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Abstract

This paper presents new variance-aware confidence sets for linear bandits and
linear mixture Markov Decision Processes (MDPs). With the new confidence sets,
we obtain the follow regret bounds:

« For linear bandits, we obtain an O(poly(d)y/1 + Zszl o?) data-dependent

regret bound, where d is the feature dimension, K is the number of rounds,
and cr,% is the unknown variance of the reward at the k-th round. This is the
first regret bound that only scales with the variance and the dimension but no
explicit polynomial dependency on K. When variances are small, this bound

can be significantly smaller than the 5) (d\/? ) worst-case regret bound.

+ For linear mixture MDPs, we obtain an O (poly(d, log H)+/K) regret bound,
where d is the number of base models, K is the number of episodes, and H
is the planning horizon. This is the first regret bound that only scales loga-
rithmically with H in the reinforcement learning with linear function approx-
imation setting, thus exponentially improving existing results, and resolving
an open problem in [Zhou et al., 2020a].

We develop three technical ideas that may be of independent interest: 1) applica-
tions of the peeling technique to both the input norm and the variance magnitude,
2) a recursion-based estimator for the variance, and 3) a new convex potential
lemma that generalizes the seminal elliptical potential lemma.

arXiv:2101.12745v4 [cs.LG] 29 Oct 2021

1 Introduction

In sequential decision-making problems such as bandits and reinforcement learning (RL), the agent
chooses an action based on the current state, with the goal to maximize the total reward. When the
state-action space is large, function approximation is often used for generalization. One of the most
fundamental and widely used methods is linear function approximation.

For (infinite-actioned) linear bandits, the minimax-optimal regret bound is é(d\/f ) [Dani et al.,
2008, Abbasi-Yadkori et al., 2011], where d is the feature dimension and K is the number of total
rounds played by the agent.> However, oftentimes the worst-case analysis is overly pessimistic, and

*Equal contribution.
*We follow the reinforcement learning convention to use K to denote the total number of rounds / episodes.
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it is possible to obtain data-dependent bound that is substantially smaller than 5(d\/§ ) in benign
scenarios.

One direction to study is the variance magnitude. As a motivating example, in linear bandits, if
there is no noise (variance is 0), one only needs to pay at most d regret to identify the best action
because d samples are sufficient to recover the underlying linear coefficients (in general position).
This constant-type regret bound is much smaller than the /K -type regret bound in the worst case
where the variance magnitude is a lower bounded constant. Therefore, a natural question is:

Can we design an algorithm that adapts to the variance magnitude, and its regret degrades
gracefully from the benign noiseless constant-type bound to the worst-case v/ K -type bound?

In RL, exploiting the variance information is also important. For tabular RL, one needs to utilize
the variance information, e.g., Bernstein-type exploration bonus to achieve the minimax optimal
regret [Azar et al.,, 2017, Zanette and Brunskill, 2019, Zhang et al., 2020c,a, Menard et al., 2021,
Dann et al., 2019]. For example, the recently proposed MVP algorithm [Zhang et al., 2020a], en-
joys an O(polylog(H) x (v/SAK + 52 A)) regret bound, where S is the number of states, A is the
number of actions, H is the planning horizon, and K is the total number of episodes. ** Notably,
this regret bound only scales logarithmically with H. On the other hand, without using the variance
information, e.g., using Hoeffding-type bonus instead of Bernstein-type bonus, algorithms would
suffer a regret that scales polynomially with H [Azar et al., 2017].

Going beyond tabular RL, a recent line of work studied RL with linear function approximation with
different assumptions [ Yang and Wang, 2019, Modi et al., 2020, Jin et al., 2020, Ayoub et al., 2020,
Zhou et al., 2020a, Modi et al., 2020]. Our paper studies the linear mixture Markov Decision Pro-
cess (MDP) setting [Modi et al., 2020, Ayoub et al., 2020, Zhou et al., 2020a], where the transition
probability can be represented by a linear function of some features or base models. This model-
based assumption is motivated by problems in robotics and queuing systems. We refer readers to
Ayoub et al. [2020] for more discussions.

For this linear mixture MDP setting, previous works can obtain regret bounds in the form

O(poly(d, H)v/'K), where d is the number of base models. While these bounds do not scale with
S A, they scale polynomially with H, because the algorithms in previous works do not use the vari-
ance information. In practice, H is often large, and even a polynomial dependency on H may not
be acceptable. Therefore, a natural question is

Can we design an algorithm that exploits the variance information to obtain an
O(poly(d,log H)v/K) regret bound for linear mixture MDP?

1.1 Our Contributions

In this paper, we develop new, variance-aware confidence sets for linear bandits and linear mixture
MDP and answer the above two questions affirmatively.

Linear Bandits. For linear bandits, we obtain an (3(p01y(d)«/ 1+ Zszl o?) regret bound, where

o is the unknown variance at the k-th round. To our knowledge, this is the first bound that solely
depends on the variance and the feature dimension, and has no explicit polynomial dependency on
K. When the variance is very small so that 07 « 1, this bound is substantially smaller than the worst-
case O(dv/K) bound. Furthermore, this regret bound naturally interpolates between the worst-case
+/ K -type bound and the noiseless-case constant-type bound.

Linear Mixture MDP. For linear mixture MDP, we obtain the desired G(poly(d, log H)VK)
regret bound. This is the first regret bound in RL with function approximation that 1) does not scale
with the size of the state-action space, and 2) only scales logarithmically with the planning horizon

36() hides logarithmic factors. Sometimes we write out polylog H explicitly to emphasize the logarithmic
dependency on H.

*This bound holds for setting where the transition is homogeneous and the total reward is bounded by 1. We
focus on this setting in this paper. See Section 2 and 3 for more discussions.



H. Therefore, we exponentially improve existing results on RL with linear function approximation
in term of the [ dependency, and resolve an open problem in [Zhou et al., 2020a]. More importantly,
our result conveys the positive conceptual message for RL: it is possible to simultaneously overcome
the two central challenges in RL, large state-action space and long planning horizon.

1.2 Main Difficulties and Technical Innovations

We first describe limitations of existing works why they cannot achieve the desired regret bounds
described above.

Limitations of Existing Variance-Aware Confidence Sets Fauryetal. [2020], Zhou et al.
[2020a] applied Bernstein-style inequalities to construct a confidence sets of the least square esti-
mator for linear bandits. However, their methods can not be applied directly to obtain the desired
data-dependent regret bound. Abeille et al. [2021] also designed an variance-dependent confidence
set for logistic bandits. However in their problem the rewards are Bernoulli and the variance is a
function of the mean.

We give a simple example to illustrate their limitations. Consider the case where the variance is
always 02 « 1. Let (x1,%1),.-.,(Tk_1,yx—_1) be the samples collected before the k-th round.

Their confidence set at the k-th round is ©p = {0]]|0 — Oxlla,_, < Clovd+1+ A2} (See
In Equation (4.3) of Zhou et al. [2020a] and Theorem 1 of Faury et al. [2020]). where Ax_1 =
Zi: mfw;r + A1 is the un-normalized covariance matrix , ék = A;_ll Zf: yr &, is the estimated
linear coefficients by least squares, A is a regularization parameter and C' is a constant. Consider the
cased = land ¢, = 4/1/K fork = 1,..., K. Their regret bound is roughly

K K

K
D (oVd+ 1T+ A gy 0 = (14 A2) D a0 > (1+A12) > VE
k=1 i=1

which is much larger than our bound, O (\/ Ko? + 1) when o is very small. For more detailed
discussion, please refer to Appendix B.

Below we describe our main techniques.

Elimination with Peeling. Instead of using least squares and upper-confidence-bound (UCB), we
use an elimination approach. More precisely, for the underlying linear coefficients 8* € R%, we
build a confidence interval for (0"‘)T p for every p in an e-net of the d-dimensional unit ball, and
we eliminate @ € R? if @7 p fails to fall in the confidence interval of (8*)T u for some p. To build
the confidence intervals, we use 1) an empirical Bernstein inequality (cf. Theorem 4) and 2) the
peeling technique to both the input norm and the variance magnitude. As will be clear in the proof
(cf. Section D), this peeling step is crucial to obtain a tight regret bound for the example above. The
new confidence region provides a tighter estimation for 8*, which helps address the drawback in
least squares.

Generalization of the Elliptical Potential Lemma. Since we use the peeling technique which
comes with a clipping operation, we cannot use the seminal elliptic potential lemma Dani et al.
[2008] any more. Instead, we propose a more general lemma below, which provides a bound of
potential for a general class of convex functions though with a worse dependency on d than the
bound in the elliptical potential lemma. We believe this lemma can be applied to other problems as
well.

Lemma 1 (Generalized Quadratic Potential Lemma). Let f(xz) = 0 be a convex function over R
such that f(m) f(y) < land f(z) = f(y) if 2> = y*> > 0. Let B(1) denote the d-dimensional
unit ball. lef € ( 1]. For any @1, x2,...,x: € B(1) and p1, po, . . ., put € B(1), we have that

Z mln{zz . f<(w1‘:)) ,1} < O(d* log(dt/1)).
=1 j=1 T

Note that by choosing f(z) = 2% and p; = . T IH with A; = ZZ 11 xjx] + (1, Lemma 1 reduces

to the classical elliptic potential lemma [Dam etal. , 2008]. Our proof consists of two major parts.



We first establish a symmetric version of Equation (??) using rearrangement inequality, and then
bound the number of times the energy for some p (i.e., 22:1 f(z;p) + 1?) doubles. The full proof
is deferred to Appendix C.

For linear mixture MDP, we propose another technique to further reduce the dependency on d.

Recursion-based Variance Estimation. In linear bandits, generally it is not possible to estimate
the variance because the variance at each round can arbitrarily different. On the other hand, for linear
mixture MDP, the variance is a quadratic function of the underlying coefficient 8*. Furthermore,
the higher moments are polynomial functions of 8*. Utilizing this rich structure and leveraging
the recursion idea in previous analyses on tabular RL [Lattimore and Hutter, 2012, Li et al., 2020,
Zhang et al., 2020a], we explicitly estimate the variance and higher moments to further reduce the
regret. See Section 5 for more explanations.

2 Related Work

Linear Bandits. There is a line of theoretical analyses of linear bandits problems [Auer et al.,
2002, Danietal., 2008, Chuetal., 2011, Abbasi-Yadkorietal., 2011, Lietal., 2019a,b]. For
infinite-actioned linear bandits, the minimax regret bound is ©(d+/K). and recent works tried to
give fine-grained instance-dependent bounds [Katz-Samuels et al., 2020, Jedra and Proutiere, 2020].
For multi-armed bandits, Audibert et al. [2006] showed by exploiting the variance information, one
can improve the regret bound. For linear bandits, only a few work studied how to use the variance
information. Faury et al. [2020] studied logistic bandit problem with adaptivity to the variance of
noise, where a Bernstein-style confidence set was proposed. However, they assume the variance is
known and cannot attain the desired variance-dependent bound due to the example we gave above.
Linear bandits can be also seen as a simplified version of RL with linear function approximation,
where the planning horizon degenerates to H = 1.

RL with Linear Function Approximation. Recently, it is a central topic in the theoretical
RL community to figure out the necessary and sufficient conditions that permit efficient learning
in RL with large state-action space [Wen and Van Roy, 2013, Jiang et al., 2017, Yang and Wang,
2019, 2020, Du et al., 2019b, 2020a, 2019a, 2020b, Jiang et al., 2017, Feng et al., 2020, Sun et al.,
2019, Dannetal., 2018, Krishnamurthyetal., 2016, Misraetal.,, 2019, Ayoub etal., 2020,
Zanette et al., 2020, Wang et al., 2019, 2020c,b, Jin et al., 2020, Weisz et al., 2020, Modi et al.,
2020, Shariff and Szepesvari, 2020, Jin et al., 2020, Cai et al., 2019, He et al., 2020, Zhou et al.,
2020a]. However, to our knowledge, all existing regret upper bounds have a polynomial de-
pendency on the planning horizon H, except works that assume the environment is determinis-
tic [Wen and Van Roy, 2013, Du et al., 2020b].

This paper studies the linear mixture MDP setting [Ayoub et al., 2020, Zhou et al., 2020b,a,
Modi et al., 2020], which assumes the underlying transition is a linear combination of some known
base models. Ayoub et al. [2020] gave an algorithm, UCRL-VTR, with an 5(dH VK ) regret in
the time-inhomogeneous model.> Our algorithm improves the H-dependency from poly(H) to
polylog(H), at the cost of a worse dependency on d.

Variance Information in Tabular MDP. The use of the variance information in tabular MDP
was first proposed by Lattimore and Hutter [2012] in the discounted MDP setting, and was later
adopted in the episodic MDP setting [Azar et al., 2017, Jin et al., 2018, Zanette and Brunskill, 2019,
Dann et al., 2019, Zhang et al., 2020a,b]. This technique is crucial to tighten the dependency on H.

Concurrent Work by Zhou et al. [2020a]. While preparing this draft, we noticed a concurrent
work by Zhou et al. [2020a], who also studied how to use the variance information for linear bandits

>The time-inhomogeneous model refers to the setting where the transition probability can vary at different
levels, and the time-homogeneous model refers to the setting where the transition probability is the same at
different levels. Roughly speaking, the model complexity of the time-inhomogeneous model is H times larger
than that of the time-homogeneous model. In general, it is straightforward to tightly extend a result for the
time-homogeneous model to the time-inhomogeneous model by extending the state-action space [Jin et al.,
2018, Footnote 2], but not vice versa.



and linear mixture MDPs. We first compare their results with ours. For linear bandits, they proved

an O(VdE + dy/ Y% | 02) regret bound, while we prove an O(d*34/>"% | 52 + d®) regret bound.
Our bound has a worse dependency on d, but in the regime where K is very large and the sum of the
variances is small, our bound is stronger. Furthermore, they assumed the variance is known while
we do not need this assumption. For linear mixture MDP, they proved an 5(\/ d?H + dH?*VK +

d2H? + d®H) bound for the time-inhomogeneous model, while we prove an O(d*5/K + d°) x
polylog(H) bound for the time-homogeneous model. Their bound has a better dependency on d
than ours and is near-optimal in the regime K =  (poly (d, H)) and H = O(d). On the other
hand, we have an exponentially better dependency on H in the time-homogeneous model. Indeed,
obtaining a regret bound that is logarithmic in H (in the time-homogeneous model) was raised as an
open question in their paper [Zhou et al., 2020a, Remark 5.5].

Next, we compare the algorithms and the analyses. The algorithms in the two papers are very
different in nature: ours are based on elimination while theirs are based on least squares and UCB.
We note that, for linear bandits, their current analysis cannot give a v/ K -free bound because there
is a term that scales inversely with the variance. This can be seen by plugging the first line of their
(B.25) to their (B.23). For the same reason, they cannot give a horizon-free bound in the time-
homogeneous linear mixture MDP. In sharp contrast, our analysis does not have the term depending
on the inverse of the variance. On the other hand, their algorithms are computationally efficient
(given certain computation oracles), but our algorithms are not because ours are elimination-based.
See Section 6 for more discussions.

3 Preliminaries

Notations. We use BY(r) = {z € R? : ||z, < r} to denote the d-dimensional £,-ball of radius
7, so B(1) = BZ(1) For any set S < R?, we use 0S5 to denote its boundary. For N € N, we define
[N] = {1,..., N}. One important operation used in our algorithms and analyses is clipping. Given
¢ > 0andu € R, we define
clip(u, £) = min{|ul, £} - —
|ul
for u # 0 and clip(0,¢) = 0. For any two vectors u, v, to save notations, we use uv = u'v to
denote their inner product when no ambiguity.

Linear Bandits. We use K to denote the number of rounds in the linear bandits. At each
round k = 1,..., K, the algorithm is first given the context set A, < BZ(1), then the al-
gorithm chooses an action ¢, € Ay and receives the noisy reward ry, = xp0* + ¢, where
0* € BY(1) is the unknown underlying linear coefficients and ¢, is the random noise. We de-
fine F, = o(x1,e1,..., %k, €k, Tx+1). We assume that |r;| < 1 and that the noise e, satisfies
Elex | Fx] = 0 and E[e7 | Fx] = o7. The goal is to learn 6* and minimize the cumulative
expected regret E[RX], where

K
R = 2 [max £0* — x,0%].
k=1

mE.Ak

Remark 1. Here we assume the reward is uniformly bounded (|ry| < 1) instead of 1-sub-Gaussian
commonly used in the literature only for the ease of presentation, because in RL, it is standard to
assume bounded reward. Note if the noise is 1-sub-Gaussian, our algorithm also applies with only
an O (log K) overhead because a problem with 1-sub-Gaussian noise can be reduced to that with
uniformly bounded noise by clipping the noise with a threshold O(log K).

Episodic MDP and Linear Mixture MDP. We use a tuple (S, A, r, P, K, H) to define an episodic
finite-horizon MDP. Here, S is its state space, A is its action space, r : S x A — [0, 1] is its reward
function, P (s’ | s, a) is the transition probability from the state-action pair (s, a) to the new state
s’, K is the number of episodes, and H is the planning horizon of each episode. Without the loss of
generality, we assume a fixed initial state s;. A sequence of functions 7 = {m), : S — A(A)}HL,
is an policy, where A(A) denotes the set of all possible distributions over A.



Algorithm 1 VOFUL: Variance-Aware Optimism in the Face of Uncertainty for Linear Bandits
1: Initialize: ¢; = 227",, = 16dIn & Ly = [logy K],A2 = {1,2,..., L2 + 1}, ©1 = B4(1),
Let B be an K —3-net of B$(2) with size not larger than (4 )3¢
fork=1,2,...,Kdo
: Optimistic Action Selection:

2:
3
4:  Observe context set A, < B4(1)

5: Compute ) < argmax, 4, MaXgeo, x0, choose action xj,

6 Receive feedback yy,

7 Construct Confidence Set:

8:  Foreach € BE(1), define €4 (0) = yr — 10,7k (0) = (e1(0)).
9

Define confidence set ©y11 = (.., ©7.,1, Where

jE€A2

k

2 Clipj (wvlj/)ev (0)

v=1

k
<y | D) clip? (zop)n, (0)e + L, Vp € B} (1

v=1

CH {0 eBI(1) :

and clip;(-) = clip(-, £;).
10: end for

At each episode & = 1,..., K, the algorithm outputs a policy 7*, which is then executed on the
MDP by af ~ 7f(sk), sk, 1 ~ P(- | sf,af). Weletrf = r(sf, af) be the reward at time step h
in episode k. Importantly, we assume the transition model P(- | -,-) is time-homogeneous, which
is necessary to bypass the poly(H) dependency. We assume that the reward function is known,
which is standard in the theoretical RL literature to simplify the presentation [Modi et al., 2020,
Ayoub et al., 2020]. We let 7* to denote the optimal policy which achieves the maximum reward in
expectation.

We make the following regularity assumption on the rewards: the sum of reward, ZhH:1 Th, in each
episode is bounded by 1.

Assumption 2 (Non-uniform reward). 37 | 7% < 1 almost surely for any policy *.

This assumption is much weaker than the common assumption where the reward at each time step is
bounded by 1/H (uniform reward) because Assumption 2 allows one spiky reward as large as 2 (1).
See more discussions about this reward scaling in Jiang and Agarwal [2018], Wang et al. [2020a],
Zhang et al. [2020a].

For any policy 7, we define its H-step V -function and Q)-function as
Vir (s) = max Qj (s, a)
acA
where Q7 (s, a) = 7(s,a) + By p(|s,0) Vi1 () forh =1,... H
where we set Vi1 = 0. For simplicity, we also denote V™ (s1) = Vi"(s1) and V*(s1) = V™" (s1).

A linear mixture MDP is an episodic MDP with the extra assumption that its transition model is an
unknown linear combination of a known set of models. Specifically, there is an unknown parameter

0% € BY(1), such that P = Zle 0% P; where based models P, ..., P, are given. The goal is to
learn 8* and minimize the cumulative expected regret E[R¥], where

k
R = BV (1) = VE(s1)].
k=1

4 Algorithm and Theory for Linear Bandits

In this section, we introduce our algorithm for linear bandits and analyze its regret. The pseudo-
code is listed in Algorithm 1. The following theorem shows our algorithm achieves the desired
variance-dependent regret bound. The full proof is deferred to Section D.

Theorem 3. The expected regret of Algorithm 1 is bounded by E[R™] < O(d*54/ Zszl o2 + d°).



This theorem shows our algorithm’s regret has no explicit polynomial dependency on the number
of rounds K. In the worst-case where the variance is 2 (1), our bound becomes 9] (d4'5\/F + d5),
which has a worse dependency on d compared with the minimax optimal algorithms [Dani et al.,
2008, Abbasi-Yadkori et al., 2011]. However, in the benign case where the variance is o(1), our
bound can be much smaller. In particular, in the noiseless case, our bound is a constant-type regret
bound, up to logarithmic factors. One future direction is to design an algorithm that is minimax
optimal in the worst-case but also adapts to the variance magnitude like ours.

4.1 Main Algorithm

Now we describe our algorithm. Similar to many other linear bandit algorithms, the algorithm
maintains confidence sets {Oj}x>1 for the underlying parameter 8*, and then choose the action
greedily according to the confidence set.

To relax the known variance assumption, we use the following empirical Bernstein inequality that
depends on the empirical variance, in contrast to the Bernstein inequality that depends on the true
variance, which was used in existing works [Zhou et al., 2020b, Faury et al., 2020].

Theorem 4. Let {F;}}_, be a filtration. Let { X;}}_, be a sequence of real-valued random variables
such that X; is F;-measurable. We assume that E[X; | Fi—1] = 0 and that | X;| < b almost surely.
For § < e~ ', we have

n

S

i=1

Pr

i 1 1
<8 ;Xflngﬂwylng >1—60log,n. )

Importantly, this inequality controls the deviation via the empirical variance, which is X? and can be
computed once X; is known. Note some previously proved inequalities require certain independence
assumptions and thus cannot be directly applied to martingales [Maurer and Pontil, 2009, Peel et al.,
2013], so they cannot be used for solving our linear bandits problem. The proof of the theorem is
deferred to Appendix D.2.

More effort is devoted to designing a confidence set that fully exploits the variance information.
Note Theorem 4 is for real-valued random variables, and it remains unclear how to generalize it to
the linear regression setting, which is crucial for building confidence sets for linear bandits. Previous
works built up their confidence sets based on analyzing the ordinary ridged least square estimator
[Dani et al., 2008, Abbasi-Yadkori et al., 2011], or the weighted one [Zhou et al., 2020a].

We drop the least square estimators and instead, we take a testing-based approach, as done in Equa-
tion (1). To illustrate the idea, we first ignore the clip; (-) operation and ¢, terms. We define the noise
function e (0) and the variance function 7, (6) (Line 8 of Algorithm 1). Note that e;(6*) = £, and
n,(0%) = €2, so we have the following fact: if & = 6*, then Equation (2) would be true if we re-
place Xj = wy(p)er(0) and X7 = wi (p)ny(0) with high probability, where {wy, (1)} is a proper
sequence of weights depending on the test direction p. Our approach uses the fact in the opposite
direction: if weighted wy, ()ex (0), wi (p)ny (0) satisfies Equation (2) for all possible test directions
pinan K —3_net of the d-dimensional unit ball, then we put @ into the confidence set.

Remark 2. One can also view the algorithm as an elimination-based algorithm: if there exists some
test direction p such that Equation (2) fails for Xj, = wy(p)eg(0) and X7 = wi (pu)ni(0), then we
eliminate 0 from the confidence set permanently.

Given the test direction p, following the least square estimation, wy () is set to be  p. However,
with wi(p) = xrp, the right-hand-side of Equation (2) is at least b > maxi<i<n |wr(p)| =
maxi<k<n |Zk |, which might be dominant compared with »};'_, wi(p)nx(0) (See Appendix B
for a toy example). To address this problem, we consider to peel wy(p) for various thresholds
of difference level. More precisely, we construct confidence regions respectively with wy () =

clip;(xkp), where I; = 2277 for j = 1,2,...,[logy K. At last, we define the final confidence
region as the intersections of all these confidence regions.

Remark 3. Note that existing confidence sets in Equation (1) either do not exploit variance informa-
tion [Dani et al., 2008, Abbasi-Yadkori et al., 201 1], or require the variance to be known and do not
fully exploit the variance information [Zhou et al., 2020a, Faury et al., 2020] as their regret bounds
still have an O(VK) term.



4.2 Proof Sketch of Theorem 3

Now we explain how our confidence set enables us to obtain a variance-dependent regret bound. We
define 6, = argmaxg.go, k(0 — 0%) and py, = 6, — 0*. Then our goal is to bound the regret
Dk Tk . Our main idea is to consider {x;}, {11} as two sequences of vectors. We decouple the
complicated dependency between {x},} and {1} by a union bound over the net B (defined in Line 1
of Algorithm 1). To bound the regret, we implicitly divide all rounds k € [K] into norm layers based
on log, |x x| in the analysis. © Within each layer, we apply Equation (1) to obtain the relations
between oy, and {1, ..., Tk—1}, which would self-normalize the growth of the two sequences, en-
suring that their in-layer total sum is properly bounded. Since we have logarithmically many layers,
the total regret is then properly bounded. We highlight that our norm peeling technique ensures that
the variance-dependent term dominates the other variance-independent term in Bernstein inequali-
ties (/> X7 Z b in Theorem 4), which resolves the variance-independent term in the final regret
bound obtained by Zhou et al. [2020a].

We start the analysis by proving that the probability of failure events (i.e., the events where §* ¢ Oy,
for some k € [K]) is properly bounded (see Lemma 18). Assuming the successful events happen,
we have that 6* € ©, for all k € [K]. Then we obtain that.

=

xeAL

K K K
K ._ * * * ®Y _
R .—; (maxG —x0 ) églmeﬁ?gé@k k(0 — 0%) 2 k(0 — 0%) = Ewkuk.

Next we divide the time steps [ K] into L2 + 1 disjoint subsets {K; }L 2! according to the magnitude

of xppr. More pre01sely, for for 1 < j < Ly we assign k to IC iff xppr € (1;/2,15], and for
j = La+ 1, we assign k to IC; iff mkuk llz+1/2 Define

k—1 k—1
() = ) clipj(@op)mop + 3, V() = ] clip} (zop)n. (6%). 3)
v=1 v=1

By the definition of O in (1), we have that (see Claim 20)

K Ly 3\ WL (i) + 4/ SEZ ) 2clip? (wopui) (opun 2o + 3050
D@k <14 YT Y @ X ; L@
k=1 j=1kek, Py (k)

Continuing the computation, we have that
i S VSR 2lip? (@ o) (o)
Tk -
j=1kek; AV
SuC1 2¢lip} (@opse) (@o )t 1
TS wkukn{V J >3}
7 1 kek; j=1kekK; ATy
1 & 4l it
522wm+22 ™ 5)
j=1 Jj=1kek;
1 & .
<52 D wrmk + O(d'|Agilog’ (dK)), (6)
j=1kek;

®This cannot be done explicitly in the algorithm, since it would re-couple the two sequences.



Algorithm 2 VARLin: Variance-Aware RL with Linear Function Approximation
1: Initialize: ¢; = 2277, = 16dIn 45 [, = [logQ KH], Ly = Ly = [5logy(HK) + 3], Ag =
{0,1,,..., Lo}, Ay ={1,..., Ly}, A2 ={1,..., Ly}. Bbe an (H K ) 3-net of B{(2) with size
no larger than (%)%, ©1 = B{(1).

2: fork=1,2,..., K do

3:  Optimistic Planning:

4. forh=H, H-1,...,1do

5: For each (s,a) € S x A, let Q% (s,a) = min{1,7(s, a) + maxgeo, Z V0P VE )
6: For each s € S, let V¥ (s) = maxaec 4 QF (s, a).

7:  end for

8: forh=1,2,..., Hdo

9: Choose action af « argmax,. 4 Q¥ (s}, a), observe the next state s}, ;.

10:  end for

11:  Construct Confidence Set:

12: Form € Ao, h € [H], define the input ", = [Pl (thH)Qm, ,Pd (th+1)zm]T_

13:  Form € Ag, h € [H], define the variance estlmate nk = MaXgeo, {me“ (0x}",)%}.

14:  Denote €, (0) = 0z, — (V.2 1(s,1))?" forme Ag,ue [H],ve [k—1]

15:  Define 7, = {(v,u) € [k] x [H] : 9%, € (Lis, L]}, Tt = {(v,u) € [k] x [H] :
Norw < Lry41})-

16:  Define the confidence ball ©y1 = () @Zfl , where

m,i,j

@;nfl-,j = {0 e BY(1) : Z clip;(zy' )€y, (0)

(vw)eT™!

Z cIip?(wvm,uu)n{)’}uL + 44,V e B} (7
(’U,u)E'Tkm’i

and clip;(-) = clip(-, £;)
17: end for

cli Ty Ty
where (5) is by the fact that Y S 2l ((,:)k)( )"

by Lemma 17. By (4) and (6), we have that

\ -
Z Tppy < 122 Z Tpp ¥ M + O(d®)

j=1kek; (H’k)

J
71keIC P (1k)

>3 L implies that > 1, and (6) follows

( )

K K
S n(6%)e + O(d®) < O(d*|As | log*(dK) (m% + 2 02) 0+ O),
k=1 k=1

where the last inequality uses Lemma 17. Therefore, the regret bound is O (d4 A3 o2+ d5) .

See Section D for the full proof.

5 Algorithm and Theory for Linear Mixture MDP

We introduce our algorithm and the regret bound for linear mixture MDP. Its pseudo-code is listed
in Algorithm 2 and its regret bound is stated below. The proof is deferred to Section E.

Theorem 5. The expected regret of Algorithm 2 is bounded by E[R¥] < O (d‘“’\/f +d?).

Before describing our algorithm, we introduce some additional notations. In this section, we assume
that, unless explicitly stated, the variables m, i, j, k, h iterate over the sets Ao, A1, Ao, [K], [H],
respectively. See Line 1 of Algorithm 2 for the definitions of these sets. For example, at Line 16 of

m.,i,j _ m,i,j
Algorithm 2, we have (1),,, ; O3 = (Nnen, iea, jer, Okt1 -



The starting point of our algorithm design is from Zhang et al. [2020a], in which the authors obtained
a nearly horizon-free regret bound in tabular MDP. A natural idea is to combine their proof with our
results for linear bandits and obtain a nearly horizon-free regret bound for linear mixture MDP.

Note that, however, there is one caveat for such direct combination: in Section 4, the confidence
set Oy is updated at a per-round level, in that ©, is built using all rounds prior to k; while for the
RL setting, the confidence set O could only be updated at a per-episode level and use all time
steps prior to episode k. Were it updated at a per-time-step level, severe dependency issues would
prevent us from bounding the regret properly. Such discrepancy in update frequency results in a
gap between the confidence set built using data prior to episode &, and that built using data prior to
time step (k, h). Fortunately, we are able to resolve this issue. In Lemma 22, we show that we can
relate these two confidence intervals, except for O(d) “bad” episodes. Therefore, we could adapt
the analysis in Zhang et al. [2020a] only for the not “bad” episodes, and we bound the regret by 1
for the “bad” episodes. The resulting regret bound should be 5(d6'5\/F ).

To further reduce the horizon-free regret bound to O(d4'5\/f ), we present another novel technique.
We first note an important advantage of the linear mixture MDP setting over the linear bandit setting:
in the latter setting, we cannot estimate the variance because there is no structure on the variance
among different actions; while in the former setting, we could estimate an upper bound of the vari-
ance, because the variance is a quadratic function of 8*. Therefore, we can use the peeling technique
on the variance magnitude to reduce the regret (comparing Equation (30) and Equation (43) in ap-
pendix). We note that one can also apply this step to linear bandits if the variance can be estimated.

Along the way, we also need to bound the gap between estimated variance and true variance, which
can be seen as the “regret of variance predictions.” Using the same idea, we can build a confidence
set using the variance sequence (z2), and the regret of variance predictions can be bounded by the
variance of variance, namely the 4-th moment. Still, a peeling step on the 4-th moment is required to
bound the regret of variance predictions, we need to bound the gap between estimated 4-th moment
and true 4-th moment, which requires predicting 8-th moment, We continue to use this idea: we
estimate 2-th, 4-th, 8-th, ..., O(log K H)-th moments. The index m is used for moments, and Ay is
the index set reserved for moments. We note that the proof in [Zhang et al., 2020a] also depends on
the higher moments. The main difference is here we estimate these higher moments explicitly.

6 Discussions

By incorporating the variance information in the confidence set construction, we derive the first
variance-dependent regret bound for linear bandits and the nearly horizon-free regret bound for
linear mixture MDP. Below we discuss limitations of our work and some future directions.

One drawback of our result is that our dependency on d is large. The main reason is our bounds rely
on the convex potential lemma (Lemma 17), which is O(d*). In analogous to the elliptical potential

lemma in [Abbasi-Yadkori et al., 2011], we believe that this bound can be improved to é(d) This
improvement will directly reduce the dependencies on d in our bounds.

Another drawback is that our method is not computationally efficient. This is a common issue in
elimination-based algorithms. We note that the issue of computational tractability is common in
sequential decision-making problems [Zhang and Ji, 2019, Wang et al., 2020a, Bartlett and Tewari,
2012, Zanette et al., 2020, Krishnamurthy et al., 2016, Jiang et al., 2017, Sun et al., 2019, Jin et al.,
2021, Du et al., 2021, Dong et al., 2020]. We leave it as a future direction to design computationally
efficient algorithms that enjoy variance-dependent bounds for settinsg considered in this paper.

Lastly, in this paper, we only study linear function approximation. It would be interesting to gener-
alize the ideas in this paper to other settings with function approximation schemes [Yang and Wang,
2019, Jin et al., 2020, Zanette et al., 2020, Wang et al., 2020c, Russo and Van Roy, 2013, Jiang et al.,
2017, Sun et al., 2019, Du et al., 2021, Jin et al., 2021].
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A Technical Lemmas

Lemma 6 ([Azuma, 1967]). Let (M,,)n>0 be a martingale such that My = 0 and |M,, — M,,_1| <
b almost surely for every n = 1. Then we have

Pr[|Mn| > b\/m] <6

Lemma 7 ([Zhang et al., 2020c], Lemma 9). Let {F;};>0 be a filtration. Let {X;};>1 be a real-
valued stochastic process adapted to {F;}i>0 such that 0 < X; < 1 almost surely and that X; is
Fi-measurable. For every § € (0,1),¢ = 1, we have

Prlﬂn}l:Z E[X; | Fi1] = %Z cln—]é&

=1

Lemma 8. Let {F;}i>0 be a filtration. Let {X,};>1 be a real-valued stochastic process adapted to
{Fi}izo suchthat 0 < X; < 1 almost surely and that X; is F;-measurable. For everyé € (0,1),¢ >
1, we have

Prlﬂn}l:ZXiz %Z E[X; | Fi-1] < clng]\&
i=1 i=1

Proof. We follow the proof of Lemma 9 in [Zhang et al., 2020c]. Let A > 0 be a parameter,
w; = E[X; | Fi—1]. Define V,, = exp(/\Z?zl X;i—(er=1)%" 1uz) for n > 0. Note that

E[e*X] < pe + (1 — p) < et@ =D g0 E[eAXi=(@ =D | F,_1] < 1, thus {Y,}ns0 is a
super-martingale. Let 7 = min{n : > ; X; > 4cIn(4/6)} be a stopping time, then we have
[Yiningrny| < 4@+ < 4 o0 almost surely for every n > 0. Therefore, by the optional
stopping theorem, we have E[Y;] < 1. Finally, we have

n [ T 4
Pr E!n)l:ZXl 4cln — Zul\cln—]\P Zuiéclng]
i=1
- 7- X )
< Pr|Y; = exp )\ZXi—(e —1)clng

<Pr|Y: > exp</\(4cln§ —1)— (et = 1)cln%)]

2 4
< exp</\(1 —4cln S) +(e* = 1)cln 5)
_ e)\e(e’\—l—4)\)cln(4/5)'
Choosing A = 1, we have
e)\e(e’\—l—4>\)cln(4/5) <e- e—2cln(4/6) _ e(_)c <

which concludes the proof. O

Lemma 9. Let {F;};>¢ be a filtration. Let {X;}I" | be a sequence of random variables such that
| Xi| < 1 almost surely, that X; is F;-measurable. For every § € (0, 1), we have

Pr[ZE 28X2+4ln%] < ([logy n] + 1)4.

i=1

Proof. Let Y = " E[X? | Fi_1],Z = >, X?. Applying Lemma 7 with the sequence

{X2}™_,, we have forevery ¢ > 1,
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Therefore, we have

Pr[Y = 8Z+41n§]

[logon] 4

4 . 4 4 4
< Z Pr Y>82+41ng,2<7_11n5<2 QJlng] Pr[YZSZ—f—éLlng,Zélng]

=1t
[logy ] - ‘ 4 ‘
< > Pr|y> 82,2ﬂ—11mg <Z<2hn

j=1 L

4 4
Pr|Y 24In-,Z<In-
]-i— r[ n5 na]

STISN

<[lo§n]Pr_Y>8-2j—llné 2j_11né<Z<2jlné]+Pr[Y>41né Z<1né]
=1 L d’ 5§ 7 ) e )
[logon] oy 4 A A
Y PrY>4.231n5,Z<271ng]+Pr[Y>41ng,Z<1ng]

=1 L

< ([logg n] + 1)

as desired. O

Lemma 10. Let {F;};>0 be a filtration. Let {X;}I'_, be a sequence of random variables such that
| Xi| < 1 almost surely, that X; is F;-measurable. For every § € (0,1), we have

n

Pr[ZXQ DI8E[X] | Fi 1]+41n51<([10g2n]+1)5.

1=1
Proof. Let Y = " | X = "  E[X? | Fi_1]. Applying Lemma 8 with the sequence
(X2 1,wehaveforeveryc 1,
4
Pr[Y 4clng,Z<clng]<5
Therefore, we have
Pr[YZSZ—i—éLln%]
[logy ] -
4 . 4 4 4 4
< PrlY >8Z+4In-,2"'In-<Z2<2In-|+Pr|]Y >8Z+4In—-,Z <In-
j; r_ + n5 n(S n5] r[ + n5 n5]
[IOan] r . 4 . 4 4 4
< J; Pr_Y>82,2J—11ng<Z<231ng]+Pr[Y>4lng,Z<1ng]
llogon]
, 4 . 4 .4 4 4
< ;1 PrY>8-23_11n5,23_11ng<Z<2jlng]+Pr[Y>4lng,Z<1ng]
llogon]
.4 .4 4 4
< ;1 PrY>4-2Jlng,Z<2‘7lng]+Pr[Y>4lng,Z<1ng]
< ([logg n] + 1)
as desired. O

Lemma 11 ([Zhang et al., 2020c], Lemma 11). Let (M,)n>0 be a martingale such that My = 0
and |M,, — M,,_1| < b almost surely for every n > 1. For eachn = 0, let F,, = o(My, ..., M,)
and let Var, = >, | E[(M; — M;_1)? | Fi_1]. Then foranyn > 1 and €, > 0, we have

Pr[|Mn| > 2/2Var, In(1/6) + 24/eIn(1/3) + 2b1n(1/5)] < 2(log, (b*n/e) + 1)3.
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Lemma 12. Let A, A2, Ay > 0, A3 = 1 and £ = max{logy(\1),1}. Let ay,aq,...,a, be non-

negative reals such that a; < A\ and a; < /\2\/(1Z +a;y1 + 21\ + Ay forany 1 < @ < K (with
Qi1 = A1). Then we have that

ar < 2203 + 64 + 4Xo/2)3.

Proof. Note that

a; < )\2\/07 + )\Qw/aHl + 2i+1/\3 + )\4,

so we have

2
a; < (/\2 + \/A2’\/a7j+1 + 2i+1 )5 + /\4) < 2)\% + 22X/ a1 + 21t A3 + 2)y.

By Lemma 11 in [Zhang et al., 2020a], we have

2
a4y < max { <2)\2 T/@0)2 + (203 + 2/\4)) L2200/875 + 202 + 2/\4}

< max{20)3 + 4)g, 2X04/8A3 + 203 + 24} < 22X2 + 6)4 + 4X2n/2)3,

which concludes the proof. o
B Limitations of Previous Approaches

In the example in Section 1, if we know x; < 4/ % for 1 < ¢ < K, the best confidence region for

6* should be ©; = {0][0 — 6;||n,_, < C(ov/d+ A\'/?)}, and we can obtain a variance-aware regret
bound by letting A = o2. However, if we let 5,1 = 1 and use the same concentration inequality
as before, the confidence region would be O, 1 = {][6 — 0;]|a,_,} < C(ov/d + 1 + \V/?).

We present the detailed computation as below. Choose 60* = O(1). 6* — 0 K41 =
A0
MY a2
ZK+1 Ti€q
A §K+l 2

When ¢; is bounded in [—1, 1] with variance o2, following Bernstein 1nequa11ty, we

<V o? ZK+1 z2+max;

have that < )\+2Kj1 2

“i Therefore, the best confidence interval we have is

K+1
o2y :102 max; ; AO*

K+l
A+ e \//\+Zfﬂl'lx2 \/A+Zﬁtlx2

16% — Oxcs1flax =

o2 1+ A
=0 —_—t —,
A+1 0 1+

ie., [0* — Ok i1|a, S O(c + A2 + 1). Therefore, to maintain a confidence region for the general
case following methods in [Zhou et al., 2020a, Faury et al., 2020], the term 1 + AY/2 is unavoidable.
This counter example highlights the necessity of our peeling step in the algorithm.
Remark 4. We note that for o-sub-Gaussian noise (instead of o variance and 1-sub-Gaussian),

K+1 i €4 A\ o K+1 i . .
E:éi*? S| S ) +222.f£11 w;, which help to reduce the width of confidence
interval and obtain |0* — g 11|x,. < O(o + A1/2).

one can ensure that

C Proof of Lemma 1

In this section, we present the proof of Lemma 1.
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Restatement of Lemma 1 Lez f () > 0 be a convex function over R such that f;;”) < fy;;’) < land

f(@) = f(y)ifz® = y?> > 0. Fix L € (0,1]. Forany x,xa, ..., x; € BY(1) and 1, o, . .., s €
B4 (1), we have that

f(@ips) } 4
min - , 13 < O(d* log(Cdt/?)). )
Z {Zg 11f( 7“’1)—’—82
Let f(x) and ¢ be fixed. To prove Lemma 1, we have the lemmas below.
Lemma 13. For any ©.x2,...,x; € B(1) and py, pa, . . ., iy, € BL(1), we have that
f@ips) }
min , 1 < O(dlog(Cdt/l)). 9)
121 {Z] 1f( 7#’1)—’—82
Lemma 14. Let 1, %o, ..., x; € BI(1) be a sequence of vectors. If there exists a sequence 0 =

To <T1 <To <...<T,=tsuchthat foreach 1 < < z, there exists p; € B4 (1) such that

=1

T¢—1
Zf (mipe) + 02 > 4(d + 2)? (Z f(zipe) +£2> (10)

then z < O(dlog?(dt/()).

We present the proofs of Lemma 13 and 14 respectively in Section C.1 and C.2. Given these two
lemmas, we continue analysis as below.

Let o = O and for¢ > 1, we let

Sy < < 3 @) + O > Ad+ 2)? (2 fl@jpr) + f?) } .
Jj=1

Jj=1

7; = min{t + 1} U {T

Let k = min{i | 73 = t + 1}. Then k is well-defined and k& < O(dlog®(dt)) by Lemma 14.
Furthermore, for any x < k and any 7,; < i1 < i3 < Tx41, We have

Zf(wjull)+£2<4d+2 (wajuu +£2> (1D

j=1
Now we are ready to prove Lemma 1. We have

me{ Jxips) } <9 : Jxips)

Z; 11f( 7”1)"’@2 leg y flajp) + 2

8(d + 2)? f(@ipi) (12)
;1 1=Tr_1 f(wjp’l) +£2

<8(d+2? Y 2 f(@ip)

k=1 \i=Tk-1 ] Tr—1 f(w7p’l) +€2
<k x O(d?) x O(dlog(t/f)) < O(d*log®(dt)),  (13)

T,ifl

where (12) uses (11) and (13) uses Lemma 13.

C.1 Proof of Lemma 13

Restatement of Lemma 13 For any z1.x2, . .., x; € BS(1) and p1, pa, - . ., pn, € BE(1), we have
that
(il:zp,l) }
min , 1 < O(dlog(Cdt/?)). (14)
121 {Z] L f(z 7”1)"’@2
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Proof. Let S; be the permutation group over [¢]. We claim that if

t t ) .
Z . fwzp’l) - — max Z g f(ilfg(z)llfz) -, (15)
i=1 Zj:l fzjpi) +4 &St 3 Zj:l f2(w£(j)ﬂia) +4

then there exists some i such that (z;pu;)? > (z;u;)? for any j € [t]. Otherwise, we construct a
directed graph G = (V, E') where V' = [t] and edge (i, j) with i # j isin E if and only if (z;u;)* >
(2jrps)? for any j' € [t]. Let d(i) be the out degree of i. By assuming {(x;p;)* > (] pi)?,Vj €
[t]} fails to hold, we learn that d(i) > 1 for every 4, so there exists a circle (i1, i2,...,i;) in G.
Consider the permutation & such that £(i,;) = 4,41 for j € [k] (with 4541 := ¢1) and £(3) = ¢ for
i ¢ {i1,...,ix}. By definition, we have (p;; @¢(;;))* > (pi;i;)? for j € [k], which implies that
f(pi;xei,y) > f(pi;xi;) for j € [k]. Therefore

i=1 23‘:1 flejpw) + 0 5 23‘:1 flejpw) + 0 5 23‘:1 f@eymi) + 2

which leads to contradiction.

Zt: f(@ips) _ Zt: f(@eiymei) < f(@eypi)

We assume that (15) holds, otherwise we can bound an upper bound of the original quantity. There-
fore, we can find an index i such that (x; ;)% > (cc w;)? forany j € [t]. Without loss of generality,

f()

we assume ¢ = 1. Because is decreasing in x, so we have

flx) _ flzjm)
(1p1)? h (zjp1)?

for any j € [t], which implies

f(@1pm) _ (z1p01)* < (z1p1)? T
iy f(@im) + 2 (22:1 flzjp) +£2> ) TN () + 2

flxip1)

Therefore, we have
t

v f(@ipi) - (z1p1)? N Zt] f(@ipi)
A f@a) + 2 Y ()2 + 2 S @) + 02
2 t
x Lili
<— ( 1N1)2 NN g f(@ipi) . (17)

Zj:l(wjp‘l) +4 i=2 Zj:z f(@ips) +¢
Similarly, we can show that there exists a permutation £* € St such that
i=1 ZJ 1 f(wJIJ’Z + [2 i=1 Z 1( 5*0)#1) + 02

Finally, by Lemma 15, we have that

2 ilfg* z)Nz) — _ Z mm{Zt. (:T{*(i)l‘i) +£2’1} < O(dlog(t/f)).

=1 wf*(])p’z) i=1 j:i(xf*(j)p’i)z
(|
C.2  Proof of Lemma 14
Restatement of Lemma 14 Let T1, T2, . .., =, € BI(1) be a sequence of vectors. If there exists a

sequence 0 = 19 < 71 < To < ... < T, =t suchthat foreach 1 < ( < z, there exists ¢ € B4 (1)
such that

T¢—1
Zf (mipe) + 02 > 4(d + 2)? (Z f(zipe) +£2> (19)

=1 1=1

then z < O(dlog?(dt/()).
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Proof. If f(1) < ?/t, then the conclusion holds trivially because 0 < f(z) < f(1) < ¢2/t for
all x € [—1,1]. Suppose f(1) > ¢2/t. Since % < % < 1 for all 22 > y?2, we have that for
0<A<landanyz € R, f(Az) = \2f(x).

Lete; = [O, ..., 1,...,0] be the one-hot vector whose only 1 entry is at its i-th coordinate. Noting
that f(x) < o2, Japac] < [pac|> and

T( 1
2 fl@ipe) > 4(d +2)° <2 flaipe) + €2> — 02 > 4d%¢?

i=1 i=1

we have that |pc|o > /222 Define E(p) = Yi_, f(@ep) + % S feip). Then E, () is
convex in p because f(x) is convex in z. By definition, we have that

T

Er(p) < ). flmip) + £,

i=1
By (19), we have that
T¢—1
Er (pe) Z f(eipe) = 4d° (Z f(xipe) + 52) > Ad*Er_, (po). (20)
i=1

Define
A={ieZ: |logy(dt*/t?) +2| <i<2|logyt+2]}.

We consider the convex set D,; = {u : E;(u) < 2%} fori € A. Let ¢ be fixed. Because

lc] = 4/ALE and sup, f(eip) > 245 f(1) > 44, W < B () <2 <141
forany 1 < 7 < t. Then we can find i¢ € A such that E;._, (u¢) € (2ZC 1 2i], which means that
Mo € Dchlyic' Note that for 0 < A < 1, f(Az) = A% f(x) for any z, it then follows that Ey(Ap) >
A?Ey(p) for any t, p. Choosing A = 3, we have that B (%%) > L E. (p¢) = 4B (pe) = 2%.

Therefore, £¢ ¢D In words, the intercept of D in the direction ¢ is at most 1/d times of
that of D

TC,iC' TC,iC

Te—150¢"

Note that D; ; is decreasing in ¢ for any 7, so by Lemma 16, we have
6
Volume(D-, ;) < Volume(Dchw-c).

Also note that Volume(Dy;) < (2£)? and Volume(D;;) > (45)% so we conclude that z <
d|A|log, s (2dt/0) < O(dlog?(td/()).
O

C.3 Other Lemmas and Proofs
Lemma 15. Fix { € (0,1]. Let ®1,x2,...,x; € BL(1) and puy1, po, - . ., e € BI(1) be two se-
quences of vectors. Then we have

t

N i)’ t
Z {wlul gmjul +€2} me{z, Gala) ,1}<O(dlogz). (21)

i=1 ( 7”1) + 2

Proof. The first inequality in (21) holds clearly. To prove the second inequality, we define Uy = ¢21
and U; = (T + 27 @ ] fori > 1. Note that

_ (wiﬂi)Q < (iBz‘Ni)Q
S (@) + 2 g Uisap

J

Trr—1
<z; U_ i,
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where the first inequality is because || ;|2 < 1 and the second inequality uses the Cauchy’s inequal-
ity, so we have

me{z (@ig1e)” } me{m hai, 1} < 2dIn(t/67) < 4dIn(t/0),

j= 1(‘7}]’1’1) + 62

where the second-to-third inequality uses the elliptical potential lemma. O

Lemma 16. Given x € R%, we use (u(z), [(x)) to denote the polar coordinate of x where || u(z)|2 =
TaT5 I8 the direction and l(z) = ||z||2. We also use (u,£) to denote the unique element x in R? such
that (u(x),l(z)) = (u,l). Let D be a bounded symmetric convex subset of R? with d > 2. Given
any direction p € 0By, there exists a unique l(u) € R such that (u,l(u)), (—u,l(u)) € 0D are on

its boundary. Let D' be a bounded symmetric convex subset of R? containing D < D' such that
(u,d-l(w)) € D’ for some direction u € dB,. Then we have that

7
Volume(D') > EVolume(D).

Proof. Let A = (u,l(u)) and B = (u,d - l(u)). Since A is on the boundary of D, we can find a
hyperplane h; such that A € hy and h; is tangent to D. Let ho be the parallel hyperplane of h;
containing the origin O € hy. Define

H:{xeRd

d(z,hy) + d(z, hy) = d(hy, he), Iy € D,AER, (B —y) = A(B —x)}

It is obvious that Volume(H) > 1Volume(D) since for each € D lying between hy and ho,
z € H. Define

U={xeRd

d(z,he) = d(z,h1) + d(h1,hs),Jye H A€ [0,1],2 = Ay + (1 — )\)B} .
We claim that

d d
1 1
Volume(U) = <1 - E) Volume(U v H) = (1 - a) (Volume(U) + Volume(H)). (22)
To see the first equality, we note that U and U u H are both d-dimensional pyramids. It then follows
from the volume formula and the relation d(B, O) = d x d(A, O). The second equality is because

by their definitions, U, H are separated by the hyperplane %1, and thus they are disjoint. Finally, by
(22), we have

1
Volume(D') = Volume(U) + Volume(H) = (1 + m)Volume(H)
>y ! JWolume(D) > ~Volume(D)
>3 A= —1/d7 olume > & Volume(D).
O
D Missing Proofs in Section 4
D.1 Application of the General Potential Lemma
As an application of Lemma 1 on linear bandit and linear RL, we have the lemma as below
Lemma 17. Fix { € (0,1]. Let x1,®o,...,z; € BI(1) be a sequence of vectors, and
W1, [, .. ., iy € BL(1) be another sequence of vectors. Then we have
! clip® (@i, £)
Z il < O(d*log?(dt)). (23)

P L clip(x @i, )] i + 02
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Proof. Let

x?, |z| < £

fo(@)=<20x— 02, x>,
Wz — 0%, <4

be a convex relaxation of the function z — clip(x, £)x. It is easy to see that f;(z) is convex in  and
foranyx e R, ¢ > 0,

clip(z, 0)x < fo(z) < 2clip(z, £)x < 222 (24)

Let h(z) = £42 Ttis easy to see that if 22 > 32, M2 — dzD o %;’l) = ’152) < 1. By

Lemma 1 with f(x) = h(x), we have that

;123 (wlf:z))wz O(d" log™(dt))-

By (24), we obtain that

t t

Z C|ip2( zllfza 2 Cllp wzuzaﬂ) Lifbr
i) i 1c||p(ccj,uz,€):c B+ 023 X 1cI|p(wJul,€)m i + 2

t

Z Z 1h iNi)

o1 (zjpi) + 02
< O(d* 1og (dt)).
The proof is completed. o

D.2 Proof of Theorem 3
D.2.1 Optimism

The equation (1) accounts for the main novelty of our algorithm. We note that our confidence set is
different from all previous ones [Dani et al., 2008, Abbasi-Yadkori et al., 2011]. Our confidence set
is built based on the following new inequality, which may be of independent interest.

With Lemma 4 in hand, we can easily prove that the optimal 8* is always in our confidence set with
high probability. The proof details can be found in Appendix D.3.

Lemma 18. With probability at least 1 — O(0 log K'), we have 0* € Oy, for all k € [K].

D.2.2 Bounding the Regret

We bound the regret under the event specified in Lemma 18. We have
K
Rmi = Z (max £0* — x;,0%)

xeA
—1 k

K K
< Z max x0 —x.0% ) < Z xy (0 — 0%) ka,uk,
=1 zeA),0€0 =1

where second inequality follows from Lemma 18. Therefore, it suffices to bound & Tk, for
which we have the following lemma.

Lemma 19. With probability 1 — O(d log K), we have

Ewkﬂk <0 <d4'5(10g4 dK)(log dTK) (\/E +
k

Since this lemma is one of our main technical contribution, we provide more proof details.
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Proof. First, we define the desired event £ = &1 N &, where

K K
4
E = {Vke[K]:0%c O}, 5:{ 0*) < 82+41—}.
1={ [K] k) 2 g:lnk( ) ;;:1 ok ns

By Lemma 18, we have Pr[€1] = 1 — O(¢). By Lemma 10, we have Pr[&;] > 1 — O(dlog K).
Therefore, by union bound, we have Pr[£] > 1 — O(d log K).

Now we bound Y] & Tk pr under the event £ to prove the lemma. Recall that

k-1 k—1
() = ), cipj@op)mop + 6, Wh(p) = ) clip} (@op)n,(8%). (25)
v=1 v=1

Recall the definition of {/C; }L 2 in Section 4.2
To proceed, we need the following claim.
Claim 20. We have

L
Zickuk = Z Tk + i Z Tk
k

kE’CL2+1 j:1 kE’C‘

Lo 3\/\11 (pr)e + \/ZU 12c||pj (@ypor) (o per)?e + 3450
<1+ )0 > @pp T . (26)
J=1kek; k j723

We defer the proof of the claim to Appendix D.4 and continue to bound the three terms in (26). For
the second term, we have

2 /S 2clip? (@ ) ()
Z Z Tk 7 (un)
k Mk

j=1 ]CEK:j

12c|| T, T,
TS mkukﬂ{ﬁ:” ;7 (N:k)( i %} @)

7 1 kek; J=1 kek;
We note that
Soct 2elip (@opn) (@op) 2
lek; wkﬂkl{\/ Y T (x) } ;w; wkukﬂ{ i) < 4@7%}
Z Z 4@ it
1 kek; H )
i Z 4c||pj Tppip)t
j=1kekK; N )
d4IA2ILlog (dK)), (28)

where the last inequality uses Lemma 17. Collecting (26),(27) and (28), we have

\/ v 2
ka,uk 1+ Z Z 3z ¥ M — Z Z Ti g +O(d4|A2|Llog (dK)).

j=1kek; AT ] 1 kek;
Solving }3, @ ft, We obtain
A () + e
kaﬂk O(d*|Az|elog® (dK)) Z Z 6Tppir X ———————
j=1kek; Py (Hk)

L NCTTY
O(d*|As|elog® (dK)) + Z Z 12@ g x ALt

- , (29)
j=1kek; Py (per)
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where (29) uses the last two steps in (28). The remaining term in (29) can be bounded as

S Vil & St o (0%)e
k v=1"Iv
2 Z 12z pp X —5, S 2 2 12wkukﬂjj1— (30)
J=1 keK, (k) Sikex, AV
i Z 12$kuk£.7 Z nk(e*)L
j=1kek; Py (o) k=1
—
< O(d*|Az|log® (dK)) x | Y mi(0% ) (31)
k=1

K
< O(d*|As]log® (dK)) x (ln% + Z 0,%>L, (32)
k=1

where (30) uses the definition of \Iffg(), (31) again uses the last two steps in (28), and (32) uses the
event &. O

Now we can finish the proof of Theorem 3. We choose § = O((K log K)~!). Since on the event
EC, we have RE < K. Therefore, together with the bound on £ from Lemma 19, we conclude that

the expected regret is bounded by E[RX] < O(d*5\/ S5, 02 + dP).

Proof. Tt suffices to prove the theorem for b = 1, because otherwise we can apply {X;/b}™_; to the
b =1 case. By Lemma 11 with e = 1 and 6 < 1/e, we have

n

S

i=1

Pr 5 3

u 1 1
>2, | Y 2E[X? | Fiq]ln< +4In < | <45logyn. (33)
i=1

By Lemma 9, we have

n n 4
Prlz E[X? | Fi_1] = Z 8XZ +41n 3
1=1

=1

] < ([logy n] + 1)0. 34)

Therefore, by a union bound over (33) and (34), we have with probability at least 1 — 64 log, n,

i 1 1
DI8E[X? | Fia]ln +4In -

\i:l Y Y

z 4 1 1 -
2 2
8(2 8Xi+4lng>lng+4ln$<8 E X7 1n

=1 =1

1 1
Z 116ln=
5+ 6n6,

which concludes the proof. o

D.3 Proof of Lemma 18

Proof. Let §' = e~*. We define the desired event £ = ﬂke[K])jeAz Ei, where

5,{:{

k
S clip, (zo)es(6%)

v=1

k
< Z C|ip?(.’1}vu)nv(0*)L+€jL,VuGB}.

v=1
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Note that for each v, we have that |clip,(z,p)e,(8%)] < ¢; and that (clip, (@, p)e, (0%))* =
cIip? (), (0%), so by Theorem 4, we have

k
£y| < Z cIip?(wvu)Var(av | Fo)e + L0

v=1

k

> clip;(zop)
v=1
>1-0 (e_ﬁ>

1)
>1-0(———1logK |,
(K|B||A2| & >

where F, is as defined in Section 3. Finally, using a union bound over (u, j,k) € B x Ag x [K],
we have Pr[€] > 1 — O(dlog K). O

D.4 Proof of Claim 20

Proof. We elaborate on (26). We will prove it by showing that the numerator is always greater than
the denominator in the fraction in (26), so each term xy 1y, is multiplied by a number greater than 1.
We have for every j € Ao,

k—1
(I)J H/k Z C||PJ mvuk)mvuk + éz
v=1
k—1 k—1
Z C|ij mvuk)ev( Z C|ij mmu’k)ev(ok) +€2 (35)
v=1 v=1
- 1
.2 2
<A/ (g )e + ; clip] (o k)10 (O)0 + 15 + Z0 + 250 (36)
k-1 k—1
<A UL (pk)e + | D clipf (@open) o (6%)e + | Y clip] (o pen) 10 (Bk) — 0o (6%) |0 + 3,0
v=1 v=1
k—1
= 20/ W ()t + o | Y clipd (@opar) 0o (O1) — 0o (0%)]1 + 3¢50
v=1
<2 \Ili(,uk)L + Z cIip?(ccmuk)(nv(O*) + 2(zypr)?) e + 3450 37
v=1
k—1 k-1
< 20/ W () 4 | Y clipd (o)1 (0%)e + | Y 2¢lip? (@ o) (@opar) e + 3L,
v=1 v=1
k—1
=34/ ¥ (/J'k) Z 2C|ip?(wvuk)(wvuk)2L + 367% (38)

where (35) uses €,(0y) —€,(0*) = x,(0r, —0*) = T, pi, (36) uses that 0%, 0, € Oy, the definition
of © in (1) and the fact that 3 is an K ~>-net of B4(2), and (37) uses

[0 (8k) — 00 (07)] =[(€0(0%) — @upur)” — (€,(6%))?|
<20y (0%) | @opr, + (€2(0%))? < (opir)” + 2(eu(67))%.

Since (38) holds for every j € Ao, it holds for j = ji, and thus (26) follows. O
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E Missing Proofs in Section 5

E.1 Proof of Theorem 5

Before introducing our proof, we make some definitions. We let 8}, = arg maxgcq, |7, (0—6%)]
and pj"y, = 607", — 0*. Recall that 77" is defined in Algorithm 2. We define

O () = Y dipy@y a0, U () = > clipl (@) m)nl,. (39)
(’U,u)E'Tkm’i (v,u)enm’i’

Note that our definitions in (39) are similar to those for linear bandits in (25). The main differences

are: 1) we define ®(-), ¥(-) also for higher moments, as indicated by the index m in their super-

scripts; 2) we add the variance layer, so that we only use samples from 7"*; 3) since we can now

estimate variance, we use the upper bound of estimated variance in lieu of the empirical variance.
For h € [H + 1], we further define

Ih - H{vu h m, i .7 (I);cnulj(p’k u) < 4(d + 2)2@?#](“?“)}7 (40)

where I} = 1 indicates that for every u < h, the confidence set using data prior to the time step
(k,u) can be properly approximated by the confidence set with data prior to the episode k. We
define I} in this way to ensure that it is 7}-measurable. The following lemma ensures that Q¥ is
optimistic with high probability. Its proof is deferred to Appendix E.3.

Lemma 21. Pr|[Vk, h,s,a: QF(s,a) = Qf(s,a)| = Pr[Vk € [K] : 0% € ©,] =1 — O(9).

When the event specified in Lemma 21 holds, the regret can be decomposed as

K
RE = 7 (Vi (k) — V™ (sh) 2 Vi (sh) = Vi (sh)) < iy + R + R + > (IF — If ),
k=1 k=1 koh
where
R = D (P b Vi —Vila (iR, Ro =D (Vi (sh) — 7 — Par b Vitia) I
k,h k.h
K H
Rz = Z (Z rh = Vi (s)).
k=1 h=1

Next we analyze these terms. First, we observe that i3 is a sum of a martingale difference sequence,
so by Lemma 6, we have 3 < O(1/K log(1/6)) with probability at least 1 — 4. Next, we use the
following lemma to bound }, , (7, w—1IF. ). We defer its proof to Appendix E.4.

Lemma 22. Y, (If — If ) < O(dlog®(dH K)).

To bound 5‘{1 and i)v‘ig, we need to define the following quantities. First, we denote &y ;, = @y nl, ,’f
and 777"y, = 0, IF. Next, for m € Ag, we define

R = Y |#itmiiinl s Vo= (P ok Vi) = (s ) I
k.h k,h

Intuitively, R,, represents the “regret” of 2™-th moment prediction and M,,, represents the total
variance of 2" -th order value function. We have R; = M by definition and and using that

Qﬁ(s,a)—( a) — Psth+1 m%xwkh(o 0%),

we have Ry < Ro. So it suffices to bound Ro + MO, which is done by the following lemma.
Lemma 23. With probability at least 1 — §, we have

Ry + ‘Mg‘ <0 (d4'5\/Klog5(dHK) log(1/8) + d°log® (dH K) 1og(1/5)) .

Lemma 23 is the main technical part of our result in Section 5, so we sketch its proof in the next

subsection. With the lemma in hand, we have with probability 1 — § that R < O(d*5vK + d°).
Finally, We conclude the proof to Theorem 5 by choosing § = 1/K and noting that R* < K.
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E.2 Bounding R and M

We sketch the proof for Lemma 23. The first step to bound R,, is to relate it to the variance 7"
Lemma 24. With probability at least 1 — 6, we have R,, < O(d4\/2k,h ﬁ’k’?hLlog7(dHK) +
dS1log’ (dHK)).

We defer the proof to Appendix E.5. The proof is spiritually similar to proof of Lemma 19. The
main difference is that we use the peeling technique to the magnitude of the variance.

Based on Lemma 24, we use the following recursion lemma to relate Rm, Mm to RmH, Mm+1.
We defer the proof to Appendix E.6. It mainly uses similar ideas in Zhang et al. [2020a].

Lemma 25 (Recursions). With probability at least 1 — §, we have

R, <O (d“\/ (Mypi1 + 271K + Ro) + Ryt + Rop)ilog" (dHK) + d6L10g5(dHK)) ,

|M,| <O (\/(MmH + O(dlog’(dHK)) + 2m+1(K + Ry))log(1/6) + 10g(1/5)) .

Finally, we can prove Lemma 23 by collecting Lemma 24,25 and using a technical lemma about
recursion (Lemma 12). The details are in Appendix E.7.

E.3 Proof of Lemma 21

Proof. The lemma consists of two inequalities. The first inequality is proved using backward induc-
tion, where the induction step is given as

d
k . 3 k
Q1 (s,a) = min{l,r(s,a) + gé%): Z]l GiP;)thH}
i

d d
= Hlin{l,T(S, a) + Z O?Psi,avthrl} = min{la T(Sv CL) + Z Q?Psi,avh*-ﬁ-l} = QZ(Sa a),
i=1 i=1

Vi (s) = max Qj(s,a) > max Qi (s, a) = Vi (s).

m,i,J

We now prove the second inequality. Let 8’ = e~*. We define the desired event £ = () ki &0,

where

. 1 1
gmoid — { Z clip;(zy' m)enn| < 4 Z cIip?(ij}uu)Var(sﬁu | Fo)In - +4¢;In -,V e B}.
(vyu

: : o 8"
)e'T,gn’Z (’U,u)E'Tkm’l
Note that for a fixed k, we have that |clip, (", p)ey", | < £; < 1 and that
Var (clp, (@, m)et K (v, u) € T | F2) = clipy ()1 (v, u) € T Var(e3:, | 7).

so by Lemma 11 with b = ¢;, e = 1, we have

1
&

1

Pr 2 .clip‘j(mﬁuu)avm)u >4 Z vclip?(mﬁuu)Var(svm’u | F2)In 5
(’U,u)E'Tkm’l (v,'u,)e'Tkm’7L

< 48" logy(HK).
Using a union bound over (p,m,i,j,k) € B x Ag x A; x Ag x [K], we have Pr[€] = 1 —
O K|B|log'(HK)) = 1 — 0(9).
Next we show that the event £ implies that 8* € O, for every k € [K]. We show by induction
over k. For k = 1 itis clear. For k > 1, since 0% € Oy, for every h € [H], we have Nin =
maxgeo, {0z — (0x7),)%} = 0%t — (0*x)?,)? = Var(e}’, | FF), which, together with

m,t,J

theevent( ), , ;&) implies that 0% € O1. O

+ 4€J In
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E.4 Proof of Lemma 22

Proof. We define
Ilznhld - H{vu h: (I)zluhj( k,u) < 4(d + 2)2(1)?71)7(“?71)}

Then we have I} =[] I,Th” Also we have

Z( — I < 2 2 IlThw Izlhlﬂ)

h m,i,j h

Note that I} > I} and I,Zf,’f’g I,Thljr]l For each fixed m, 4, j, if 3., (I, - I,Thlfl) = 1, then
there exists i € [H], such that for the time step (k, 1), we have @} () > A(d + 2)207 ()

for some p. By Lemma 14 with f(z) = clip(z, £;)z and £ = ¢;, there are at most O(dlog? (dHK))

such time steps. We conclude by noting that we have |Ag x A; x Ay| < O(log®(dHK)) possible
m, 1, J pairs. O

m,i,j

E.5 Proof of Lemma 24
To prove this lemma, we define the index sets to help us apply the peeling technique. We denote
7-];m,i,j = {(Uvu) € 7;;"“. : ’wvm,uuvm,u’ € (éj-ﬁ-lv[j]}v

T = {0 w) € T @] € [0, £, 1]},
and 7,77 = {(v,u) € T,™" : I = 1}. We also denote 7"/ = 7Jm+1 T = '7;2;1'1’3'.
Proof. Since 0;"), € ©) < @Zm’j, choosing i = p;", in the confidence set definition and using
that z;%, py), = €7, (0%) — €, (07,), we have
o b (ni'p) = Z clip; (zy u pn )T W B + K?

(wweTy™"

< 2 clip;(xy, pin ) en, (07)| + 2 clip; () i n)en (08| + 6
(v,u)ETkm’i (v,u)ETkm’i

Z clipj(:vg}uuﬁh)nL’}UL + 800+ é?
(v,u)eTkm’i

< 8/ T (i )+ 16050, (41)

Therefore, when I}! = 0, we have

50 (uiy)
b TR LT (i) < 16( o l;
ddr2z SO (R Gt )

Next we analyze the sum. Using the fact that

64(d +2)? (/O35 (e + L)

25 J(”k n)
we obtain
4+ 20 (935 e+ 1)
DI AT AR |‘BZ?WZ,%| o7 (42)
(kyh)eT moivd (k,h)eT mii (N;g h)
: !wmm\m 2
64(d + 2) : Ny . (43)
(e s \ A/ () P (i)
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where the last inequality uses that for every u, we have
Uy = > dipf@lnl, <60 Y, dip(@lm)eim < GO ().
(v,u)enﬁz”i (Uv'u*)e'Tlcmh7L
(44)
In (44), the first inequality uses that 1,", < ¢; for (v,u) € mz and that cIip? (o) < clip;(a)a for

a € R, and the second inequality uses the definition of @Zl,f J (). Next we bound the two terms in
(43). To bound the first term, we note that

‘m?’huﬁh‘ < 1/ |Fmii (@5 1in ) 45
2 Mmooy ’ '7 ’ Z (I)m,i,j( Y (45)
(k,h)eTmisi q)k,h (Hkyh) \(k7h)ej—m,i,j kh \Hgp
Ea— clip?(z™, pt, )
< ’T’m’!lv.]’ Z J k,h Pk, h (46)

(k,h)eTmsisd O ()

Z cIip?(wahHth)
S clipj (@, m )z m, + 02

(v,u)eT™ "I

< ||

\ (k,h)eTm i
(47)

<4/ T3] x O(y/d* log*(dHK)), (48)

where (45) uses Cauchy’s inequality, (46) uses that ’wﬂhu}:h’ < L for (k,h) € T™%I, (47) uses

the definition of @?h” (), and (48) uses Lemma 17. To bound the second term in (43), we have

‘fv?,huth £ 2c|ip?(m}€”hu}€”h)
D, g 2

m S T < O(d'log’ (AHK)),  (49)
(b hyeTmid kb (i) (hyermii P (i)

where the first inequality uses that ’m}fh u};?h’ > (,/2 for (k, h) € T"™" and the second inequality

is the same as what we have shown from (46) to (48). As a result, combining (43),(48) and (49), we
have

D |mampis] <64(d+2)° x O (\/d4£i\’fmvi=a'|b1og3(dHK) + d4L10g3(dHK))
(k,h)eTm 5
(50)

<O (d‘*\/éi\f m.ij|ilog® (dHK) + d6L10g3(dHK)> . (51)

Recall that (51) requires "), ui"y, € [€;/2, £;], which would be false for j = Lo + 1. In this corner
case, j = Lo + 1, we have
DD |mee] < KHE < O(1). (52)
i (k,h)eTm i3
Finally, combining (51) and (52), we have

Z i’k,hﬂﬁﬁ = 2 Z |w2?hu;:h|

k,h 4J (k,h)eT ™13

<0(1)+),0 (d‘*\/&\’rww |tlog®(dHK) + L2d6blog3(dHK)>
4,J

<O |d* Y i,ulog"(dHK) + d®log®(dHK) |, (53)
k.h

where (53) uses that Ei"fm’i’j’ < O(1+ X, 1, M )> Which can be proved as follows: for i < L, it
is due to "y, = £;/2;fori =1Ly + 1,itisdueto 1/¢; > KH > |7“‘sz‘ O
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E.6 Proof of Lemma 25
Proof. Define
2m+1

él?}h - (1:)5’c a (th+1) (Psk a (th-k—l)zm)z)l}lj'

We note that M,, is a martingale, so by Lemma 11 with a union bound over m, we have

Pr|Vme Ag: | M,y,| <2 /225;;7,11% +41n% >1—0(5log*(dK H)). (54)
k,h

By the definition of 7);", , we have

~m < m ~-m+1 _ p* -m *
kz;:nk,h ;; <<k,h T max @y, (6—6%) + 23%%’; &y, (0 9)) (55)
<Y + Rt + 2R, (56)
k.h
We have that
- m+1 m
Z<k,h ( sh,a, Vh+1 2 - (Ps;i,afy(vhk+l)2 )2> Ifllc
k,h k,h
m+1 m+1 m+41
(Psh,a, (Vi)™ = (k)™ ) I+ SRR (0 = 1)
k,h k,h
m+1 m
3 (VRN = (P (V)P I
k,h
< M1 + O(dlog? (@HK)) + Y (ViEE)T™ = (P (V)P I
k,h
- m+1 m+41
< Myny1 + O(dlog(dHK)) + )| ((Vh’“(s’z»? — (P at Vis1)” )
k,h

< Mypy1 + O(dlog®(dHK)) + 27+ 3 I - max{ Vi (s) — Py ot Vikir, 0}
k.h

< Myy1 + O(dlog? (dHK)) + 2m+1Zlk ( r(sk,af) + m%xwk L (0 — 0*))

< Myy1 + O(dlog? (dHK)) + 2m+1(K + Ry). (57)
Finally, by (56), (57) and Lemma 24, we have

Ry, <O (d4\/ (M1 + O(dlog®(dHK)) 4 2m+1(K + Ro) + Rmy1 + 2R)elog” (dHK) + d6L10g5(dHK)>

<O (d4\/( i1 + 2L (K + Ro) + Ry + Ryn)log” (dHK) + d6L10g5(dHK)> , (58)

which proves the first part of the lemma. By (54) and (57), we have

O (\/ (M1 + O(dlog® (dHK)) + 2m+1(K + Ry))log(1/6) + 1og(1/5)) . (59)
which proves the second part of the lemma. o

E.7 Proof of Lemma 23

Proof. Let by, = Ry, + |J\7[m| By (58) and (59), we can bound b,,, recursively as

b < O <\/d9 log® (T'd) log %\/bm + bma1 + 271K + Ry) + d" log®(Td) log %) . (60)
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Note that b,,, < 2K H for m € A;. By Lemma 12 with parameters

M =2KH, X\ = \/d9 log”(Td) log(1/8), M3 =K + Ry, A4 = d"log®(Td)log(1/6),

we obtain that

Ry <by <O <\/d9(K + Ro) log®(T'd) log(1/6) + d°log®(Td) log(1/5)) :

which implies

bp < O (d4'5\/K log®(T'd) log(1/5) + d° log®(Td) 10g(1/5)>

and completes the proof.
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