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Abstract

The lottery ticket hypothesis (LTH) has shown
that dense models contain highly sparse subnet-
works (i.e., winning tickets) that can be trained
in isolation to match full accuracy. Despite many
exciting efforts being made, there is one “com-
monsense” rarely challenged: a winning ticket is
found by iterative magnitude pruning (IMP) and
hence the resultant pruned subnetworks have only
unstructured sparsity. That gap limits the appeal
of winning tickets in practice, since the highly
irregular sparse patterns are challenging to accel-
erate on hardware. Meanwhile, directly substitut-
ing structured pruning for unstructured pruning
in IMP damages performance more severely and
is usually unable to locate winning tickets. In
this paper, we demonstrate the first positive re-
sult that a structurally sparse winning ticket can
be effectively found in general. The core idea
is to append “post-processing techniques” after
each round of (unstructured) IMP, to enforce the
formation of structural sparsity. Specifically, we
first “re-fill” pruned elements back in some chan-
nels deemed to be important, and then “re-group”
non-zero elements to create flexible group-wise
structural patterns. Both our identified channel-
and group-wise structural subnetworks win the
lottery, with substantial inference speedups read-
ily supported by existing hardware. Extensive
experiments, conducted on diverse datasets across
multiple network backbones, consistently vali-
date our proposal, showing that the hardware
acceleration roadblock of LTH is now removed.
Specifically, the structural winning tickets obtain
up to {64.93%, 64.84%,60.23%} running time
savings at {36% ~ 80%, 74%, 58%} sparsity on
{CIFAR, Tiny-ImageNet, ImageNet}, while main-
taining comparable accuracy. Codeisathttps://
github.com/VITA-Group/Structure—LTH.
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Figure 1. Achieved test accuracy over different sparsity levels of
diverse unstructured and structural subnetworks. Sparse models
from classical channel-wise structural pruning algorithms (He
et al., 2017; Liu et al., 2017; Bartoldson et al., 2019; Molchanov
et al., 2019) can not match the full accuracy of the dense model.

1. Introduction

Recently, the machine learning research community has de-
voted considerable efforts and financial outlay to scaling
deep neural networks (DNNss) to enormous sizes (175 billion
parameter-counts in GPT-3 (Brown et al., 2020)). Although
such overparameterization simplifies the training of DNNs
and dramatically improves their generalization (Bartlett
et al., 2021; Du et al., 2018; Kaplan et al., 2020), it may
severely obstruct the practical usage on resource-limited
platforms like mobile devices, due to its large memory foot-
print and inference time (Hoefler et al., 2021). Pruning is
one of the effective remedies that can be dated back to Le-
Cun et al. (1990): it can eliminate substantial redundant
model parameters and boost the computational and storage
efficiency of DNNGs.

Such benefits drive numerous interests in designing model
pruning algorithms (Han et al., 2015a;b; Ren et al., 2018;
He et al., 2017; Liu et al., 2017). Among this huge family,
an emerging representative studies the prospect of training
sparse subnetworks in lieu of the full dense models with-
out impacting performance (Frankle & Carbin, 2019; Chen
et al., 2020b). For instance, Frankle & Carbin (2019) demon-
strates that dense models contain sparse, matching subnet-
works (Frankle et al., 2020a) (a.k.a. winning tickets) capa-
ble of training in isolation from the original initialization to
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match or even surpass the full accuracy. This phenomenon is
referred to as the lottery tickets hypothesis (LTH), which in-
dicates several impressive observations: (i) usually extreme
sparsity levels (e.g., 90%, 95%) can be achieved without
sacrificing the test accuracy; (47) the located winning ticket
maintains undamaged expressive power as its dense counter-
part, and can be easily trained from scratch or early-epoch
weights (Renda et al., 2020; Frankle et al., 2020a) to recover
the full performance. These advances are positive signs of
the substantial potential of sparse DNNss.

However, almost all LTH literature investigates unstructured
sparsity only. In practical scenarios, it brings little hardware
efficiency benefits due to the poor data locality and low
parallelism (He et al., 2017; Mao et al., 2017; Wen et al.,
2016) caused by highly irregular sparse patterns. Mean-
while, most of the accelerators are optimized for dense
matrix operations (Han et al., 2016), which means there is
limited speedup for unstructured pruned subnetworks even if
the sparsity level exceeds 95% (Wen et al., 2016). Structural
pruning (He et al., 2017; Liu et al., 2017) as an alternative
to exploring sparse subnetworks, removes the entire filter or
channel in DNNs to gain more computational efficiency at
the cost of (more) accuracy degradation. As shown in Fig. 1,
traditional channel-wise structural pruning approaches (He
et al., 2017; Bartoldson et al., 2019; Molchanov et al., 2019)
quickly degrade performance and cannot lead to winning
tickets, which was also echoed in You et al. (2020).

In our paper, we present the first study into the structural
lottery tickets, which explores hardware-friendly structural
sparsity (including channel-wise and group-wise patterns)
in order to find lottery tickets. Specifically, we start from
unstructured sparse subnetworks, and then adopt proposed
refilling techniques to create channel-wise structural spar-
sity by growing back the pruned elements within the most
important channels and abandoning the rest. Our results
(Section 4) show such refined channel-wise structural sub-
networks win the lottery at a moderate sparsity level with
~ 50% running time savings on an Nvidia 2080 TI GPU.
In order to push the compression ratio higher, we intro-
duce a regrouping algorithm based on hypergraph partition-
ing (Rumi et al., 2020) to establish group-wise structural
patterns which are more amenable to pruning due to the
shape flexibility of grouped dense blocks. These group-
wise structural winning tickets achieve ~ 60% running time
savings at 50% ~ 80% sparsity without any performance
degradation compared to the dense models.

Note that this paper focuses on general structural sparse
patterns capable of acceleration, including conventional
channel-wise sparsity and other fine-grained structural
sparsity. The latter actually becomes prevailing recently
since it achieves superior performance and maintains sat-
isfied speedup, sparking great interest in industries such
as NVIDIA (N:M) (Zhou et al., 2021) and Google (Block-

wise) (Shangguan et al., 2019). Meanwhile, unlike Zhou
et al. (2021), our group-wise sparse patterns do NOT need
any specific hardware accelerators and are generally ap-
plicable to common GPU devices. Lastly, although we
mainly investigate inference efficiency, our proposals can
also enable efficient training in transfer learning paradigms
as demonstrated in Appendix A2. Our main contributions
lie in the following aspects:

 To our best knowledge, we are the first to demonstrate
the existence of structurally sparse winning tickets at
non-trivial sparsity levels (i.e., > 30%), and with both
channel-wise and group-wise sparse patterns.

* We propose the refilling technique and introduce the
regrouping algorithm to form channel-wise and group-
wise structural sparsity. Such refined structural sub-
networks match the trainability and expressiveness of
dense networks, while enabling the inference speedup
on practical hardware platforms like GPU machines
(general and not tied to particular hardware).

» Extensive experiments validate our proposal on diverse
datasets (i.e., CIFAR-10/100, Tiny-ImageNet, and Im-
ageNet) across multiple network architectures, includ-
ing ResNets, VGG, and MobileNet. Specifically, our
structural winning tickets achieve 53.75% ~ 64.93%
GPU running time savings at 45% ~ 80% channel-
and group-wise sparsity.

2. Related Work

Pruning. Network pruning is a technique that aims at elim-
inating the unnecessary model parameters (Blalock et al.,
2020), which can effectively shrink models for the deploy-
ment on resource-constrained devices (LeCun et al., 1990;
Hanson & Pratt, 1988). Pruning algorithms are roughly cat-
egorized into two groups: (1) unstructured pruning (LeCun
et al., 1990; Han et al., 2015a;b; Ren et al., 2018; Zhang
et al., 2018) with irregular sparse patterns; (2) structural
pruning (He et al., 2017; Liu et al., 2017; Li et al., 2016;
Hu et al., 2016; Wen et al., 2016; Hong et al., 2018) with
structural sparse patterns such as layer-wise, channel-wise,
block-wise, column-wise, etc..

Within the group of unstructured pruning methods, Han
et al. (2015a;b) remove insignificant connections of models
in the post-training stage, with respect to certain heuristics
like weight/gradient magnitudes; during training sparsifi-
cation is also another popular trend for pruning by lever-
aging (o regularization (Louizos et al., 2017) or alternat-
ing direction method of multipliers (ADMM) (Ren et al.,
2018; Zhang et al., 2018). Recently, several pruning-at-
initialization methods (Wang et al., 2020; Lee et al., 2019b;
Tanaka et al., 2020) are proposed to identify critical un-
structured connections for gradient-flow preserving, without



Coarsening the Granularity: Towards Structurally Sparse Lottery Tickets

Initial Unstructured Sparse Mask

Kernel 1

Kernel 2

Kernel 3

Kernel 4

Kernel 5

T
Kernel Hight X Kernel Width X Input Channel

R

/ Refilling
or Refilling+
Regrouping 7

7

Channel-wise Structural Sparse Mask

v _nw h

. . |:| . Remaining Weights |

Refilled Weights

Extra Refilled Channel for Refilling+ Pruned Weights

Figure 2. Overview of our proposals including refilling, refilling+, and regrouping, which turn unstructured sparse mask into channel-wise

and group-wise structured sparse masks.

any training. Although the unstructured sparse model has
superior performance, it usually suffers from poor data lo-
cality and low parallelism (He et al., 2017; Mao et al., 2017;
Wen et al., 2016), which make it hard to be accelerated in
real-world hardware platforms.

On the contrary, structural pruning is more hardware-
friendly at the cost of notable accuracy loss when the com-
pression ratio increases. He et al. (2017); Liu et al. (2017)
slim the network channels via ¢; regularization, and Bar-
toldson et al. (2019) selects important channels according
to heuristics of feature maps. To combine the benefits of
structural and unstructured pruning, hybrid pruning strate-
gies have been introduced to pursue more general struc-
tural spares patterns which are also capable of accelera-
tion. For example, convolution kernels with half regular
sparsity (Chen et al., 2018) or pattern-based structural spar-
sity (Ma et al., 2020) or vector-wise (Zhu et al., 2019) and
group-wise (Rumi et al., 2020) regular sparsity.

The lottery tickets hypothesis (LTH). The lottery ticket
hypothesis (LTH) (Frankle & Carbin, 2019) conjectures that
there exists a sparse subnetwork called winning ticket within
a dense network, whose performance can match with the
dense network when training from the same initialization.
With the assistance of weight rewinding techniques (Renda
et al., 2020; Frankle et al., 2020a), the original LTH can be
scaled up to larger networks and datasets. The existence of
winning tickets are broadly verified under diverse contexts,
such as image classification (Frankle & Carbin, 2019; Zhang
et al., 2021; Chen et al., 2020a; Ma et al., 2021a; Gan et al.,
2021; Chen et al., 2021c), natural language processing (Gale
et al., 2019; Chen et al., 2020b), generative adversarial net-
works (Chen et al., 2021d;a), graph neural networks (Chen
et al., 2021b), and reinforcement learning (Yu et al., 2020).

However, all of the above LTH literature only locate un-
structured sparse winning tickets, which can hardly bring
hardware efficiency boost to real-world applications.

As the most related work, You et al. (2020) finds structural
winning tickets at only low sparsity levels around 30% in a
few cases. It again reveals the complication and difficulty of
identifying computation-friendly sparse patterns. Another
concurrent work (Alabdulmohsin et al., 2021) investigates a
generalized LTH with weight space factorization, which is
orthogonal to our work.

Sparse convolutional neural network acceleration on
GPU. Previous works have explored the acceleration of
sparse convolution operations in two different directions.
One direction is to design efficient implementation of un-
structured pruned networks for improved data locality and
utilization of hardware (Chen, 2018; Park et al., 2016). For
example, Dong et al. (2019) proposes “Acorns” to accel-
erate the sparse computations of convolution kernels with
an input sparsity. Peng et al. (2017) has proposed a matrix
splitting algorithm for efficient inference of convolutional
neural networks (CNN). Nvidia’s cuSPARSE! library con-
tains various efficient sparse matrix computation algorithms
like SpMM on GPUs, drawing great attention to efficient sci-
entific computing. Furthermore, advanced approaches are
developed based on SpMM, such as Adaptive Sparse Tiling
(ASpT) (Hong et al., 2019). ASpT significantly improves
the data usage of SpMM and achieves the current state-
of-the-art performance among SpMM implementation vari-
ants. Another direction focuses on more hardware-friendly
pruning methods (Chen et al., 2018; Ma et al., 2020; Niu
et al., 2020). During the model pruning, these works aim

1
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Table 1. Implementation details which follow the standard settings in Ma et al. (2021b).

Settings ‘ CIFAR-10 CIFAR-100 Tiny-ImageNet ImageNet
‘ WRN-32-2  RN-18  MBNet-vl VGG-16 WRN-32-2 RN-18  MBNet-vl VGG-16 RN-50 RN-50
Batch Size ‘ 128 128 128 128 64 - 32
Weight Decay ‘ 1x107% 1x107* 1x107* 2x107* 2x107* 2x107* 2x107* 5x 1074 5x 1074 1x 1074
Learning Rate ‘ 0.1;%0.1 at 80,120 epoch of total 160 epochs 0.1;%0.1 at 30,60 epoch of total 95 epochs
Optimizer ‘ SGD (Ruder, 2016) with a momentum of 0.9
Model Size ‘ 1.86 M 11.22M 3.21M 14.72M 1.86 M 11.22M 321 M 14.72M 25.56 M 25.56 M

to maintain certain regular sparse patterns, which benefit
the hardware processing/computing of corresponding sparse
matrices. However, Chen et al. (2018) achieves unsatis-
factory compression ratio, while the pruning methods used
in Ma et al. (2020) and Niu et al. (2020) require dedicated
compiler optimization to accelerate network execution.

3. Methodology

3.1. Notations and Preliminaries

Sparse subnetworks and pruning methods. In this pa-
per, we mainly follow the routine notations in (Frankle &
Carbin, 2019; Renda et al., 2020). For a network f(z;6)
with input samples « and model parameters 6, a sparse sub-
network is a network f(z;m © ) with a binary pruning
mask m € {0, 1}/, where © is the element-wise product.
In other words, it is a copy of dense network f(z;6) with
some weights fixed to 0. If the non-fixed remaining weights
are distributed irregularly, we call it unstructured sparse
patterns (e.g., the left of Figure 2); if they are clustered into
channels or groups, we name it structural sparse patterns
(e.g., the right of Figure 2).

To obtain the desired sparse subnetworks, we consider and
benchmark multiple classical pruning algorithms: (1) ran-
dom pruning (RP) which usually works as a necessary
baseline for the sanctity check (Frankle & Carbin, 2019);
(2) one-shot magnitude pruning (OMP) by eliminating a
part of model parameters with the globally smallest mag-
nitudes (Han et al., 2015a); (3) the lottery ticket hypothe-
sis (Frankle & Carbin, 2019) with iterative weight magni-
tude pruning (LTH-IMP or IMP for simplicity) (Han et al.,
2015a). As adopted in LTH literature (Frankle & Carbin,
2019), we identify the sparse lottery tickets by iteratively
removing the 20% of remaining weight with the globally
smallest magnitudes, and rewinding model weights to the
original random initialization (Frankle & Carbin, 2019) or
early training epochs (Frankle et al., 2020b; Chen et al.,
2020a). In this paper, the model weights are rewound to the
eighth epoch (i.e., the 5% of the entire training process) for
all CIFAR, Tiny-ImageNet, and ImageNet experiments. (4)
pruning at initialization mechanisms. We choose several
representative approaches such as SNIP (Lee et al., 2019a),
GraSP (Wang et al., 2020), and SynFlow (Tanaka et al.,
2020), which explore sparse patterns at random initializa-
tion with some gradient flow-based criterion. (5) Alternat-

ing Direction Method of Multipliers (ADMM) for punning. It
is a well-known optimization-based pruning method (Niu
et al., 2020; Zhang et al., 2018), which can obtain superior
compression ratios with little performance degradation for
deep neural networks. Note that all pruning approaches
are mainly conducted over networks without counting their
classification heads (Frankle & Carbin, 2019).

Structural winning tickets. We begin by extending the
original lottery tickets hypothesis to the context of structural
sparse patterns. A subnetwork f(xz;m ® 0) is a structural
winning ticket for an algorithm A7 if it satisfies: @ train-
ing subnetworks f(z;m ® ) with algorithm A/ results in
performance measurement on task 7 no lower than training
dense networks f(z;6) with algorithm A7, where 6 is the
original random initialization 6 or early rewound weights
like f5¢, and ¢t is the training iterations; @ the non-zero ele-
ments in pruning mask m are clustered as channels, groups
or other hardware-friendly structural patterns.

Implementation details. We conduct experiments on di-
verse combinations of network architectures and datasets.
Specifically, we adopt Wide-ResNet-32-2 (Zagoruyko &
Komodakis, 2016) (or WRN-32-2), ResNet-18 (He et al.,
2016) (or RN-18), MobileNet-v1 (or MBNet-v1) (Howard
etal., 2017), and VGG-16 (Simonyan & Zisserman, 2014)
on both CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-
100 datasets. ResNet-50 (or RN-50) is evaluated on both
Tiny-ImageNet (Le & Yang, 2015) and ImageNet (Deng
et al., 2009) datasets. Table 1 includes more training and
evaluation details of our experiments.

3.2. Refilling for Structural Patterns

It is well-known that the irregular sparsity patterns from
unstructured magnitude pruning block the acceleration on
practical hardware devices. To overcome the limitation, we
propose a simple refilling strategy to reorganize the unstruc-
tured sparse patterns and make them more hardware friendly.
Specifically, we first select important channels from the un-
structured subnetwork according to certain criteria. The
number of picked channels are depended on the desired
sparsity level. Then, the pruned elements are grown back
to be trainable (i.e., unpruned) and are reset to the same
random initialization or early rewound weights. Lastly, the
rest parameters in the remaining insignificant channels will
be removed. In this way, we refill important channels and
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empty the rest to create a channel-wise structural sparse pat-
tern that essentially brings computational reductions. Note
that the picking criterion can be the number of remaining
weights in the channel, or the channel’s weight statistics
or feature statistics or salience scores, which are compre-
hensively investigated in the ablation (Section A2). The
complete pipeline and illustration are summarized in Algo-
rithm 2 and Figure 2, respectively.

Algorithm 1 TMP with rewinding step ¢

Input: f(x;0p), unstructured sparsity s
Output: f(z;m © 6;)

1: Set the pruning mask m = 1 € R/Y!

2: Train f(x;60) for i steps: f(x;0;) = A7 (f(;60))

3: while not reach sparsity s do

4:  Train f(z;m © ;) fort — i steps: f(x;m © 0) =
AT (Flaim © 6,))

5:  Pruning 20% of remaining weight of m ® 6, and

update m
6: end while

Algorithm 2 TMP-Refill (+)
Input: f(x;m © 0;) with unstructured sparsity s (Algo. 1)
Output: f(x;m © 6;) with channel-wise structural mask
m at sparsity s
1: Calculate importance scores of each channel according
to certain criterion
2: Pick top-k channels in m, refill back their O (pruned)
elements with 1 (trainable) and update m, maintaining
S~ s
3: Pick and refill back extra channels in m with 7 < s
# Optional for Refi11+

Algorithm 3 TMP-Regroup

Input: f(x;m ® 6;) with unstructured sparsity s from Al-
gorithm 1, hyperparameters ¢1, t2, b1, and by
Output: f(z;m © 6;) with group-wise structural mask m
at sparsity s*
1: while dense block can be found do
2:  Divide the rows of the sparse pruning mask m into
t; groups using hypergraph partitioning (hMETIS)?

3:  for group ¢; € {c1,¢2,...,¢,} do

4: if ¢; has > by rows then

5: Select columns in ¢; that has no less than ¢,
non-zero items

6: if > by columns are selected then

7: Group and Refill the selected columns as well

as rows to a dense block, and update m
8: end if
9: end if
10:  end for
11: end while
12: Set other elements out of dense blocks to 0

ahttp: //glaros.dtc.umn.edu/gkhome/metis/hmetis/overview

Here we provide a detailed description of how many and
which channels we choose to refill. Our main experiments
adopt the ¢; norm of channel weights as the picking cri-
terion to score the channel importance due to its superior
performance. Let §' € R¢u+*" denotes the parameters of
the convolutional layer [, where ¢, is the number of out-
put channel and n is the continued product of the number
of input channel, channel height and weight, as shown in

Figure 2. 0! € R" represents the weights in the ith kernel

and m! € {0,1}% is the corresponding mask. We first

calculate the ¢; norm of m! ® 6!, which is a summation
of the absolute value of remaining weights in the kernel
i. Then we use it to pick the top-k scored kernels, which
will be fully refilled. k& = [s' X cous X 1], where s' is the
original layerwise sparsity and ¢,y X n is the total number
of weights in kernel 7. Meanwhile, the rest ¢,z — k kernels
are dropped for efficiency gains.

Furthermore, we propose a soft version, refilling+, to make
a redemption for the aggressive nature of wiping out all re-
maining channels. It picks and re-actives an extra proportion
of channels to slow down the network capacity reduction,
as indicated by shallow blue blocks in Figure 2.

3.3. Regrouping for Structural Patterns

Although proposed refilling+ reorganizes the unstructured
mask and produces useful channel-wise structural subnet-
works, it is rigid and inelastic since the smallest manageable
unit is a kernel. In other words, the dense matrices in iden-
tified structural patterns have a restricted shape where one
dimension must align with the kernel size n, i.e., the contin-
ued product of the number of input channels, channel height,
and weight. Motivated by Rumi et al. (2020), we introduce
a regrouping strategy (Figure 2) to create more fine-grained
group-wise structural patterns with flexible shapes for re-
maining dense matrices.

> How to perform regrouping? Regrouping aims to find
and extract dense blocks of non-pruned elements in the
sparse weight matrix. These blocks have diverse shapes,
as demonstrated in Figure 2, which are usually smaller in
size compared to the original sparse matrix. Note that a
channel/kernel can be regarded as a special case of the
dense block.

As described in Algorithm 3, to achieve the goal, we first
need to find similar rows and columns, and then bring
them together. Specifically, We adopt the Jaccard simi-
larity (Rumi et al., 2020; Jiang et al., 2020) among non-zero
columns as the similarity between two rows in the sparse
matrix, which is calculated as a cardinality ratio of the in-
tersections to the union of non-zero columns. For instance,
kernel 1 and kernel 2 in Figure 2 (upper left) share three
columns in eight non-zero distinct columns, and their simi-
larity is %. Then, if two rows have a larger similarity, they
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Figure 3. (Curve plots) Testing accuracy (%) over network sparsity (%) on Tiny-ImageNet and ImageNet datasets with ResNet-50 (25.56
M). (Radar plots) The end-to-end inference time saving of extreme structural winning tickets. Unstructured subnetworks or dense models
do not have structural sparsity, and thus they are plotted as dots in the axes of accuracy in the corresponding radar plot. The rightmost plot
includes three extreme regroup tickets with accuracy drop < 1%, where “RG S: %" indicates unstructured sparsity before regrouping.

can form a denser block when we group them together. Take
Figure 2 as an example. We can group kernel 1, 2, 3’s non-
zero columns 1, 3,6, 11 with at least two elements together,
which leads to the first orange dense block.

More precisely, we take the hypergraph partitioning in the
regrouping algorithm to generate dense blocks. It treats
each row and column from the sparse matrix as a node and
hyperedge in the hypergraph, where hyperedge (i.e., col-
umn) connects the corresponding nodes (i.e., row). Then,
the pair-wise similarity is leveraged to locate an optimal
partitioning, which can be achieved with hMETIS?. More
details are referred to Rumi et al. (2020). After obtaining
the desired dense blocks, we enable all their parameters to
be trainable by refilling the corresponding pruned elements.
Note that refilling these pruned weights does not cause any
efficiency loss since the size of the blocks is fixed, while it
potentially maximizes the usage of these blocks and brings
accuracy gains. Meanwhile, the rest parameters not included
in the dense blocks will be discarded, i.e., setting the corre-
sponding position in binary mask m to zero, for reducing
the computational overhead as illustrated in Figure 2. It is
because any parameters outside the dense blocks require
extra weights loading and have little data reuse (Rumi et al.,
2020), which harms the trade-off of accuracy and efficiency.

> How refilled / regrouped dense blocks be beneficial?
We notice that the common tools like cuDNN (Chetlur et al.,
2014) have a significant drawback that the inference time
does not linearly change with the number of kernels, since
they are only optimized for kernel matrices with a multi-
ple of 32 rows (Radu et al., 2019). For example, as stated
in Rumi et al. (2020), a convolutional layer with 10 kernels
might have a similar inference time with a convolutional
layer with 32 kernels. However, the number of kernels in
these dense blocks is almost arbitrary, so a more sophisti-
cated GEMM-based efficient implementation (Rumi et al.,
2020) is needed to accelerate better our refilled / regrouped
structural patterns. Following Rumi et al. (2020), we split a

2http: //glaros.dtc.umn.edu/gkhome/metis/hmetis/overview

kernel with 7 rows into two parts: one has [r/32] x 32 rows
and the other one has  mod 32 rows. First, we directly ap-
ply the standard GEMM-based convolution algorithm with
shared memory to cache the input and output matrix. For
the second part, due to the poor data reuse of input matrices,
we choose to cache the kernel and output matrices for an
improved cache hit rate and overall performance. More
details are referred to Rumi et al. (2020).

4. The Existence of Structural Winning Ticket

Tiny-ImageNet and ImageNet. In this section, we re-
veal the existence of our proposed structural winning
tickets on ImageNet and Tiny-ImageNet with ResNet-50
backbone. Results of unstructured IMP, channel-wise
structural IMP-Refill (+), and group-wise structural
IMP-Regroup are collected in the Figure 3. The end-
to-end inference time® of obtained structural winning tickets
with extreme sparsity levels are presented, which is cal-
culated on a single 2080 TI GPU with a batch size of 64.
Extreme sparsity is defined as maximum sparsity when the
subnetwork has superior accuracy to its dense counterpart.

From Tiny-ImageNet results in Figure 3 (left), several posi-
tive observations can be drawn: @ Structural winning tickets
with 60% channel-wise structural sparsity and 74% group-
wise structural sparsity are located by ITMP-Refill and
IMP-Regroup respectively, which validate the effective-
ness of our proposals. @ Although at the high sparsity levels
(i.e., > 50%), IMP-Re fi 11+ outperforms IMP-Refill
if they are from the same unstructured IMP subnetworks.
Considering the overall trade-off between channel-wise
structural sparsity and accuracy, IMP-Refil1 appears a
clear advantage. A possible explanation is that refilling+
seems to bring undesired channels which potentially result
in a degraded performance trade-off. € IMP-Regroup
performs better at high sparsities. It is within expecta-

3TorchPerf (https://github.com/awwongl/torchprof) is
adopted as our tool to benchmark both the end-to-end and layer-
wise running time on GPU devices.
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Figure 5. (Curve plots) Testing accuracy (%) over sparsity (%) on CIFAR-10/100 with large models VGG-16 (14.72 M) and RN-18
(11.22 M). (Radar plots) The end-to-end inference time saving of extreme structural winning tickets. Note that unstructured subnetworks
or dense models do not have structural sparsity, and thus they are plotted as dots in the axes of accuracy in the corresponding radar plot.

tion since fine-grained group-wise structural patterns tend
to make the networks be more amenable to pruning. @
Extreme channel- / group-wise structural winning tickets
with 45% ~ 50% / 74% sparsity from IMP-Refill (+) /
IMP-Regroup achieve 57.53% ~ 61.79% / 64.84% GPU
running time savings, without sacrificing accuracies.

As for large-scale ImageNet experiments, the conclusion are
slightly different: @ There is almost no difference between
the performance of IMP-Refill and IMP-Refill+,
and both can not find channel-wise structural winning tick-
ets. But it seems to suggest our picking rule (i.e., channel
weights’ /1 norm) provides a great estimation for channel
importance, although it is too aggressive for ImageNet ex-
periments. ® The group-wise structural winning ticket at
31% sparsity still exist in (RN-50, ImageNet), while the
low sparsity brings limited 1% time savings. For a better
efficiency and performance trade-off, IMP-Regroup is
capable of locating structural subnetworks at 51% / 58%
sparsity with 53.75% / 60.23% time savings and 0.33% /
0.95% accuracy drop.

CIFAR with diverse network architectures. We then
validate our approaches on CIFAR-10/100 (C10/100) with
diverse network backbones including Wide-ResNet-32-2,
MobileNet-vl, VGG-16, and ResNet-18. Based on the
extensive results in Figure 4 and 5, we find: @ On {(WRN-
32-2,C10), (WRN-32-2,C100), (MBNet-v1,C10), (MBNet-
v1,C100), (VGG-16,C10), (VGG-16,C100), (RN-18,C10),
(RN-18,C100)} schemes, we consistently disclose the exis-
tence of structural winning tickets with {53%, 28%, 67%,
0%, 60%, 40%, 50%, 0%} channel-wise sparsity and
{66%, 36%, 72%, 56%, 80%, 80%, 78%, 78%} group-wise
sparsity from IMP-Refill (+) and IMP-Regroup, re-
spectively. @ With the same network, pursuing channel-
wise sparse patterns on CIFAR-100 is more challenging
than it on CIFAR-10, possibly due to the larger dataset
complexity. On the same dataset, larger networks tend
to have larger extreme sparsities for both channel- and
group-wise structural winning tickets, with the exception
of IMP-Refill (+) on (RN-18, C100). ® At the mid-
dle sparsity levels (i.e., < 50%), IMP-Regroup behaves
closely to IMP-Refill (+), while IMP-Regroup has
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Figure 6. (Left) Performance of structural tickets grouped from diverse initial unstructured masks. (Middle) Performance of group-wise
structural tickets with different weight rewinding. (Right) Performance comparisons between IMP-Regroup and group-aware IMP as
described in Algorithm 4. Testing accuracies (%) over network sparsity levels (%) are reported on (RN-18,C10).

a superior performance at high sparsity levels. @ Up
to {567.75%, 60.60%, 55.45%, 64.93%} GPU running
time savings are obtained by group-wise structural win-
ning tickets with undamaged performance on {(VGG-
16,C10), (VGG-16,C100), (RN-18,C10), (RN-18,C100)},
which surpass IMP, IMP-Refill (+), and dense mod-
els by a significant efficiency margin. A exception is that
IMP-Refill on (VGG-16,C10) achieves the best time
savings, i.e., 63.11%.

Layer-wise speedups. Figure 7 and A10 shows the layer-
wise speedup performance of convolution operations in
VGG-16’s extreme structured winning tickets from different
algorithms.IMP-Regroup presents impressive layer-wise
speedups up to 6.67x compared to others, especially on the
last a few layers (e.g., conv. 12). The possible reasons lie
in two aspects: (7) the latter layers reach a larger compres-
sion ratio and have greater potentials for acceleration; (i7)
the regrouping algorithm prefers convolutional layers (i.e.,
latter layers in VGG-16) with a larger number of kernels
which benefits to group appropriate dense blocks, as also
suggested by Rumi et al. (2020).

5. Ablation Study and Visualization

Different sources of unstructured masks. Intuitively, the
initial unstructured sparse mask should plays an essential
role in the achievable performance of our proposed “post-
processing techniques”. We therefore conduct a comprehen-
sive ablation study about the various sources of the initial
sparse masks in Figure 6, including IMP, OMP, RP, SNIP,
GraSP, SynFlow, and ADMM. The details of comparison
methods are in Section 3.1. We observe that IMP and OMP
provide initial unstructured masks with the top-2 highest
quality for our regrouping algorithm, in terms of the train-
from-scratch accuracy of grouped structural subnetworks.

Different initialization for the re-training. Initializa-
tion (Frankle & Carbin, 2019; Renda et al., 2020) as another
key factor in LTH, also contributes significantly to the exis-
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Figure 7. The layer-wise performance of convolution operations in
extreme structural winning tickets of (VGG-16, C10). The first six
conv. operations are omitted since there is no meaningful speedup,
coincided with Rumi et al. (2020). Marks like “C: 2.77” indicate
the layer-wise compression ratio of IMP-Regroup.

tence of winning tickets. To exhaustively investigate the ef-
fect from different initialization (e.g., rewound weights), we
launch experiments started from diverse rewound weights
({5%, 10%, 20%, 50%, 100%} of total training epochs) as
well as a random re-initialization. In Figure 6, using 50%
rewound weight reaches the overall best performance; other
weight rewinding setups perform similarly and clearly sur-
pass random re-initializing at sparsity levels > 30%.

Group-aware IMP. This work mainly focuses on the post-
processing of unstructured sparse masks. Another possi-
bility is integrating regrouping into IMP by alternatively
performing unstructured magnitude pruning and regrouping,
which we term as group-aware IMP. From Fig. 6, it has a
worse performance due to the stricter constraint on sparse
patterns, compared to ITMP-Regroup.

Extra study. More investigations about (1) transfer tickets
and training efficiency; (2) comparison with random tickets;
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(3) ablation on different training settings; (4) FLOPs saving;
(5) visualization of sparse masks are in Appendix A2.

6. Conclusion

In this paper, we challenge the “common sense” that an
identified IMP winning ticket can only have unstructured
sparsity, which severely limits its practical usage due to
the irregular patterns. We for the first time demonstrate
the existence of structural winning tickets by leveraging
post-processing techniques, i.e., refilling(+) and regrouping.
The located channel- and group-wise structural subnetworks
achieve significant inference speedups up to 6.67x on hard-
ware platforms. In this sense, our positive results bridge the
gap between the lottery ticket hypothesis and practical ac-
celerations in real-world scenarios. We would be interested
in examining LTH with more effective structural sparsity
for real-time mobile computing in future work.
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Al. More Implementation Details

Group-aware IMP. Here we provides the detailed proce-
dures of group-aware IMP in Algorithm 4. Intuitively, it
embeds regrouping (Algorithm 3) into IMP (Algorithm 1)
by performing regrouping on the unstructured mask m from
each IMP round.

Algorithm 4 Group-aware IMP

Input: f(x;0y), group-wise structural sparsity s
Output: f(xz;m © 6;) with group-wise structural sparse
mask s
I: Set the pruning mask m = 1 € RI|
Train f(x;60) to rewinding step i:
AT (f(z:60))
2: while not reach sparsity s do
3:  Train f(x;m © 6;) to step t: f(x;m © 6;) =
AL (f(z5m © 6;))
4:  Pruning 20% of remaining weight of m ® 6, and
update m
5:  Refining the unstructured mask m by performing
regrouping, as shown in Algorithm 3
6: end while

f(z;0;) =

Profiling. To compute the GPU running time of regrouped
convolution layers, we adopt their CUDA C/C++ imple-
mentation. Our results do not include the running time of
normalization and activation layers, following the standard
in Rumi et al. (2020). For a fair calculation, we feed the
same input features to convolution layers that belong to the
same model. For ResNet-18 and VGG-16, the size of the
input features is (64, 64, 127, 127). For ResNet-50, the size
of input features is (64, 64, 64,64). The GPU we use for
profiling is NVIDIA RTX 2080 TI, with a CUDA version of
10.2 and a cuDNN (Chetlur et al., 2014) version of 7.6.5.

A2. More Experiment Results

Different channel picking criterion for refilling. We ab-
lation the channel picking criterion for IMP-Refill (+),
including @ the ¢/; norm of channel’s remaining weight, &
the ¢1 or {5 norms of channel’s feature map, ® the num-
ber of remaining weights in the channel, @ the channel’s
saliency score (Molchanov et al., 2019). Experiment results
are collected in Figure A8, which demonstrate the superior
performance of IMP-Refill w. ¢; of channel weights
( curve in Figure A8).

Transfer tickets and training efficiency. We investigate
the transferability of our found (fine-grained) structural win-
ning tickets, which grants the extra bonus of training ef-
ficiency to our proposals. Specifically, following the se-
tups in Chen et al. (2020a), we first identify refilled and
regrouped structural winning tickets in ResNet-18 on Ima-
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Figure A8. Performance of structural tickets refilled by diverse
channel picking criterion. Testing accuracies (%) over network
sparsity levels (%) are reported on (RN-18,C10).

geNet, and then transfer them to the downstream CIFAR-10
task. Transfer results are presented in Table A2. Compared
to the dense network baseline (95.37%), IMP-Refill
locates channel-wise structural (transfer) winning tickets
at the sparsity around 36%, and IMP-Regroup locates
group-wise structural (transfer) winning tickets at a higher
sparsity (more than 56.00%). Such an encouraging trans-
fer study means that we can even replace the full model
with a much smaller subnetwork while maintaining an un-
damaged downstream performance. And this is also why
our IMP-Regroup and IMP-Refill obtain 7.14% ~
34.67% and 34.53% training time savings during down-
stream training with matched or even improved generaliza-
tion. Note that this efficient training is an extra benefits of
our proposal, in addition to impressive inference efficiency.

Table A2. Transfer accuracy (%), time saving (%) and remaining
weights (%) on ResNet-50 with CIFAR-10. IMP-Refil1l and
IMP-Regroup are evaluated. The baseline accuracy of dense
network is 95.37%.

IMP-Refill

Remaining Weight ‘ Transfer Accuracy ‘ Time Savings

64.14% 95.81% 34.53%
51.37% 95.14% 48.10%
41.01% 94.51% 60.67%
32.76% 94.38% 65.98%
26.17% 94.19% 69.04%
20.97% 94.11% 71.08%

IMP—-Regroup

Remaining Weight | Transfer Accuracy | Time Savings

59.43% 95.65% 7.14%
51.84% 95.39% 21.85%
43.99% 95.51% 34.67%
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Comparison with random tickets. As a sanity check,
we conduct a comparison with random tickets (Fran-
kle & Carbin, 2019) which are trained from random re-
initialization. Experiments results on (RN-18, C10) are
collected in Table A3 and A4. We show that random tickets
have obviously inferior performance, which suggests that
our identified refilled and regrouped subnetworks are highly
non-trivial (fine-grained) structural winning tickets.

Table A3. Testing accuracy (%) of IMP-Ref1i11 with rewinding
weights (Ours) and random re-initialization (Random Tickets).
IMP Round ‘ Remaining Weight ‘ Accuracy (Ours) ‘ Accuracy (Random Tickets)

1 80.29% 94.14% 94.04%
2 64.49% 94.24% 93.96%
3 51.43% 94.45% 94.20%
4 41.24% 94.16% 93.98%
5 32.97% 93.86% 93.53%

Table A4. Testing accuracy (%) of IMP-Regroup with rewind-
ing weights (Ours) and random re-initialization (Random Tickets).
IMP Round ‘ Remaining Weight ‘ Accuracy (Ours) ‘ Accuracy (Random Tickets)

1 80.00% 94.48% 94.19%
2 72.95% 94.75% 93.42%
3 69.37% 94.29% 93.58%
4 67.12% 94.62% 93.84%
5 58.54% 94.32% 93.76%

Different training settings. To validate our algorithm’s
effectiveness under different training configurations, we per-
form extra experiments with VGG-16(+), WRN-32-2(+),
and RN-50(+). The changes of training settings are summa-
rized as below:

® For VGG-16(+), we increase the number of training
epochs to 240, and decay the learning rate at 150-th,
180-th, and 210-th epoch.

@ For WRN-32-2(+), we do not split the official training
set into the a training and a validation set as our other
experiments did. We also report the best validation ac-
curacy instead of the best test accuracy. The number of
training epochs is increased to 240 and the learning rate
is decayed at 150-th, 180-th, and 210-th epoch.

® For RN-50(+), we replace the first convolution layer to
be of kernel size 3, padding size 1, and strides 1.

> VGG-16(+) on C100. As shown in Table AS, we demon-
strated that our conclusions are still hold: IMP-Regroup
can locate structural winning tickets at very high sparsity
levels (e.g., > 75%).

> WRN-32-2(+) on C100. As shown in Table A6, we find
consistent observations: IMP—-Regroup locates structural
winning tickets at about 75% sparsity, and IMP-Refill
identifies structural winning tickets at 20% sparsity.

> RN-50(+) on Tiny-ImageNet. Experimental results in
Table A7 suggest that: IMP-Regroup locates structural
winning tickets at about 42% sparsity, and IMP-Refill

Table A5. Testing accuracy (%) and remaining weights (%)
on CIFAR-100 with VGG-16(+). IMP, IMP-Refill, and
IMP-Regroup are evaluated. The baseline accuracy of dense
network is 73.43%.

IMP |

IMP-Refill IMP-Rq
Round | efi | egroup

| Remaining Weight | Accuracy | Remaining Weight | Accuracy | Remaining Weight | Accuracy

1 80.00% 73.64 80.17% 7343 82.36% 73.63
2 64.00% 73.80 64.06% 72.87 80.00% 73.81
3 51.20% 73.67 51.31% 72.67 69.46% 74.31
4 40.96% 74.01 41.08% 71.37 62.61% 73.94
5 32.77% 74.27 32.85% 70.79 56.09% 75.05
6 26.21% 74.56 26.33% 71.07 46.53% 74.98
7 20.97% 74.58 21.03% 69.42 38.18% 75.24
8 16.78% 74.52 16.94% 68.75 30.98% 74.68
9 13.42% 74.42 13.42% 67.25 25.27% 75.25

Table A6. Testing accuracy (%) and remaining weights (%) on
CIFAR-100 with WideResNet-32-2(+). IMP, IMP-Refil1, and
IMP-Regroup are evaluated. The baseline accuracy of dense
network is 75.53%.

Round | MP | IMP-Refill | IMP-Regroup
| ining Weight | racy | Remaining Weight | Remaining Weight | Accuracy
1 80.00% 76.21 80.00% 75.46 80.00% 75.98
2 64.00% 75.78 64.06% 74.59 64.00% 76.19
3 51.20% 76.02 51.51% 73.53 51.20% 76.13
4 40.96% 75.92 41.51% 72.95 40.96% 75.88
6 26.21% 75.74 26.53% 70.91 26.27% 7578
7 20.97% 75.92 21.11% 69.55 21.76% 74.74
8 16.78% 75.87 17.11% 67.74 18.14% 73.85
9 13.42% 75.41 13.67% 65.73 14.85% 72.99
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Figure A9. Sparse mask visualizations of the extreme winning tick-
ets from IMP (unstructured), IMP-Refill (+) (channel-wise
structural), and IMP-Regroup (group-wise structural) on (VGG-
16,C10). The darker color indicates the remaining unpruned ele-
ments. (a,b,c) are the last three conv. layers.

discovers structural winning tickets at 20% sparsity, which
echo our findings in the main text.
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Table A7. Testing accuracy (%) and remaining weights (%) on
Tiny-ImageNet with ResNet-50(+). IMP, IMP-Refill, and
IMP-Regroup are evaluated. The baseline accuracy of dense
network is 65.33%.

IMP |

IMP-Refill | IMP-Regroup

Round ‘
| Remaining Weight | Accuracy | Remaining Weight | Accuracy | Remaining Weight | Accuracy

1 80.00% 65.44 80.30% 65.27 80.15% 65.51
2 64.00% 65.69 64.16% 63.40 68.25% 65.16
3 51.20% 65.50 51.42% 61.89 58.19% 65.21
4 40.96% 65.73 41.08% 60.43 54.19% 64.42
5 32.77% 65.23 32.85% 59.64 51.75% 64.52

FLOPs saving. For a sufficient evaluation, we calcu-
late the FLOPs of diverse subnetworks from VGG-16 on
CIFAR-10 dataset. The FLOPs of a dense VGG-16 is
about 0.314G. We select sparsity levels across different
methods as similar as possible for a better comparison.
Subnetworks from IMP-Refill, IMP-Refill+, and
IMP-Regroup at sparsity levels of {32.84%, 46.41%,
20.12%} have {0.089G, 0.122G, 0.093G} FLOPs, respec-
tively. It is noteworthy that Refill and Refill+ trim
down the input and output channels of a convolution layer
while Regroup cannot. Thus, Refill and Refill+ can
save more FLOPs under a similar sparsity level.

Visualization of sparse masks. Figure A9 visualizes
different types of obtained sparse masks from (VGG-
16,C10). Sub-figures (a,b,c) plot the mask matrices of size
Cout X n for certain layers. Similar to the illustration in
Figure 2, IMP-Refill (+) masks show clear kernel-wise
sparse patterns across the rows, and IMP-Regroup masks
present fine-grained structural sparse patterns capable of
forming neat dense blocks after regrouping.

More results of layer-wise speedups. Figure A10
presents extra layer-wise speedup results of VGG-16 on
CIFAR-100. Similar observations to Figure 7 can be obtain.
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Figure A10. The layer-wise performance of convolution operations
in extreme structural winning tickets of (VGG-16, C10). The first
six conv. operations are omitted since there is no meaningful
speedup, coincided with Rumi et al. (2020). Marks like “C: 2.77”
indicate the layer-wise compression ratio of IMP-Regroup.

Different visualizations of the radar plots. We offer an
alternative histogram visualization (Figure A11) for radar
plots in the main text. In each histogram, four approaches

are reported: Dense, IMP-Refill, IMP-Refill+,
and IMP-Regroup. Dense as the compared baseline
with zero time saving, so the corresponding bars are always
unseen from the charts.
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Figure A11. Time saving (%), sparsity level (%), and test accuracy
(%) of various models {ResNet-18, VGG-19, ResNet-50} on dif-
ferent datasets { CIFAR-10/100, Tiny ImageNet}.

Comparison to NAS and SOTA structure pruning meth-
ods. We conduct extra experiments with a neural architec-
ture search (NAS) based approach, i.e., ABC pruner (Lin
et al., 2020). Specifically, it searches the channel numbers
per layer, and then the derived structure will be trained from
the same initialization. At the same sparsity level 77%, our
IMP-Refill surpasses the ABC pruner by 1.5% accu-
racy, which demonstrates the superiority of located refill
tickets. More sparse levels are presented in Fig. A12 (C1).

Under the same setup of training from scratch, we further
compare our proposal with SCOP (Tang et al., 2020) and
observe that ours (94.16 ~ 94.62%) outperform SCOP
(93.48%) by up to 1.14% accuracy at ~ 41% sparsity. More
sparse levels are collected in Fig. A12 (C2).

Figure C1 (VGG-16, CIFAR-10) Figure C2 (ResNet-18, CIFAR-10)
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Figure A12. Comparisons with NAS and SOTA structural pruning.



