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Abstract

Time series smoothing is essential for time series analysis and forecasting. It helps to
identify trends and patterns of time series. However, the presence of irregular pertur-
bations disrupt the time series smoothness and distort information. The goal of time
series smoothing is to remove these perturbations while preserving as much information
as possible. Existing smoothing algorithms have complete freedom to make corrections
to the data points which often over smooth the time series and lose information. None
of them considers constraining data corrections to the best of our knowledge. Moreover,
most existing methods either do not smooth in real-time or their parameters need to be
hand-tuned in different scenarios. To improve smoothing performance while considering
data correction constraints, we propose a Constrained reinforcement learning-based Time
Series Smoothing method, or CTS2. Specifically, we first formulate the smoothing problem
as a Constrained Markov Decision Process (CMDP). We then incorporate data correction
constraints to restrict the amount of correction at each point. Finally, we learn a policy
network with a linear projection layer to smooth the time series. The linear projection
layer ensures that all data corrections satisfy the data correction constraints. We evaluate
CTS? on both synthetic and real-world time series datasets; our results show that CTS?
successfully smooths time series in real-time, satisfies all the correction constraints, and
works efficiently in a variety of scenarios.

Keywords: Multivariate time series, Smoothing, Constraint, Deep reinforcement learning

1. Introduction

A time series is a sequence of discrete-time data points indexed temporally. It is a common
data type with increasing applications. For example, the MEMS gyroscope and accelerom-
eter data are widely used in smartphones to monitor human activity Lu and Liu (2015); Qu
et al. (2015) and direct video stabilization Hu et al. (2020). Moreover, ECG Muhammad
et al. (2020) and speech signal Lu et al. (2017) are essential indicators for human health and
the stock curves exhibit the main trend of the financial market Islam and Nguyen (2020).
The time series contains trend information, which can be used to forecast the following
data points. However, this trend information may be distorted due to data perturbations
which are unavoidable in data collection. For example, the environmental noise caused
by temperature or humidity affects the time series generated by sensors. In time series
forecasting, the presence of perturbations can harm predictions Cheng et al. (2021).

© 2021 Y. Liu & X. Liu.
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Figure 1: Gyroscope time series demonstration

Time series smoothing is to reduce or eliminate the effect of these perturbations, while
preserving as much information as possible and thus allowing important trends and pat-
terns to stand out Liu et al. (2018). Currently, the main direction for achieving smooth
time series is to design an algorithm that corrects data perturbations, such as low-pass
filters Wesseling (1991) and polynomial fitting Savitzky and Golay (1964) methods. These
traditional methods are effective in some circumstances Katris (2021), but have limitations.

First, none of the methods considers data correction constraints while smoothing the
time series. Those methods usually have complete freedom to make changes to the data
points in time series. However, such unconstrained smoothing methods can potentially over
smooth the time series and lose information. A motivating example shows in Fig. 1. The
original time series comes from one dimension of a gyroscope. The data shows obvious
periodicity and the peak areas may contain important information, e.g. go upstairs. If the
time series is overly smoothed, it could remain the global trending information but it would
omit the local peak information. Losing such local features can be problematic to certain
applications, e.g. inaccurate step count in the above example. In medical applications for
diagnosis, losing such information can result in erroneous diagnoses. In video stabilization
application Huang and Onnela (2020), over smoothed video frames can out of capture
screen. To address this issue, we involve predefined constraints, which could derive from
domain knowledge, to restrict the amount of correction allowed at each data point.

Second, these methods usually require many hyperparameters and careful manual tuning
in different scenarios. For example, in polynomial fitting methods Savitzky and Golay
(1964), a higher-order fitting will over smooth the data, while a lower order fitting will under
smooth the data. In addition, hyperparameters cannot be reused in different scenarios,
necessitating hyperparameter re-tuning if scenarios change.

Last, most algorithms (e.g. low-pass filter Wesseling (1991)) are used for post-processing
and cannot output the smooth time series in real-time. For example, in video camera
applications which is widely used in mobile phones, it is often desirable to store the processed
video in real time, instead of doing post video processing because of storage limitations.

To address the limitations, we study time series smoothing with correct constraints.
Furthermore, we aim to handle the problem in real time and without hand tuned hyperpa-
rameters in different scenarios. Specifically, we first formulate the problem as a Constrained
Markov Decision Process (CMDP) by setting appropriate states, actions and rewards. We
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process the time series with a fixed-size sliding window. In our formulation, states are the
data points in the current window, actions represent how to correct the data, and rewards
are defined as the smoothness of the current window. Second, we incorporate data cor-
rection constraints to ensure that corrected data points are not too far from their original
counterparts. Third, we design a reinforcement learning (RL) policy network with a linear
projection layer to re-target the data points. The layer projects all infeasible actions to the
feasible space, ensuring that the aforementioned constraints are never violated.
In summary, our contributions are as follows:

e We propose CTS?, an RL algorithm to smooth multivariate time series. To the best
of our knowledge, our work is the first to consider constraints in time series smoothing
and it is easy to integrate with existing RL. methods.

e Our work smooths the time series with a very short delay. It is fair to say CTS? can
achieve real-time smoothing after the policy learning.

e The parameters of CTS? can easily be reused in new scenarios and it reduces efforts
needed to fine-tune the parameters manually.

e We conduct extensive experiments to compare CTS? with traditional methods on
both synthetic and real-world datasets. CTS? outperforms the baselines with zero
constraint violations and achieves similar smoothness.

2. Related work

2.1. Time Series Smoothing

Many smoothing methods exist, such as moving average methods Singh et al. (2013), expo-
nential smoothing methods Kammeyer and Kroschel (1998), Savitzky—Golay filters Savitzky
and Golay (1964) and Fourier filters Wesseling (1991).

Moving Average: Moving average methods generate a series of averages by taking the
mean of values in the time series within a sliding window. Taking these averages makes the
time series smoother and can even extract certain information contained in the time series.

Formally, assuming we have a time series O1, 09, Os, ....., Oy, we compute D; from the
average of last kth elements: Dy = Ot‘k+ot‘£+1+”'+ot, where k is a smoothing parameter.

Exponential Smoothing: In the moving average methods above, we assign equal
weight to each point in the average. Exponential smoothing, on the other hand, assigns ex-
ponentially decreasing weights to past data points; in other words, recent points are weighted
more heavily than older data points. Intuitively, exponential smoothing attempts to ac-
knowledge older information while prioritizing more recent data. Exponential smoothing
derives new points with previous data recursively: Dy = O1, Dy = axOy+(1—a)xDy_1,i > 1,
where a € [0,1] is a discount parameter, O, is the original time series point and D, is a
point of the smoothed time series.

Savitzky—Golay (SG) Filter: The SG filter is a classic data smoothing method
based on local least-squares polynomial approximation. It fits a polynomial to a set of
input data points and then evaluates the resulting polynomial at a single point within the
approximation interval. The SG filter has no convergence issues and maintains the shape
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of the time series better. Because of its performance benefits, SG filters are widely applied
for time series smoothing.

Fourier Filter: Fourier filtering methods (low-pass filtering), are based on the Fourier
transform. By translating a time series from the time domain into the frequency domain
and suppressing the high-frequency components, Fourier filters achieve a smoothing effect.
The performance of the filter is dependent on the cut-off frequency, a hyperparameter.

2.2. Constrained Reinforcement Learning

In our work, we consider an RL problem with instantaneous action constraints Liu et al.
(2021b, 2020b), which require the action to satisfy a condition in each time step. One
approach to handle instantaneous constraints is to project the actions in each step to the
feasible space. Optlayer Pham et al. (2018) is proposed to restrict actions for robotics
running in the real world. It projects the infeasible output of the actor-network to a feasible
action by adding a new layer after the actor-network. This new layer aims to find the
closest feasible action that satisfies all constraints in Lo distance. In Bhatia et al. (2019),
the authors propose approximate linear projected approaches that aim to satisfy resource
allocation constraints. A similar idea is applied in Liu et al. (2020a, 2021a). The only
different is that some constraints can not be explicitly checked due to the complexity of
the system. To handle these unknown instantaneous constraints, they train another neural
network in advance to predict their values; the constraints can then be easily checked.

3. Preliminary
3.1. Constrained Markov Decision Process (CMDP)

CMDP is an extension of Markov Decision Processes (MDP) by adding a cost function.
CMDPs are represented by a tuple (S, A, R, P, u,~, C') Sutton and Barto (2018), where S
is the set of states, A is the set of actions, R : S x A x § — R is the reward function,
C: S5 xAx S8~ Cis the cost function. The cost function defines an instantaneous
constraint on the actions c(s,a) < e. If a € A satisfies all constraints, a is feasible.

Furthermore, P : Sx Ax S ~ [0,1] is the transition probability function, where P(s|s, a)
is the transition probability from state s to state s upon taking action a, p : S +— [0,1]
is the initial state distribution and + is the discount factor for future reward. A policy
m: S +— P(A) is a mapping from states to a probability distribution over actions and 7 (a|s)
is the probability of taking action a in state s. We write a policy 7 as my to emphasize its
dependence on the parameter 6 (e.g., a neural network policy with parameter ).

For a CMDP, the goal is to find a policy my which maximizes the discounted cumulative
reward while satisfying all constraints. Formally, the objective is

oo
mélx J;;G = ]E’TN’]TQ [Z "th(St,at, St+1)]’ (1)
t=0

sit. ci(sg,ap) < e, Vi € [K]|,

where ¢€; is the limit for each constraint, 7 = (sg, ag, s1,a1...) denotes a trajectory, and
T ~ T means that the trajectories are sampled from the policy 7.
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For a trajectory starting from state s, the value function of state s is V3°(s). The
action-value function of state s and action a is Q7 (s, a) and the advantage function is

A (s,a) = QF (s,a) — VEo(s). (2)

3.2. Policy Gradient Methods

Policy gradient Sutton et al. (2000) methods are applied to find an optimal policy of an un-
constrained MDP problem. These methods involve calculating the gradient of the objective
in Eq. (1), vJ™ = E¢[vglogmg(ai|st)As], where 7y is the current policy under parameter
0 and A; is the advantage function (Eq. (2)) at time step ¢. Thereafter, 6 is updated as
0 =0+ n<7 J™, where 1 is the learning rate.

Trust Region Policy Optimization (TRPO) Schulman et al. (2015) is an advanced policy
gradient method that was proposed to achieve monotonic improvement of the new policy
based on the results of the previous policy. The objective is approximated with a surrogate
function combined with the Kullback Leibler (KL) divergence Kullback and Leibler (1951):

71'9(@,5|St)
7T001d(at|3t)At]7 (3)
s.t. EiKL[mg,,, (at|st), mo(ar|s)]] <6,

max LTRPO () = ]

where ¢ is the step size limitation.

4. Multivariate Time Series Smoothing Formulation

We formulate a time series O = ( i, é, ..., 0% ...) as n-dimensional time-aligned data,
where i represents the data dimension and t is the time index. When a time series O is
collected over time, imperfections in the data collection process lead to random perturba-
tions in the resultant time series; we aim to reduce these perturbations in the original time
series O and output a smoother time series D = ( Zi, %, .., D, ...). Moreover, the data
correction should satisfy certain constraints that we will describe later.

For clarity, consider the toy example of a one-dimensional time series with nine-time slot
points, as seen in Fig. 2. The red curve is the original time series with perturbations and the
green one is the smooth output. Our algorithm translates the original red points, O, to the
green ones, D, and makes the curves as smooth as possible. We quantify the smoothness of
a curve by the sum of all angles constructed by any three continuous points. anm le,
D4D3-D4Ds )
D4Ds||DaDs|

With this definition, we can say that the time series is smoother when the sum is high and
vice versa. The sum of angles is a representative metric to quantify the smoothness of time
series in the literature Froeb and Koyak (1994). Our algorithm is not limited to the metric.
Different metrics are evaluated in the Sec. 6.2.

In addition to smoothing the time series curves, the data correction process has to satisfy
the following linear constraints:

in Fig. 2, the angle for the three continuous points D3, D4, D5 is o = arccos(

e The correction for any dimension of any point cannot exceed a limitation:

D} = Of] < €. (4)
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Figure 2: Mapping Time Series Smoothing to CMDP

e The weighted multi-dimensional correction for any point cannot exceed a limitation
across all dimensions:

n
> wilDj = 0} < ea. (5)
i=1
where €} and ey are limitations and w; is the weight, they are predefined depending
on the need or domain knowledge.

The intent is to ensure that the correction does not modify the original data too much, and
thus preserve as much original information as possible.

4.1. Mapping to CMDP

In order to map the time series smoothing problem to a CMDP, we process the time series
with a fixed window size W, which needs to be greater than two. The window starts from
the first point and shifts one point in the next time slot. We have the following definition,
as demonstrated in Fig. 2, e.g. W = 5:

e State: Assuming that the current time slot is ¢, the state si for each dimension is
si = (Dj_y, Dj_1,0},0},4,...,0;,y_5). For all dimensions, we concatenate all the
state vectors together, thus state s; = (s}, 57, ..., s%). The fist two points (D _,, Di ;)
are the corrected points from past two time slots which cannot be changed, the middle
point O} is the current original data point which we are dealing with and the last W —3
points (Oiﬂ, - O§+W_3) are future data points, which means CTS? needs W —3 time
slot delay to output the smooth point. In each time slot, CTS? can get the corrected

point D} for the current time ¢. When ¢ < 2, D} = O, D} = O4,.

e Action: The policy action al is defined as the correction amount on the current time
point Of. For all dimensions, we concatenate all the corrections together. Thus we
have the action a; = (a},a?,...,a?). Given an the action @} from a policy, we can
compute the smoothed point as D! = O} + a.

e Reward: The reward function at a time ¢ is defined as the angle constructed by the first
—

three continuous points D! _,, D! |, Di. We derive it through the vector D! ;D! , and

D;_ Dy, where Dj is the current corrected data point getting from Dj = O; + aj. For
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all dimensions, the reward is the sum of all angles. The intuition is that the corrected
data points D! ,, D! |, Di are smoother if the reward is larger. The smoothness of
the entire time series is calculated with the total reward accumulated with time, which
is also the objective of the policy (Eq. 1).

Besides obtaining a smooth time series by maximizing the cumulative reward expecta-
tion, the actions have to satisfy the instantaneous constraints that are listed above (Eq. 4
and 5). Next, we discuss how to learn the constrained policy.

5. CTS?: Time Series Smoothing with Constraints

We base our algorithm on TRPO (Eq. 3) to learn a policy that maximizes the cumulative
reward. The policy 7y takes a state s; as input and outputs an action a; = my(s¢). TRPO,
however, is unable to handle the constraints alone.

In order to handle the linear constraints (Eq. 4 and 5), we further extend our policy by
adding an additional, linear projection layer after the original policy network my. In each
step, if the output of the original unrestricted policy my(s) violates the constraints, this
linear projection layer projects this action a; = my(s) to a new, feasible action a;. The role
of the linear projection layer is to find a positive scalar A that scales an action to respect
the constraints. The new action is then a; = Aa;. Formally, we have

arg max Ao(s),

st |hal <€,

" .
Zwi\)\aﬂ < €.
i=1

The network structure is shown in Fig 3 and the pseudo-code is shown in Algorithm 1.

(6)

5.1. Computation Complexity and Practical Implementation

The typical way to address instantaneous constraints is to find the closest Lo projection
by solving the following Quadratic Programming (QP) problem Pham et al. (2018):

N e 2
min 5 @ — o(s)| -

s.t. a is feasible
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Algorithm 1 Policy learning of CTS?

Input: Initialize policy m with parameter 8 = 8g. Set the hyperparameter KL divergense
step size and learning rate o for TRPO, set the sliding window size W for the time series.
and set the maximum iteration number I and episode number E for each iteration.

Output: The policy parameters 6

1: Initialize the computational graph structure.

2: for Iterations=0,1,2,...I do

3 for Episodes=0,1,2,...E do

4 Sample a multivariate time series O with noise and drift

5: for t=3,... do

6 Sample the state s; = (sf, s, ..., s7)

7 Get the feasible action a; = Aa; with Eq. 6

8 Achieve the reward by calculating the sum of angular rates in all dimensions.
9 Process the states, actions and rewards to advantage, etc

10: end for

11:  end for

12:  Update the policy parameters with gradient 01 = 0x + o <79 LEFIF(9).
13: end for

14: Return policy parameters 6§ = 0y, 1

Because the objective is strictly convex and the constraints are linear in our case, Eq. 7
can be solved by the KKT conditions Boyd and Vandenberghe (2004), and a unique solution
exists. The main drawback is computational complexity as this optimization occurs in every
infeasible step and most RL methods require a large number of samples.

Since the constraints in our case are a linear combination, CTS? reduces the computation
complexity by doing a linear approximation. The idea is that we do not need the optimal L2
projection of actions; instead, we just need any projection function which can respect the
constraints. Empirically, the projection derived by CTS? is not very far from the optimal
L2 projection. The intuition behind this is shown in Fig. 4 in the case of two-dimensional
actions. The brown area is the feasible space. CTS? and Ly both project the infeasible
action to the feasible boundary; the benefit of CTS? is that Eq. 6 is approximately solved
much more quickly in the following way.

In practice, the first constraint |ai| < €} is easy to enforce by clipping the original action
at, so we first get an intermediate action ai = clip(ai, —€}, €}). Omitting the first constraint,
Eq. 6 can be easily solved with A\ = m The procedure only needs two steps. It is

faster than the Lo projection.

6. Experiments

In the experiment, we demonstrate the following properties of CTS?:

e CTS? smooths multivariate time series with similar smoothness as traditional meth-
ods. Moreover, it never violates the constraints, while traditional methods cannot.

e CTS? smooths the time series across various scenarios with reusable hyperparameters.
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Figure 5: CTS? performance for synthetic time series with Gaussian noise.

e CTS? outputs the smooth data points with a very short delay. It is fair to say CTS?
can achieve real-time smoothing after the policy learning.

We conduct experiments and compare CTS? with the widely used Savitzky—Golay (SG)
Filter Savitzky and Golay (1964) and Fourier Filter (FF) Wesseling (1991) on both synthetic
and real-world datasets. All policy neural networks use the same structure. They consist
of two fully connected layers with 64 and 32 nodes, respectively. Training a policy can be
time-intensive, but once trained, it can produce smooth data points in milliseconds in the
inference phase. The source code is provided in supplementary material.

6.1. Synthetic results

We first run the experiment in synthetic time-series. We generate three-dimensional time
series from optimal sin and cos functions and then add Gaussian and uniform random
noise separately to the time series. For each dimension, we generate 200 sequential points,
which we define as one episode. We segment these 200 points to four different slots, e.g.
0~ 49,50 ~ 99,100 ~ 149,150 ~ 199. For each slot, we either generate from sin function
or cos function. In such way, we can generate time series with different shapes by combing
sin and cos functions. The optimal sin and cos function range in [—1, 1] and the noise range
in [-0.1,0.1]. The Gaussian noises are truncated if they are out of the range.

We follow the formulation as discussed in Sec. 4 to construct the CMDP. The policy
actions are restricted with the flowing predefined constraints:

lai| <0.1,i=x,y,z,
2laf] + [af| + [aF| < 0.3.

In other words, the data correction cannot exceed 0.1 for each individual data point and
their weighted sum cannot exceed 0.3.

Figure 5 shows the smoothing results for time series with Gaussian noise when the
sliding window size is 5 and the policy is updated with 500 iterations, each containing
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Table 1: Performance of different methods

Methods Sum of C'Ons?:raints‘ Sliding. window Trgining
angles | validation ratio size time
CTS? 1862.42 0 5 118 minutes
Lo Projection | 1862.15 0 5 134 minutes
SG(5,1) 1848.82 0.035 5 -
SG(45,5) 1863.90 0.05 45 -
FF 1865.15 0.28 whole episode -

50000 episodes. In next section, we will explore more hyperparameters. Specifically, we
show the original smoothing results for all three dimensions in Fig. 5(a)subfigure. To be
clear, we highlight the key advantages of CTS? in Fig. 5(b)subfigure by scaling the figures .
We can see that CTS? almost achieves the same curves as the optimal lines of sin and cos
functions and it satisfies all the constraints. Since the sliding window size is 5, CTS? takes
only two delay points to inference the smooth data point.

To be fair, we set the sliding window size of SG to be 5 as well and the fitting order
is 1 (we search for order with 1, 2, 3, and 4. The order 1 gets best results). We can
see that SG(5,1) cannot smooth the curve well enough and it violates the constraints in
some cases (e.g. in the third dimension, the point indexed with 20 violates the constraint
|a3y| = 0.144 > 0.1). Although we can get a smoother time series with SG using a larger
window size (e.g, 45), it increases the number of delay points, which runs counter to the
real-time requirement.

It appears that the FF smooths the curve by removing the highest 5 frequencies (we
search for 5, 10, 15, 20 and the parameter 20 gives us the best results), however, it violates
the constraints in most cases, For example, the first-dimensional point indexed with 185
and the second-dimensional points indexed between [0, 25] violate the constraints. Worse
still, FF does post-processing by using the whole episode, which is not real-time as well.

CTS? works well for time series with uniform noise as well as the Gaussian ones. It also
works well in different time series shapes. We omitted the figures since the page limitation.
We use the same parameters to process the time series with different noises and different
shapes separately. The parameters of CTS? can be easily reused to new scenarios and we do
not need to take effort to fine-tune the parameters manually. On the contrary, we have to
fine tune parameters for SG (e.g. window size and order number) and FF (e.g. number of
clipping frequency) in different scenarios to get desirable results, which is time consuming.

In addition, we run more experiments with time series with Gaussian noise and summa-
rize the statistical results in Table 1; we compare the following aspects of the algorithms:

e Sum of angles is the metric to quantify the smoothness of a time series. For each
episode, we sum all the angles constructed by any continuous tree points ( see Fig. 2).
The higher the sum, the smoother the time series.

e Constraints validation ratio computes the percentage of data points that violate
the predefined constraints.



CTS?

1.00 M',)(""V . : w ‘5 1.00 - /¢ }
e 0.75 /ﬁ' —— Optimal —g 0.75 —— Optimal
@ 4 ‘\ —— Noise Eh —— Noises
£ 0.50 4 \ — 3 = 0.50 —— 100
E s — 5 3 —— 300
£0.25 , \ £0.25 |
\ 7 5 | 500
0-007 50 100 150 200 00075 50 100 150 200
Time slot Time slot
(a) Window size (b) Iteration number
« 1.00 AT w . 1.00 W
& 0.75 A v \ —— Optimal 2 0.751 —— Optimal
g ’ J \  —— Noises g ) —— Noises
o 0.50 / —— 10000 o 0.501 —— Peak&Vally
e ke
vg 0.25 y | 30000 é 0.251 —— Cos
(= J \ 50000 2, Angle
M 0.00 : : : : M 0.00 : : : :
0 50 100 150 200 0 50 100 150 200
Time slot Time slot
(¢) Episode number (d) Reward metric

Figure 6: The impact of different hyperparameters

e Sliding window size represents the number of data points we need to process the
time series in each step. Usually, the smaller the better. A smaller size reduces the
number of delayed data points, which aids in smoothing the time series in real-time.

e Training time is to show the computational improvement versus the standard L2
projection layer Pham et al. (2018), as explained in Sec. 5.1. Our evaluation is sup-
ported with the Intel(R) Xeon(R) Platinum 8168 processor and we use 72 parallel
threads to do the data sampling in the training phase.

Those metrics are evaluated with different episodes in different shapes and we use same
hyperparameters (e.g. window size, iteration number, episode number in each iteration)
for CTS?; the average results can be seen in Table 1. We can see that the CTS? and Lo
projections achieve a fair high sum of angles and never violate the constraints. In addition,
they can output the smooth time series with a window size of 5, which only contains two
delay points. Moreover, CTS? runs faster than the Ly projection since it reduces the complex
QP in each step by doing a linear approximation.

6.2. Hyperparameter Tuning

In this section, we evaluate the performance of CTS? under different hyperparameters,
e.g. window size, iteration number and episode number in each iteration. Moreover, we
also show the performance under different smoothness metric. In the evaluation, we use
synthetic data with Gaussian noise and we do grid search for the hyperparameters. The
results are shown in Fig 6. We demonstrate the results for one demonstration. We can
conclude that we can achieve fair good but with some error results when the window size
is 3 and the window size is the larger the better. The window size with 7 is not necessary.
For the iteration number and episode number, we can get desirable results when they are
500 and 50000 separately. Smaller numbers are not quit enough. We also evaluate with
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Figure 7: CTS? performance for Gyroscope and Accelerometer time series

different reward metrics: number of peak and valley, the cos value and the angle, we can
see the angle metric can get the best results.

6.3. Real-world results

We use the open-source datasets Malekzadeh et al. (2019) and Bagnall et al. (2017) to
evaluate CTS?. Malekzadeh et al. (2019) includes time series data generated by gyroscope
and accelerometer sensors. A total of 24 volunteers with different age, gender, weight and
height were invited to collect data while performing different activities: go downstairs,
go upstairs, walking, jogging, sitting, and standing. The data was collected with iPhone
6s smartphones which are common and widely used devices. Bagnall et al. (2017) is
a dataset that contains large amount of different time series, e.g. data of ECG, traffic,
earthquake, etc. It is originally designed for time series classification. The data could
be univariate or multivariate. They also have different lengths, sizes, and classes. CTS?
performance well on most of them. To save page space, we demonstrate results with dataset
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Figure 8: CTS? performance for ECG time series under different classes

‘NonlInvasiveFetal ECG’. The dataset was collected corresponding to the record of the ECG
from left and right thorax, so the data contains two dimensions. It also includes 42 classes.
Furthermore, the training size is 1800 and the test size is 1965. Since our purpose is doing
smoothing but not classification, so we use all 3500 time series to train our model and left
265 time series to test the performance. For each time series, it contains 750 data points.
Before evaluating our CTS?, we do data augmentation by dividing the long time series into
small slots. Each slot overlaps with near slots by shifting one point. Therefore, we got
enough data to train the CTS?.
For the gyroscope and accelerometer data, the actions are restricted with:

" < 0.1 % max(|Of]),n = 2,y, 2,
2|a”| + |a¥| +[a*] < 0.1 % (max(|OF|) + maz(|OF]) + maz(|OF])).

where maz(|O}|) is the maximal absolute value of any O}.
Similarly, the ECG action is restricted with:

la™ < 0.1 x maz(|O}|),n = z,vy,
2|a”| + 3[a¥| < 0.2  (max(|0F ) + max(|O}])))-

The smoothing results of gyroscope, accelerometer and ECG time series are shown in
figure 7 and 8. To make a better demonstration, we limit the value of ECG to [—1,1].
Moreover, CTS? use the same hyperparameters as learned form Sec. 6.2 in different sce-
narios, which further demonstrate that the parameters are reusable. For SG and FF, we
grid search parameters in each case. Compared to the SG and FF, CTS? achieves an equiv-
alently smooth performance while satisfying all constraints. Moreover, CTS? only need 2
delay data points to output smoothing ones, while SG and FF often need more than that.
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7. Discussion

To the best of our knowledge, CTS? is the first work that smooths the time series while
considering data correction constraints and it can be applied to general types of time series.
One limitation compared with existing methods is that the RL policy must be pre-trained
with a fair amount of data. A way to alleviate this concern is to train the policy with offline
data; regardless, most time series data is not expensive to obtain. Additionally, there are
a number of areas in RL that deal with the sample efficiency problem, such as efficient
exploration Badia et al. (2020) and meta-learning Gupta et al. (2018). Applying these
methods to CTS? would be an interesting future direction. Another concern people may
have is that CTS? still needs a fair amount of hyperparameters, which is true. However,
the hyperparameters can be reused to different scenarios as shown in Sec. 6.2, which means
we do not need to take efforts to hand tuned for them across various scenarios.

8. Conclusion

In this paper, we propose a Constrained reinforcement learning-based Time Series Smoothing
method, CTS?, to smooth time series while considering data correction constraints. Specif-
ically, we formulate the constraint smoothing problem as a CDMP and add a linear policy
network layer to project all infeasible actions into feasible ones. CTS? ensures that the data
correction never violates the constraints, whereas traditional methods cannot. Meanwhile,
the smoothness achieved with CTS? is equivalent to traditional smoothing methods. An-
other benefit of CTS? is that the parameters can be easily reused to different scenarios and
it is not necessary to manually adjust each parameter. In addition, CTS? smooths time
series with a short delay. Although CTS? takes some data to learn the policy, it can smooth
time series in real time once the policy has been learned.
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