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ABSTRACT
Closed-loop functional electrical stimulation (FES) control

methods are developed to facilitate motor-assisted cycling as a
rehabilitative strategy for individuals with neurological disor-
ders. One challenge for this type of control design is account-
ing for an input delay called the electromechanical delay (EMD)
that exists between stimulation and the resultant muscle force.
The EMD can cause an otherwise stable system to become un-
stable. A real-time deep neural network (DNN)-based motor
control architecture is used to estimate the nonlinear and un-
certain dynamics of each leg of the cycle-rider system. The DNN
estimate of the system’s dynamics updates in real-time and is
used as a feedforward term in the motor controller allowing the
cycle crank to meet position and cadence tracking objectives.
The nonsmooth Lyapunov-based stability analysis proves semi-
global asymptotic tracking.

Keywords: Functional electrical stimulation (FES); input
delay; switched systems; deep neural network (DNN); Lyapunov
methods

INTRODUCTION1

Prevalent symptoms of a broad class of neurological disor-
ders (NDs) include progressive muscle weakness and loss of vol-
untary coordinated limb motion. In an effort to combat the ef-
fects of NDs such as muscle atrophy and cardiovascular disease,
therapeutic strategies often involve the use of functional electri-
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cal stimulation (FES) [1] and [2]. FES induces muscle contrac-
tions, which can be paired with motor assistance to facilitate sta-
tionary cycling on a recumbent cycle. While these therapies are
useful, it is difficult to develop closed-loop FES and motor con-
trol schemes that maximize therapeutic benefits and minimize
fatigue. These challenges are due to the inherent time-varying,
nonlinear, and uncertain dynamics of the switched system. Other
factors that complicate the controller design include rider asym-
metries and unknown disturbances. By decoupling the two sides
of the cycle, and controlling each side separately (as is done in
the developed method) rider asymmetries can be compensated
for. Each controller is designed such that the non-dominant leg
tracks a desired cadence, and the dominant leg tracks a position
that is offset 180 degrees from the non-dominant leg. This al-
lows the non-dominant leg to set the pace to ensure it is properly
exercised and prevents the dominant leg from being overworked
(as is possible on a single-crank cycle). Further complicating the
controller design is an unknown and time-varying input delay,
called the electromechanical delay (EMD)2, that exists between
the start of stimulation and the onset of muscle contraction, as
well as the end of stimulation and the end of the corresponding
muscle contraction.

Input delay is not unique to FES cycle-rider systems. It ex-
ists in many engineering applications such as multi-agent sys-
tems [4], the teleoperation of robotic manipulators, and inter-
nal combustion systems [5]. Efforts have been made to design
controllers to account for these delays. In the case of EMD
in FES, the delay is time-varying and often increases with the
onset of muscle fatigue [6] and [7]. These muscle-induced in-
put delays impact closed-loop controller performance and can

2In some literature, the EMD corresponds to the time latency between the
onset of EMG activity and muscle force production [3].



cause an otherwise stable system to become unstable. In an ef-
fort to prevent EMD-generated instabilities, closed-loop EMD-
compensating FES controllers have been designed for cycling.
Other works such as [8–10] use robust control methods with
a constant EMD estimate to meet cadence tracking objectives,
while recent work in [11] uses a time-varying estimate of the
EMD to achieve torque and cadence tracking. Unlike the de-
veloped method, the aforementioned works are not designed for
a split-crank cycle, which limits their ability to compensate for
rider asymmetries, and do not include adaptive terms in the con-
troller.

The design and implementation of an adaptive controller
can account for some of the problems associated with an un-
certain and nonlinear cycle-rider system and allow for person-
alized control schemes between individuals. Deep neural net-
works (DNNs) are one type of function approximator that have
been used in adaptive control results [12] and can be used to ap-
proximate uncertainties in the dynamics of the system. Deeper
networks facilitate better function approximation; hence, they
are more desirable than single-layer neural networks (NNs) [13]
and [14]. Since the accuracy of the outputs of DNNs are of-
ten probabilistic, they typically lack the performance guarantees
needed for use in safety-critical applications [12], such as re-
habilitative cycling. Unlike updating a single hidden-layer NN
in real-time (e.g., NN-based adaptive controllers in [15]), up-
dating the inner-layer weights of a DNN involves the use of
difficult-to-derive adaptive update laws because the NN weights
are nested inside nonlinear activation functions. Recently, [12]
developed a DNN-based controller that estimates the drift dy-
namics of a system. The DNNs in [12] and the developed work
update in multiple times scales. The inner-layer features are iter-
atively (i.e., discretely) updated via online batch update training,
while the output-layer weights update in real-time. The inner-
layer features are estimated using data-driven function approx-
imation methods. Periodically, the inner-layer features update,
overwriting features from the previous iteration. The output-
layer weights update using a gradient descent-based adaptive up-
date law. Together, the multi-timescale approach facilitates bet-
ter learning. Unlike the result in [12], the developed method
applies a DNN-based multi-timescale adaptive controller to an
Euler-Lagrange system with an input delay.

Leveraging the result in [12], this paper uses a DNN to es-
timate the dynamics of a nonlinear and delayed FES switched
split-crank cycle-rider system. This results in a new control de-
sign and nonsmooth Lyapunov-based stability analysis, which
yields improved FES and motor controller performance and
a semi-global asymptotic tracking result. Unlike in previous
works, the DNN uses the desired trajectory instead of the ac-
tual trajectory which ensures that the DNN inputs lie on a com-
pact set. The inner-layer features can be learned a priori us-
ing transfer learning methods (i.e., training with healthy partici-
pants and extending those weights for use with participants with
NDs). If adequate data sets are not available for pre-training,
the inner-layer features can be randomized and updated after a

batch update. An integral position error is developed in an ef-
fort to improve position tracking of the non-dominant leg. The
developed control scheme uses a DNN, which updates in mul-
tiple timescales, as a feedforward term in the motor controller,
allowing the gain conditions to be improved and the cycle crank
to track a smooth desired trajectory despite uncertainties in the
dynamic model.

MODEL DYNAMICS
This paper considers a recumbent cycle with a split-crank

design, where each side of the cycle can be powered indepen-
dently using decoupled motors [16] and [17]. Consider a set of
possible delay values S ⊂ R>0, where τ : R≥0 → S denotes the
EMD, and where t, t0 ∈ R≥0 denote the time and initial time,
respectively. Throughout this work, the switching signals are
piecewise right-continuous and delayed functions are defined as
fτ , f (t− τ(t)) for all t− τ(t)≥ t0, and fτ , 0, otherwise. The
nonlinear uncertain switched dynamics of each leg of the motor-
ized cycle-rider system can be modeled independently, without
loss of generality, as (see [9] and [18])3

M (q) q̈+V (q, q̇) q̇+G(q)+P(q, q̇)
+bcq̇+d (t) = ∑

m∈M
Bm (q, q̇, t)kmσm,τ︸ ︷︷ ︸uτ

Bτ
M(q,q̇,τ,t)

+τvol +Beke︸︷︷︸
BE

ue (t) .

(1)

The measurable crank angle is denoted by q : R≥0→ Q , where
the set of all possible crank angles is denoted by Q ⊆ R. The
measurable crank velocity or cadence is denoted by q̇ :R≥0→R.
The unmeasurable acceleration is denoted by q̈ : R≥0→ R. The
inertial, gravitational, and centripetal-Coriolis matrices are de-
noted by M : Q → R>0, G : Q → R, V : Q ×R→ R, and pas-
sive viscoelastic tissue forces, disturbances, and viscous damp-
ing coefficient are denoted by P : Q ×R→ R, d : R≥0 → R,
and bc ∈ R>0, respectively. The known lumped motor con-
trol effectiveness is BE ∈ R>0, and the motor effectiveness term
is Be ∈ R>0. Similarly, the unknown lumped stimulation con-
trol effectiveness and individual muscle effectiveness terms are
Bτ

M : Q ×R×S×R≥0 → R≥0 and Bm : Q ×R×R≥0 → R>0,
∀m ∈ M , respectively, where M , {H, Q, Gl} is the set of
all admissible muscles with H, Q, and Gl indicating the ham-
strings, quadriceps femoris, and gluteal muscle groups, respec-
tively. The variables ke,km ∈ R>0, ∀m ∈ M are user-selected
constants. The delayed and implemented FES stimulation inputs
∀m ∈M are defined as um,τ , kmσm,τuτ and um , kmσmu, re-
spectively, where the delayed FES control input is denoted by
uτ : S×R≥0→ R and the the implemented FES control input is
denoted by u : R≥0→ R. For a given m ∈M , the delayed FES
switching signal, σm,τ, indicates if muscle m receives the FES

3For notational brevity, all explicit dependence on time, t, within the terms
q(t), q̇(t), q̈(t), and τ(t) is suppressed.



input uτ at t− τ(t). The implemented motor control input is de-
noted by ue : R≥0→R, and the motor current input is defined as
uE , keue.

The activation of the FES is determined by the implemented
switching signals, σm : Q ×R→{0, 1}, defined as

σm (q, q̇),
{

1,
0,

qα (q, q̇) ∈ Qm
otherwise ,∀m ∈M , (2)

where qα : Q ×R→ R is a trigger condition and adjusts the ac-
tivation/deactivation of the FES input. This ensures that mus-
cle contractions occur in desired contraction regions, defined as
QFES , ∪

m∈M
{Qm}, where Qm ⊂ Q , ∀m ∈M is the desired con-

traction region for each muscle group. The trigger condition is
designed to reduce the residual torques in kinematic dead-zones,
defined as QKDZ ,Q \QFES. To produce effective positive crank
rotation, Qm is defined, according to [19], as

Qm , {q ∈ Q |Tm (q)> εm} ,∀m ∈M ,

where Tm : Q → R and εm ∈ R>0 denote a torque transfer ratio
and a user-selected lower threshold.

Though the terms in (1) are unknown, the subsequently de-
signed FES and motor controllers require known bounds on the
aforementioned parameters [19].

Property: 1 The unknown terms in (1) can be bounded
as |d| ≤ cd , bcq̇ ≤ cc|q̇|, |P| ≤ cP1 + cP2 |q̇|, |G| ≤ cG,
|V | ≤ cV |q̇|, cm ≤ M ≤ cM , |τvol | ≤ cvol respectively, where
cd ,cc,cP1 ,cP2 ,cG,cV cm,cM,cvol ∈R>0 are known constants [19].

Property: 2 The time derivative of the inertia matrix and
the centripetal-Coriolis matrix are skew symmetric, 1

2 Ṁ (q) =
V (q, q̇) [19].

Property: 3 The lumped FES (when ∑
m∈M

σm,τ > 0) control

input is bounded as cb ≤ Bτ
M ≤ cB, where cb,cB ∈R>0 are known

constants [8].
Property: 4 The time delay can be bounded as τ ≤ τ ≤ τ,

where τ,τ ∈ R>0 are known constants. The delay estimate error
can be bounded such that |τ− τ̂| ≤ τ̃, where τ̂∈R≥0 is a constant
estimate of the delay and τ̃ ∈ R>0 is a known constant [7].

CONTROL DEVELOPMENT
Open-Loop Error System Development

The control objective is for the bicycle crank to track a
smooth desired trajectory (qd : R≥0→ Q , q̇d , q̈d : R≥0→ R) de-
spite an unknown input delay, discontinuous switching between
different control inputs, and other uncertainties in the dynamic
model. To simplify the tracking objective, the same control
structure will be developed for both legs. A measurable integral
position tracking error, e0 : R≥0 → R, is designed to improve
position tracking and is defined as

e0 ,

t�

t0

qd (θ)−q(θ)dθ, (3)

and a measurable proportional-integral-type signal, denoted by
e1 : R≥0→ R, is defined as

e1 , ė0 +α0e0, (4)

where α0 ∈ R>0 is a user-defined constant. Applying Leibniz
integral rule to (3) yields

ė0 = qd−q, (5)

and taking the time derivative of (5) yields

ë0 = q̇d− q̇, (6)

where ė0 and ë0 denote the measurable position and cadence er-
rors, respectively. To add a delay-free input term into the closed-
loop error system, the auxiliary error signal eu : R≥0→ R is de-
signed as

eu ,−
� t

t−τ̂

u(θ)dθ. (7)

A measurable proportional-integral-derivative-based tracking er-
ror denoted by r : R≥0→ R is defined as

r , ė1 +α1e1 +α2eu, (8)

where α1,α2 ∈R>0 are selectable constants. The vector of error
signals, z ∈ R4, is defined as

z ,
[

e0 e1 r eu
]T

. (9)

By taking the time derivative of (8), multiplying by M, using
(1) and (3)-(8), and adding and subtracting Bτ

Muτ̂ + e1 + fd , the
open-loop error system

M (q) ṙ = χ− e1−V (q, q̇)r+Bτ
M (uτ̂−uτ)−BEue

−M (q)α2u+(M (q)α2−Bτ
M)uτ̂ + fd , (10)

is obtained, where the auxiliary term χ : R≥0→ R is defined as



χ , f − fd +d (t)− τvol (t)+ e1

+M (q)(α0 +α1) ė1−M (q)α
2
0ė0

+V (q, q̇)
(
(α0 +α1)e1−α

2
0e0 +α2eu

)
. (11)

The function f : Q ×R3→ R is defined as

f , M (q) q̈d +V (q, q̇) q̇d +G(q)+P(q, q̇)+bcq̇, (12)

and the function fd : Q ×R2→ R is defined as

fd (xd) , M(qd)q̈d +V (qd , q̇d) q̇d +G(qd)
+P(qd , q̇d)+bcq̇d ,

(13)

where xd ,
[

qd q̇d q̈d
]
.

Deep Neural Network Approximation
NNs are able to approximate smooth nonlinear functions on

a compact set and can be useful in systems with unknown or un-
certain dynamics such as the cycle-rider FES system in (1). NNs
with more layers (i.e., more depth) have the potential to approx-
imate functions more accurately [13], but having multiple layers
complicates the selection of real-time update laws. Leveraging
the result in [12], this work investigates if a DNN can be used to
estimate the uncertain nonlinear dynamics of a Euler-Lagrange
system with an unknown time-varying input delay. The DNN’s
output-layer weight matrix updates online in real-time. Simulta-
neously, the inner-layer feature estimates are updated iteratively
(i.e., during batch updates). This iterative update of the inner-
layers allows the system to collect data, update the inner-layers
according to existing machine learning algorithms, and improve
the quality of the estimate of f̂d,i. To ensure the DNN inputs lie
on a compact set, the desired trajectory, as opposed to the actual
trajectory, is used in the DNN approximation.

Since qd , q̇d , q̈d ∈ L∞ by design, let Ω ⊂ Q ×R2 be a com-
pact set such that xd ∈Ω and fd : Ω→R, where fd is continuous.
Therefore, the function fd (xd) can be approximated by using a
DNN as [20]

fd (xd) =W ∗T σ
∗ (Φ∗ (xd))+ ε(xd) , (14)

where W ∗ ∈ RL×1 is an unknown bounded ideal output-layer
weight matrix, σ∗ : Rp → RL is an unknown bounded vector
of the ideal activation functions, Φ∗ : Ω→ Rp is the ideal un-
known DNN, ε : Ω→ R is the unknown bounded function re-
construction error. The ideal unknown DNN can be expressed
as Φ∗ (xd) =Vkφk (Vk−1φk−1 (Vk−2φk−2 (...xd))), where k ∈N de-
notes the number of inner-layers of the DNN, Vk denotes the

inner-layer weights of the DNN, φ(·) denotes the corresponding
activation functions of the DNN.

The DNN is trained a priori using data sets from previ-
ous experiments or simulations and is updated using a multi-
ple timescale approach, meaning that output-layer training hap-
pens online in real-time, while concurrently, the inner-layer es-
timates update using an iterative data-driven approach. The it-
erative updates of the inner-layer features, in-turn, improve the
real-time learning of the output-layer weights. Using (14), the
function fd can be approximated as f̂d,i = Ŵ T σ̂i

(
Φ̂i (xd)

)
where

Ŵ : R≥0→RL×1 is the estimate of the ideal output-layer weight
matrix, σ̂i : Rp→ RL is the ith training iteration activation func-
tion, Φ̂i : Ω→ Rp is the ith training iteration DNN estimate, and
i ∈ N is the DNN estimate update index. The estimation error
W̃ : R≥0→ RL×1 is defined as

W̃ (t) , W ∗−Ŵ (t) . (15)

Assumption 1. Using the universal function approximation
property there exists known constants W ∗, σ∗, σ̂, ε ∈ R>0
such that the unknown ideal weights W ∗, unknown ideal acti-
vation functions σ∗ (·) , user-selected activation functions σ̂i (·) ,
the unknown ideal DNN Φ∗ (·) , and the function reconstruc-
tion error ε(·) can be upper bounded such that supxd∈Ω ‖W ∗‖ ≤
W ∗, supxd∈Ω ‖σ∗ (·)‖ ≤ σ∗, supxd∈Ω,∀i ‖σ̂i (·)‖ ≤ σ̂, and
supxd∈Ω ‖ε(·)‖ ≤ ε [20].

Closed-Loop Error System Development
Substituting (14) into (10) yields

M (q) ṙ = χ+ ε(xd)− e1−V (q, q̇)r+Bτ
M (uτ̂−uτ)

−BEue−M (q)α2u+(M (q)α2−Bτ
M)uτ̂

+W ∗T σ
∗ (Φ∗ (xd)) , (16)

where, by Property 1 and Assumption 1,

|χ+ ε(xd)| ≤Φ+ρ(‖z‖)‖z‖ , (17)

where Φ ∈ R>0 is a known constant, and ρ(·) is a positive,
strictly increasing, and radially unbounded function.

Based on (16) and the stability analysis, the FES and motor
controllers are designed, respectively, as

u , ksr, (18)

ue ,
1

BE

(
Ŵ T

σ̂i

(
Φ̂i (xd)

)
+ k1sgn(r)+σek2r

)
, (19)



respectively, where ks, k1, k2 ∈ R>0 are selectable constants,
sgn(·) is the signum function, and σe : Q ×R→ {0, 1} is the
motor switching signal which is defined as

σe (q, q̇),


1, q ∈ QKDZ
1, q ∈ QFES, ∑

m∈M
σm (q, q̇) = 0

0, otherwise

. (20)

The output-layer weight adaptation law estimate is defined as

˙̂W (t) , ΓW σ̂i

(
Φ̂i (x(t))

)
r, (21)

where ΓW ∈ RL×L is a user-defined positive definite, diagonal
control gain matrix. The closed-loop error system is found by
substituting (18) and (19) into (16) to yield

M (q) ṙ = W ∗T σ
∗ (Φ∗ (xd))−Ŵ T

σ̂i

(
Φ̂i (xd)

)
+χ+ ε(xd)− e1−V (q, q̇)r−M (q)α2ksr

+ksBτ
M (rτ̂− rτ)− k1sgn(r)−σek2r

+(M (q)α2−Bτ
M)ksrτ̂. (22)

Lyapunov-Krasovskii functionals, denoted by Q1, Q2 :
R≥0 → R≥0, are designed to facilitate the subsequent stability
analysis as

Q1 ,
1
2
(ε1ω1 +ω2)ks

� t

t−τ̂

r (θ)2 dθ, (23)

Q2 ,
ω3ks

τ̂

� t

t−τ̂

� t

s
r (θ)2 dθds, (24)

where ε1, ω1, ω2, and ω3 are selectable positive constants. Based
on the following stability analysis, auxiliary bounding constants
denoted by β1,β2 ∈ R>0 are defined as

β1 , min
(

α0−
1

2ε2
, α1−

ε2

2
− ε3α2

2
2

,

ks

(cmα2

2
− ε1ω1−ω2−ω3

)
,

ω3

ksτ̂2 −
1

2ε3
− ksω1

ε1

)
, (25)

β2 , min
(

α0−
1

2ε2
, α1−

ε2

2
− ε3α2

2
2

,

1
2

k2− ks

(
ε1ω1 +

1
2

ω2 +ω3

)
,

ω3

ksτ̂2 −
1

2ε3
− ksω1

ε1

)
, (26)

where ε2 and ε3 are positive constants.

STABILITY ANALYSIS
In the following analysis, switching times are denoted by{

t i
n
}
, i ∈ {m, e} , n ∈ {0,1,2, ...} , which denote the instants in

time when Bτ
M becomes nonzero (i = m) and when Bτ

M becomes
zero (i = e). Open and connected sets representing the domain
and initial conditions, D,SD ⊆ R6+L, are defined as

D ,
{

y ∈ R6+L |‖y‖< γ

}
, (27)

SD ,
{

y ∈ R6+L | ‖y‖<
√

λ1
λ2

γ

}
, (28)

where γ ∈ R>0 represents a known constant defined as4 γ ≤
inf
{

ρ−1
((√

min(β1cmα2ks,β2k2),∞
))}

. A Lyapunov func-
tion candidate, denoted by VL : D →R≥0, that is positive definite
and continuously differentiable is defined as

VL (y) =
1
2

e2
0 +

1
2

e2
1 +

1
2

M (q)r2 +
1
2

ω1e2
u

+
1
2

W̃ T
Γ
−1
W W̃ +Q1 +Q2, (29)

where y ∈D is defined as

y ,
[

zT √Q1
√

Q2 W̃ T
]T

. (30)

Based on Property 1, (29) can be bounded as

λ1 ‖y‖2 ≤VL ≤ λ2 ‖y‖2 , (31)

where λ1,λ2 ∈R>0 are known constants. To facilitate the subse-
quent analysis, sufficient gain conditions are defined as

α0 >
1

2ε2
, (32)

α1 >
ε2

2
+

ε3α2
2

2
, (33)

α2 >
2

cm
(ε1ω1 +ω2 +ω3) , (34)

ω3 > ksτ̂
2
(

1
2ε3

+
ksω1

ε1

)
, (35)

k1 ≥W ∗
(
σ∗+ σ̂

)
+Φ+ ksϒmax

(
cB ¯̃τ,cM τ̄α2

)
, (36)

k2 > 2ks

(
ε1ω1 +

1
2

ω2 +ω3

)
, (37)

ω2 ≥max(|cMα2− cb| , |cmα2− cB|) . (38)

4For a set A, the inverse image is defined as ρ−1 (A), {a | ρ(a) ∈ A}.



Since the inner features of the DNN approximation of f̂d,i
are updated iteratively (via batch updates as in [21] and [22]),
the approximation for the dynamics f̂d,i is discontinuous. Since
the estimate of the dynamics is included in the motor controller,
the controller is similarly discontinuous, which introduces an-
other discontinuous signal into the closed-loop error system. Be-
cause the time derivative of VL is discontinuous, a nonsmooth
Lyapunov-based stability analysis is used to prove the following
theorem.

Theorem 1. Consider a nonlinear system modeled by the dy-
namics in (1) which satisfies Assumption 1 and Properties 1-4.
The control inputs in (18) and (19) and the output-layer weight
adaptation law in (21) ensure the trajectory tracking error de-
fined in (9) yields semi-global asymptotic tracking in the sense
that limt→∞ ‖z(t)‖→ 0, t ≥ t0, provided that y(t0) ∈ SD and the
gain conditions (32)-(38) are satisfied.

Proof. For t ∈ [t0,∞), let y(t) be a Filippov solution to the
differential inclusion ẏ ∈ K [h] (y), where K[·] is defined as
in [23], and let h : R6+L → R6+L be defined as h(y) ,[

ė0 ė1 ṙ ėu
˙√Q1

˙√Q2
˙̃W

T
]T

[24]. For almost all t ∈ [0,∞), the
time derivative of (29) exists almost everywhere (a.e.) due to
the motor controller, Bτ

M , and σe being discontinuous, such that

V̇L (y)
a.e.
∈ ˙̃V L (y), where ˙̃VL is a generalized time derivative of VL

along ẏ = h(y). Taking the generalized time derivative of (29),
then using (4), (8), and the calculus of K [·] from [25], substitut-
ing in (18), (21), and (22), applying Leibniz Rule on (7), (23),
and (24) results in

˙̃V L ⊆ e0 (e1−α0e0)+ e1 (r−α1e1−α2eu)+
1
2

Ṁ (q)r2

+r
(

W ∗T σ
∗ (Φ∗ (xd))−Ŵ T K

[
σ̂i

(
Φ̂i (xd)

)])
+r (χ+ ε(xd)− e1−V (q, q̇)r+ ksK [Bτ

M] (rτ̂− rτ))

+r (−k1K [sgn(r)]−K [σe]k2r)

+r (−M (q)α2ksr+(M (q)α2−K [Bτ
M])ksrτ̂)

+ksω1eu (−r+ rτ̂)−W̃ T K
[
σ̂i

(
Φ̂i (xd)

)]
r

+
1
2
(ε1ω1 +ω2)ks

(
r2− r2

τ̂

)
+

ω3ks

τ̂

(
τ̂r2−

� t

t−τ̂

r (θ)2 dθ

)
.

Adding and subtracting W ∗T K
[
σ̂i

(
Φ̂i (xi (t))

)]
r, using the es-

timated mismatch for the ideal output-layer weight in (15), us-
ing Property 2 (skew symmetry), and canceling common terms
yields

˙̃V L ⊆ e0e1−α0e2
0−α1e2

1−α2e1eu

+rW ∗T σ
∗ (Φ∗ (xd))− rW ∗T K

[
σ̂i
(
Φ̂i (xd)

)]
+r (χ+ ε(xd))+ ksK [Bτ

M]r (rτ̂− rτ)− k1rK [sgn(r)]
−K [σe]k2r2− ksω1eur+ ksω1eurτ̂

−M (q)α2ksr2 +(M (q)α2−K [Bτ
M])ksrrτ̂

+
1
2
(ε1ω1 +ω2)ks

(
r2− r2

τ̂

)
+ω3ksr2− ω3ks

τ̂

� t

t−τ̂

r (θ)2 dθ. (39)

There are two cases to be considered overall: when Bτ
M > 0

and when Bτ
M = 0. First the case when Bτ

M > 0 will be consid-
ered, followed by the case when Bτ

M = 0.
Whenever Bτ

M > 0, the rider’s muscles are producing forces,
meaning, the FES effect is present in the system (i.e., t ∈[
tm
n , t

e
n+1
)
). From the switching laws in (2) and (20), when

Bτ
M > 0, there are two sub-cases: σe = 0 or σe > 0. The

two sub-cases when muscle forces are present can be con-
sidered simultaneously by upper bounding −K[σe] ≤ 0, using
Properties 1 and 3 to bound M and K [Bτ

M], using Assump-
tion 1 to bound W ∗T , σ∗ (·), and σ̂i (·), choosing ω2 such that
max(|cMα2− cb| , |cmα2− cB|)≤ω2, and using (17) and the fact

that V̇L (y)
a.e.
∈ ˙̃VL (y), allows for (39) to be upper bounded as

V̇L
a.e.
≤ −α0e2

0−α1e2
1 + |e0e1|+α2 |e1eu|

−
(
k1−W ∗

(
σ∗+ σ̂

)
−Φ

)
|r|

+ρ(‖z‖)‖z‖|r|+ kscB |r| |rτ̂− rτ|
−cmα2ksr2 + ksω2 |rrτ̂|
+ksω1 |eur|+ ksω1 |eurτ̂|

+
1
2
(ε1ω1 +ω2)ks

(
r2− r2

τ̂

)
+ω3ksr2− ω3ks

τ̂

� t

t−τ̂

r (θ)2 dθ. (40)

Provided y(·) ∈ D, ∀· ∈ [t0, t) it can be proven that ṙ (·) ≤
ϒ,∀· ∈ [t0, t), where D is defined in (27). Using the Mean Value
Theorem on the |rτ̂− rτ| term, using Property 4, and setting k1
such that k1 ≥ W ∗

(
σ∗+ σ̂

)
+ Φ + kscB ¯̃τϒ, V̇L can be further

bounded as

V̇L
a.e.
≤ −α0e2

0−α1e2
1 + |e0e1|+α2 |e1eu|

+ρ(‖z‖)‖z‖|r|− cmα2ksr2 + ksω2 |rrτ̂|
+ksω1 |eur|+ ksω1 |eurτ̂|

+
1
2
(ε1ω1 +ω2)ks

(
r2− r2

τ̂

)
+ω3ksr2− ω3ks

τ̂

� t

t−τ̂

r (θ)2 dθ. (41)



Next, using Young’s Inequality, the following inequalities
can be developed

|e0e1| ≤
1

2ε2
e2

0 +
ε2

2
e2

1, (42)

|e1eu| ≤
1

2ε3α2
e2

u +
ε3α2

2
e2

1, (43)

|rrτ̂| ≤
1
2

r2 +
1
2

r2
τ̂
, (44)

|eur| ≤ 1
2ε1

e2
u +

ε1

2
r2, (45)

|eurτ̂| ≤
1

2ε1
e2

u +
ε1

2
r2

τ̂
. (46)

Substituting (42)-(46) into (41) and completing the squares
on − 1

2 cmα2ksr2 + |r|ρ(‖z‖)‖z‖ yields the following bound

V̇L
a.e.
≤ −

(
α0−

1
2ε2

)
e2

0−
(

α1−
ε2

2
− ε3α2

2
2

)
e2

1

+

(
1

2ε3
+

ksω1

ε1

)
e2

u

−ks

(
1
2

cmα2− ε1ω1−ω2−ω3

)
r2

+
ρ2 (‖z‖)‖z‖2

2cmα2ks
− ω3ks

τ̂

� t

t−τ̂

r (θ)2 dθ. (47)

By using the Cauchy-Schwarz Inequality and (7), e2
u is

bounded as

e2
u ≤ τ̂k2

s

� t

t−τ̂

r2 (θ)dθ. (48)

Using (48) to upper bound the last term in (47) yields

V̇L
a.e.
≤ −

(
α0−

1
2ε2

)
e2

0−
(

α1−
ε2

2
− ε3α2

2
2

)
e2

1

−
(

ω3

ksτ̂2 −
1

2ε3
− ksω1

ε1

)
e2

u

−ks

(
1
2

cmα2− ε1ω1−ω2−ω3

)
r2

+
ρ2 (‖z‖)‖z‖2

2cmα2ks
. (49)

Using (9), (25), and the fact that ρ2 (‖z‖)≤ ρ2 (‖y‖), (49) can be
further bounded as

V̇L
a.e.
≤ −

(
1
2

β1−
ρ2 (‖y‖)
2cmα2ks

)
‖z‖2− 1

2
β1 ‖z‖2 . (50)

Provided that y(t) ∈ D,∀t ∈
[
tm
n , t

e
n+1
)
, then (50) can be further

bounded as

V̇L ≤−
1
2

β1 ‖z‖2 , t ∈
[
tm
n , t

e
n+1
)
. (51)

In the case where the rider’s muscles are inactive, Bτ
M = 0

and the FES effect is not present in the system (i.e., t ∈
[
te
n, t

m
n+1
)
).

In this case, σe = 1 and the system is controlled by the motor
alone because of the switching laws defined in (2) and (20). Dur-
ing this case σe and Bτ

M are constant; thus, this case can be con-
sidered by setting K [Bτ

M] = 0 and K [σe] = 1, using Property 1,

Assumption 1, (17), and the fact that V̇L (y)
a.e.
∈ ˙̃VL (y) to upper

bound (39) as

V̇L
a.e.
≤ −α0e2

0−α1e2
1 + |e0e1|+α2 |e1eu|

−
(
k1−W ∗

(
σ∗+ σ̂

)
−Φ

)
|r|+ρ(‖z‖)‖z‖|r|

−k2r2 + cMα2ks |r| |rτ̂− r|
+ksω1 |eur|+ ksω1 |eurτ̂|

+
1
2
(ε1ω1 +ω2)ks

(
r2− r2

τ̂

)
+ω3ksr2− ω3ks

τ̂

� t

t−τ̂

r (θ)2 dθ. (52)

Using the Mean Value Theorem on the |rτ̂− r| term in (52), us-
ing Property 4, and setting k1 such that k1 ≥W ∗

(
σ∗+ σ̂

)
+Φ+

ksϒcM τ̄α2, V̇L can be further bounded as

V̇L
a.e.
≤ −α0e2

0−α1e2
1 + |e0e1|

+α2 |e1eu|+ρ(‖z‖)‖z‖|r|
−k2r2 + ksω1 |eur|+ ksω1 |eurτ̂|

+
1
2
(ε1ω1 +ω2)ks

(
r2− r2

τ̂

)
(53)

+ω3ksr2− ω3ks

τ̂

� t

t−τ̂

r (θ)2 dθ,

provided y(·) ∈D, ∀· ∈ [t0, t). Following a similar development
as the muscle active case, (53) can be upper bounded as

V̇L
a.e.
≤ −1

2
β2 ‖z‖2 , t ∈

[
te
n, t

m
n+1
)
, (54)

where β2 is defined in (26), provided that y(t) ∈ D,∀t ∈[
te
n, t

m
n+1
)
.

Upper bounding (51) and (54), produces the following result

V̇L
a.e.
≤ −1

2
min(β1,β2)‖z‖2 , ∀t ∈ [t0,∞) , (55)



provided that y(t) ∈D,∀t ∈ [t0,∞). It could be shown that a suf-
ficient condition for y(t)∈D,∀t ∈ [t0,∞) is that y(t0)∈ SD ,∀t ∈
[t0,∞), where SD is defined in (28). From (29) and (55) it can be
concluded that VL (y) ∈ L∞ and hence y ∈ L∞. From (9) and (30)
it is clear that e0,e1,r,eu,z,W̃ ∈ L∞, and from (15), (18), (19),
and Assumption 1 it can be concluded that u,ue,Ŵ , σ̂i (·) ∈ L∞.
Using the LaSalle-Yoshizawa Theorem for non-smooth systems
in [24] and [26], it can be proven that limt→∞ ‖z(t)‖ → 0, pro-
vided that y(t0)∈ SD and the sufficient conditions in the theorem
statement are satisfied.

CONCLUSION
This work develops the use of a real-time DNN-based adap-

tive controller to approximate the nonlinear dynamics of an FES
cycle-rider system. This control scheme accounts for the EMD
between the start and end of stimulation and the corresponding
start and end of the generated muscle force. Furthermore, the
developed controller uses the DNN approximation of the sys-
tem dynamics as a feedforward term in the motor controller to
meet the cadence and tracking objectives. The DNN updates
the output-layer DNN weight online (in real-time) while using
data-driven methods to update the inner-layer features iteratively.
Because of the iterative switching when the inner-layer features
update, a nonsmooth Lyapunov-based stability analysis is used
to prove semi-global asymptotic tracking. Due to COVID-19 re-
strictions, sufficient experiments were not possible by the time
of submission, but are now being developed.
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