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ABSTRACT

Lightweight speech recognition models have seen explosive demands owing to a
growing amount of speech-interactive features on mobile devices. Since designing
such systems from scratch is non-trivial, practitioners typically choose to compress
large (pre-trained) speech models. Recently, lottery ticket hypothesis reveals the
existence of highly sparse subnetworks that can be trained in isolation without
sacrificing the performance of the full models. In this paper, we investigate the
tantalizing possibility of using lottery ticket hypothesis to discover lightweight
speech recognition models, that are (1) robust to various noise existing in speech;
(2) transferable to fit the open-world personalization; and 3) compatible with
structured sparsity. We conducted extensive experiments on CNN-LSTM, RNN-
Transducer, and Transformer models, and verified the existence of highly sparse
“winning tickets” that can match the full model performance across those backbones.
We obtained winning tickets that have less than 20% of full model weights on
all backbones, while the most lightweight one only keeps 4.4% weights. Those
winning tickets generalize to structured sparsity with no performance loss, and
transfer exceptionally from large source datasets to various target datasets. Perhaps
most surprisingly, when the training utterances have high background noises,
the winning tickets even substantially outperform the full models, showing the
extra bonus of noise robustness by inducing sparsity. Codes are available at
https://github.com/VITA-Group/Audio-Lottery.

1 INTRODUCTION

End-to-end automatic speech recognition (ASR) ( R ; R ;
; , ) has become an mdrspensable technology m
consumer-interactive dev1ces (e g., smartphones, smart speakers, tablets) over the past few years (

, ). Conventional on-device ASR systems usually
requrre the 1nvolvement of servers, i.e., streaming the audio to servers and then streamrng the results
back to the devices. By contrast, recent studles ( s ;

; , ) have spurred the
success of ASR models fully run on devrces which can be advantageous in terms of computational
resources, latency, and user data privacy.

Developing on-device ASR models is challenging since the computational resources (e.g., CPU,
memory, battery) are typically very limited. A standard design approach to fit ASR model under
budget is through applyrng various neural network compression technlques to the larger ASR models,
such as network pruning ( s s ; s ), knowledge
distillation ( , ), and parameter quantization ( ; ).
However, there always exists a trade-off between computational efﬁcrency and the model performance
and the efficiency improvements are usually at the cost of word error rate (WER). In most prior works,
we observed a non-negligible degradation of WER in compressed models.
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A new horizon emerges with the discovery of lottery tickets hypothesis (LTH) ( ,

). LTH empirically demonstrated the existence of highly sparse matching subnetworks (i.e.,

winning tickets) in full dense networks, that can be independently trained from scratch to match or

even surpass the performance of the latter. LTH was widely observed in various models in computer

vision ( s ; R ; R s
; s ; s ; s ) and natural language processmg (

; ; ; s ;¢). Yet to our best knowledge, it

has not been studled nor utlhzed in the realm of speech processing and recognition .

This paper presents the first investigation on LTH for developing on-device ASR models. Despite the
rich literature of LTH in vision and language, a practically useful winning ticket for real-world ASR
would demand two unique properties: transferability, noise robustness.

* As one persistent challenges of ASR, each individual has a different voice and speaking style.
Unlike text or images, whose data are much more “standardized”, the spoken word varies greatly
based on regional dialects, speed, emphasis, even social class and gender. Therefore, scaling up
any ASR system has always been a significant obstacle, since the testing utterances may have very
different distribution from the training utterances. That has made transferability a crucial demand
for ASR in the open world.

* In an ideal world, one would have to speak very clearly, slowly, and in an environment with no
background noise, for the sounds being recognized: that unfortunately will not happen in the
practice. In the real-world ASR applications, noise robustness is becoming another crucially
demanded technological factor since ASR is now expected to work in much more difficult acoustic
environments than in the past ( , ). For example, the recognition of speech recorded
by distant microphones is challenged by acoustic interference such as noise, reverberation and
interference speakers ( s ; ).
Even in the standard ASR benchmark such as LibriSpeech ( s ), there are
significant background noise in its “clean” subset ( s ).

More importantly, prior LTH studies mostly use unstructured sparsity during model pruning. However,
designing chips that speeds up unstructured sparse networks are much more complex than those for
structured sparsity (e.g., Block-Sparse GPU Kernels ( R )). Together with the two
unique gaps, they make ASR no less challenging than visual recognition or text understanding, if not
more. They account for the prior arts’ difficulty to maintain a satisfactory balance between model
efficiency and recognition performance; and similarly, they question the applicability of LTH in ASR.

We provide an affirmative, positive answer of LTH in ASR. As the subject of study, we choose
most commonly used ASR architectures in both research and products over the past few years:

1) CNN-LSTM with connectionist temporal classification (CTC) ( s ); 2) RNN-
Transducer ( , ); and 3) Convolution-augmented Transformer (

, ). We conducted extensive LTH experiments using these backbones on three
popular corpora: TED-LIUM ( " ), Common Voice ( s ), and
LibriSpeech ( , ). Unlike most of existing LTH studies that only approached to

explaining and demonstrating the correctness of LTH theory, in this work, we make the first attempt
to apply LTH to real-world use cases. Namely, we investigate three unique properties that were rarely
studied in previous LTH research but are key to user-interactive ASR devices, bringing new insights
to both LTH theory and lightweight ASR research. Our main contributions are outlined below:

» We for the first time reveal the existence of winning tickets in the context of ASR by answering three
research questions regarding LTH theory. The most lightweight winning tickets from CNN-LSTM,
RNN-Transducer, and Conformer backbones only possess 21.0%, 10.7%, and 8.6% remaining
nonzero weights, respectively. We also show that winning tickets significantly outperform other
state-of-the-art network pruning and knowledge distillation methods.

* We are the first to explore the use of structured sparsity (i.e., block sparsity ( , )
in LTH, and successfully found highly sparse winning tickets (e.g., 4.4% remaining weights) that
have no performance degradation compared to using unstructured sparsity.

* Winning tickets have exceptional transferability across different datasets, which are notably better
than full models. Also, the winning tickets identified from large source datasets transfer better.

* In the presence of various levels of background noise, the winning tickets consistently achieve
significantly better WERSs than full models. That indicates stronger noise robustness might be an
extra bonus of inducing sparsity, and a missing gem by previous LTH works.

2
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2 RELATED WORKS

End-to-End Automatic Speech Recognition. Previous mainstream ASR systems are mostly based
on hidden Markov model (HMM)-Gaussian mixture model (GMM) or HMM-Deep neural network
(DNN). These systems can achieve descent performance. However, such system is usually composed
of modules (e.g., acoustic model, language model, lexicon) that are needed to be trained separately,
which makes it hard to be optimize globally in products ( , ).

End-to-end ASR can directly transcribe an input audio sequence to a token (e.g., grapheme or
phoneme) sequence. Current end-to- end ASR frameworks can be generally categorized into three
types CTC-based ( s ; , ; R
; s ), RNN- transdueer( s ; s ; s ;
, ), sequence-to-sequence (Seq2Seq) model ( ; s ;
s ; R ; s ; , ), and Transformer
model ( s ; s ; s ; s ).

CTC ( , ) is essentially a loss function, which maximizes the probability of all
the paths that correspond to the ground-truth token sequence, with an augmented blank token “-”
indicating no output. It avoids the need of segmental alignment/labels in training utterances, which
makes tons of speech materials usable without additional annotating effort and thus fully exploits
the modeling capacity of DNNs. RNN-transducer is composed of an encoder for the input audio
sequence, a prediction network to model the interdependencies in between the output token sequence,
and a joint network to align the input and output sequence and produce the prediction. Seq2Seq
model usually has an encoder-decoder structure, where the encoder maps the input audio sequence to
a hidden representation sequence and the decoder autogressively decodes the output token sequence.

An attention mechanism ( , ) is trained to learn the alignment between the input
and output sequences. Transformer models are similar to Seq2seq models but use multi-head attention
(MHA) ( R ) layers for encoders and decoders, which has been proven to achieve

the state-of-the-art ASR performance.

Lottery Tickets Hypothesis. The recently emerged LTH ( , ) deviates from
the common wisdom of after-training pruning ( , ), and demonstrates the existence
of highly sparse subnetworks that are independently trainable from scratch, called winning tickets.
Once trained, they are capable of matchlng or even surpassing the performance of their full models.
Follow-up efforts ( , ) introduce the effective weight rewinding
techniques to scale up LTH to large networks on large-scale datasets. LTH draws wide attention from
various deep learning fields, and has been studied in 1mage classification ( , ;

s 5 s 5 5 ) s

) ; ) ; ;b), natural language process1ng ( ,

; R ; R ;¢), object detection ( s ), generative
adversarial networks ( s ; R ; , ), graph neural
networks ( R ), re1nforcement learnlng ( , ), and life-long learning (

s ) Several pioneer works ( s ;
, ;a) also investigate LTH transferabrhty across datasets and downstream tasks

Yet to the best of our knowledge, LTH in speech models remains untouched — and that would not
be a trivial extension for three aspects of reasons. On the task level, ASR has unique demands for
individual user transferrability and noise robustness, which has been explained previously. On the
model level compared to CV models, speech models are mostly based on RNN backbones (
, ), which contain recursive computational graphs and are notoriously
unstable to trarn That makes the pruning of RNN-based models challenging too ( ,
), and off-the-shelf methods developed for pruning CNNs are often found ineffective or even
inferior to random pruning, when applied to RNNs. Pruning methods customized for RNNs typlcally
call for special sparse structures or stability regularlzatrons ( , ;b;

s ), and it is hence unclear whether IMP would remain
stable and effectlve for RNN-based models in ASR. On the data level, compared to NLP models,
the sequence lengths of speech signals are usually significantly larger than word embeddings (e.g.,
the spectrogram sequence length of a 10-second speech utterance extracted with 10ms shift is 1,000;
the number of words in a sentence is usually between 10 and 50), which also inevitably costs higher
computational complexity. Therefore, finding sparse subnetworks that can maintain the full model
performance for ASR models is practically meaningful yet highly non-trivial.
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3 PRELIMINARIES AND SETUPS
Backbone Network. We investigate three ASR backbone networks that are widely used in both

academia and productions: 1) CNN-LSTM ( , ) model with CTC loss (

); 2) RNN-Transducer ( s ); and 3) Convolution-augmented Transformer with CTC
(Conformer) ( , ). Please see Appendix A.1 for details of the backbones.
Datasets, Training, and Evaluations. We conducted experiments on three commonly used ASR
corpora: TED-LIUM ( s ) (118 hours), Common Voice ( s ) (582
hours), and LibriSpeech ( s ) (960 hours). Note that LibriSpeech has two test

sets: test-clean — little noise inutterances; test-other — considerable noise in utterances. We test the
LibriSpeech model on the two test sets hereinafter. During training, we set the batch size to 32 and an
initial learning rate to 0.0003, which is annealed down by a factor of 1.1 at the end of each epoch. All
the models were trained for 16 epochs. To evaluate the performance, we consider two measurements:

o Word Error Rate. WER is the standard metric measuring the accuracy of ASR models. WER is
computed as: WER = (S + 1+ D)/N, where S, I, D, and N denote the number of substitutions,
insertions, deletions, and the total number of words, respectively.

o Number of Parameters. The number of parameters measures the complexity of a model. In our case,
since all subnetworks were pruned from the full models, we use the percentage of Remaining Weights
as an alternative measurement. We define Sparsity as Sparsity(%) = 100% — Remaining Weights(%).

Subnetworks. For a dense model f(z;6), its subnetworks can be derived as f(xz;m © 6) with a
binary pruning mask m € {0,1}¢, where ® is the element-wise product and d is the dimension
of pruneable model parameters. We use AP (f(x;0)) to represent the training algorithm (e.g.,
Adam ( , ) with grid searched hyperparameters) that trains a network f(z;6) on a
dataset D (e.g., LibriSpeech) for ¢ iterations. Let 8y be the random initialized network weights.

Subnetwork Evaluation. To measure the generalization ability of obtained subnetworks, we define
EP(AP(f(x;0))) as the evaluation function of model f returned from AP on the dataset D. Then,
we further introduce:

* Matching subnetworks. Followmg the definition in ( ; ;). a
subnetwork f(z;m © 6) is matching if it satisfies the following condltlon that 1ndlcates matchlng
subnetworks achieve no worse performance than its dense counterpart under the same training
algorithm A7 and evaluation metric EP: EP (AP (f (z;m ©0))) > EP (AP (f (z;60))).

* Winning ticket. f(z;m © 0) is a winning ticket for AP, if it is (i) a matching subnetwork and (i7)
0 = 0 for AP

x Transferable Winning ticket. A subnetwork f(z;m © ) is transferable to target datasets {D;}¥ |
if and only if it is a winning ticket for each AE". The subnetwork f(x;m © 0) is derived from the
source dataset D, ¢ {D;}V

Pruning Method for Subnetwork Searching. Iterative weight magmtude pruning (IMP) is the
widely used algorithm in previous LTH literature (

, ). To identify subnetworks f(z;m © 6), IMP performs followmg three steps (1)
training a unpruned dense network to completion on a dataset D (i.e., applying AP); (2) ehmmatlng a
portion of insignificant weights with the globally smallest magnitudes ( ,

) so that the model only has s;% of weights remaining (i.e., the sparsity); (3) rew1nd1ng model
weights to 6 (§ = 6y, the original random initialization; or § = ep're, the weights from a pre-trained
model) and finetuning the subnetwork to converge by leveraging AP. Note that steps (2) and (3)
usually needs to be iteratively repeated for several rounds for finding highly competitive winning
tickets. In all experiments, we set s;% = (1 — 0.8%) x 100%, where i is the number of iterations.

4 THE EXISTENCE OF WINNING TICKETS IN SPEECH RECOGNITION

In this section, we explore the existence of winning tickets in the three ASR backbones. Namely, we
would like to answer the following research questions from an empirical perspective:

* RQI: Can we find winning tickets f(x;map @ 6) for speech recognition model using
IMP? How much do they improve model complexity?
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Table 1: Performance of three backbones at the extreme sparsity or at the best performance on LibriSpeech
test-clean subset. The performance on fest-other subset has a similar trend (see Appendix A.3). #Paramsgy:
number of parameters in full model, in which we use Mega (x 106) as the unit; WER1: WER of full models;
WERext: WER of the winning tickets at extreme sparsity; WERest: WER of the best performing winning
tickets. Remaining Weight (RW) is included as model complexity measurement.

Backbone | #Paramssn  WERg | WERext RWey (#Params) | WERpest RWiest (#Params)

CNN-LSTM 86.62M 8.02 7.98 21.0% (18.19M) 7.13 51.2% (44.34M)
RNN-Transducer 132.23M 5.90 5.71 10.7% (14.14M) 5.39 41.0% (54.21M)
Conformer 65.84M 2.55 2.49 16.8% (11.06M) 2.26 51.2% (33.71M)

Table 2: Performance of CNN-LSTM backbone (86.62M parameters) at the extreme sparsity or at the best
performance on TED-LIUM, CommonVoice, and LibriSpeech datasets.

Dataset | WERfan | WEReyxy RWexy (#Params) | WERbest  RWhese (#Params)
TED-LIUM 15.93 15.70 4.4% (3.81M) 14.04 16.8% (14.55M)
CommonVoice 5.57 5.41 16.8% (14.55M) 4.17 64.0% (55.43M)
LibriSpeech (test-clean) 8.02 7.98 21.0% (18.19M) 7.13 51.2% (44.34M)
LibriSpeech (test-other) |  20.59 2053 21.0% (18.19M) | 19.21 51.2% (44.34M)

* RQ2: Do winning tickets identified by IMP have less complexities or better performance,
compared to random pruning/random tickets and other compression methods?

* RQ3: Instead of using randomized weights 6 as the initialization of IMP, does it improve
the performance of winning tickets if we use weights 6,,. from a pre-trained model?

RQ1: Does winning tickets exist in speech recognition models? To answer the questions, we
conducted experiments on three backbones and three datasets. For each trial, we first run IMP to
extract a binary pruning mask at each sparsity. Then, we generate one subnetwork at each sparsity
by applying the corresponding mask to the model and reset the weights to the original random
initialization 6,. Finally, we train each subnetwork and computes their WER on the test set to
determine if they are winning tickets. All the training hyperparameters in training a subnetwork are
the same as those in training the full model.

As shown in Table 1, winning tickets can be identified on all three backbones. The most lightweight
winning tickets on CNN-LSTM, RNN-Transducer, and Conformer have 21.0%, 10.7%, and 16.8%
remaining weights, respectively. In addition, we noticed that the RNN-Transducer subnetworks at
the extreme sparsity has less percentage of remaining weights than CNN-LSTM and Conformer
subnetworks, likely due to this model being more over-parameterized (RNN-Transducer: 132.23M;
CNN-LSTM: 86.62M parameters; Conformer: 65.84M). These results show that, for a fixed dataset,
the winning tickets extracted from larger models are sparser.

Similarly, winning tickets can also be identified on all three datasets, as shown in Table 2. We also
found that the sparsity of a winning ticket is correlated to the size of the dataset. For example, TED-
LIUM has a relatively small size (118 hours) compared to Common Voice (582 hours) and LibriSpeech
(960 hours). Accordingly, the remaining weights of TED-LIUM winning ticket are significantly
lower than that of CommonVoice and LibriSpeech winning tickets. A possible explanation is models
become relatively more overparameterized for smaller training sets, which allows them to be more
amenable for sparsification ( s ). Similar observations can be found in ( , ).

From Table | and 2, another interesting finding is that the subnetworks with low sparsity (remain
most of the weights) always achieve preferable performance than the full model. We also provided a
visualization of the outputs from the full model, the most sparse subnetwork, and the best performing
subnetwork in Figure | (see Appendix A.4 for more examples.). Similarly, we observed larger
performance improvement on smaller datasets, possibly also due to the over parameterization issue.
Results indicate that LTH is also a potential research direction in improving overall ASR performance.

RQ2: Does IMP winning tickets have lower complexity or better performance than random
prunlng/tlckets and other compressnon methods? As suggested in previous studies (

; ), the two key aspects for a winning ticket to achieve
the desrred performance are: 1) 1n1t1a1 werght #, and 2) mask generated from IMP m s p. In this
subsection, we test if this argument hold in ASR winning tickets. To achieve this, we compare
the winning tickets against two baseline pruning approaches: random pruning and random tickets.
The subnetworks identified with random pruning are initialized with 6y but the masks are randomly
generated mranp. By contrast, the subnetworks identified with random tickets are randomly
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Target ’s the romantic kind not by pumps but by fresh water
Full it’s the romantic kinet now by pumps but by fresh water
Extreme it’s the romantic kind not by pumps but by fresh water
Best it’s the romantic kind not by pumps but by fresh water
Waveform

Spectrogram|
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Target I'm | an expert relationships farms | that | aren’t worlds unto (hel’ns’elves
Full so | an expert in relationships farms | that art worlds into themselves
Extreme of | an expert in relationships farms | that art worlds into themselves
Best I’m | an expert in relationships farms | that | aren’t worlds into themselves

Figure 1: Example outputs from full model, subnetwork at extreme sparsity, and best performing subnetwork
on TED-LIUM test utterances. Target: ground-truth transcriptions. Recognition errors are highlighted in red.

initialized 06 but the masks are generated by IMP m;p. As a result, with these two comparisons,
we can explore if the two aspects are necessary to a winning ticket.

We tested the three pruning approaches on TED-LIUM dataset. Figure 2 shows the WER curves of
the three approaches. From the figure, we found that random pruning and random ticket could find
winning tickets, but the extreme remaining weights are much higher than the one identified by IMP
(IMP: 4.4%, Random Pruning: 26.2%, Random Ticket: 10.7%). Random pruning can roughly retain
its performance when the remaining weights are larger than 26.2%. However, the performance drops
dramatically as the remaining weights continue decreasing. Random ticket achieves very similar
performance to IMP when the remaining weights are larger than 10.7%, but it degrades much faster
than IMP after this point. Results verified the previous statement in ASR models that both initial
weight € and mask generated from IMP m,; p are necessary for winning tickets. Additionally, the
comparison between random pruning and random ticket suggests that myysp is more important than
6 for winning tickets.

Aintionally, we compared our proposed approach  Taple 3: Comparison to state-of-the-art pruning
against four state-of-the-art neural network compres-  and distillation methods on Conformer backbone.

sion baselines: 1) Standard Pruning (Han et al., 2015; Models are evaluated on LibriSpeech test-clean
Blalock et al., 2020; Shangguan et al., 2019); 2) Tutor- subset. See Appendix A.5 for fest-clean results.
Net (Yoon et al., 2021); 3) MLKD + multi-teacher (Li System | WER  #Params
et ill., 2021 ), 4) SequenCe-leVel KD (vl‘ill\'ilShilN(l et 111., Proposedey; (16.8% RW) ‘ 2.51 11.06M
P, . .

2018). Basel.me 1 is the most .commonly used apd Standard Pruning (16.8% RW) | 396 11.06M
best performing network pruning approach, which o 186 13.00M

. . . . utoriNel . B
1te§at1vely prunes the !owest magmtude weights apd MLKD + multi-teacher 372 11.60M
train the network until reaching the target sparsity Sequence-level KD 1758 11.60M
(without any rewinding). Baseline 2, 3, and 4 are
three recent knowledge distillation approaches. As shown in Table 3, our winning ticket at extreme
sparsity (Proposedeyt) achieves superior WER than all the baselines, while using less parameters.

RQ3: Can IMP find better subnetworks by initializing from a pre-trained model? Training
ASR model from a good initialization usually results in more satisfactory performance (Jaitly et al.,
2012), which is commonly achieved by finetuning a pre-trained model in practice. Being aware of
this, we would like to investigate if IMP can find better subnetworks for ASR by initializing with
weights from a pre-trained model ¢ = 0,,.. To verify this, we ran IMP on CNN-LSTM backbone
with TED-LIUM dataset, where the weights were initialized from either LibriSpeech pre-trained
model 0,,.c = 0ripr; or CommonVoice pre-trained model 0, = Ocv .

WER curves of the subnetworks in this experiment are shown in Figure 3. Both initializing from
Or:br; and B¢y significantly improves the performance of the subnetworks at any sparsity. More
importantly, we found a rapid WER increase when the remaining weights are less than 4.4% for
IMP initialized from 6. In contrast, the WERs of subnetworks in 6} ;;,-; and 8¢y systems degrades
much slower when the remaining weights are extremely low, indicating that the subnetworks that are
identified from pre-trained models can utilize the parameters more efficiently. A possible reason is
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that the flatter loss surfaces of the pre-trained models ( s
compression, leading to highly quality subnetworks, as also evidenced in ( ,

60
—IMP

Random Pruning

Random Ticket

FUINCINCI R
Remaining Weights (%)

Figure 2: The WER curves of the best subnetworks

produced by different pruning approaches. IMP: itera-

tive magnitude pruning, which is the pruning approach

we used in subnetwork searching. Random pruning

and Random Ticket are the two baseline pruning ap-

proaches we evaluated.

Table 4 shows quantitative results of these sys-
tems. Initializing from 6y, ;;,; achieves the best
performance among all three systems. The
WERs of subnetworks initialized from either
Oripri or Ocy at different sparsities varies
marginally, which makes it hard to find the win-

) make it more traceable for
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Figure 3: The WER curves of initialization with pre-
trained models. We test CNN-LSTM backbone on
TED-LIUM dataset. 0y: random initialization; 0r,;p,i:
initialized from LibriSpeech pre-trained model; Ocv :
initialized from CommonVoice pre-trained model.

Table 4: Results of initialization with pre-trained mod-
els. WERsu1: WER of full models; WERpbest: WER of
the best performing matching subnetworks; WERy 49;:
WER of subnetworks with 4.4% remaining weights. The
brackets shows the remaining weights of the best per-
forming subnetworks.

ning ticket at extreme sparsity. Therefore, we  mnitialization | WERpwi WERs45,  WERpey

sho'w' the WER of all the system w1th 4.4% re- o 15.93 1570 14.04 (16.8%)
maining weights instead, corresponding to the 0Lt 12.32 13.45 11.69 (32.8%)
extreme sparsity of the subnetworks initialized Ocv 14.30 14.28 13.3 (51.2%)

with 6. Although WER, 49, of 01:p; and 6y
systems are equal or higher than WERs of the corresponding full models, they are still significantly
lower than 6 system. Additionally, the remaining weights of best performing subnetworks in 0,4,
and 0y systems are higher than 6y, however, when reducing the amount of remaining weights, the
WERs only have minimal degradations.

Summary. We conducted extensive experiments to answer the three research questions about the
existence of winning tickets in three ASR backbones. First, our results verified the existence of
winning tickets in CNN-LSTM, RNN-Transducer, and Conformer models, even at high sparsity (e.g.,
4.4% remaining weights). Second, we compared IMP with random pruning/tickets and other state-of-
the-art network compression methods. The results suggest that matching subnetworks extracted by
IMP significantly exceed those extracted by random pruning and random tickets in all measurements,
which corroborates both binary pruning mask and weight initialization are indispensable in finding
the winning tickets. Our approach also significantly outperforms other compression approaches,
achieving state-of-the-art performance on ASR model compression. Lastly, we explored the use of
weights from pre-trained models to initialize IMP. We found that, in this way, IMP can identify more
effective winning tickets compared to random initialization, and more importantly, these winning
tickets have a considerably higher parameter efficiency. These results collectively advocate the
profound benefits that LTH can bring to both server-side and on-device ASR.

5 TOWARDS PRACTICAL ASR WITH WINNING TICKETS: STUDYING
STRUCTURED SPARSITY, TRANSFERABLITY, AND NOISE ROBUSTNESS

After we proved the existence of winning tickets in ASR models, three more properties remain to be
verified: structured sparsity, transferability, and noise robustness, which are key to ASR applications.

Study of structured sparsity As we mentioned earlier, designing chips that speeds up unstructured
sparse networks are much more complex than those for structured sparsity (e.g., Block-Sparse GPU
Kernels ( , )). Therefore, it is critical to verify if we can also identify winning tickets
using structured pruning. However, the exploration of structured pruning in prior LTH studies is very
limited. ( , ) is only able to identify limited winning tickets with structured sparsity
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Figure 4: Visualizations of weight matrix pruned with (a) unstructured sparsity (b) block sparsity. Pruned
weights are shown in white color.

at low sparsity levels (70% remaining weights), which again emphasizes the difficulty in finding

computation-friendly sparse patterns.

Table 5: Results of structured sparsity study on TED-LIUM dataset.

We also show the results with unstructured sparsity as a reference.
Sparsity type | WERfu1 | WERext RWext | WERpest  RWhest

Unstructured 15.93 15.70 4.4% 14.04 16.8%
Block sparsity 15.93 15.66 4.4% 13.96 21.0%

In this experiment, we applied block
sparsity (Narang et al., 2017b; Shang-
guanetal.,2019; Wuetal., 2021) with
1x4 block to subnetwork searching,
and then evaluated the subnetworks to
see if they can match the full model performance. Results in Table 5 show that using block sparsity
during subnetwork searching process lead to comparable results to using unstructured pruning. Also,
we visualized the weights of winning ticket models that were discovered with unstructured sparsity
and block sparsity, as shown in Figure 4. We can clearly observe 1x4 block patterns from the weight
matrix pruned with block sparsity.

Study of Transferability In practical scenarios, the testing utterances are directly recorded from
users in the wild, which may have very different distributions from the training utterances. A common
way to address this issue is through speaker adaptation (Gauvain & Lee, 1994; Leggetter & Woodland,
1995; Woodland, 2001; Liao, 2013; Li et al., 2018b; Meng et al., 2019; Weninger et al., 2019), which
is usually achieved by finetuning a pre-trained model on utterances whose distributions are similar to
test utterances directly, or with additional loss terms (Li et al., 2018b; Meng et al., 2019; Ding et al.,
2020). In the context of winning tickets, these sparse architectures have to be transferable to new
datasets so that we are able to perform speaker adaptation on these models.

To examine the transferability, we conducted the following experiment: First, we identify subnetworks
flx;mrpp © 0p) on a source dataset D; at different sparsities using IMP. Then, we re-train each
subnetwork on a target dataset D, and evaluate their performance. We tested the transferability
between TED-LIUM, CommonVoice, and LibriSpeech datasets. These datasets are different in
terms of recording scenario, noise level, speaker coverage, training set size, etc., and therefore,
their utterances have very difference distributions. For example, TED-LIUM is created using TED
talks, CommonVoice is composed of volunteer’s voice recorded through website or mobile apps, and
LibriSpeech is extracted from LibriVox audio books.

Figure 5 shows the performance of subnetworks transferring to the three target datasets. Results
on the three datasets consistently suggest that the winning tickets are transferable across different
datasets. When the remaining weights are larger than around 26.2%, the transferring tickets can
generally replicate the performance of the winning tickets identified on the target datasets. However,
at extremely high sparsity, the performance of transferring tickets degrades faster than the winning
tickets identified on the target datasets, corresponding to the observations from previous studies (Chen
et al., 2020c; Morcos et al., 2019; Chen et al., 2021¢). For example, Table 9 in Appendix A.6
shows WER and remaining weight of CommonVoice and LibriSpeech winning tickets transferring
to TED-LIUM dataset at extreme sparsity. Although the remaining weights of transferring winning
tickets are higher than TED-LIUM winning ticket, they are still significantly lower than the full
model. We also noticed is that the winning tickets identified from a larger dataset usually have better
transferability, which is in accordance with (Morcos et al., 2019).

Study of Noise Robustness The training/adaptation speech utterances are mostly collected from
users, which are usually recorded from uncontrolled environments with notable background noise.
Even in standard ASR benchmarks such as LibriSpeech (Panayotov et al., 2015), there are significant
background noise even in its “clean” subset (Zen et al., 2019). To test the noise robustness of
winning tickets, we conducted an experiment on TED-LIUM dataset. Namely, we re-trained the
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Figure 5: The WER curves of transferring winning tickets to target datasets: (a) TED-LIUM, (b) Common Voice,
and (c) LibriSpeech (test-clean). Each curve represents the winning tickets extracted from a source dataset. The
dashed lines indicate the WERs of full models on target datasets.

winning tickets identified from TED-LIUM, CommonVoice, and LibriSpeech on resynthesized TED-
LIUM dataset with background noise. We used DESED dataset ( R ) as the noise
source, which consists of various background sounds in domestic environments such as bell, animals,
running water, speech, vacuum cleaners, etc. During resynthesis, the noise audio is added to the
original speech utterance with a random noise level, which is drawn from a uniform distribution from
[0, Npnaz]- In addition, we considered three different noise levels: N,y,q, = 0 (no noise), Nypaqr = 0.2
(low noise), Nyq = 0.5 (high noise).

Table 6 shows WERs on TED-LIUM test set of 1able 6: Results of noise robustness study on TED-
the re-trained winning tickets. First, we found LIUM dataset. The noise level is drawn from a uniform
the performance of the full model is dramati- distribution from [0, Nmag], and we evaluate three noise
cally susceptible to background noise. When ﬁg?jﬁ:;l(;\r;zaiv ;”a('*)fﬁ—(h?g(ﬁ’?lof;g;;?), Niaw = 0.2 (low
the noise level is increase from N,,,, = 0 to Tic’ket Source | Nome =0 Noms =02 N = 05
Nypaz = 0.5, WER increases from 15.93% to TR ”I;l% mfg m ”‘:g m
38.21%. In contrast, WERs of TED-LIUM win- ullmodel | 15 : >S-

ning ticket at different noise level are very close, Czi?ng;r}gx;:xt }g:gg }g;; };g%
indicating that the sparse subnetwork is sub- LibriSpeech,., 15.88 16.23 17.38
staintially more robust to noise. Although the TED-LIUMy 14.04 14.89 14.09
winning tickets from CommonVoice and Lib-  CommonVoicepes | 1532 16.27 16.79
riSpeech cannot reach the WER of TED-LIUM LibriSpeech ey, 15.06 16.01 16.89

winning tickets on noise data, their WERSs are still significantly lower than full model. More essen-
tially, we can adapt transfer tickets to any target users without the need of re-finding winning tickets,
which is more feasible for practical scenarios. Our findings coincide with the ones in ( s ;

, ) that an appropriate sparsity connectivity severs as implicit regularization for network
training, which improves generalization on shifted data distributions (e.g., noisy or perturbed data).

Summary In this section, we examined the structured sparsity, noise robustness, and trasferability
of the winning tickets. Throughout the studies, we found that winning tickets can generalize to
structured sparsity with no performance degradation. In addition, winning tickets identified from
source datasets can achieve matching performance on target datasets, which verifies the transferability.
Lastly, winning tickets (identified from either target dataset or source datasets) are significantly more
robust to noise compared to full models, especially when the noise level is high. These results jointly
demonstrate the eligibility and benefits of winning tickets in on-device ASR applications.

6 CONCLUSIONS AND FUTURE WORKS.

In this work, we examine and leverage lottery ticket hypothesis in speech recognition for the first time.
Our extensive results show that the winning tickets are not only ultra-lightweight, but also highly
transferable and (even more) noise-robust, compared to the full models. These results collectively
propound the use of LTH into ASR models, bringing new insights to both LTH theory and portable
ASR research. In addition, we also would like to generalize THE LTH compression paradlgm to other
speech tasks such as text-to- speech synthesm ( s ; s ) and voice-to-voice
conversion ( s ; R ). These new directions require
further customized studies and point to new opportunmes for LTH in speech research.
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A APPENDIX

A.1 DETAILS IN BACKBONE ARCHITECTURES

CNN-LSTM. The network is composed of two convolutional layers and five recurrent layers, fol-
lowed by a final fully-connected layer. The first convolutional layer has 32 41 x 11 (in frequency x time)
kernels, with 2x2 stride. The second convolutional layer has 32 21 x 11 kernels, with 2x 1 stride. For
each convlutional layers, tanh is used as nonlinearity. Following these, there are five bi-directional
RNN layers, each of them having 1,024 units. A final fully-connected layer with softmax operator
outputs a probability distribution over characters. The total number of parameters in the full model is
86.62M.

The input to the networks is a sequence of 161-dimensional magnitude spectrogram (160 magnitude
points plus 1 DC component), extracted with 20ms window, 10ms shift, and 320-point fast fourier
transform. The ground-truth labels are represented by 28 graphemes, including 26 English characters,
space, and apostrophe symbol.

RNN-Transducer. In RNN-Transducer, we set the encoder and decoder/joint model to have 5 and 1
bidirectional-LSTM layers, each of them having 1,024 units. The total number of parameters in the
full model is 132.23M.

The input to the networks is a sequence of 80-dimensional Mel-filterbanks, extracted with 25ms
window, 10ms shift, and 512-point fast fourier transform. We used a 1000-dimensional sentence-piece
embedding ( s ) to represent the labels.

Conformer. In Conformer, our parameter settings are based on Efficient-Conformer-CTC(L)
in ( , ). Additionally, we reduce the encoder dimensions from [360, 512, 720]
to [256, 384, 512], which we found to have no performance degradation and speed up training. The
model has 17 encoder layers, each of them is composed of 8-head convolution augmented attention.
The convolution kernel has a shape of 1x32. The total number of parameters in the full model is
65.84M. During the initial submission, we were using the configurations of Conformer(L) in (

, ). However, we found that this model is susceptible to gradient explosion when the batch
size is limited (e.g., 256). To improve the reproducibility, we switch to Efficient-Conformer-CTC(L)
in the camera ready version, which we found to be more stable during training with smaller batch
size.

The input to the networks is a sequence of 80-dimensional Mel-filterbanks, extracted with 25ms
window, 10ms shift, and 512-point fast fourier transform. We used a 256-dimensional sentence-piece
embedding ( , ) to represent the labels.

A.2 MORE IMPLEMENTATIONAL DETAILS

As we mentioned in abstract, we will open-source all of the code once the paper is peer-reveiwed.
Here, we provide key references and tools that we used during our implementation.

We implement neural network training using PyTorch library ( , ). Our implementa-
tion of CTC backbone is based on:

* https://github.com/SeanNaren/deepspeech.pytorch
Our implementation of RNN-Transduce is based on:

e https://github.com/openspeech—-team/openspeech
Our implementation of Conformer is based on:

* https://github.com/burchim/EfficientConformer
We used PyTorch pruning library for unstructured sparsity:

* https://pytorch.org/docs/stable/generated/torch.nn.utils.
prune.global_unstructured.html
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We implemented pruning functions for structured sparsity based on:

e https://pytorch.org/docs/stable/generated/torch.nn.utils.
prune.RandomStructured.html

* https://github.com/openai/blocksparse

e https://www.tensorflow.org/model_optimization/guide/pruning

A.3 EVALUATING WINNING TICKETS OF THREE ASR BACKBONES ON LIBRISPEECH
TEST-OTHER SUBSET

The performance of the three backbones on LibriSpeech fest-other subset is shown in Table 7.

Table 7: Performance of three backbones at the extreme sparsity or at the best performance on LibriSpeech
test-other subset. #Paramss,;: number of parameters in full model, in which we use Mega (x 10°) as the unit;
WERun: WER of full models; WERex¢: WER of the winning tickets at extreme sparsity; WERbest: WER of
the best performing winning tickets. Remaining Weight (RW) is included as model complexity measurement.

Backbone | #Paramssy  WERga | WERext RWeyy (#Params) | WERpesy RWiyest (#Params)

CNN-LSTM 86.62M 20.59 20.53 21.0% (18.19M) 19.21 51.2% (44.34M)
RNN-Transducer 132.23M 16.93 16.30 10.7% (14.14M) 15.55 41.0% (54.21M)
Conformer 65.84M 6.55 6.47 16.8% (11.06M) 6.28 51.2% (33.71M)

A.4 MORE EXAMPLES OF THE MODEL OUTPUTS

We provided a couple more examples of the outputs from full model, winning tickets at extreme
sparsity, and best performing winning tickets on TED-LIUM test utterances in Figure 6. The examples
in the first row show the cases where the winning tickets avoid the errors appeared in the full model
outputs. Meanwhile, we also noticed a few cases where winning tickets produce erroneous recognition
results, as shown in the second and the third rows. Most of these utterances have either a very fast
speaking rate or unclear pronunciations of words. Therefore, neither full model nor winning tickets
reasonably transcribe the utterances in challenging cases, showing the limited capability of the
models.

A.5 COMPARISON TO OTHER MODEL COMPRESSION APPROACHES ON LIBRISPEECH
TEST-OTHER SUBSET

Comparison between the proposed approach and state-of-the-art distillation and pruning methods on
LibriSpeech fest-other subset is shown in Table 8. Sequence-level KD approach (

) does not report their evaluation results on test-other subset, and therefore, we use “N/A” in the
table.

Table 8: Comparison to state-of-the-art distillation and pruning methods on Conformer backbone. Models are
evaluated on LibriSpeech test-other subset.

System | WER  #Params
Proposedcy; (16.8% RW) | 6.47 11.06M
Standard Pruning (16.8% RW) ‘ 8.79 11.06M

TutorNet 11.14 13.09M
MLKD + multi-teacher 34.28 11.60M
Sequence-level KD N/A 11.60M

A.6 MORE RESULTS IN TRANSFERRING STUDY

We have shown the WER curves of the transferring winning tickets transferred in Figure 5. Here, we
included the WER and RW at the extreme sparsity in Table 9, Table10 and Table 11, respectively.
The transferring tickets to both TED-LIUM and Common Voice have a extreme remaining weights of
32.8%, and those to LibriSpeech have a extreme remaining weights of 32.8% compared to the full
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‘Waveform
Spectrogram = =
Target 1 because
Full I fell out | of love | with this fes because there the ones
Extreme 1 fell out | of love | with this fish because they are | the ones
Best 1 fell out | of love | with this fish because they | are | the ones
Waveform
Spectrogram |
Full I| now | y thing about fish and 1 sat us up
Extreme in| an no thing about fish we can a set us up
Best 1 | don’t | know thing about fish he can of set us up
Waveform
Spectrogram

and | in | the process miguel and | this | company | and |a farm that | measures | its success
Full and | in |the process and ‘ we | go |and | this | company | and |a farm that | measures | it success
Extreme and | in | the process began and | this | company | and |a farm that | measures | of success
Best and | in | the process began and | this | company on |a farm that | measures | is success

Figure 6: Example outputs from full model, subnetwork at extreme sparsity, and best performing
subnetwork on TED-LIUM test utterances. Target: ground-truth transcriptions. Recognition errors

are highlighted in red.

models. Although they are not as sparse as the winning tickets identified from the target datasets, the
transferring tickets are still much more efficient than full models. These results are in consensus with

our findings in Section 5.

Table 9: Performance of transferring CommonVoice and LibriSpeech winning tickets to TED-LIUM
dataset at the extreme sparsity. Remaining Weight (RW) is included as the spatial and temporal
complexity measurements.

Table 10: Performance of transferring TED-LIUM and LibriSpeech winning tickets to Common Voice
dataset at the extreme sparsity. Remaining Weight (RW) is included as the spatial and temporal
complexity measurements.

Ticket Source | WERgn | WER  RW
TED-LIUM \ 15.93 \ 1570 4.4%
Common Voice N/A 1593 41.0%
LibriSpeech N/A 15.88 32.8%

Ticket Source | WERgn | WER  RW
CommonVoice | 5.56 | 541 16.8%
TED-LIUM N/A 425 51.2%
LibriSpeech N/A 5.53 32.8%
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Table 11: Performance of transferring TED-LIUM and CommonVoice winning tickets to LibriSpeech
dataset at the extreme sparsity. Remaining Weight (RW) is included as the spatial and temporal

complexity measurements.

Ticket Source | WERgn | WER ~ RW
LibriSpeech ‘ 8.02 ‘ 798 21.0%

TED-LIUM N/A 772 32.8%
CommonVoice N/A 719  41.0%

A.7 EXTRA NEW RESULTS

A.7.1 RESULTS ON THE EXISTENCE OF THE THREE BACKBONES ON TED-LIUM AND
COMMONVOICE

Table 12: Performance of three backbones at the extreme sparsity or at the best performance on TED-LIUM.
#Paramss,;: number of parameters in full model, in which we use Mega (x 10°) as the unit; WERg,11: WER of
full models; WERex¢: WER of the winning tickets at extreme sparsity; WERpest: WER of the best performing

winning tickets. Remaining Weight (RW) is included as model complexity measurement.
Backbone \ #Paramsg,;  WERg \ WERert RWeyt \ WERbest RWhpest
CNN-LSTM 86.62M 15.93 15.07 4.4% 14.04 16.8%
RNN-Transducer 132.23M 12.43 12.26 2.2% 13.96 41.0%
Conformer 65.84M 7.40 7.36 3.5% 7.01 21.0%

Table 13: Performance of three backbones at the extreme sparsity or at the best performance on CommonVoice
#Paramsg,: number of parameters in full model, in which we use Mega (x 106) as the unit; WERtu11: WER of
full models; WERex¢: WER of the winning tickets at extreme sparsity; WERpest: WER of the best performing

winning tickets. Remaining Weight (RW) is included as model complexity measurement.
Backbone | #Paramsgi  WERgu1 | WERext RWext | WERpest  RWhest
CNN-LSTM 86.62M 5.57 5.41 16.8% 4.17 64.0%
RNN-Transducer 132.23M 341 3.39 10.7% 3.02 26.2%
Conformer 65.84M 1.37 1.35 8.6% 1.20 20.9%

A.7.2 RUN TIME EVALUATIONS

Table 14: Run time evaluation of the three backbones on LibriSpeech at the extreme sparsity or at the best
performance. Here we use the Number of Multiply—Accumulate Operations (MACs) in Giga (G) to measure the
run time complexity. We compute the percentage compared to full model for all the subnetworks. M AC'S fyu:
MAC:S of thefull model. M AC'sc.+: MACs of the winning tickets at extreme sparsity. M AC spest: MACs of

the best performing winning tickets.

Backbone | MACspuy | MACSeor MACSspest
CNN-LSTM 77.88G 20.1% 49.9%
RNN-Transducer 124.56G 9.6% 39.8%
Conformer 62.27G 15.9% 49.4%
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Table 15: Run time evaluation of the three backbones on TEDLIUM at the extreme sparsity or at the best
performance. Here we use the Number of Multiply—Accumulate Operations (MACs) in Giga (G) to measure the
run time complexity. We compute the percentage compared to full model for all the subnetworks. M AC'S fyu:
MAGC:s of thefull model. M AC's.,:: MACs of the winning tickets at extreme sparsity. M AC spest: MACs of
the best performing winning tickets.

Backbone | MACspuy | MACSeor  MACSspest

CNN-LSTM 24.34G 16.0% 63.1%
RNN-Transducer 38.92G 1.5% 39.9%
Conformer 19.45G 2.9% 19.7%

Table 16: Run time evaluation of the three backbones on CommonVoice at the extreme sparsity or at the best
performance. Here we use the Number of Multiply—Accumulate Operations (MACs) in Giga (G) to measure the
run time complexity. We compute the percentage compared to full model for all the subnetworks. M AC'S fyu:
MAC:s of thefull model. M AC'sc.+: MACs of the winning tickets at extreme sparsity. M AC spest: MACs of
the best performing winning tickets.

Backbone | MACspuy | MACSewy  MACSspest

CNN-LSTM 53.54G 20.1% 49.9%
RNN-Transducer 85.63G 9.2% 25.0%
Conformer 42.81G 7.1% 19.7%

A.7.3 UPDATED NOISE ROBUSTNESS RESULTS

Table 17: Performance of ASR models when adding noise only at test time. Results are shown at the best

performance.
Ticket source ‘ nonoise SNR=10dB SNR=5dB SNR=3dB SNR=0dB SNR=-5dB
Full model \ 15.93 15.99 19.65 44.77 67.58 > 100
TEDLIUMp ¢ 14.04 14.12 16.30 20.88 40.35 > 100
CommonVoicepe ¢ 15.32 15.44 17.24 21.01 45.54 > 100
LibriSpeechp.s: 15.06 15.25 17.49 21.50 43.98 > 100

A.7.4 BLOCK SPARSITY EXPERIMENTS WITH LARGER BLOCK SIZE

Table 18: Results of structured sparsity study on TED-LIUM dataset. We also show the results with unstructured
sparsity as a reference.

Sparsity type | WERfun | WERext RWext | WERbest RWhest
Unstructured 15.93 15.70 4.4% 14.04 16.8%
Block sparsity 1 x 4 15.93 15.66 4.4% 13.96 21.0%
Block sparsity 1 x 16 15.93 15.72 4.4% 14.33 16.8%

A.7.5 PSEUDO-CODE OF LTH PRUNING ALGORITHM

Algorithm 1 Lottery Ticket Hypothesis Pruning

1: Set the initial mask m, with the weight initialization 6.

2: repeat

3: Rewind the weight to 0

4: Train f(z;m © 0) for t epochs with algorithm A7, i.e., AY (f(z;m © 6))

5 Prune 20% of remaining weights in AP (f(x; m ® 8)) and update m accordingly
6: until the sparsity of m reaches the desired sparsity level s
7: Return f(z;m © 6).
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A.7.6 FURTHER EXPLANATION OF BLOCK SPARSITY.

In terms of block sparsity, it prunes a block of parameters (e.g., 1x4 block) instead of just one
parameter, which has the minimal magnitude. Unstructured pruning could be thought as block
sparsity with 1x1 block.

A.7.7 EXPLANATION OF THE CHOICE OF SPARSITY LEVELS

In our current setting, we prune out the 20% of remaining weights that have the lowest magnitude.
The reason for choosing the value to be 20% is based on considerations of model performance and
computation resources. When the amount of weights pruned at each iteration becomes larger, less
iterations will be needed. However, it is more likely to have larger performance regressions, since the
pruned weights could be useful in the subnetwork at higher sparsity. On the other hand, if the amount
of weight pruned at each iteration is too small, the number of iterations required would be very large,
which is extremely resource demanding. As a result, we feel 20% is a good one considering both
factors.
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