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The goal of this research is to investigate a biometric solution that links biometric personal identity to self-
monitoring data, with time and location information, as a temporal-spatial event in a personal health record
stored in a mobile device. The proposed biometric solution is based on a secure computation technology that
reconstructs a cryptographic key for (un)locking personal health record in real time when a verification sample
is sufficiently similar to the enrollment sample --- whereas the verification process is based on a secure two-
party security computation that compares the enrollment and verification samples without either party sharing
the data with each other, nor relying on a trusted third party. The contribution of this research is to demonstrate
the practical feasibility of the approach in a resource constrained mobile computing environment. The
significance of this research is its potential application for enabling a safe bubble space for social interaction
among individuals who have self-monitoring data showing lack of Covid-19 symptoms at a specific time and

location.

1 INTRODUCTION

The main research goal is to investigate a scheme
for linking biometric identity to self-monitoring
health data with time and location information in a
mobile computing environment. The contribution of
this research is to demonstrate --- in an edge resource
constrained mobile computing environment --- the
feasibility of (a) biometric voice feature extraction
and verification, and (b) a secure computation
technique for cryptographic key (re)generation based
on personal biometrics with privacy protection. The
significance of this research includes (i) a
biometrically enabled cryptographic solution that
guarantees security and privacy assurance since
neither the cryptographic key nor personal biometric
information is stored/shared at rest or in-transit, and
(i1) a m-Health solution promoting individual health
self-monitoring via IoMT (Internet of Medical
Things) in a mobile computing environment that also
enables a safe bubble space for work place re-opening
in the event of Covid-19.

Covid-19 has caused lockdown and has taken
economy down with it in many countries (Nicola,
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2020). At the same time, mental health has
increasingly been a concern due to the public health
practice on social distancing, isolation, and
quarantine (Pfefferbaum, 2020). While contact
tracing (Yap, 2020) could be a good incidence
response safeguard, it is a reactive approach. To
streamline operational workflow process, reopening
from a Covid-19 lockdown requires proactive self-
health monitoring for public health safety; e.g., health
monitoring is explicitly stated in the guidance on
returning to work by Occupational Safety and Health
Administration in the United States (OSHA, 2020). In
order to create a safe bubble space, an individual
should satisfy three criteria:

(1) A self-health monitoring result in a personal
health record showing lack of Covid-19
symptoms such as fever and low oxygen
saturation level,

(2) The result of self-monitoring should be
timely; e.g., a self-monitoring record is valid
if it contains consecutive negative test
results for the most recent 7 (or 14) days;

(3) Location self-reporting, together with a
verifiable self-monitoring record with a



date/time stamp, constitutes a temporal-
spatial event for contact tracing purpose.

There are two security and privacy questions related
to the three criteria just mentioned:

(a) Self-health monitoring data should be
automatically captured, time stamped, and
transferred from an electronic monitoring
device such as Bluetooth enabled
thermometer or Pulse Oximeter to update a
personal health record. Using electronic
monitoring devices removes the uncertainty
on subjective self-assessment. But how do
we ascertain data sharing with security and
privacy protection?

(b) In linking an identity to a self-reporting
record with self-monitoring data for creating
a temporal-spatial event, how do we
preserve the integrity and assure non-
repudiation in data sharing?

In section 2 we will discuss the related work in
biometric voice authentication and present a real
world use case scenario to motivate this research
formulation, as well as the assumption on the
operational environment of an end user. The security
and privacy risk will be discussed, as well as the state-
of-the-art and the best practice. In section 3 a secure
computation technology to enable privacy preserving
biometric verification reported elsewhere (Sy, 2012)
will be summarized. In section 4 the design and
implementation of the proposed system in a mobile
environment will be given. In section 5 the result of a
preliminary evaluation for informing the feasibility of
biometric voice will be shown. This will be followed
by a discussion on the lesson learned in section 6,
which include comparative analysis and security
analysis. In section 7 this paper will be concluded
with our future research plan.

2 RELATED WORK

2.1 Literature review

In terms of security and privacy, this research
draws on biometric and cryptographic technologies.
Hao et al. (Hao 2005) were among the pioneers in
successfully melding biometrics with cryptography.
Clarke et al (Clarke, 2002) is among the first to survey
the performance of biometric authentication on a
mobile device. An interesting finding in their survey
is that biometric voice is the second most preferred
biometric modality (next to fingerprint) to achieve the

desired level of security for mobile devices.
Parthasarathy et al (Parthasarathy, 2017) reported a
study on speaker verification performance with
expressive speech. It was found that the error rates
strongly depend on the duration of the sentence. In
particular, the error rate increases for shorter
sentences (i.e., less than four seconds). Their
performance result is based on i-vector scheme. I-
vector scheme reduces a high dimensional Gaussian
super vector into a low-dimensional vector that
retains most of the high-level information of a speech
segment. 39-dimensional MFCC (Mel Frequency
Cepstrum Coefficient) feature vectors are then
extracted from i-vector of 200 dimensions as a basis
for verification based on Probabilistic Linear
Discriminant Analysis (PLDA). It reports an
excellent performance of ERR (Equal Error Rate) of
0.5% when speech duration is greater than 5 seconds
in a laboratory environment. Sathiamoorthy et al
(Sathiamoorthy 2018) reports a performance study
based on speech recorded using a Close Speaking
Microphone (CSM) and Throat Microphone (TM).
By applying auto-associative neural network, it could
achieve an EER of 7% on laboratory based clean
speech, and an EER of 40% on noisy speech. A
common drawback on most of the performance
studies is the lack of information regarding the fail-
to-acquire rate during an enrollment phase as well as
in the verification phase. Fail-to-acquire (biometric
sample) could occur frequently in mobile device,
especially when the real world operating environment
is typically noisy. In this paper, biometric voice is
applied to protect self-monitoring health data stored
in a mobile device for a Covid-19 use case.

2.2 Covid-19 scenario use case

In the United States, the policies and requirements for
business and school re-opening after Covid-19
lockdown vary from time to time, as well as from one
state to another (Angulo, 2020). Nonetheless, one
common emphasis is safety. Currently a “quick fix”
solution being adopted is a self-assessment survey to
be completed and self-reported by an individual. This
is primarily an honest system and it assumes the self-
assessment survey response is reliable. For example,
one may rely on recollection and subjective belief in
answering a question “Did you have fever or
experience shortness of breath in the last 14 days?” A
more reliable approach is to actually conduct
temperature and SPO2 measurements rather than
relying on a self-assessment survey. For example, a
building owner or an organization may conduct



contactless body temperature measurement for
visitors and employees returning to work on-site.

In the traditional approach shown in Figure 1
(Azra, 2017), the vital signs and body temperature of
an individual may be measured by oneself or a third
party. The data are then (emailed or) shared with a
medical profession. Under regulatory compliance,
medical professions are not allowed to share the data
of an individual. Therefore, an individual needs to
repeat the monitoring process for each medical
profession, or during a visit to a store and a building.

In the scenario where an individual is capable of
self-monitoring, the scenario shown in Figure 2 is
attractive because it removes the “choke point” on the
workflow process and the data privacy is under the
control of the individual.
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In Figure 2, the individual retains the self-
monitoring data in a personal health record, and
shares the personal health record when needed.
Therefore, the individual does not need to repeat the
monitoring process until the self-monitoring data are
expired. For the purpose of contact tracing, each self-
monitoring is associated with the time stamp and the
location. This constitutes a temporal-spatial event. A
personal health record is a collection of temporal-
spatial events. Each temporal-spatial event could then
be further labelled as “active” or “expired” if such an

event may be used for determining compliance on
health monitoring.

Nowadays consumer grade monitoring devices
with FDA approval or CE mark are available. Many
such devices support Bluetooth 4.0 or above —
referred to as smart Bluetooth technology. The
significance of smart Bluetooth technology is the
health device profile defined in ISO/IEEE 11073-
20601 (ISO/IEEE 11073-20601). This provides a
common standard and interoperability for data
exchange based on health characteristic profiles. In
addition, Bluetooth technology also supports data
encryption/decryption using a common link key
derived from the pairing process between two
devices.

In our research, link layer encryption for data
transfer between a monitoring device and the
software application implemented for a mobile device
is generally acceptable because self-monitoring is
performed by a user in private rather than in a public
space. The challenge is the security and privacy
protection of the monitoring data tagged with a time
stamp and location information as a temporal-spatial
event stored in a personal health record.

3 SECURE COMPUTATION

The technology for security and privacy protection is
based on a secure computation technique, referred to
as Secure Information Processing with Privacy
Assurance — SIPPA.

SIPPA is a two-party secure computation for two
untrusted parties to compare private data without
sharing it (Prakash, 2012). The key technical properties
of SIPPA are outlined below:

There are two parties P1 (Client) and P2

(Server). P1 and P2 have private data D1

and D2 respectively. Without the presence of a

trusted third party, P1 and P2 would like to know

whether D1 and D2 are sufficiently similar. And
if so, P1 could derive an estimate of D2 under the
following two conditions:

1. P1 and P2 have to first find out whether D1
and D2 are sufficiently similar without
either party disclosing the private data to
another party.

2. If D1 and D2 are sufficiently similar, P1
can derive an estimate of D2 (call it D2'),
without P2 ever sending D2. The only data
that P2 will send P1 is some helper data
with negligible overhead, where P2 can
control the level of accuracy in D2' through
the helper data that it sends to P1.



The specific use case of SIPPA in this research is
to provide these security and privacy properties:

- For privacy protection, biometric identity of a user
is never stored in plain.

- A cryptographic key for security protection is never
stored. It is regenerated in run-time when a user
could produce a biometric sample sufficiently
similar to the enrollment sample.
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Figure 3: SIPPA workflow.

The basic concept behind the application of
SIPPA is the following. During the “enrollment”
process, a user P/ will generate a random seed N and
a cryptographic key K, and will present a biometric
sample 7. N, K and T are in form of a vector of values
from a finite integer field. N+K is computed and is
sent to P2 for enrollment. P1 retains only N and
N+K+T. Note that P2 could not derive K from N+K
without knowing N. Similarly, P/ does not possess K
or 7. P can only derive K+7 using N and N+K+T.
In other words, neither K nor T is stored; thus
eliminating the security risk on the server side (P2),
and the risk of privacy leak on the client side (P1)
even if the device storing N and N+K+T is stolen.

For reconstructing the cryptographic key K, a user
will present a biometric sample 7° and compute
(N+K+T — T’). Then the user will engage P2 in
SIPPA secure computation for a private comparison
between (N+K+T—T’) of P1 and (N+K) of P2. If the
user is P1, T’ will be sufficiently similar to 7. Thus,
(N+K+T - T’) and (N+K) will be sufficiently similar.
In such a case, P/ could use the helper data (condition
2 stated previously) provided by P2 to reconstruct
(N+K). Upon perfect reconstruction of N+K, Pl can
reconstruct K from (N+K)-N. If the user is an
impersonator, 7” will be different, rendering the
helper data to reconstruct an error laden term
(N+K+error) that prevents the reconstruction of K.

The operational workflow is shown in Figure 3.
The implementation details on enabling SIPPA for
the proposed use case is presented in the next section.

4 PROPOSED SYSTEM

4.1 System procedure

From an end user perspective, the operational
workflow process of the proposed system consists of
the following steps:

1. A user self-monitors body temperature and other
vital signs such as body temperature and SPO2
through Internet of Medical Things such as
Bluetooth Low Energy enabled health devices.

2. Data captured by health devices are transferred
through Bluetooth link layer end-to-end
encryption to the personal health record managed
by this proposed system in user’s mobile device.

3. The user self-verifies against a unique patient ID
through biometric voice verification. The
verification result is time-stamped & tagged with
a geo-location to create a temporal-spatial event.

4. The user provides a voice sample to generate a
cryptographic key to encrypt the personal health
record updated in step 2.

Linking biometric identity with self-monitoring
health data as a temporal-spatial event is a process of
composing a record consisting of four pieces of
information below:

(1) Self-monitoring data in a personal health record.
(2) Location of self-monitoring and verification.

(3) Date/time stamp.

(4) Verified biometric identity.

During the process of creating a temporal-spatial
event, the location information will be extracted from
the GPS service of a mobile device, together with date
time stamp information. Below is an example:

Temperature: 98.6 F

Longitude: -118.3097981  Latitude: 33.8019404
Date time stamp: 2020-07-03 15:13:07

ID: 56491905408240

During the biometric verification process, the
identity being verified will be used for generating a
cryptographic key to encrypt the self-monitoring data
in a personal health record. This links the identity
information with the health data, and ascertains the
confidentiality, integrity and ownership of the data.
The end result of the linking process is a temporal-



spatial event that represents a record of the four pieces
of information just discussed.

4.2 System design

Our focus on this research is to explore the feasibility
of biometric voice verification in a mobile device.
The purpose is to enable a linking process to associate
the biometric identity of an individual with self-
monitoring health data, and timestamp and location
information as a temporal-spatial event. The SIPPA
process described in the previous section could be
applied to other biometric modalities as was
demonstrated before (Sy, 2012). In this research the
proof-of-concept prototype is implemented using
biometric voice. It is because every mobile device has
at least one audio channel. On the other hand, high
quality fingerprint scanner and/or camera depends on
the phone models. Furthermore, biometric data access
is possible only if it is made available by
manufacturers for integration.

4.2.1 Biometric modality consideration

Biometric voice is generally less accurate in
comparison to other modalities such as fingerprint.
To compensate this, the design and implementation
strategy is to incorporate content dependent voice
verification. In other words, a user could opt to rely
on only acoustic signature via SIPPA secure
computation, or acoustic signature with the speech
content, for verification. If speech content is
incorporated for verification, Google speech service
is utilized to perform speech-to-text conversion, and
the text content matching could be either precise, or
approximate using Levenshtein distance function by
normalizing the distance as an error tolerance
between 0 and 1.

4.3 System implementation
4.3.1 Speech signature extraction

The process of extracting biometric voice signature

from a speech sample consists of the following steps:

1. Zero crossing detection algorithm (Freeman
1989) is applied to identify and remove the silent
region before and after the recording.

2. The time frame for speech processing is a 16-ms
non-overlapping timeframe under the short-term
stationary assumption (vlab.amrita.edu, 2011).

3. For each 16-ms time frame, the signal is pre-
emphasized using a hamming window filter
(Smith, 2011).

4. Mel filter bank (Sahidullah, 2012) consisting of
20 Mel filters S’(]) is used to aggregate the
frequency spectrum obtained from the output of
Fast Fourier Transform FFT; i.e., for each 16-ms
time frame, the following is computed:

S'(1) = Y2 s(k)M, (k) where

- [=0.. 19 is the index of the filter bank;

- k— (kfy/N)Hz with f; = sampling frequency;

- N being the size of FFT,

- S(k) being the output of FFT of discretized
speech samples in a 16-ms timeframe;

- Mi(k) being the I band-pass triangular filter
with Mel scale that defines the center
frequency and the bandwidth of the band-
pass filter, and the 20 Mel filters cover the
frequency range between 0 and 4000 Hz.

5. Derive the 20x] mean vector consisting of the
mean of S’(]) for each /=0 .. 19; and the 20x20

covariance matrix.

Biometric voice signature is modelled by
multivariate Gaussian distribution; more specifically
the mean vector and covariance matrix in step 5
above. Comparing two biometric voice signatures (S1
and S2) is then reduced to computing the average of
Kullback-Leibler distance (Kullback, 1951) between
S1 and S2, and that between S2 and S1. This is
required because Kullback-Leibler (KL) distance is
asymmetrical. In encoding the cryptographic key K as
described before, only the mean vector is used for
computational efficiency. But when calculating the
KL distance, both the mean vector and covariance
matrix are used in comparing the multivariate
Gaussian models of the enrollment and the sample.

5 PRELIMINARY STUDY

Generating a secured temporal-spatial event relies on
biometric  verification using SIPPA  secure
computation with the process described in Figure 3.
At the present time, a prototype developed to support
this research is available for Android platform. The
implementation in the Android platform consists of
the following configuration:

Sampling rate: 8000 HZ (mono channel)

Time frame for data processing: every 16ms

Number of bits per sample: 16

Compression and format: PCM, WAV

Dynamic threshold adaptation: Enabled/Disabled

as determined by user



Dynamic threshold adaptation refers to an
automatic calibration process; i.e., the threshold for
biometric verification will be adjusted based on the
consistency of enrollment samples when there are
multiple enrollment samples. In case of high
inconsistency (large intra-variation) among the
multiple enrollment samples, the threshold will be
relaxed to lower the risk on false rejection. In case of
high consistency, the threshold will be tightened to
lower the risk on false acceptance (small intra-
variation) among the multiple enrollment samples.

5.1 Experimentation design

This preliminary study is conducted by three users of
different ethnicities. All three speak fluent English
and one of the three is a native (American) English
speaker. All three were provided a Samsung Galaxy
phone for this study.

This study did not attempt to recruit a large
number of participants. It is because the test
environment consisted of a personal mobile device
that was under the custody of a participant. The
security safeguard in the event of a stolen phone will
be discussed in the next section.

5.2 Experimental setup

Three user subjects, referred to as S1, S2 and S3,
participated in the study. Each subject participated in
three sessions. In the first study session, a subject was
asked to enroll once and enable content dependent
verification. When content dependent verification
was enabled, verification was accepted only if (1) the
acoustic signature is sufficiently similar, and (2) the
content of a speech sample for verification matches
the content of that for enrollment. In addition, each
user could opt for precise match or approximate
content match.

In this study, only precise match was chosen by all
three subjects. Therefore the default threshold value
(zero) was used as the error tolerance for comparing
the enrollment and the verification samples during the
verification. Thirty-two speech samples were
recorded for testing true acceptance (TA) and false
rejection (FR). In 16 of the 32 samples, the text
content of each sample must be identical to that of the
enrollment sample, while the subject is free to choose
any content for utterance in the other 16 samples.

During the verification phase, those 16 samples
with matching text content as that of the enrollment
sample were used for content dependent verification.
An additional 16 samples from the other two subjects
were randomly selected for testing true rejection (TR)
and false acceptance (FA). In this study, we assumed

the enrollment phrase (i.e., fixed message content) is
known to the impersonator. Therefore, the study
result reports the lower bound of the true rejection.

Each subject was then asked to repeat the
procedure for content independent verification. In
content independent verification, the verification was
based on only the similarity of the acoustic signature.
The similarity of the text content between the
enrollment and verification was not considered.

In the second session, each subject was asked to
enroll three times. This is the minimum number of
enrollments that will trigger dynamic threshold
adaptation. In other words, a dynamic threshold was
automatically derived based on the intra-variation of
the enrollment samples. The verification process
similar to that of the first session was then repeated.
In the event that the contents were different among
the multiple enrollment samples, the content of the
most recent enrollment was used during the content
dependent verification.

In the third session, the procedure was identical to

that of the second session. The only difference was
that each subject was asked to enroll four times. By
enrolling four times, a second dynamic threshold was
obtained for each subject.
During a verification, a separated third-party mobile
app was used to record the level of background noise
since the signal-to-noise ratio could be a factor that
affects the verification result.

5.3 Result and discussion

The results of the study are summarized in the
plots. Figure 4 shows the overall performance in
terms of false rejection rate (FRR) and false
acceptance rate (FAR) under two different scenarios:
content dependent verification and content
independent verification. By aggregating the
verification results of all three subjects, nine pairs of
(FRR, FAR) data points under different thresholds are
expected for content dependent verification, and
another nine for content independent verification. It
is because one data point per threshold per subject
could be derived from each session and each of three
subjects participated in three sessions of the
experiment described before. However, figure 4
shows only seven data points. It is because there are
only five distinct thresholds (instead of nine) for
content dependent verification, and seven distinct
thresholds (instead of nine) for content independent
verification. In addition, there are five overlapping
data points of content dependent and content
independent verification at (FAR=1, FRR=0), and of
which two overlapping at the origin (FAR=FRR=0).



Figure 5 shows the relationship between the
threshold value and the false acceptance rate. In the
case of content independent verification, the false
acceptance rate in general increases as the threshold
value increases. Since the threshold value is related to
error tolerance for false acceptance, the result is
expected. The result of content dependent verification
also shows a similar pattern.

Furthermore, there seems to be an outlier at
threshold = 0.115 at a first glance as one expects a
monotonic trend. But it is noted that the relationship
between FAR and threshold guarantees monotonic
behavior only if the plot is for one single user. Yet
Figure 5 shows the aggregated result of three users.
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Figure 5: Threshold vs FAR.

Figure 6 shows the relationship between threshold
and FRR. Figure 6 is roughly a mirror of figure 5 as
expected. At approximately same threshold around
0.05, the false rejection rate of content dependent
verification is better than that of content independent
verification.

Figure 7 shows the relationship between threshold
and FRR. But it shows the break down with respect
to each user rather than showing the aggregated result
as in Figure 6. It is noted that the false rejection rate
is reduced to zero for subject 1 and subject 3 when
threshold is increased to 0.335. However, reducing
false rejection rate to zero for subject 2 occurs only
when the threshold is 1. This suggests a greater intra-

variation in subject 2 when comparing to that in the
other two subjects.
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Figure 8 shows the effect of the background noise
and the verification error. The distribution shown in
figure 8 does not show the background noise affecting
the performance in terms of error.
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6 LESSON LEARN

6.1 Comparative analysis

In order to compare the biometric voice verification
result obtained in this research against others, the
following factors should be considered:

1. Experimentation environment; i.e., the
enrollment and verification are conducted
based on speech samples of a laboratory-
based noise-free environment or a real-
world noisy environment.

2. Computing platform and biometric sensors;
i.e., the experimentation is conducted on a
desktop or mobile device with varying
computing powers and sensors.

3. Feature extraction and  verification
techniques; i.e., choice of feature
representation such as Mel scale or Bark
scale for feature representation, matching
techniques such as PLDA or associative
neural network approach, as well as distance
functions such as Euclidean or Kullback-
Liebler distance functions.

4. Types of verification; i.e., content dependent
or content independent verification.

To the best of our knowledge, available results for
comparison are all based on different setups. For
example, Parthasarathy et al (Parthasarathy, 2017)
reported performance analysis on desktop-based
environment using laboratory-based noise-free
samples of expressive speech with Mel-frequency
with 39 dimensions to achieve low Equal Error Rate
on speech with specific durations. Since their
evaluation is on given speech samples, the analysis
did not include considerations on fail-to-enroll or fail-
to-verify due to noisy environment exceeding the
capability of microphones. Sathiamoorthy et al
(Sathiamoorthy 2018) reported performance analysis
by providing explicit information on the types of
microphones. However, it applied associative neural
network approach as opposed to PLDA, and again the
verification is conducted on the “back-end” desktop
environment.

In contrast to the two just discussed, our study is
on mobile environment with Mel-frequency with only
20 dimensions to cover only the frequency range of
normal speech conversation and the input device was
the microphone of a mobile device rather than an
externally added on microphone. Nonetheless, Clarke
et al (Clarke, 2002) has reported performance
analysis in an environment matching the environment
of our experimentation. For mobile environment, it
reported an ERR of 33%.

In our study, the best performance is an ERR of
0%. While the ERR is similar to that of Parthasarathy
et al (Parthasarathy, 2017) and Sathiamoorthy et al
(Sathiamoorthy 2018). Direct comparison is not
appropriate because our approach allows personal
tuning via dynamic threshold that takes into the
consideration of individual inter- and intra-variations.
In comparison to Clarke et al (Clarke, 2002), our
performance in a noisy environment is consistent to
that reported by them and others; i.e., an ERR of
about 33%. Despite the experimentation is under a
similar environment, one should refrain from a direct
comparison since the evaluation of Clarke et al was
conducted more than 15 years ago.

6.2 Security analysis

This proposed research on linking biometric identity
with self-monitoring health data as a temporal-spatial
event is secured and private under the semi-honest
model. Under the semi-honest security model, a user
will not deviate from the expected procedure in both
the measurement and linking processes.

Without the assumption on semi-honest security
model, there are two vulnerabilities. First, self-health
monitoring assumes a user to not use a faulty
instrument, and to not ask another person to
impersonate during self-monitoring, say, temperature
reading. If this assumption does not hold, the data
integrity in terms of data source could be
compromised. Second, creating a temporal-spatial
event requires location services such as GPS for
network-based location discovery. Location spoofers
(Chandler, 2019) are available to fake GPS location
for privacy protection. Fortunately, successful exploit
on these two vulnerabilities will require a user to act
maliciously, which is not an expected behaviour
under the semi-honest security model.

Regarding security analysis, SIPPA secure
computation is secure and private with the security
and privacy properties already discussed in section 3.
Recall that the linking process for generating a
temporal-spatial event involves the encryption of the
self-monitoring data stored in a personal health record
using the cryptographic key that is (re)generated
using a verified biometric identity. Since both the
cryptographic key and the biometric signature are
never stored in plain, the risk of such information
being stolen from either the mobile device or back
end server does not exist. Even if the mobile device
that stores such information is stolen, one would still
need a biometric sample that is sufficiently similar to
the enrollment sample for recovering the
cryptographic key. Therefore, both security and
privacy protection are still intact.



7 CONCLUSION

A method for linking biometric identity to self-
monitoring health data stored in a mobile device was
presented. It demonstrated how SIPPA secure
computation could be applied for biometric
verification that guaranteed private data comparison.
Verified biometric identity was then used to encrypt
a record consisting of self-health monitoring data,
location and time/date information. A preliminary
study was conducted to gain insights into its
feasibility for deployment to a mobile device. When
user behaviour could be modelled as semi-honest,
security and privacy assurance could be analysed and
verified. Our future research will focus on an
architectural solution that could extend wuser
behaviour assumption beyond semi-honest for use

cases beyond personal mobile computing
environment.
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