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Abstract—This paper describes our team's participation in Track 

1 of the BioCreative VII challenge to automatically detect relations 

between chemical compounds/drugs and genes/proteins. Here, we 

discuss the three contextualized language-based models with 

different input representations: two general Bidirectional Encoder 

Representations from Transformers (BERT)-based models and a 

BioBERT-based model. Our best model for this task achieved an 

overall Precision of 0.55, Recall of 0.52, and an F1 score of 0.54 on 

the test set. 
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I. INTRODUCTION  

 Biomedical literature connects several types of users, including 
biomedical researchers, clinicians, and database curators, as 
they share their findings in articles, patents, or reports. 
However, the exponential growth of the literature makes it 
difficult for users to retrieve information efficiently in a timely 
manner. Therefore, there is an increasing need to develop 
Natural Language Processing (NLP) systems to automatically 
extract relevant information for users, reducing the time it takes 
them to identify and extract the information manually (1). NLP 
is an area of research focused on developing algorithms to allow 
the computer to process and analyze unstructured language. 
One such area is Relation Extraction (RE), which identifies 
relationships between entities in a text. 

 A considerable amount of existing systems focus on 
recognizing mentions of genes/proteins and chemicals in text 
automatically, but a limited number of approaches focus on 
extracting interactions between them (2). Therefore, it is 
necessary to study the different types of relationships of drugs 
and chemical compounds with certain biomedical entities, 
particularly genes and proteins, and their systematic extraction 
to analyze and explore key biomedical properties in biomedical 
applications (3). 

 In this paper, we describe our participation in the Biocreative 
VII Track 1 (3), whose task is to automatically identify the 
relationship between chemical compounds with genes in 
biomedical literature. We explored three variations of the  
Bidirectional Encoder Representations from Transformers 
(BERT) architectures (5).  

 
1 https://www.ncbi.nlm.nih.gov/pubmed/ 

II. RELATED WORK 

 BioCreative VI Task 5 (2) introduced a similar task to 

automatically detect relations between chemical 

compounds/drugs and genes/proteins in  PubMed1 abstracts, 

and they released a manually annotated corpus, the 

CHEMPROT (2). Peng, et al. (11) developed an ensemble of 

three systems: Support Vector Machine (SVM), Convolutional 

Neural Network (CNN), and Recurrent Neural Network 

(RNN). The output is combined using a decision based on 

majority voting or stacking. Antunes, et al. (12) used a CNN 

and a Bidirectional Long Short-term Memory (Bi-LSTM) 

together with a very narrow representation of the relation 

instances, using a few words from the shortest dependency path 

and the respective dependency edges. Yuksel, et al. (13) 

presented a CNN model and used word-embeddings and 

distance embeddings to represent a potential relation. Sun, et al. 

(14) proposed a novel Deep-contextualized stacked Bi-LSTM 

model (DS-LSTM), which consists of deep contextualized 

word representations, the entity attention mechanism, and 

stacked Bi-LSTMs. Sun, et al. (15) proposed a novel 

hierarchical recurrent CNN (Hierarchical RCNN)-based 

approach to learn latent features from short context 

subsequences efficiently. Liu, et al. (16) used CNNs and 

attention-based RNNs, to extract chemical protein 

relationships. Hafiane, et al. (17) explored various BERT-based 

architectures and transfer learning strategies for biomedical RE. 

III. DATA 

We evaluate our models on the Biocreative VII Track 1  
DrugProt corpus (3). The training set contains chemical 
mentions (46274), gene/protein mentions (43255), and 
drug/chemical-protein/gene interactions (17288) from 3500 
PubMed abstracts. The development and test set includes 750 
and 10750 abstracts, respectively. Fig. 1. shows the Brat Rapid 
Annotation Tool (BRAT) annotation of the entities and 
relations of a sentence from the dataset. 

Fig.1. An example of a BRAT annotated sentence from the training dataset 

Table I shows the number of instances for each relation type in 
the training and development datasets.   



TABLE I.  RELATION TYPE STATISTICS OF DRUGPROT CORPUS 

Annotated relations statistics 

 Training set 
Development 

set 
INDIRECT-

DOWNREGULATOR 
1330 332 

INDIRECT-UPREGULATOR 1379 302 

DIRECT-REGULATOR 2250 458 

ACTIVATOR 1429 246 

INHIBITOR 5392 1152 

AGONIST 659 131 

AGONIST-ACTIVATOR 29 10 

AGONIST-INHIBITOR 13 2 

ANTAGONIST 972 218 

PRODUCT-OF 921 158 

SUBSTRATE 2003 495 

SUBSTRATE_PRODUCT-OF 25 3 

PART-OF  886 258 

TOTAL  17288 3765 

 

IV. METHODS 

In this section, we describe the three models we developed for 
chemical-gene RE. Fig. 2. shows the architecture of our overall 
system. 

 

Fig.2. Architecture that represents our overall system  

 BERT is an NLP model introduced by Google in 2018 (4). 
BERT is a transformer (8) that utilizes attention mechanisms to 
learn the contextualized semantic relations between words of a 
text. The encoder reads the input as the sum of token, 
segmentation, and position embeddings. BERT is the first deep 
bidirectionally trained language model that learns the 
representation of a word based on its context. The general 
BERT models are trained on a large corpus of English data: 

Book-Corpus (800M words) and Wikipedia (2,500M words) in 
a self-supervised manner to serve as a general-purpose 
language representation model. In this work, we also explore 
BioBERT, which is general BERT further pre-trained over a 
corpus of biomedical research articles from PubMed abstracts 
and article full texts for biological text mining tasks. There are 
two BioBERT models: BioBERT-Base and BioBERT-Large. 
BioBERT-Large is based on BERT-Large and has twice as 
many layers as BERT-base. 

 To determine the relation between a chemical entity and a gene 
entity, we first locate the sentence where the entity pair is 
located. Next, we develop a representation specifically for that 
entity pair as multiple entity pairs can be located in the same 
sentence. We explore two different representations. Fig. 3. 
describes the two representations for the entity pair 
benzamidine-plasminogen (T1-T14) in (A).  Representation B 
shows the input representation where the non-targeted entity 
pairs (genes plasmin and gp330) are removed from the input 
representation. Representation C shows the input representation 
where the entity pair is replaced with its semantic type: 
benzamidine and plasminogen are replaced with @Chemical# 
and @Gene#, respectively.   
 
 For our Model-1 and Model-2 (general BERT-based models), 
we explore using general BERT-cased embeddings into a 
simple feed-forward neural network. The key difference 
between the Model-1 and Model-2 is the input sentence 
representation. For Model-1, we remove the other entity pairs 
in the input sentence except for the targeted entity pair. For 
Model-2, to represent the entity pair in an input sentence, we 
use the semantic type of an entity to replace the entity itself. 
The modified input representation is passed through the pre-
trained general BERT-cased model. The output is fed into a 
dropout layer and then a softmax layer for multi-class 
classification (6). When there is no relation between a chemical 
and gene/protein in a sentence, we treat it as an instance of a 
‘No-Relation’ class during the training. For our BioBERT-
based model  (Model-3), we explore using BioBERT 
embeddings into a feed-forward network for multi-class 
classification. Like Model-2, we represent an entity pair in a 
sentence by replacing the entities with the semantic types (Fig. 
3.C). The maximum input sequence length for the Model-3 is 
128. We trim the sentence from both ends if a sentence is longer 
than the maximum sequence length. We perform this by taking 
the midpoint between the two entities and extending it by 64 
tokens in both directions. We pass the input into the BioBERT-
Large model, and embeddings of the [CLS] token are fed into a 
top model, consisting of a dropout and softmax layers.  

V. EXPERIMENTAL DETAILS 

Here, we describe our experimental details. 

 

Framework: Our code is open source and freely available at:   
● https://github.com/synbioks/Text-Mining-

NLP/tree/master/relation-extraction/biobert_RE/models/pt, 

● https://github.com/NLPatVCU/BioCreative-VII-Track1

 

https://github.com/synbioks/Text-Mining-NLP/tree/master/relation-extraction/biobert_RE/models/pt
https://github.com/synbioks/Text-Mining-NLP/tree/master/relation-extraction/biobert_RE/models/pt
https://github.com/NLPatVCU/BioCreative-VII-Track1
https://github.com/NLPatVCU/BioCreative-VII-Track1


 

Fig. 3. Different representations of the input sentence used in our models. Model-1 utilizes the input representation B and the Models 2 & 3 utilize the input 
representation C

Tokenization: We used spaCy2 and Scipy3 to extract input 

sentences and the BERT and BioBERT tokenizers to convert 

the sentence into tokens. 

 

Training parameters: We used a learning rate of 2e-5 

(Model-1&2) and 3e-5 (Model-3) and a linear learning rate 

schedule with 1/10th of the total training steps as a warm-up. 

We used a batch size of 12 for the training in all models. We 

applied early stopping to the training for both BioBERT-

based models (six epochs) and the BERT-based models (15 

epochs).     

 

Downsampling: We downsampled the class that denotes no 

relation between the entity pairs by 75% to overcome the 

heavy class imbalance during the training in the BERT-based 

models.  

VI. EVALUATION CRITERIA 

We evaluated our system using the DrugProt evaluation 

library provided by the organizers. Our approach was 

evaluated using micro-averaged Precision (P), Recall (R), 

and F1 score (F). Precision calculates how many instances are 

predicted correctly out of all instances, and Recall calculates 

out of all the correct instances that should have been 

predicted how many instances are correctly predicted. F1 

score is the harmonic mean of Precision and Recall. 

VII. RESULTS AND DISCUSSION 

Here, we discuss the results of our three models on the 
development and training sets. Table II shows the Precision, 
Recall, and F1 scores for our three models on the 

development and test sets. The bold terms indicate the best F 
score of each class for development and test sets. 

A. Results over the development set 

We utilized the development set results to obtain the best set 
of weights for our model. The results show that Model-3 
(BioBERT-based model) outperformed the other two models 
(general BERT-based models) except for two classes. Also, 
we can see a decrease in performance when the number of 
class instances decreases, especially the three classes 
AGONIST-ACTIVATOR, AGONIST-INHIBITOR, and 
SUBSTRATE_PRODUCT-OF, which have the lowest 
number of instances. This is mainly because these classes do 
not have enough instances to be differentiated from other 
classes during training.  

Compared to Models 1 & 3, Model-2 could predict instances 
for the classes AGONIST-ACTIVATOR, AGONIST-
INHIBITOR despite fewer training instances. We believe 
this is because we downsampled the ‘No-Relation’ (entity 
pairs with no relation between the entities) due to the heavy 
class imbalance during training. Downsampling and the input 
representation of the Model-2 improved the performance of 
the classes with few instances.  

Overall performance of Model-2 is higher than Model-1, but 
the Recall of Model-1 is higher than Model-2 for most 
classes. We assume this is due to the difference in the input 
representation of the models. Since Model-1 eliminates the 
entities except for the targeted entities, the Recall is high. We 
experimented with both general BERT-cased and BERT-
uncased, and we found that comparatively, BERT-cased 
performed better. 

TABLE II.  PRECISION (P), RECALL (R), AND F1 SCORE (F) RESULTS FOR ALL MODELS OVER THE DEVELOPMENT AND TEST DATA. 

 
2 https://spacy.io/ 3 https://www.scipy.org/ 



 

 

Development set Test set 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

P R F P R F P R F P R F P R F P R F 

INDIRECT-

DOWNREGULATO

R 

0.48 0.69 0.57 0.62 0.67 0.64 0.75 0.73 0.74 0.44 0.57 0.50 0.50 0.72 0.59 0.67 0.72 0.70 

INDIRECT-

UPREGULATOR 
0.33 0.64 0.44 0.58 0.66 0.62 0.76 0.78 0.77 0.34 0.63 0.44 0.49 0.68 0.57 0.68 0.75 0.71 

DIRECT-

REGULATOR 
0.35 0.67 0.46 0.48 0.63 0.54 0.72 0.52 0.61 0.34 0.55 0.42 0.41 0.6 0.48 0.70 0.57 0.63 

ACTIVATOR 0.32 0.61 0.42 0.53 0.63 0.58 0.78 0.75 0.77 0.47 0.61 0.53 0.56 0.74 0.63 0.79 0.70 0.74 

INHIBITOR 0.50 0.82 0.62 0.65 0.83 0.73 0.86 0.83 0.85 0.53 0.75 0.62 0.61 0.78 0.69 0.81 0.79 0.80 

AGONIST 0.43 0.63 0.51 0.67 0.68 0.67 0.74 0.75 0.74 0.49 0.67 0.57 0.58 0.63 0.61 0.73 0.65 0.69 

AGONIST-

ACTIVATOR 
0.0 0.0 0.0 0.75 0.3 0.43 0.0 0.0 0.0 0.0 0..0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

AGONIST-

INHIBITOR 
0.0 0.0 0.0 0.25 0.5 0.33 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.33 0.50 0.0 0.0 0.0 

ANTAGONIST 0.43 0.76 0.55 0.68 0.76 0.72 0.91 0.90 0.90 0.54 0.80 0.64 0.65 0.88 0.74 0.86 0.85 0.86 

PRODUCT-OF 0.25 0.47 0.33 0.38 0.53 0.44 0.61 0.58 0.60 0.33 0.43 0.38 0.42 0.63 0.50 0.61 0.59 0.60 

SUBSTRATE 0.31 0.69 0.43 0.44 0.69 0.54 0.72 0.76 0.74 0.42 0.44 0.43 0.38 0.53 0.44 0.61 0.55 0.58 

SUBSTRATE_PRO

DUCT-OF 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0..0 0.0 0.0 0..0 0.0 0.0 0.0 0.0 

PART-OF  0.31 0.45 0.37 0.46 0.41 0.44 0.76 0.68 0.72 0.40 0.38 0.39 0.39 0.49 0.43 0.71 0.61 0.66 

 0.39 0.69 0.50 0.56 0.69 0.62 0.78 0.74 0.76 0.33 0.45 0.38 0.46 0.54 0.48 0.55 0.52 0.54 

 Therefore, we assume the difference in the casing of the 
words in the dataset played a role in determining the context 
of the words. Also, we experimented with BioBERT-Base 
and BioBERT-Large and found that BioBERT-Large 
provided a performance improvement of 1.6%. Again, we 
assume this is because BioBERT-Large is based on BERT-
Large, which has twice as many layers as BERT-base and is 
trained over a more extensive biomedical-based vocabulary. 

B. Results over the test set 

 The observations from the results of the test set are similar to 
the development set. Overall, Model-3 (BioBERT-based 
model) outperformed the other two models except for one 
class. However, the overall results of the test set are lower 
compared to the development set. Here, also we can see a 
decrease in performance when the number of class instances 
decreases. However, Model-2 could predict all the positive 
instances correctly (Precision-1.0) for the class AGONIST-
INHIBITOR.  
 
 From the results of both the development and test sets, 
Model-2 performed better than Model-1. Therefore, it is safe 
to assume that replacing the entities with their semantic types 
is an efficient way of representation than training with the 
actual entity tokens. Furthermore, since the BioBERT is pre-
trained on biomedical articles, it gives more efficient 
contextualized embeddings than the BERT trained on general 
English. We believe this is why Model-3 (BioBERT-based 
model) outperforms the other two models (general BERT-
based models). 

VIII. CONCLUSION 

This paper presented three contextualized language-based 
models, a BioBERT-based and two general BERT-based 
models, to automatically detect relations between chemical 
compounds/drugs and genes/proteins. We evaluated our 
models on the DrugProt dataset and found that the BioBERT-
based model outperformed the other models. From the results 
of both the development and the test set, we can conclude that 
BioBERT embeddings represent the tokens effectively when 
used on biomedical data. Also, replacing the entities with 
their semantic types is an effective unique representation of 
the input sentence.  

 Here, we use a simple neural network on the output of the 
contextualized embeddings. In the future, we plan to explore 
more complex deep neural networks with contextualized 
embeddings, for example, Graph Convolutional Networks 
(GCNs) (9). Traditional neural networks perform well on 
euclidean data; however, they do not handle non-euclidean 
data representations within language well because the model 
considers the positional information of the words. Therefore, 
utilizing GCN with contextualized embeddings provides the 
flexibility of language when expressing relationships 
between entities. Also, we plan to explore Joint Learning for 
RE in the future. Named entities are essential to extract 
relations, and named entity recognition (NER) helps identify 
the entities in the text (10). Therefore, simultaneously 
learning NER and RE  can be beneficial to capture such two 
different types of information in the learning process.  
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