/¢); averaged LMC
achieves O(Bdmgy/e?) (Durmus et al., 2019); MALA achieves 6(53/2d1/2m§/2/53/4) albeit in
TV? (Dwivedi et al., 2019; Chen et al., 2020); and LMC achieves 6(ﬂ2mg/€) in the stronger Rényi
metric (Chewi et al., 2021a). Since all these complexity results also hold in terms of the squared total
variation distance, our result has arguably the state-of-the-art complexity for this setting (at least, if
dimension dependence is the primary consideration).

Similarly, implementing the RGO with rejection sampling in Theorem 5 yields:
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Corollary 7 Suppose % o exp(—f) where f is 3-smooth and 7~ satisfies (r,a)-LOI Take
n = ﬁ and implement the RGO with rejection sampling as described above. Then, the proximal

sampler outputs pi( with R, .x (p? ) < € and the expected number of calls to an oracle for f is
O(Z8 (Rynx (pg )*/" 71 v log(1/2))).

Even for the special case of a Poincaré inequality and smoothness, the first sampling guarantee
under these assumptions is quite recent (Chewi et al., 2021a). Let us write & := [/« for the
“condition number” and assume R, ;x (p) = O(d) (see, e.g., Chewi et al., 2021a, Appendix A).
Then, our complexity is O(#dg (d*/"~' v log(1/<))), whereas Chewi et al. (2021a, Theorem 7)
gives a complexity bound for LMC of order O( 2g4/r=1g3 q°/€). We note that our result is the first
high-accuracy guarantee for this setting (i.e., the complex1ty depends polylogarithmically on ¢).
Moreover, even in the low-accuracy regime ¢ =< 1, our complexity of O(mdQ/ "q) is always better (e.g.,
in the Poincaré case r = 1, our rate is O(#d2q) whereas Chewi et al. (2021a) yields O(#2d3¢3)),
although we note that Chewi et al. (2021a) handles the more general weakly smooth case.

Surprisingly, the same strategy of rejection sampling also applies to non-smooth potentials.
In Liang and Chen (2021), it was shown that when the above rejection sampling is applied to
flz) = flz)+ ||m y||? with f(z) being a convex and M-Lipschitz function, if n < 1/(16M2d),
the expected number of iterations of the algorithm is bounded above by 2. Moreover, the result is
insensitive to the inexactness of the minimizer of f (Liang and Chen, 2021). Combining it with
Theorem 2 and Theorem 4 we establish:

Corollary 8 Suppose % oc exp(—f) where f is convex and M-Lipschitz. Take n = 1 5 and

implement the RGO with rejection sampling as described above.

1. Applying Theorem 2, we deduce that the proximal sampler outputs pi( with H _x (pf )< e
and the expected number of calls to an oracle for f is O(M2?d W2 (p{, %) /e).

2. Applying Theorem 4 (using the fact that log-concave measures satisfy a-PI for some o > 0),
we deduce that the proximal sampler outputs pi( with R, .x (ka ) < € and the expected

number of calls to an oracle for f is O(Midq (Ry-x(pg) V1og(1/e))).

We make the same simplifications as above to compare the rates. Our complexity (from the
second part of Corollary 8 is O(M?my (d V log(1/¢))), whereas Durmus et al. (2019) achieves
O(M?my/e?) in KL divergence and Liang and Chen (2021) achieves O(M2dm, /e1/2) in squared
total variation distance. In particular, when mg = O(d), our result is the state-of-the-art.

We summarize the ways in which the proximal sampler improves upon the standard discretized
Langevin algorithm.

1. Under weaker assumptions on the target 7, such as a Poincaré inequality, the analysis of
the Langevin algorithm is affected in two ways: first, the continuous-time convergence of the
diffusion is slower; and second, the discretization analysis becomes much more challenging.
In contrast, although the ideal proximal sampler also converges more slowly under weaker
assumptions, the second issue is no longer present. In particular, regardless of the isoperimetric
assumption on 7%, as soon as V f is Lipschitz we can implement the RGO via rejection
sampling, yielding a simple analysis with strong convergence guarantees.
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2. Related to the first point, it is currently not known how to perform a discretization analysis of
the Langevin algorithm with linear dependence on the condition number x = g under a-LSI
or a-PIL. Our results therefore constitute the first O(x) guarantees for such distributions.

3. When implemented via rejection sampling, the proximal sampler provides a new approach
to obtaining high-accuracy guarantees for sampling (i.e., complexity guarantees with depen-
dence polylog(1/¢) on the accuracy ¢). The simplicity of the analysis makes it an attractive
alternative to Metropolis—Hastings algorithms, whose analysis is often involved.

4. Finally, we mention that when the RGO is implemented via the Metropolized random
walk (Dwivedi et al., 2019), the resulting algorithm only uses zeroth-order queries to f,
which is crucial for certain applications (e.g., Bayesian inverse problems).

4.3. On the relation between the proximal sampler and the proximal point algorithm

The proximal sampler is motivated by the proximal point method in optimization. Recall that in
optimization, the proximal point method for minimizing f is the iteration of the proximal mapping

pros (o) = angmin {£(2) + 5.~ 911} ©)

with some step size n > 0. Formally, using the correspondence f <+ exp(—f) between optimization
and sampling, the RGO can be viewed as the sampling analogue of the proximal mapping.

In this section, we establish a more precise correspondence between the proximal sampler
algorithm (for sampling from exp(— f)) and the proximal point method (for minimizing f).

4.3.1. CONVERGENCE UNDER LSI/PL

We recall that LSI for 7 oc exp(— f) is equivalent to the statement that the relative entropy H . satisfies
the gradient domination condition (or the Polyak—t.ojasiewicz (PL) inequality) in the Wasserstein
metric (Otto and Villani, 2000). Thus, in the optimization setting, the analogous assumption to LSI is
that f satisfies PL.

We recall f satisfies the PL inequality with constant o > 0 («-PL) if for all «,

IVF@)I* > 2a (f(2) = £9),

where f* = inf f. The PL inequality allows for mild non-convexity of f, yet still implies exponential
convergence of gradient flow or proximal point method for minimizing f; see for example (Karimi
et al., 2016).

In light of our convergence guarantee for the proximal sampler under LSI in Theorem 3, it is
natural to ask whether there is an analogous result for the proximal point method under PL. We
answer this affirmatively via the following theorem. We note that a less careful proof of the argument

1

gives the suboptimal contraction factor Than> © the best of our knowledge, we are not aware of

another reference which obtains the optimal contraction factor under PL (Attouch and Bolte, 2009).2

2. The optimality of our bound can be obtained by considering f(z) = % ||z*.
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Theorem 9 Suppose that f : RY — (—oo,+00] is differentiable and satisfies a-PL and let
x' € prox, (). Also, write f* = inf f. Then, it holds that

1

fl@)—f < (1+Oé77)2

{f(x) = f7}.

Proof Section B.2. |

4.3.2. RGO AS A PROXIMAL OPERATOR ON WASSERSTEIN SPACE

Consider y € R% Noting that 7Y =Y (dz) o, exp(—%”:ﬁ — y||?) 7*(dz) and using Ambrosio
et al. (2008, Remark 9.4.2) we have

Hox (0%) = Hoxey (0%) — / 2177 e — gl do* () + C(w).

where C/(y) is a constant depending only on y. Using arg min H_xjv—,(-) = 7X/¥=¥, the RGO can
be expressed as

_ . 1
PV~ argmin { Hox (5%) + 5 / o = ylI? dp* (z) }
pX €P2(RY) n (10)

1
= argmin  H, x(pX) + — W2(p~,6,) ¢
pXEPQ(]Rd){ 2n 2 v }

Thus, by replacing the Euclidean distance by the Wasserstein distance, 7% Y=Y = prox, i, (0y)-
We use this fact in Section A.2 to provide a new proof of the contraction of the proximal sTarlmpler
under strong log-concavity (Theorem 1). The proximal operator over the Wasserstein space is also
known as the JKO scheme (Jordan et al., 1998), which we describe further in the next section.

4.3.3. PROXIMAL SAMPLER AS ENTROPY-REGULARIZED JKO SCHEME

The Wasserstein gradient flow models the steepest descent dynamics of a functional F' over the
space of probability distributions with respect to the 2-Wasserstein distance Ws. One strategy to
approximate the Wasserstein gradient flow in discrete time is the JKO scheme (Jordan et al., 1998),
which follows the iterations

, 1
[th+1 = argmin {F(M) +5 sz(uk,u)} : (11)
nEP2 (R) n

where 1 > 0 is the step size. Note that this is a Wasserstein analogue of the proximal point method.
A variant of the JKO scheme with an extra entropic regularization term was developed in Peyré
(2015) to improve the computational efficiency. In this entropy-regularized Wasserstein gradient flow
algorithm, one instead follows the update

1
o W (ks ) } (12)

= 1 F
f+1 argmm{ () + 2

HEP2(RY)

10
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where W5 . is the entropy-regularized 2-Wasserstein distance defined as

Wi = min { [ o=yl drog) + )}, (13
vEC(u,v)
where H(y) = [ vlog~y denotes the negative entropy.

We show that proximal sampler can be viewed as an entropy-regularized JKO scheme in the
following result.

Theorem 10 Let pf , p{, pi( 1 be the distributions of T, Yk, Tk+1, respectively, in one iteration of
the proximal sampler algorithm. Then, they follow the entropy-regularized JKO scheme

1
p}c/ = argmin —— W2272n(,0£(, }u) ) (14)
peP2(RY) <71
and
piy1 = argmin /fdM + = W3, (ok ,u)} : 15)
nEP2 (RE)
Proof Section A.7. |

4.3.4. PROXIMAL POINT METHOD AS THE LIMIT OF THE PROXIMAL SAMPLER

The interpretation of the proximal sampler algorithm above provides some insights on its connections
to optimization. We can define a more general family of proximal sampler algorithm with a different
level of entropy regularization. The forward step is

o1
Pif = argmin o W22,2ne(pi(7 M) ) (16)
peP2(RY) 211
and the backward step reads
Piy1 = argmin /fdu + o Wi (oi aﬂ)} : a7
nEP2 (R)

Theorem 11 As e 0, (16)—(17) reduces to the proximal point algorithm in optimization.
Proof Section A.8. |
Indeed, when € = 0, with pX = d,,, we have

Pl =Pk = 0Oz,

and furthermore, piﬂ_l = 0g,,,, With

. 1
o1 = argmin { f(2) + o |l — w2}
reRd 2n

This is exactly the proximal point method. In fact, even if p? is not a Dirac distribution, (16)—(17)
with e = 0 can be viewed as a parallel implementation of the proximal point method with many
different initial points. See Section A.8 for more discussion.

11
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4.4. Example: Gaussian case

Suppose that the target distribution is a Gaussian N'(0, ¥), i.e., f(z) =  (z, X~ 'z). In this case we
can compute the iterations of the proximal sampler explicitly.
If we initialize the proximal sampler at

pi = N(mo, %),
then some calculations show that
py =N (my, Sg + 1),
Pi(+1 = N(mk+1a Skt1),
where?
mes1 =2 (X + 7]])_1 mp ,
Skl =S D) T Ep4+n) (S D) TS+ 2 (S 49Dt

Specializing to the case where & = I, ) = 1, and we initialize at A'(0, 031), we obtain

o3 — 1
o2 —1) =122 (18)
In particular, this shows that the contraction factor ( 1+1v7)2 in Theorem 3 is sharp.

5. Conclusion and open directions

In this paper, we have studied in detail the proximal sampler of Lee et al. (2021a). In particular, we
have given new convergence proofs under weaker assumptions than what were previously considered,
allowing for a much wider class of distributions beyond log-concavity. In some cases, our proofs are
inspired by convex optimization; in others, they show a remarkable parallel with the continuous-time
theory of the Langevin diffusion under isoperimetry. Additionally, we have drawn more precise links
between the proximal sampler and the proximal point method in optimization.

We conclude by listing a few directions for future study.

1. Is there an extension of the theory we have developed to the problem of sampling from
composite potentials 7% oc exp(—f — g)?

2. Is there an accelerated version of the proximal sampler?
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Appendix A. Proofs for the proximal sampler
A.1l. Techniques

At a high level, our proofs proceed by considering the change in KL divergence or Rényi divergence
when we apply the following two operations to the law p? of the iterate and the target 7 : (1) we
simultaneously evolve the two measures along the heat flow for time 7, and then (2) we apply the
RGO to the resulting measures.

For the first step, we formulate a remarkably general lemma in Section A.1.1 which shows
that the computation of the time derivative of any ¢-divergence along the simultaneous heat flow
is similar (in a precise sense) to the analogous computation when studying the continuous-time
Langevin diffusion. It is this property that allows us to apply functional inequalities which are usually
used for the Langevin diffusion, such as the Poincaré and log-Sobolev inequalities, in order to study
the convergence of the proximal sampler.

In the second step, we are applying the same operation (of sampling from the RGO) to each
measure, so the data-processing inequality implies that the KL divergence or Rényi divergence can
only decrease. Combined with the previous step, it is sufficient to prove a convergence guarantee
for the proximal sampler; however, the rate turns out to be suboptimal. In order to recover the
optimal rate, we introduce an argument based on the Doob h-transform (described in Section A.1.2)
to obtain contraction in the second step as well, using the backward version of our general lemma
(see Section A.1.3). We summarize our technique in Section A.1.4.

A.1.1. LEMMA ON THE SIMULTANEOUS HEAT FLOW
Let & be a ¢-divergence for some convex function ¢, i.e.

@r(p) = Ex[6()].

We assume that ¢ is regular enough to justify the interchange of differentiation and integration and to
perform integration by parts; this is satisfied for all of our applications.

We will use the following result in each forward step of the proximal sampler. This is a
generalization of Vempala and Wibisono (2019, Lemma 16).

Lemma 12 Ler ( ,u;/X )i>0 be the law of the continuous-time Langevin diffusion with target distribution
71X, and define the dissipation functional D, x via the time derivative of ®_x along the diffusion:

X X i 1
/
Dox(pi ) = =0 ®rx () = Euf <V(¢ ° fo), Vlog 7r7X> .
If(pXQt)tZO and (7% Q1) >0 evolve according to the simultaneous heat flow,
1 1
Op* Q= 3 A(p™*Qy), Ot Qy = 3 A Qy),
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then

1
—— Dx0,(p™* Q1)

OPrxo, (P Q) = 5

Proof On one hand, we know that (;* )tzo satisfies the Fokker-Planck equation

11X
Gt,utx = div(,utXng W—tX)
so that
XN\ / :U*g( X _ / MtX X MiX
OPrx(pi)= [ ¢ (ﬁ) Opy = [ ¢ (ﬁ) le(Nt Vlog ﬁ)

X

_ —/<V[¢'('[7:t)()],V10g/7:§>uf.

On the other hand, writing p{* = pXQ; and ;¥ := 7XQ; for brevity, along the simultaneous
heat flow we compute

20,0,.x (o) _2/¢ LX ) (o1 —7@@ +2/¢"X ) Oy
Ly

L _ Pt X X

o' ( X le XV log pi¥) dlv( m; Vdogm)
iy

/¢ p—X div(r v1og7r§<)

T

:_/<V[¢ (Zt )] V log p; >p§(+/<v[¢/(7pr§()

t

—/<V[d>(7'it )] V log 7 > X

t

X

Pi X\ _X
—|,Viogm >7r
771:X] g t t

X

X X
= —/<V[¢/(7€§(H,Vlogizx>p§(+/<V%,Vlogwf(>¢'($() T

t
X X
P P
- (v Viogr) o (%) m
= =D x(p).

Remark 13 A similar statement holds if we replace the ¢-divergence ®, with any function ¢ o ®
of the ¢-divergence. This allows us to cover the Rényi divergence introduced in Section 2.
A.1.2. DOOB’S h-TRANSFORM

Doob’s h-transform is a useful method to analyze the properties of a diffusion process conditioned on
its value at some terminal time point. Consider a general diffusion process modeled by the stochastic
differential equation (SDE)

dZ, = b(t, Z,) dt + o(t, Z,) dW,,  Zo ~ o, (19)
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where (W}),, denotes a standard Wiener process. Assume that b(¢, z) and o (¢, z) are piecewise
continuous with respect to ¢ and Lipschitz continuous with respect to z so that the above SDE (19)
has a unique solution. The Doob h-transform characterizes the process conditional on its terminal
value Z7, summarized in the following lemma (Sérkkd and Solin, 2019).

Lemma 14 Let (Zt)ogth be the process (19) conditioned to satisfy Z1 = z. Then, the process
satisfies the following SDE backwards in time:

dZy = [b(t, Zs) — o(t, Z¢) o(t, Zy) " Viog ue(Zy)] dt + o (t, Zy) AWy,

where i is the marginal distribution of Zy in (19) and the SDE is started with ZT =z
Equivalently, if we define the SDE

~

dZ; = [-b(T —t,Z7 )+ o(T —t,Z; ) o(T —t, Z; )" Vlog ur_(Z;)| dt + o (T —t, Z; ) dW;,
(20)
started at Z; = z, then at time T' the law of Z. is the conditional distribution of Zy given Zp = z.

A.1.3. LEMMA ON THE SIMULTANEOUS BACKWARD HEAT FLOW

We present the following backward version of Lemma 12, which we use in each backward step of
the proximal sampler. We assume the same set up as in Lemma 12: Let ®(p) = E[¢(2)] be a
¢-divergence for some convex function ¢, i.e.

r(p) = Ex[6(2)]

T
and let

Da(p) = E,,<v(¢' o 2) Vlog §>

s

so that D is the dissipation of ¢, along the Langevin dynamics with target .

Lemma 15 Let 7% be a probability distribution and let 7(z,y) = 7% (x) N (y; z,nI) be a joint
density for (X,Y) with Y obtained from X by running the heat flow for time 1. Let ™ Y pe
the conditional distribution of X given Y under 7, and let ©¥ denote the marginal distribution
of Y. Then, for each t € [0,n)], there exists a channel (), that maps probability measures to
probability measures, with the following properties: (1) Qy is the identity channel; (2) Q,; maps
a probability measure p¥ to the the measure pYQ; () = [ oW (x| y) p¥ (dy); (3) for every t,
7Y Q; =7+ N(0,(n—t)I); and (4) for every pY,

_ 1 _
8tq)7rYQ; (pYQt ) = _5 Dﬂ_yQ; (prt ) .

The channel is obtained from the Doob h-transform. To give intuition for the construction,
consider the process dZ; = dB; started at Zy ~ 7%, i.e., Brownian motion initialized from 7.
Then, the joint target distribution 7 of the proximal sampler can be expressed as 7 = law(Z, Z,,),
and consequently XY =Y =law(Z, | Z, = y). If we define the time reversal Z, = Z,_;, then we
can also express this as 751V =Y = law(Z, | Z; = y); moreover, the reversed process (Z; )yc(o.)
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satisfies the SDE given in Lemma 14. Hence, we can take u@; = law(Z, | Z; ~ ) and use
calculus in order to prove the result.

Proof Let 7, == 7% % N'(0,tI). We define Q; as follows: given p¥, we set p¥ Q; to be the law at
time ¢ of the SDE

dZ; = Vlog TFn_t(Z;) dt + dWy, 2D

started at ZJ ~ pY. According to Lemma 14 applied to the Brownian motion process (started at
7X), the channels (Q; )0<t<n satisfy properties (1), (2), and (3). It remains to verify (4). In the
proof, we write ;= ¥ Q; and p; = p¥ Q; for brevity. Note that 7,,_; = 7, by construction,
and we have the Fokker-Planck equations:

1 1
Oy = —div(n; Vlegm, ) + 5 Am, = —5 Am,

_ L N 1.
Opy = —div(p; Viegnm, ) + 5 Ap; =div(p; Vlog Z_—t_) ~35 Ap; .
t

Hence,

2002, (p) = 2/¢’(Zt) (2uer - 7’;—{ o) + 2/¢(pt) oy
t t

T
_ /MZ—) (2iv(py V1og Z_) — Ap; + Zz_Aw;) - /¢(pt_) Ay
= 2/@5’(2_) div(pt_Vlog frz_)

- o) (an - Poam )+ [ o) an;

Ty

:—Dﬁ; (p; ) by Lemma 12

_ —2/<V[¢’(Z)],Vlog 7’:> pi +D,-(p7)

=-2D_(p; )+ D, (p;)=—D_(p;)-

A.1.4. GENERAL STRATEGY OF THE PROOFS

Suppose that we want to understand the change in the ¢-divergence ®,.x (pi*) after one iteration of
the proximal sampler, compared to the ¢ divergence ®_ x ( pé( ) at initialization. We split the analysis
into two steps.

1. Forward step: In the first step, we draw g | 2o ~ 7¥ X=%0 = N/ (zq, nI).
This creates a joint distribution po(z,y) = pi’ (z) N (y; z,nI) with the correct conditionals:

péle = 7YX Therefore, the ¢-divergence of the joint distribution is equal to the initial

¢-divergence of the X -marginal: ®,(pg) = ®,.x (pi).
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Consider the Y -marginal yo ~ pJ . Observe that p§ = p’ * N'(0,nI) is the output p} = p,,
of the heat flow 0;p; = %Aﬁt at time ¢ = 7 starting from jy = p; . We denote this by
Py = pif Qn, where (Q4):>0 denotes the heat semigroup.

Similarly, we can write the Y -marginal of the target as 77 = 7% * N'(0,nI) = ©% Q-
In particular, (p§ @), and (7% Q1) > evolve following the simultaneous heat flow.

By Lemma 12, along the simultaneous heat flow,

1
8tq)7rXQt(pé(Qt) =3 D xq, (PY Q)

where D.(-) denotes the dissipation functional for the ¢-divergence along the Langevin dy-
namics. Hence, a lower bound on D x ¢, (pX Q;) leads to an upper bound on

Dy (pg) - ®.x (pé() = (I)WXQn (pé(QU) — ®,x (pé() :

2. Backward step: In the second step, we draw x1 | yo ~ 1% Y'=yo,

This time, we consider the backward heat flow and apply Lemma 15, which yields the Doob
channels (Q; )ogtgn with p¥ = pg Q,, and X = WYQ; . Lemma 15 implies that

_ 1 _
8t@7rYQ; (p(iJ/Qt ) = D) DWYQ; (PE)/Qt )
Observe that this is almost symmetric with the forward step! In particular, a lower bound on

D_y Qr (pOYQt_ ) leads to an upper bound on
Cox (P ) = Par (p0) = Py (0 Q) — @y (7)) -
Combining the two steps allows to understand each iteration of the proximal sampler.

A.2. Convergence under strong log-concavity

Suppose that A is a set-valued mapping on R¢ which is strongly monotone, in the sense that
(A(x) = Aly),z —y) 2 afe—y|*  forallz,y € R7.

Suppose that 2’ € x — nA(z') and ¢’ € y — nA(y'). Then, by expanding out the square, one can

easily show that ||a" — ¢/||? < a +Ln)2 |z — y||?. In particular, by applying this to the subdifferential

A = 0f, where f is a-strongly convex, one immediately obtains the fact that the proximal point
algorithm is a ﬁ—comraction. In this section, we translate this proof to the sampling setting.

Recall from (10) that 7=y = prox, p(dy), where F' = H,_x is a-geodesically strongly
strongly convex (Ambrosio et al., 2008, Equation 10.1.8). Then, from the first-order optimality

conditions on Wasserstein space (see Ambrosio et al., 2008, Lemma 10.1.2), we have

_ 1 _
0 dF(@ =Yy 4+ = (id—y), oV Vas, (22)
n
where OF denotes the Wasserstein subdifferential of F'.
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Proof [Proof of Theorem 1] First, let y, iy € R?. Then, from (22):

id € y — nOF (xX1V=v) aXY=v_as. (23)
id € j — nF (xXIV=7) X V=0_g. (24)

Let 7" be the optimal transport map from 7% Y=Y to X Y=U_We can rewrite (24) as
Tejg—noF@V=0)or,  aXV=v4s. (25)

We now abuse notation and write dF (7X|Y=Y) for an element of the subdifferential. Then,
using (23) and (25), 7X¥=Y-as.,
IT —id|]* = |7 = yl* = 20 (OF (X" =0) o T — OF (xXIV=%), T —id)
— 0 |OF (rX1Y=0) o T — 9F (rX1V=0) |12

Integrating with respect to 7% Y=y and using the geodesic strong convexity of F' (Ambrosio et al.,
2008, Equation 10.1.8),

W22(7TX\Y:y, 7TX|Y:Q) < Hy - 37”2 — 2am W22(7TX|Y:y, 71_X|Y:g) o a2772 Wg(ﬂX\Y:y’ 7TX|Y:17) _

Therefore,

2 XY=y XY=y o L . 9
W2 (7T y T ) S (1 +C¥7])2 Hy y” .

The rest of the argument is concluded as in Lee et al. (2021b, Lemma 2). We provide the details
here for completeness. First, along the proximal sampler, we have Wa(pd , o ) < Wa(pis, pg)
because the heat flow is a Wasserstein contraction (see Section A.1.4 for the notation). Next, let ~y
denote an optimal coupling of p{ and p} , and for all y, y € R? let y,5 denote an optimal coupling
of mXIY=Y and 7X1Y=¥, We check that the measure ¥(dz, d%) := v(dy, dj) v, 5(dz, dT) is a valid
coupling of py* and p;¥. To check that, for instance, the first marginal of 4 is p;\, we take a bounded
measurable function ) : R — R and calculate

(@) 4(da, dz) (@) 1(dy, dy) vyg(dz, d7) (@) y(dy, dy) mX V=Y (dx)
 wiarstas.da) = [ vio //
— [[ v@) ¥ (@) =10 = [ wia) i),

and similarly the second marginal of 4 is p5*. Therefore,
Wit ) < [lla =2l s(de.do) = [ [lle = a2 (dy.di) 50, do)
= [ W= 2= 5 by, dy)
o [y =0l ol dg) = s WE Y 3.
(14 an)

which completes the proof. |
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A.3. Convergence under log-concavity

For a probability distribution p with smooth relative density g, the Fisher information of p with
respect to 7 is

st = o[t =[5 |02

Recall that Fisher information is the dissipation of KL divergence along the Langevin dynamics.

Proof [Proof of Theorem 2] We follow the strategy and notation of Section A.1.4.

1. Forward step: By log-concavity of 7X@, (since log-concavity is preserved by convolu-
tion (Saumard and Wellner, 2014)), the convexity of H x g, along Wasserstein geodesics (Am-
brosio et al., 2008, Theorem 9.4.11) yields the inequality

0_ WXQt( XQt)

p() gt (Xt) Y% _Xt>

> Hoxq, (00 Q) + E(x, viy~opT(0¥ @1, erQt)WlOg

where OPT(+, -) is used to denote the optimal transport plan. Hence,

£o Qt

E XQt[HVIOg H | W3 (p Qe m¥ Q) > XQt(pé(Qtf‘ 27

:J7rX(;)z (Pé(Qt)

So, by Lemma 12 and (27),

2
1 1 Hoxg,(py Q1)
a H X R J X < = T Q¢ .
t WXQt(Po Q1) B ﬂXQt(Po Q) < 9 W;(péth,WXQt)
Also, observe that t +— Wf(pé( Qp, ¥ Q:) is decreasing because the heat flow is a Wy
contraction (which can be proven directly quite easily). Solving this differential inequality
yields

1 1 1 0
> + .
Hey(py)  Hexq (05 Qq) — Hex(pg)  2W3 (g, m%)

2. Backward step: By Lemma 15 and (27),

Y ~—1\2
v 1 1 HWYQ;(/OO Qt)
oH vQ; (Po Q; ) = 9 WYQ (’00 Qr )< 2 Wg(ngt_aﬂyQt_) .

By (20), the channels (Q; ), can be modeled by the diffusion

dZt =V IOg Wn—t(Zt) dt + th

Since log m,,_; is concave, with a standard coupling argument, one can show that ¢ +
Wg(pOYQt_ , WYQ; ) is decreasing. Hence,

W2<p[1)/Qt_77TYQt_) < WQ(P%/QEJTYQ(T) = Wz(pg7ﬂ-y) < WQ(Pé(v X) .
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Therefore, we deduce that

1 1 1 n

— > + .
Hox () Hovo-(ph Q) — Hev(py)  2WE(pgm)

Finally, we iterate this inequality and recall that W3 (pi, 7%) < W (p{, nX) forall k € N
(see Theorem 1 for o = 0). It quickly yields

1 S 1 n kn
H.x(py) — Hyx(pf)  Wi(pg',mX)
or
H X(P}?) < HWX(pg() W22(p()](77TX) )
" T L knHex (p)/W3pg s m*) = kn

The above proof can be compared to the O(1/t) convergence of the objective gap for the gradient
flow ¢ — x; of a convex function f : R? — R, which follows from differentiating the Lyapunov
function t — 2t {f(z;) — f(2*)} + ||@¢ — 2*||%, where 2* = arg min f.

A.4. Convergence under LSI

We recall the following definitions. For a probability distribution p with smooth relative density 2,
the Rényi information of p with respect to 7 of order ¢ > 1 is

E-[(3)* " |VE]’]

JQJr(p) =q EW[(%)Q]

Note that J; »(p) = J=(p), where J is the Fisher information (26). Recall that by definition, 7
satisfies a-LSI if for all p, J(p) > 2aH(p). One can show this also implies for all ¢ > 1:

2
Tyr(p) > ;O‘ Ryx(p), 28)

see for example Vempala and Wibisono (2019, Lemma 5). Just as Fisher information is the dissipation
of KL divergence along the Langevin dynamics, Rényi information is the dissipation of Rényi
divergence along the Langevin dynamics.

Proof [Proof of Theorem 3] We will prove the following one-step improvement lemma for Rényi
divergence of order ¢ > 1: For any initial distribution pg( , after one iteration of the proximal sampler
with step size 17 > 0, the resulting distribution py‘ satisfies

Rq,ﬂ'X (:05()

R, x(p¥) < —am 0
o (1) (1+ an)?/1

(29)

Iterating this lemma for k iterations yields the desired convergence rate in the theorem. The result
for KL divergence is the special case ¢ = 1.
We follow the strategy and notation of Section A.1.4.
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1. Forward step: By Lemma 12, along the simultaneous heat flow,

1 «
ath,ﬂ'XQt (pg(Qt) = JquXQt (pé(Qt) < _j Rq,ﬂ'th (p())(Qt)

2

where by (28), the last inequality holds if 7% Q; is ay-LSL Since 7X satisfies a-LSI by
assumption, recall that 7% Q; = 7 x N(0, ¢I) satisfies c,-LSI with a; = (£ +1) 7! = 2.
Integrating, we get

RquXQt (pé(Qt) < eXp(_At) RquX (pOX)

where A; = % fg asds = % fot Tias ds = élog(l + at). Therefore, after the forward step,

Rq,TrX (p(‘;()

R, v(p¥) =R, .xo (p¥Q,) < —2m L0
q, ( 0) q, Qn( 0 Tl) (1+O”7)1/q

2. Backward step: By Lemma 15, along the simultaneous backwards heat flow,

Oyn—t

_ 1 _ _
ath,ﬂ'YQ; (pé/Qt ) = _5 Jq,ﬂ—yQ; (p%)/Qt ) S - RquYQ; (pOYQt )

where the last inequality holds since 7¥ Q; = 7« N(0, (n — t)I) is a,—¢-LSI. Therefore, just
as in the forward step, integration yields

Rq,wy (pOY)

XN Y h—
Rq,TrX (101 ) - RqﬂrYQ,; (p() Qn) < (1 + Oé’f])l/q :

Combining the two steps above yields the desired contraction rate in (29).

A.5. Convergence under PI

The dissipation of the chi-squared divergence along the Langevin dynamics is
2
val )
7r

Proof [Proof of Theorem 4] We follow the strategy and notation of Section A.1.4.

T n(p) i= QEW[

1. Forward step: Along the simultaneous heat flow, Lemma 12 yields

1
Oxaxq, (00 Q) = =5 Jx2.mxq, (PG Q1)

1
Jq,ﬂ*XQt (pOXQt) :

8th,TrX Q: (105( Qt) = - 5

_a

Since ¥ satisfies a-PI, then 7% Q; satisfies ay-PI with oy = Trai-

Applying this yields

1
JXQ,WXQt (PS(Qt) < —oy Xith (Pé{Qt)

Bix2x g, (Ph Qr) = —5
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and therefore

2 ) =2 (0K, < Xax(0)
Xry Po)—XﬂxQn(Po V=1 Y an
upon integration.

Next, from Vempala and Wibisono (2019, Lemma 17), a;-PI implies

1 2ce
athJrXQt (pé(Qt) = _5 Jq,ﬂXQt (pé(Qt) < _Tt {1 - exp(_RquXQt (pg(Qt))} :

We split into two cases. If R x (p) > 1, then as long as quth(pé(Qt) > 1 we can use
the inequality 1 — exp(—x) > % for z > 1, so that

Qg
OR, »xq, (P Qi) < e

Integrating, we obtain

log(1
og( +an))v1.
q

In the second case, if R, x (py’) < 1, then we use 1 — exp(—z) > % for z € [0, 1] to obtain

o
ORy xx0, (Pé(Qt) < —j Ry x0, (péth) .

Rq,ﬂy (p(})/) = Rq,TrXQn (pé(QT]) < (Rq,ﬂ'X (:08() -

Integrating,

Rq,TrX (pé()

Rﬂ”YpY :RTI' pXQ Si
q, ( 0) q, XQn( 0 Tl) (1+O”7)1/q

. Backward step: Along the simultaneous backwards heat equation, Lemma 15 yields

— 1 -~
8tX72TYQ; (pOYQt )= 5 JX277TYQ; (pOYQt ),
_ 1 -~

Using entirely analogous arguments as in the forward step, we obtain

2 X\ .2 Y e <X721-Y(p%)/)
Xorx (p1) = XWYQ;(pO Qn) > W

for the chi-squared divergence,

_ log(1+ an
Ry (0F) = Ry (@) < (Ryr (08) = PELEAD) vy

for the Rényi divergence if R, v (py) >1,and

Rq,wy (pg)/>

Xy _ Y - -
Rq,ﬂ'X(pl ) - qu-YQ;(pO Qn) S (1 +an)1/q

if Ry v (p)) < 1.
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A.6. Convergence under LOI

Before giving the convergence proof under LOI, we recall the following property of the behavior of
LOI under convolution.

Lemma 16 Suppose that p satisfies (r, g )-LOI and iy satisfies (r, a1 )-LOL Then, o+ satisfies
(r, (g +a;h)~h-LOL

Proof Let Xg ~ pg and X7 ~ p; be independent. Then, we can write
vary uosum (V) = E[@ (P (Xo + X1))] — P(E[¢P(Xo + X1)])

where ®(z) = 22/P_ One can then deduce the conclusion of the lemma easily from the subadditivity
of the ®-entropy (Boucheron et al., 2013, Theorem 14.1). |

Proof [Proof of Theorem 5] We follow the strategy and notation of Section A.1.4.

1. Forward step: Along the simultaneous heat flow, Lemma 12 yields

1
OR, =xq, (P Qi) = 3 JgxXQ, (P Q) -

Since ¥ satisfies (r, a)-LOI and N (0,¢I) satisfies (r’,¢~1)-LOI for any ' € [1,2] (see
Latata and Oleszkiewicz, 2000, Corollary 1), then by Lemma 16, 7% Q; satisfies (r, a;)-LOI
with oy = ﬁ

Next, from Chewi et al. (2021a, Theorem 2), (7, i )-LOI implies

1
Ry rxq, (Pé(Qt) Y JgnXQ, (PS(Qt)
2—2/r
o Ry, (08Q0)" . Rynxg (@) 21,
B 136(] RQJTXQt (pé(Qt)7 Rq,WXQt (pé(Qt) S 1.

We split into two cases. If R, x (pg’) > 1, then as long as R, . x ¢, (ny Q¢) > 1,

2/r—1 2 MR, x0, Py Q) a2
2 RQJFXQt('Og(Qt) / = (; - 1) = Q)i— . 2-2/r < _13é (; - 1)
Rq,ﬂXQt (PO Qt) q

and therefore

2/r—1
Rq,wY (POY) /

2/r—1
= Rq,ﬂ'XQn (pg(Qﬂ)

2/r—1  (2/r —1)log(1 + an)
< (R (03)"" " - 0 Jvi.

In the second case, if R, . x (pX) < 1, then

t

X o X
6th,7TXQt (pO Qt) < _@ Rq,ﬂ'XQt (pO Qt) .

Integrating,

Rq,TrX (pé()
(1 + Oé'l’])l/(136q) :

Rq,ﬂ'y (p())/) = Rq,wXQn (pOXQn) <
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2. Backward step: Along the simultaneous backwards heat equation, Lemma 15 yields

_ 1 -
athJrYQ; (p%)/Qt ) = _5 JquYQ; (,Oé/Qt ) .

Using entirely analogous arguments as in the forward step, we obtain

2/r—1 _\2/r—1
Rq,wx (p{() = RqﬂrYQ:, (pOYQW)
r— 2/r —1)log(1 + an)
< yy2/r—1 ( 1
if R, v (py ) >1,and
Rq,T(Y (Pg)

XN Y n—
R, x ()= Rq,nYQ; (Po Qn) < (1+ Om)l/(136q)

if R, v (py) < 1.

A.7. The proximal sampler as an entropy-regularized Wasserstein gradient flow
Proof [Proof of Theorem 10] Plugging (13) into (14) yields pZ = ~Y with v being the solution to

min { [ 57 le = sl ar(a) + B}

~vEP(RExR?)
X =p

which is clearly v(z, y) o pf () exp(—% |z — y||?). Thus, pl =~Y = pX « N'(0,71).
Similarly, plugging (13) into (15) yields ka+1 = vX with ~y being the solution to

: 1 2

+ — d 5 +H ’

min {15+ g e -yl drte) + HO)
v =p}

which is clearly v(x,y) o pf (y)exp(—f(z) — ﬁ |z — y||?). Thus, piﬂrl is induced by the

X|Y<

conditional 7" (x | y) ocg exp(—f(x) — ﬁ |2 — y||?) from marginal distribution Y ~ pY. W

A.8. The proximal point method as a limit of the proximal sampler

Proof [Proof of Theorem 11] With a general ¢, following similar argument as in Section A.7, we can
show that the updates (16)—(17) correspond to the sampling algorithm

Y o~ KT = N (g, enl) (30a)

- 1 1
Tpgpr ~ TRV exp[—g (f(z) + % |z — kaQ)} . (30b)
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As € N\, 0, we see that (30a) converges to y; = xj, whereas (30b) converges to the proximal
mapping zx41 = argmingcpa{f(z) + % lz — yk/*}. Combining the two gives exactly the
proximal point update w41 = prox, ;(zx). In addition, the invariant distribution of this algorithm is
71X o exp(—f /), which converges to a Dirac distribution concentrating on the minimizer of f (or a

uniform distribution over the minimizer set of f). |

It turns out that under some assumptions, the convergence rate of the updates (30) is independent
of the entropy regularization level e. We state and prove the result below for KL divergence only, but
the result also holds for Rényi divergence and y2-divergence.

Theorem 17 When f is a-strongly convex, the updates of the generalized proximal sampler algo-
rithm converge to the stationary distribution X o exp(— f /€) with rate

1
- Hox(p) - (31)

Hﬂ'g( (pf) < (1+ an)

Proof The forward step (30a) can be modeled by the scaled diffusion
€
Opt = 5 Apy (32)

over the time interval [0, 77]. Let (Q§),~ denote the heat semigroup corresponding to (32). It follows
from Lemma 12 that -

OrHox g (0 QF) = —5 Jrxge (0 QF) - (33)

€
2
Apparently, 7XQ§ = 7 x N'(0, etI). Thus, 7% Q satisfies a;-LSI with

1 «

- - 34
ft+et e(l+at)’ (4

ay

where in the above we have used the fact that exp(—f/¢) satisfies ¢-LSI when f is a-strongly
convex. Plugging (34) into (33) yields

OiH x5 (93 Q) < —av Hox e (03 Q5) - (39)

Thus, as before,

H.x(py ). (36)

The contraction rate in the backward direction is the same and the proof is similar to that of Theorem 3.
This completes the proof. n

Theorem 17 is true as long as exp(— f/¢) satisfies («/€)-LSI. The latter is ensured when f is
a-strongly convex; we ask whether it remains true under a weaker condition on f (such as «-PL).
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Appendix B. Optimization proofs inspired by the proximal sampler
B.1. Alternative proof of the contractivity of the proximal map

The following theorem is well-known in optimization.

Theorem 18 Let f : R? — R be a-strongly convex and differentiable. Then, the proximal mapping

. 1
prox, s (y) i= argmin { /() + 5 l}o = yl|*}
z€RY n

. 1 .
sa Ttan -contraction.

Here, we give a new proof of the theorem which translates the convergence proof of the proximal
sampler in Lee et al. (2021b) to optimization.
We recall that a-strong convexity implies the a-PL inequality (or gradient domination inequality)

IVf()|? > 2a{f(z) —min f}  forall z € R?,
which in turn implies the a-quadratic growth inequality
f(x)—minf2%||x—aj*||2 forall z € R,

with z* = arg min f, see Otto and Villani (2000); Blanchet and Bolte (2018).
Proof [Proof of Theorem 18] Let f,(2) := f(z) + ﬁ |z — =

2, and define f,, similarly. Then,
' = prox, ((z) = argmin f, ,
y' = prox, (y) = argmin f, .

Since f; is (a + %)—strongly convex, then by applying the quadratic growth and PL inequalities,

2 1

/ 1112 / 7 ’ 2
2" —y||* < Py {f2(y) = fa(a)} < EESYL IV £l
1 / 1 / 2
:mHVf(y)Jrﬁ(y—ﬂf)H
—# _l ! _ 1 /_x 2:¥ Tz — 2
(a+1/n)’ | gV el L (14 an)® Iz =l

where the last line uses the optimality condition V f (y') + % (y' —y) = 0 from the definition of 3. W

By comparing with the proof of Lee et al. (2021b, Lemma 2), we see that f, is analogous to
H_x|y-, for the proximal sampler.

At first glance, it may appear that the proof above only requires a PL inequality, and not strong
convexity. However, this is not the case, as it in fact requires that f satisfies (o + 1/1)-PL, which
does not follow from (for example) the assumption that f satisfies a-PL.
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B.2. Optimal contraction factor for the proximal point method under PL

Our proof uses the Hopf-Lax semigroup, guided by the following intuition. There is an analogy
between the standard algebra (4, x ) and the tropical algebra (inf, +); see, e.g., Baccelli et al. (1992,
Section 9.4) or Ambrosio et al. (2021, Lecture 16). The following table describes these analogies.

(+, x) (inf, +)
convolution inf-convolution
Fourier transform convex conjugate
diffusion gradient flow
heat equation =~ Hamilton—Jacobi equation
heat semigroup Hopf-Lax semigroup

As described in Section A.1.4, our proofs for the proximal sampler involve computing the time deriva-
tiveof t = H, x(), (P Q1) where (7% Qt) >0 (P Q1) 4> are simultaneously evolving according to
the heat flow. In what follows, we will consider the time derivative of ¢ — fi(x), where f; is the
Moreau envelope of f.

Proof [Proof of Theorem 9] Let us define, for ¢t > 0,
1 .
Jta(2) = f(2) + % |z — z||?, xy = argmin f; ;. (37)
Then x; = prox,¢(z) and x + f; .(z¢) is the Moreau envelope of f. Recall the optimality condition
1
Vf(l’t) + E (l’t - l‘) =0.

The Moreau envelope satisfies the Hamilton—Jacobi equation

. 1
Ocfea(zt) = (Vfra(zt), d0) — 55 lloe — z?.
N——
=0
Using the PL inequality,
a 1
0 = — 2 - 2
' fro (1) 2 (1 + at) lze = =l” = 5 1+ at) lze = =]
@ 2 1 2
R — — -V
_ a _ 2 « _rx
< s rag P T U0 = 1)
which yields

Ol fralee) = I} <~ {fealw) = 1)

1+
Integrating this yields*

ralan) = 1 < @) = Pye(= [T ar) = 1 @) - 7).

4. Denote by (Q?L)QO the Hopf-Lax semigroup defined by Q'™ f () = fi..(2+). One can check that Q' f(z*) =
f(z*) where z* = arg min f. So, we can rewrite this inequality as Qf " f () —Qf'" f(z*) < (ITI(N}) {f(z)—f(z")}.
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Hence,

1
14+ an

@) = £} = 1) = £+ 5o ! —alf = 1) = 1+ F ISP
> f() = [+ an{f@) - [ = (1+an) (@) - [}

This completes the proof.
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