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Abstract

We revisit offline reinforcement learning on episodic time-homogeneous Markov Decision Processes
(MDP). For tabular MDP with S states and A actions, or linear MDP with anchor points and feature
dimension d, given the collected K episodes data with minimum visiting probability of (anchor) state-
action pairs d,,,, we obtain nearly horizon H-free sample complexity bounds for offline reinforcement
learning when the total reward is upper bounded by 1. Specifically:

* For offline policy evaluation, we obtain an O (,/ K;dm) error bound for the plug-in estimator, which
matches the lower bound up to logarithmic factors and does not have additional dependency on
poly (H, S, A, d) in higher-order term.

* For offline policy optimization, we obtain an 0 ﬁ + % sub-optimality gap for the em-

pirical optimal policy, which approaches the lower bound up to logarithmic factors and a high-order

term, improving upon the best known result by (Cui and Yang [2020] that has additional poly (H, S, d)
factors in the main term.

To the best of our knowledge, these are the first set of nearly horizon-free bounds for episodic time-
homogeneous offline tabular MDP and linear MDP with anchor points. Central to our analysis is a
simple yet effective recursion based method to bound a “total variance” term in the offline scenarios,
which could be of individual interest.

1 Introduction

Reinforcement Learning (RL) aims to learn to make sequential decisions to maximize the long-term reward
in unknown environments, and has demonstrated success in game-playing [Mnih et al., 2013, |Silver et all,
2016], robotics [[Andrychowicz et all, 2020], and automatic algorithm design [Dai et al., 2017]. These suc-
cesses rely on being able to deploy the algorithms in a way that directly interacts with the respective en-
vironment, allowing them to improve the policies in a trial-and-error way. However, such direct interac-
tions with real environments can be expensive or even impossible in other real-world applications, e.g.,
education [Mandel et al., 2014], health and medicine [Murphy et all, 2001, (Gottesman et all, [2019], con-
versational Al [[Ghandeharioun et al., 2019] and recommendation systems [[Chen et al., 2019]. Instead, we
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are often given a collection of logged experiences generated by potentially multiple and possibly unknown
policies in the past.

This lack of access to real-time interactions with an environment led to the field of offline reinforcement
learning [Levine et al., 202(0]. Within this, offline policy evaluation (OPE) focuses on evaluating a policy,
and offline policy optimization (OPO) focuses on improving policies; both rely only upon the given fixed
past experiences without any further interactions. OPE and OPO are in general notoriously difficult, as
unbiased estimators of the policy value can suffer from exponentially increasing variance in terms of horizon
in the worst case [Li et all, 2015, Jiang and Li, 2016].

To overcome this “curse of horizon” in OPE, [Liu et al., 2018, Xie et al.,[2019] first introduced marginal-
ized importance sampling (MIS) based estimators. They showed that if (1) all of the logged experiences are
generated from the same behavior policy, and (2) the behavior policy is known, then the exponential de-
pendency on horizon can be improved to polynomial dependency. Subsequently, [Nachum et all, [2019a,
Uehara et all, 2020, Yang et all,[2020] showed that the polynomial dependency could be achieved even with-
out assumptions (1) and (2). The basic idea for these MIS-based estimators is estimating the marginal state-
action density ratio between the target policy and the empirical data, so as to adjust the distribution mismatch
between them. On the algorithmic side, marginal density ratio estimation can be implemented by either
plug-in estimators [Xie et al.,2019,|Yin and Wang, 2020Q], temporal-difference updates [Hallak and Mannor,
2017,|Gelada and Bellemare,2019], or solving a min-max optimization [Nachum et all,2019a,Uehara et al.,
2020, Zhang et al., 20204, [Yang et all,[2020]. These OPE estimators can also be used as one component for
OPO, resulting in the algorithms in [Nachum et all, 2019b, [Yin et all, 2020, [Liu et al., 20204d], which also
inherit the polynomial dependency on horizon.

In a different but related line of work, [Wang et al., 2020, [Zhang et al., 2020b] recently showed that,
for the online episodic time-homogeneous tabular Markov Decision Process (MDP) that allows for the
interactions with environments, the sample complexity only has poly log dependency on the horizon. This
motivates us to consider the following question:

Can offline reinforcement learning escape from the polynomial dependency on the horizon?

In this paper, we provide an affirmative answer to this question. Specifically, considering the episodic time-
homogeneous tabular MDP with S states, A actions and horizon H, or the linear MDP with anchor points
and feature dimension d, assuming the total reward for any episode is upper bounded by 1 almost surely, we
obtain the following nearly H-free bounds:

* For offline policy evaluation (OPE), we show that the plug-in estimator has a finite-sample error of
9] <, / KLdm) (Theorem [1] and [3l), where K is the number of episodes and d,, is the minimum visiting
probability of (anchor) state-action pairs, that matches the lower bound up to logarithmic factors. We

emphasize that the bound has no additional poly (H, S, A, d) dependency in the higher order term, unlike
the known results of [[Yin and Wang, 2020, [Yin et al., 2020].

* For offline policy optimization (OPO), we show that the policy obtained by model-based planning on

empirical MDP has a sub-optimality gap of O ( K}lm + %‘i’zd}) (Theorem [3 and [6)), which matches

the lower bound up to logarithmic factors and a high-order term. This also improves upon the best known
result from [Cui and Yang, 2020] by removing additional poly (H, S, d) factors in the main term.

To the best of our knowledge, these are the first set of nearly horizon-free bounds for both OPE and OPO
on time-homogeneous tabular MDP and linear MDP with anchor points. To achieve such sharp bounds, we
propose a novel recursion based method to bound a “total variance” term (introduced below) that is broadly
emerged in the offline reinforcement learning, which could be of individual interest.



Technique Overview. With a sequence of fairly standard steps in the literature, we can bound the error
of the plug-in estimator via terms related to the square root of the “total variance” (also known as the Cramer-

Rao type lower bound illustrated in [Jiang and Li,2016]) \/Zhe[H] Es’a &h (s,a)Varp(, q) (V,Zr (3/)) where

+1

&™ is the reaching probability, P is the transition and V'™ is the value function under policy 7. (For a more
formal definition, see Section[3l). An improper bound of this term will introduce unnecessary dependency
on the horizon, either in the main term or in the higher-order term. We instead bound this term with a
recursive method, by observing that this “total variance” term can be approximately upper bounded by the
square root of the “total variance of value square” Zhe[H] > 5.0 &h(s,a)Varps q) [(szrﬂ(s/))?] and some
remaining term (see Lemma [I] and Lemma 3] for the detail). Applying this argument recursively, we can
finally obtain a poly log H upper bound on the total variance, which eventually gets rid of the polynomial
dependency on H.

The idea of higher order expansion has been investigated in [Li et al), [2020, [Zhang et al., 2020b]. We
notice that the recursion introduced in [Li et all, 2020] was designed for the infinite horizon setting, and
how to generalize their technique to finite horizon setting is still unclear. Our recursion is conceptually
more similar to the recursion in [Zhang et all,2020b]. However, [Zhang et al., 2020b] considered the online
setting, where we only need to bound the error on the visited state-action pairs. For the offline setting, we
need to bound the error on every state-action pair that can be touched by the policy 7. This introduces the
reaching probability {™ in the “total variance” term, which we need to deal with using the MDP structure.
As a result, our recursion is significantly different from their counterpart, especially in the case of linear
MDP.

Organization. Our paper is organized as follows: in Section 2] we review the related literature on offline
reinforcement learning, and then briefly introduce the problem we consider in Section 3l In Section 4] and
Section [5] we show our results of offline policy evaluation and offline policy optimization on tabular MDP
correspondingly, and in Section [6] we show how to generalize our results to linear MDP with anchor points.
We finally conclude and discuss our results in Section

2 Related Work

In this section, we briefly discuss the related literature in three categories, i.e., offline policy evaluation,
offline policy optimization, and horizon-free online reinforcement learning. Notice that, for the setting that
assumes an additional generative model, typical model-based algorithms first query equal number of data
from each state-action pair, then perform offline policy evaluation/optimization based on the queried data.
Thus we view the reinforcement learning with generative model as a special instance of offline reinforcement
learning. To make the comparison fair, for method and analysis that do not assume Assumption [Il we scale
the error and sample complexity, by assuming per-step reward is upper bounded by 1 — « and 1/H under
infinite-horizon and finite-horizon setting correspondingly.

Offline Policy Evaluation. For OPE in infinite horizon tabular MDP, [Li et al., [2020] showed that plug-
in estimator can achieve the error of O ( m> under Assumption [Tl which matches the lower bound
in [Pananjady and Wainwright, 2020] up to logarithmic factors. For OPE in finite horizon time-inhomogeneous
tabular MDP, [[Yin and Wang, 2020, [Yin et al.,[2020] provided an error bound of O ( K}lm + %) under
the uniform reward assumption, which matches the lower bound [Jiang and Li, 2016] up to logarithmic fac-




Table 1: A comparison of existing offline policy evaluation results. The sample complexity in infinite
horizon setting is the number of queries of transitions we need while in episodic setting is the number of
episodes we need. If Non-Uniform Reward, the MDP we consider satisfies Assumption [I} otherwise, we
assume the per-step reward is upper bounded by 1 — ~ and 1/H correspondingly.

Analysis ‘ Setting | Non-Uniform Reward | Sample Complexity
[Li et al., 2020] Infinite Horizon Tabular Yes O m
[Pananjady and Wainwright, 2020] Infinite Horizon Tabular Yes Q m
[Yin and Wang, 2020] Finite Horizon time-inhomogeneous Tabular No 0] ( dml =+ ‘(ﬁ?)
[Jiang and Li, 2016] Finite-Horizon time-inhomogeneous Tabular No Q dm%
This work Finite Horizon time-homogeneous Tabular/Linear Yes 9] gdiez
Lower Bound Finite Horizon time-homogeneous Tabular/Linear Yes Q ((im%)

tors and an additional higher-order term. We here consider the time-homogeneous MDP, and obtain an error
bound of O(\ ﬁ), that does not have the additional v/S A in higher-order term, which is different from
[Yin and Wang, 2020, [Yin et all, 2020].
Beyond the tabular setting, [Duan and Wang, 2020] considered the performance of plug-in estimator
with linear function approximation under the assumption of linear MDP without anchor points, and [Kallus and Uehara,
2019, 2020] provided more detailed analyses on the statistical properties of different kinds of estimators un-
der different assumptions, which are not directly comparable to our work. Recently, there are also works
[e.g. [Feng et all,[2020] focusing on the interval estimation of the policy for practical application.

Table 2: A comparison of existing offline learning results. The sample complexity in infinite horizon setting
is the number of queries of transitions we need while in episodic setting is the number of episodes we need.
If Non-Uniform Reward, the MDP we consider satisfies Assumption [I otherwise, we assume the per-step
reward is upper bounded by 1 —  and 1/H correspondingly.

Analysis | Setting | Non-Uniform Reward | Sample Complexity
[Agarwal et al., 2020] Infinite Horizon Tabular No 0 m
[Li et al., 2020] Infinite Horizon Tabular Yes 0 m

[Yin et al., 2020] Finite Horizon time-inhomogeneous Tabular No 9] df?

[Cui and Yang, 2020] Finite Horizon time-homogeneous Linear No 0] mn{}%fd}
[Zhang et al., 2020b] | Finite Horizon time-homogeneous Tabular Online Yes 9] “Z—? + SQTA

This Work Finite Horizon time-homogeneous Tabular/Linear Yes 9] ( d,isz + %)

Lower Bound Finite Horizon time-homogeneous Tabular/Linear Yes Q ( dm%)

Offline Policy Optimization. Offline policy optimization for infinite horizon MDP can date back to
[Azar et al., 2013]. [Li et all,[2020] recently showed that a perturbed version of model-based planning can

find e-optimal policy within 9] < 62> queries of transitions in infinite horizon tabular MDP when the

1
dm(l_’)/)
total reward is upper bounded by 1, that matches the lower bound up to logarithmic factors. For the finite



horizon time-inhomogeneous tabular MDP setting, [Yin et all,2020] showed that model-based planning can
identify e-optimal policy with 9] <dm%> episodes, that matches the lower bound for time-inhomogeneous
MDP up to logarithmic factors. When it comes to finite horizon time-homogeneous tabular MDP and linrar
MDP with anchor points, [[Cui and Yang, 2020] provided a 9] (%) episode complexity for model-

based planning, which is min{H, S, d} away from the lower bound. We provide a O < d,ie2 + %)
episode complexity, that matches the lower bound up to logarithm factors and a higher order term.
A recent work [Yin et al), 2021] considered solving the offline policy optimization with model-free Q-

learning with variance reduction. Although their algorithm can match the sample complexity lower bound
Q (%) when per-step reward is upper bounded by 1, model-free algorithms generally need at least Q(%)

episodes of data to finish the algorithm (a.k.a the sample size barrier in [Li et all, 2020]) and it is unclear
how to translate their results to the setting with total reward upper bounded by 1.

Horizon-Free Online Reinforcement Learning. There are several works obtained nearly horizon-free
sample complexity bounds for online reinforcement learning. In the time-homogeneous setting, whether the
sample complexity needs to scale polynomially with  was an open problem raised by [Jiang and Agarwal,
2018]. The problem was first addressed by [Wang et all, 2020] who proposed an e-net over the optimal
policies and a simulation-based algorithms to obtain a sample complexity that only scales logarithmically
with H, though their dependency on S, A and ¢ is not optimal and their algorithm is not computationally
efficient. The sample complexity bound was later substantially improved by [Zhang et all, 2020b] who

obtained an O <i—§4 + SQTA) bound, which nearly matches the contextual bandits (tabular MDP with H = 1)

lower bound 2 (5;—34) up to an SQTA factor [Lattimore and Szepesvdri, 2020]. Their key ideas are (1) a new
bonus function and (2) a recursion-based approach to obtain a tight bound on the sample complexity. Such
kind of recursion-based approach cannot be directly applied to the offline setting, and we develop a novel
recursion method to suit the offline scenarios.

3 Problem Setup

Notation: Throughout this paper, we use [N] to denote the set {1,2,--- ,N} for N € Z*, A(E) to
denote the set of the probability measure over the event set /. Moreover, for simplicity, we use ¢ to denote
polylog (S, A, H,d,1/6) factors (that can be changed in the context), where § is the failure probability. We
use O and €2 to denote the upper bound and lower bound up to logarithm factors.

3.1 Markov Decision Process

Markov Decision Process (MDP) is one of the most standard models studied in the reinforcement learning,
usually denoted as M = (S, A, R, P, 1), where S is the state space, A is the action space, R : S x A —
A(R™) is the reward, P : S x A — A(S) is the transition, and p is the initial state distribution. We
additionally define r : S x A — R to denote the expected reward.

We focus on the episodic MDP with the horizorl] H € Z* and time-homogeneous settinﬁ that P

'A common belief is that we can always reproduce the results between episodic time-homogeneous setting and infinite horizon
setting via substitute the horizon H in episodic setting with the “effective horizon” —— in episodic setting. However, this argument
does not always hold, for example the dependency decouple technique used in [Agérwal et all, 2020, |Li et all, 2020] cannot be
directly applied in the episodic setting.

2Some previous work consider time-inhomogeneous setting [e.g. Jin et all, 2018], where P and R can be varied for different




and R do not depend on the level h € [H]. A (potentially non-stationary) policy 7 is defined as m =
(m1,m, -~ 7H), where m, : S — A(A), Vh € [H]. Following the standard definition, we define the
value function V)™ (s) := Ep[> 1L, R(st,as)|s, = 5] and the action-value function (i.e. the Q-function)
Q7 (s,a) == Ep [, R(si,a)|(sn,an) = (s,a)], which are the expected cumulative rewards under the
transition P and policy 7 starting from s, = s and (sp,ap) = (s,a). Notice that, even though P and R
keep invariant under the change of h, V" and () always depend on h in the episodic setting, which introduces
additional technical difficulties compared with the infinite horizon setting.

The expected cumulative reward under policy 7 is defined as: v™ := E,, [V["(s)] , and our ultimate goal
is finding the optimal policy 7* of M, which can be written as: 7* = arg max, (v™). We additionally define
the reaching probabilities &} (s) = Py pr(sn = 5),&) (s,a) = P, px(sn = s,ar = a), that represent the
probability of reaching state s and state-action pair (s, a) at time step h. Obviously we have > &7 (s) =
1,> . .&r(s,a) = 1,Vh € [H], and we also have the following relations between & (s) and &] (s, a):
f}{(s,&) = & (s)mlals), &5 1(8") = X254 &R (s,a)P(s'[s,a). With £ at hand, we can write v™ in an

equivalent way: v™ = ) s.a ((Zhe[ ] & (s, a)) (s, a)) , which provides a dual perspective on the policy
evaluation [Yang et al., [2020].

3.2 Offline Reinforcement Learning

Generally, P and r are not revealed to the learner, which means we can only learn about M and identify the
optimal policy 7* with data from different kinds of sources. In offline reinforcement learning, the learner can
only have access to a collection of data D = {(s;, a;, 7, 8]) }ic[n) Where 7; ~ R(s;,a;) and s} ~ P(-|s;, a;),
that is collected in K episodes with (known or unknown) behavior policy (so that n = K H), For simplicity,
define n(s,a) as the number of data that (s;,a;) = (s,a), while n(s,a,s’) is the number of data that
(siya;,s;) = (s,a,s).

With D, the learner is generally asked to do two kinds of tasks. The first one is the offline policy
evaluation (a.k.a off-policy evaluation), that aims to estimate v™ for the given w. The second one is the
offline policy optimization, that aims to find the 7* that can perform well on M. We are interested in the
statistical limit due to the limited number of data, and how to approach this statistical limit with simple and
computationally efficient algorithms.

4 Offline Policy Evaluation

In this section, we first consider the offline policy evaluation for tabular MDP with number of state S =
|S| < oo, number of action A = |A| < oo, which is the basis for the more general settings. We first
introduce the plug-in estimator we consider, which is equivalent to different kinds of estimators that are
widely used in practice. Then we describe the assumptions we use, show the error bound of the plug-in
estimator, and provide the proof sketch of the error bound.

4.1 The Plug-in Estimator

Here we introduce the plug-in estimator. We first build the empirical MDP M with the data: P(S’ |s,a) =
n(s,a,s’) Zie[n] Til(ss,a9)=(5,0)
n(s,a) n(s,a)

,T(s,a) = , where 1 is the indicator function. Then we correspondingly define

h € [H]. It is noteworthy that we need an additional H factor in the sample complexity to identify e-optimal policy for time-
inhomogeneous MDP compared with time-homogeneous MDP. Transforming the improvement analysis from time-homogeneous
setting to time-inhomogeneous setting is trivial (we only need to replace S with HS), but not vice-versa, as the analysis for
time-inhomogeneous setting probably do not exploit the invariant transition sufficiently.



A;{, Vh” and finally the estimator 0™, Vh € [H], by substituting the P and r in QF, V;7 and v™ with P and
7. Such computation can be efficiently implemented with dynamic programming. We also introduce the
reaching probabilities é,’:(s) = ]P’u’p’ﬂ(sh = s),é}{(s, a) = ]P’u’p’ﬂ(sh = s,ap = a) in the empirical MDP
M , which will be helpful in our analysis.

The plug-in estimator has been studied in [Duan and Wang, [2020] under the assumption of linear tran-
sition. It’s known that the plug-in estimator is equivalent to the MIS estimator proposed in [Yin and Wang,
2020] and a certain version of DualDICE estimator with batch update is proposed in [Nachum et al.,[2019a],

due to the observation that 9™ = " _ <<Zhe[H} f}{(s, a)) 7(s, a)) .

4.2 Theoretical Guarantee
Here we first summarize the assumptions we use for the tabular MDP.

Assumption 1 (Bounded Total Reward). V7, we have Zhe[ [ Th < 1 almost surely, where sy ~ i, ap ~
w(-|sk), Th ~ R(sp,an) and spiq ~ P(:|sp,an), Vh € [H]. This also means P(r ~ R(s,a)|r > 1) =0,
Y(s,a).

This is the key assumption used in [Wang et all, 2020, [Zhang et al., [2020b] to escape the polynomial
dependence of horizon in episodic setting. As discussed in Jiang and Agarwal [2018], [Wang et al) [2020],
Zhang et al. [2020b], this assumption is also more general than the uniformly bounded reward assumption:
V(s,a),r(s,a) < 1/H. Thus, all of the results in this paper can be generalized to the uniformly bounded
reward with a proper scaling of the bounded total reward.

Assumption 2 (Data Coverage). Y(s,a), n(s,a) > ndy,.

This assumption has been used in [Yin and Wang, 2020, [Yin et all,2020] and is similar to concentration
coefficient assumption originated from [Munos, 2003]. Intuitively, the performance of the offline reinforce-
ment learning should depend on d,,, since the state-action pair with less visitation will introduce more
uncertainty.

Notice that, d,, € (0, (S A)_l}. Assuming access to the generative model, we can query equal number
of samples from each state action pair, where d,, = (SA)~!. For the offline data sampled with a fixed
behavior policy Tpgn, we can view d,, & 7 min,, > helH] £,P"M (s, a), which measures the quality of
exploration for 7ggy. When the number of episodes K = Q (1/d,,), by standard concentration, we know
ming o n(s,a) = ndp, = HKdp,.

We remark that, some of the recent [Liu et all [2019], [Yin et al. [2021] define the data coverage via the
coverage on the visitation of the optimal policy when considering offline policy optimization. This kind of
data coverage can be covered by our Assumption [2, by considering the sub-MDP which only consists of the
state-action pair that can be visited by the optimal policy. As we already know that the optimal policy will
not leave this sub-MDP, any near-optimal policy on this sub-MDP will be near-optimal on the original MDP,
and hence our results can be directly applied under this alternative definition of data coverage.

With these assumptions at hand, we can present our main results.

Theorem 1. Under Assumptionlland Assumption 2} suppose K = € (1/dy,), then

o™ — 67| < [

holds with probability at least 1 — O, where K is the number of episodes, d., is the minimum visiting
probability and 1 absorbs the poly log factors.



To demonstrate the tightness of our upper bound, we provide a minimax lower bound in Theorem oH.

Theorem 2. There exists a pair of MDPs My and Mo, and offline data D with |D| = K H and minimum
visiting probability d,,, such that for some absolute constant cy, we have

infr D ur, et oy P, (107(D) = 07 > 2=} > 0.25,

where U™ is any estimator that takes D as input.

Remark Theorem[Iland 2lshow that, even with the simplest plug-in estimator, we can match the minimax
lower bound {2 <, / ﬁ) for offline policy evaluation in time-homogeneous MDP up to logarithmic factors.

As a result, we can conclude that time-homogeneous MDP is not harder than the bandits in offline policy
evaluation.

Remark The assumption that K =  (1/d,,) is a mild and necessary assumption, as with only o (1/d,, )
episodes, there can exist some under-explored state-action pair which unavoidably leads to constant error
(this is also how we construct the hard instance for the minimax lower bound).

Remark Central to our analysis is a recursion based upper bound on the “total variance” term (see Lemma
[[), which enables us to have a sharper bound for the plug-in estimator compared with previous work [e.g.
Yin and Wang, 2020, [Yin et al., 2020] that include the unnecessary poly(.S, A) factors in the higher-order
term.

4.3 Proof Sketch

The detailed proof can be found in Appendix [Al and here we sketch our proof in short. With the value
difference lemma (see Lemmalin the Appendix [Al), we need to focus on bounding the term:

et Soa € (5:0) [ Ly (P(/]s,0) = P(s]s,)) Vi ()] |

which, by Bernstein’s inequality and Cauchy-Schwartz inequality associated with the Assumption [1| and
Assumption 2] can be upper bounded by the following term with high probability:

VR Setr) S € (5: 0 Var pieay (Vi () +

To bound the “total variance” term >,z > s 4 ég(s, a)Var p(s q)[ViT, 1 (s')], we use a novel recursion-
based method based on the following observation:

Lemma 1 (Variance Recursion For Evaluation). For the value function V) (s) induced by any m, we have
that

> D &i(sa)Varp(ea [Visa ()7 |

he[H] s,a

< Z Zé;(s’a) [Z (P(S/|3,(1) - p(s/|s,a)> Vh+1(8/)2i+1

he[H] s.a s/

+ 2i+1 (1)

3To the best of our knowledge, no lower bound has been provided for finite horizon time-homogeneous setting, so here we
provide a minimax lower bound, and the proof can be found in Appendix [Bl



Here the term in (1) can be bounded with 151> £7 (s, a)Varp(s,a)JVhH(3/)2i+1] , the total vari-
ance of higher-order value function via Bernstein’s inequality. Thus Lemma
obtain a tight bound for the “total variance” term. Define

= 2 Ydisa) |3 (P(s1s.0) - P(s']s,a) vhzl(s')?i] .

he[H] s,a s’

can be applied iteratively to

Applying Lemma Il with V;™ (s), we can write the following recursion:

Aq(i) < \/K—dm (Ay(i+1) + 2iH1) 4 2

Solve this recursion, and we can obtain the results in Theorem [1]

5 Offline Policy Optimization

In this section, we further consider the offline policy optimization for tabular MDP, which is the ultimate
goal for offline reinforcement learning. We first introduce the model-based planning algorithm, which is
probably the simplest algorithm for offline policy optimization. Then we analyze the performance gap
between the policy obtained by model-based planning and the optimal policy.

5.1 Model-Based Planning
We consider the optimal policy on the empirical MDP M , which can be defined as
7* = arg max, 0". 2)

Here 7* can be obtained by dynamic programming with the empirical MDP, which is also known as model-
based planning. We remark that our analysis is independent to the algorithm used for solving @)). In other
words, the result also applies to the optimization-based planning with the empirical MDPs [Puterman, 2014,
Mohri et al.,12012], as long as it solves (@)).

5.2 Theoretical Guarantee

Theorem [3] provides an upper bound on the sub-optimality of 7*.

Theorem 3. Under Assumptionlland Assumption2} suppose that K = §) (1/dy,), and then

o7 =T <\ wm + K

holds with probability at least 1 — O, where K is the number of episodes, d., is the minimum visiting
probability and 1 absorbs the poly log factors.
We also provide a minimax lower bound under the finite horizon time-homogeneous setting.
Theorem 4. There exists a pair of MDPs M and Mo, and offline data D with |D| = K H and minimum
state-action pair visiting frequency d,,,, such that for some absolute constant cy, we have
: D)
infar SUP uq, ey Mo} P M, (!fu”( —0o™| > \/IC(OT) > 0.25,

where 7 is any planning algorithm that takes D as input.



Remark Theorem [3 provides a bound approaching the minimax lower bound in Theorem Ml up to log-
arithmic factors and a higher-order term, which shows that the error of offline policy optimization does
not scale polynomially on the horizon. Notice that if d,, = (SLA) we can obtain an error bound of

9] % + SQTA , which can be translated to sample complexity 9] (5;—54 + SQTA> that matches the best

known result of sample complexity for online finite-horizon time-homogeneous setting [Zhang et al.,2020b].
We conjecture that the additional .S factor in the higher-order term is only an artifact (see Lemmal[2)) and can
be eliminated with more delicate analysis. We leave this as an open problem.

Remark There are also works considering local policy optimization [e.g. [Kakade and Langford, 2002,
Liu et al., 2020b, [Kumar et all, 2020] when the offline data are not sufficient exploratory. We want to em-
phasize that, as Theorem H] suggests, to identify the global optimal policy, we need the offline data sufficient
exploratory.

5.3 Proof Sketch

The detailed proof can be found in Appendix [Al and here we sketch our proof in short. Notice that

* Sk * ~ * ~ * /\"* /\"* o~k
v — " =" — 0" + 0" — 0" 0T — 7
—_——
<0
* * ~ sk A sk

< " =07 + o7 — o7 . 3)
—_—— —_——

Error on Fixed Policy  Error on Data—Dependent Policy

We can directly apply Theorem [T]to bound the error on fixed policy. For the error on data-dependent policy,
since the policy 7* depends on data, we need to consider

S s a) |3 (P(s')s.0) — P(s']s,0)) Vhfias’)]

he[H] s,a s’
= 3 Y éis.a) |3 (Ps1s.0) ~ P(s']s.a) vhﬁil(s’)] @
he[H] s,a s’

+ 3 Y Esa) |y (P(s'|s,a) —P(s’|s,a)) (Vhﬁl(s') —V,ﬁl(s’))] : 5)
he[H] s;a s’

As 7* is independent of P, the term in (@) can be similarly handled with the techniques used in offline policy
evaluation. However, due to the dependency of 7* and P, we need to deal with the term in (3)) more carefully.
To decouple the dependency of 7* and P, we first introduce the following lemma:

Lemma 2. VV},(s) € [0,1], Vh € [H]|, s € S, then we have that with high probability,

+ St

n(s,a)"

\/S'Varp(s,a) Vi (s)]e

n(s,a)

‘Z ( s'|s,a) — P(s’\s,a)) Vi(s)] <
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Remark Lemma [2| has been widely used in the design and analysis of online reinforcement learning
algorithms, [e.g. Zhang et al., 2020b]. It holds even V},(s) depends on P(s'|s, a), however, at the cost of an
additional .S factor. This is the source of the additional .S factor in the higher-order term, and we believe a
more fine-grained analysis can help avoid this additional .S factor.

We also have the following recursion for ) and (3):

Lemma 3 (Variance Recursion For Optimization). For Vi,(s) = V™ (s) and Vi, (s) = V;™ (s) — V;* (s), we

have that
Z Zgh 8 a VarP(s a) [Vh-l-l( ) ]
he[H] s;a
S BACKD [Z (P(/Is,0) = P(s'ls.a)) Vh+1<s’>2”1] ©)
he[H] s,a
1 gitt Zu Wis)+ S S E (s,a) Z [P(s)s,0) = P(s')s,0) vh+1<s/>]. )
he[H] s;a
Denote
Boi) =| D2 DG ) |3 (PUs'ls @) = Pls]s,a) V;:i(s')?i] ,
he[H] s,a L s
As(i) = Z Zgh s, a) Z (P(s']s,a) — P(s'\s,a)) (V,Zil(s') — V,f;l(s'))zl] .
he[H] s,a L s’

Applying Bernstein inequality or Lemmal2] and then Lemmal[3] we have that:

L . L
< ; i+1(ym*
_\/Kdm (A2(2+1)+2 (’U +A2(0)))+Kdm

St

St . .
< ; i+1(ym* _ o
Z) _\/Kdm (A2(2+1)+2 (’U (Y +A3(0)))+Kdm

With Assumption [Il we know v™ < 1. Also, with @) and @), we have that v™ — v™ < A3z(0) +
0] (, / Kélm) . Solve this recursion, then we can obtain the results in Theorem

6 Extensions to Linear MDP with Anchor Points

In this section, we first introduce the definition of the linear MDP with anchor points [Yang and Wang,
2019, |Cui and Yang, 2020], and then generalize our results of offline policy evaluation and optimization to
this setting.

Definition 1 (Linear MDP with Anchor Points [Yang and Wang, 2019, |Cui and Yang, 2020]). For the MDP
M = (S, A, R, P, i1), assume there is a feature map ¢ : S x A — R%, such that v and P admits a linear
representation:

T(S,CL) = <¢(37a)797’> P(s/\s,a) = <¢(37a)7:u(3/)>7

11



where (i is an unknown (signed) measure of S. Furthermore, we assume there exists a set of anchor state-
action pairs K, such that V(s,a) € S x A, " }rek,

6(5,0) = Do A "0ska1). Thex ° =1, A" > 0.k € K.

With the definition of Linear MDP as well as the anchor points assumption, we can find that r(s,a) =
Zkelc NOr(skyan), P(s'|s,a) = e AR P(s|sk, ax), which can lead to an empirical estimation of
P and 7 by replacing {r(sy,ar)}kex, {P(s'|sk, ar) }kexc with the empirical counterpart {7 (sy, ax) treic
{P(s'|sk, ar) }kex estimated from the offline data. Following [Yang and Wang, 2019, /Cui and Yang, 2020],
we additionally make the following assumption on the offline data:

Assumption 3 (Anchor Point Data [Yang and Wang, 2019, (Cui and Yang, 2020]). Assume |K| = d. For
the offline data D = {(s;,ai, 74, 5;) }icin)s (8i,0i) € {(sk,ar)}rex, Vi € [n]. Furthermore, Vk € K,
n(sk, ag) > ndpy,.

We now present the main theorem on the offline policy evaluation and offline policy improvement on
the linear MDP with anchor points.

Theorem 5. Under Assumption [Il and Assumption Bl suppose n = Q (H/d,,), and then for a given policy
w, the plug-in estimator 0™ satisfies

o o) < 3

with probability at least 1 — 0, where n is the number of offline data, d,, is the minimum visiting probability
of anchor points and v absorbs the polylog factors.

Theorem 6. Under Assumption [Il and Assumption 3 suppose that n = (H/d,,), and then for the 7*

obtained by model-based planning,
o™ = o™ < /5 +

holds with probability at least 1 — 6, where n is the number of offline data, d is the feature dimension, d,, is
the minimum visiting probability of anchor points and v absorbs the polylog factors.

Proof of both theorems can be found in Appendix [Cl From a high-level perspective, we observe that for
the unseen state-action pair, we still have Bernstein-type concentration bound and a lemma similar to Lemma
Hence we can apply our recursion introduced in Lemmal[Iland use the similar techniques for tabular MDP
to obtain the desired results. We want to remark that such results demonstrate the broad applicability of our
recursion-based analysis in different kinds of offline scenarios.

Remark Compared with the results in [Cui and Yang, [2020], we remove the additional dependency of
min{ H, |S|,d} in the main term and approach the optimal complexity shown in the [Yang and Wang, 2019]
up to logarithmic factors, which shows that model-based planning is minimax optimal for Linear MDP with
anchor points and demonstrates the effectiveness of our recursion-based analysis.

12



Remark Here we do not directly replace the term n/H with K, as we make relatively strong assumption
on all of the offline data are sampled from the anchor points. One potential question is how general the
anchor point assumption is. We notice that, as [Duan and Wang, 2020] showed, the popular FQI algorithm
for linear MDP provides an estimate of P as

p(s/‘sa a) = ¢(37 a)TA_l Zle[n} ¢(3i7 ai)ls’:s,’ﬂ

where A = > ieln] B(si,a:)9(si,a;) . As >, P(s|s,a) = 1, by Definition [T}

1= 5, P(s/]s,0) = 6(s,0) T 2y pls') = dls,@) TA (Lepy 0lsivai))

Thus, if ¢(s,a)A" @(si,a;) > 0, V(s,a),i, then it forms a linear MDP with anchor points with X =
{(55,08) Yicp) A" = o(s, a)A=1¢(sy, az,) and our analysis can be simply adapted to this case where nd,y,
is replaced with /\min([X) using Freedman'’s inequality [Freedman,!1975], and )\min(f&) denotes the minimum
eigenvalue of A. We notice that if o(s, a)f&_lqﬁ(s,-, a;) < 0, and s/ are distinct for each ¢ (which is probable
for exponential large |S|), then P (s%|s,a) < 0, which can be pathological for the algorithm and analysis. We
expect a well-behaved transition estimation (i.e.]5) for linear MDP shares the similar results, even without

anchor point assumptions. We leave this as an open problem.

7 Conclusion

In this paper, we revisit the offline reinforcement learning on episodic time-homogeneous MDP. We show
that, if the total reward is properly normalized, offline reinforcement learning is not harder than the offline
bandits counterparts. Specifically, we provide performance guarantee for algorithms based on empirical
MDPs, that match the lower bound up to logarithmic factors for offline policy evaluation, and up to log-
arithmic factors and a higher-order term for offline policy optimization, and both do not have polynomial
dependency on H. There are still several open problems. For example, can we provide a sharper analysis
for the policy obtained by model-based planning without any additional factors on higher-order term? Can
we extend to MDP with more general assumption? We leave these problems as future work.
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A Proof of the Main Theorems

A.1 Proof for Offline Policy Evaluation

The proof of all of the technical lemmas can be found in Appendix [El Our proof is organized as follows: we
first decompose the estimation error to the errors introduced by reward estimation 7 and transition estimation
P with Lemma] then Lemma[3] provides an upper bound for the error introduced by 7. For error introduced
by P, we first show it can be upper bounded by a “total variance” term (in (9)). A naive bound for this “total
variance” term will introduce an additional H factors, thus we apply a recursion-based method to upper
bound this “total variance” term (see Lemma [I)). Solve the recursion in Lemma [6] and put everything
together, we eventually obtain the bound in Theorem [11

Lemma 4 (Value Difference Lemma).
Z th (s,a [ (s,a) +Z [( s'|s, a) (s’\s,a)) V{H(s/)} ] ®)
hel[H] s,a

The following lemma provides an upper bound on the estimation error introduced by 7, i.e., the first term

in (8.
Lemma 5 (Error from Reward Estimation). Suppose Assumption[I]l holds, then we have that
[ Shetr) S (0 [r(s, @) = 7(5,0)]| < \ [ + w0

holds with probability at least 1 — 6.

We then use a recursive method to bound the error introduced by ]5, i.e., the second term in (8). Denote

Z Z{h s, a) Z <P(s'|s,a) —P(8/|S,G)) V}Zr+1(3,)] .

hel[H] s.a s

With Bernstein’s inequality, we know that with high probability

Ay < Z Zé}{(s,a) \/Varp(s;z)(i"/f;l(sl))b N n(SL’ >

he[H] s,a

\/ Z th (s, a)Varp(s o) (Vi1 () + Kd ) 9)

helH] s.a

where the second inequality is due to Cauchy-Schwartz inequality associated with the Assumption
We then upper bound >, 11 2=, &5 (8, @) Varp(s o) (Vi1 (s)) in (@) with Lemmal[ll Again, by Bern-
stein’s inequality and Cauchy-Schwarz inequality, we have the following with high probability:

Z Zf [Z (P(S/‘S,a) — P(s’]37a)> Vth(S/)ziﬂ

he[H] s,a s i
Z Zﬁ 5,a) Varp(sq) (Viq (8)27) Lt
Al n(s,a) n(s,a)
he[H] s;a
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\/ \/Z th (s,a)Varp(, q) (Vh+1( )ZZH) K;m (10)

he[H] s,a
Define
Z th (s,a)Varp(s q) (Vh+1( )TH) :
helH)] s.a
Apply Lemma[T] with (I0)), we have the recursion as

L .
) < ) —— — ol
V1 (4) d Vi(i 1) + o 42 (11)

Notice that V(i) < H, Vi. Now we can solve the recursion with the following lemma:

Lemma 6. For the recursion formula:
V(i) < VAV +1) + A + 2771,
with A1, Ao > 0, if V(i) < H, Vi, then we have that
V(0) < 6(A1 + A2),

H>‘1 ) times.

and we need to do the recursion at most O(log

Remark We want to emphasize that, the recursion needs to be done at most O(log = b )‘1 ) times. Thus,
by union bound, such recursion only introduces an additional loglog factor in the error when AL, Ag =
poly(S, A, H), that can be absorbed by ¢. For simplicity, we still use ¢ to denote the poly log factors in the
following derivation.

Apply Lemmal6 with A; = ﬁm, Ao = 1, we have that

10 =0 (5 +1).

and also notice in (9)) that

Combine this two inequality, we have that

L L L
< e
Al_o(\/Kdm <Kdm+1>>+Kdm

> we have that

Suppose K = Q (

77L

L L
< .
A1_0< Kdm+Kdm> (12)

Combined with Lemma[Sland K = Q < d}n >, we conclude the proof of Theorem Il
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A.2  Proof for Offline Policy Optimization

We first make the following standard decomposition:

* Ak * * * Ak ok Ak

v —v" =" — 9" + 0" — 0" 0T —u”

<0
* N * N -k Sk
< " =07 + T — " . (13)
~— S~—
Error on Fixed Policy  Error on Data—Dependent Policy

The first term characterizes the evaluation difference of optimal policy on original MDP and the empirical
MDP, and the second term characterize the evaluation difference of the planning result 7* from the empirical
MDP on original MDP and the empirical MDP.

We can directly apply Theorem [I] to bound the first term in (I3). However, as 7* has complicated
statistical dependency with P, we cannot apply Theorem [Il on the second term in (I3 for the evaluation
error on data-dependent policy. Notice that a direct application of the absorbing MDP techniques introduced
in [Agarwal et all, 2020, [Li et al., 2020] for the second term will introduce additional H or .S factors in the
main term as shown in [Cui and Yang, 2020]. Thus, we further generalize our recursion-based method to
keep the main term tight while only introduce an additional .S factor at the higher-order term, which keeps
the final error horizon-free.

Similar to the case in the offline evaluation, we make the following decomposition based on Lemma [4}

Z Zgh s,a)| (7(s,a) —r(s,a) —I—Z s'|s, a) (Sl|3,a))Vhﬁ;1(3/)

he[H] s.a
Z Zéh (s,a) (A, (s,a) + Ap(s,a) + Apy (s,a)),
he[H] s.a
where
A, (s,a) = T(s,a) —r(s,a),
Ap(s,a) = S(B($']s,a) — P(s']s, a)) Vi (5)

S/

Apv(s,0) = Y (P(s'ls.0) = P(s'ls.0)) (ViFfa(s) = Vi (s))
8/
For the inner product of f,’{ (s,a) with A,, as r is independent of P, we can identically apply the result for
offline evaluation, that leads to a O ( K%im + ﬁ) error. We then consider the error induced by A p and

Apy.
For the error introduced by A p, as 7* is independent of P, we can use Bernstein inequality and Cauchy-
Schwartz inequality and obtain

Z Z 52(37 a)AP (37 CL)

he[H] s,a

. Varpis o) (V7 (8) o L
<Y Thitnn. || e VRO, o

he[H] s,a
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he[H] s.a

Now we turn t0 3,1y 25 4 €7 (s, a)Varp(s ) (V71 (s")). With Lemma(3] we have that
> D isa)Varpgea (Vi (5)7)
helH] sa
1p> (P(s'ls,0) = P(')s,a)) (Vi1 ()

SDIPPACL)
he[H] s.a

We can further apply Bernstein inequality and Cauchy-Schwartz inequality to the first term in (13)). Specifi-
cally, denote

2i+1

4o+ (Ag n v“*) . 35)

= ¥ SV (7)),

helH] s.a

we have the recursion as

Vo) < 4| ——Va(i + 1) +

Kd,, +27 (20 407).

Kd,,

This recursion can be solved similarly as (IT) by applying Lemma [0l with \; = =— d and Ay = Ay + 0™,

which leads to
v2(0)<0<Kd + (v +A2)>. (16)

Meanwhile, from (14) we have that

L
< ) — -

Ay Kd V2(0) + e (7)

Combine (16) and (I7)), we have
Ay <O ' A ) ) 4 —
2= Kd,y, Kd ? Kdy,

Suppose K = Q ( m) then with Assumption [T]and the discussion in[Dl we have that

Ay <O Loyt (18)

2= Kdy ' Kdp)

Now we turn to the error introduced by Apy. With Lemma[2l we can again use the recursion to bound it,
and finally obtain the bound in Theorem 3l By Lemma ] and Cauchy-Schwartz inequality, we have that

ZzghsaApvsa)

he[H] s,a
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3 SV s,a VW* ! —Vﬁ* /
ZZ&%:MM arpen) (Vi () = Vi) e

hE[H = n(s,a) n(s,a)

A S
=\ &d ¢ > DG aVarp( (VI () = ViEL () + o (19)

he[H] s,a

Now we turn to 3 11 25 4 £r (s, a)Var p(s o) (Vi1 (") = Vi1 (7)) in (I9). We still bound this term with
the recursive methods. With Lemma[3] we have that

> D &ilsa)Varpge (Vi () = Via ()%

he[H] s,a

=Y S éea)

helH] s.a

2i+1

> (P1s0) = P1sa)) (Vi) = V()

Fo (a0 (o7 = o))

(20)

We can further apply Lemma 2] and Cauchy-Schwartz inequality to the first term in (20), which eventually
lead to the recursion formula. Specifically, denote

Z Zéh $,a)Varp s q) <(Vhﬂ-|t1(8/) - Vhﬁ;1(3/)>2l> )

he[H] s.a
we have the recursion as
V(i) < Vali + 1) + — 2i+1<A 7”—’“).
3(1) Kd 3(z+)+Kdm+ 34w v
Th1s recursion can be solved similarly as (IT) by applying Lemma [l with \; = 7 and Ay = Az +
™ — o™, which leads to
St . .
V3(0) < ( ™ o™ A ) . 21
3(0)_O<Kdm+v DR 3> (21)
Meanwhile, from we have that
St St
Ag < V3(0 . 22
35\ Ka. 3()+Kdm (22)

Combine (1)) and (22)), we have

St St R St
< T T
Ag_O(\/Kdm<Kdm+U v +A3>>+Kdm,

Moreover, with and (I8)), we have that

. . L L
T T < .
v v _O( Kdm+Kdm>+A3

Thus, with the discussion in Appendix [D] we can conclude that ™ — ™ <O (, / Kélm + Kd ) which
finishes the proof for Theorem 3
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B Proof of the Lower Bounds

B.1 Lower Bound for Offline Policy Evaluation

Our lower bound instance is adapted from the instances in [Azar et all, 2013, [Lattimore and Hutter, 2014,
Pananjady and Wainwright, 202Q] for finite horizon time-homogeneous setting.

Proof. We consider a two-state MDP with state s;, so, with an unique action a. s; is an absorbing state,
which means P(si|s;,a) = 1, while P(sa|s2,a) = p, P(s1|s2,a) = 1 — p. We assume the reward
is deterministic with r(s1,a) = 0, r(s2,a) = % that satisfies Assumption [l Assume we want to have
an accurate estimation of V7 (s2), which is equivalent to have a sufficient accurate estimation of p. With

straightforward calculation, we have that
H+1
p—p’ 1
V = V = Q1
() 1(s2) 1—p H

Notice that
V(p) 1-(1+1-pH)pT1

o (1—p)? H

Letpy =1— %, where c¢; is an absolute constant, we know that

WV(p) 1—a(l-%"1 Jloae 1 1 —cle_clH
8]91 (1—p1)2 H — (1—p1)2 H C% ’

which is monotonically decreasing w.r.t c;. Assume py = 1 — %2 where ¢y < ¢ is another absolute constant,
we have that

1—ce 1 1—ce @
V -V > - — [ .
(p2) (pl) = (1 p1)2 H(p2 pl) C% (Cl C2)

We now use Le Cam’s method to show that without sufficient number of data from Bern(p), we cannot
identify p = p; or p = po with high probability, and thus cannot have ideal estimation error on both of p;
and po. We start from the following lemma:

Lemma 7.
(p —q)?
KL(Bern(p)||Bern(q)) < ———=
(Bern(p)||Bern(q)) o
Proof.
KL(Bern(p)|Bern(q))
p p—
—plog 2 + (1 —p)1
pogq+( p)log -—
<p" =L+ (1 - p)log T2
q -
_(p-a?
q(1—q)’
where the inequality is due to the fact that log(1 + z) < x. O
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Assume W : [0,1]*(2%) — {p; po} is a test with n i.i.d samples from Bern(p), and use P; and PP; to
denote the probability measure under p; and po, we have that

inf {P1(¥(D) # p1) + Po(¥(D) # p2)}
>1 — ||(Bern(p1))"*2%) — (Bern(p3))"||rv  (Le Cam’s inequality)

>1 — \/ MKL (Bern(py)||Bern(p2)) (Pinsker’s inequality)

o1 \/n(82,a)(p1 — p2)?

p1(1—p1)
. n(s2,a)(c; — cg)?

C1 (H — Cl) '
Take co = ¢; — %, we know that with probability at least 0.5 we cannot identify p = p; or p = pa.
And notice that

1—ce ™ |ei(H — 61
Vv -V >
(p2) (p1) = c% 2n(sq,a 32,

where ¢ is an absolute constant only depends on ¢;. Thus we know that, with n(s2,a) samples from
P(s2,a), we must suffer from an estimation error of ( ﬁ) with probability at least 0.25. Notice

that we can set n(sg, a) = nd,,, thus finishes the proof. O

B.2 Lower Bound of Offline Policy Improvement

We can further show the lower bound of offline improvement for finite horizon time-homogeneous MDP,
based on the hard instance we mentioned above.

Proof. We introduce additional states sy and s3 in the previous hard instance, with the transition from s,
P(s1]|s0,a1) = 1, P(s3]so, ) = 1, Ya # aq, and s3 is an absorbing state with total reward in H steps

(i.e. Vi(s3)) as V(p1) + coy/ 7g—- We always start from s¢, and we need to choose the action at so. Notice
that, if p = po, then the optlmal arm is a1, while if p = p1, then the optimal arm is not a;, both with a
sub-optimal gap of at least cg 4/ %m, which finishes the proof. O

C Proof for Linear MDP with Anchor Points

C.1 Proof for Offline Policy Evaluation

Notice that, the value difference lemma holds for any kinds of MDP. Thus, if we have Bernstein-type concen-
tration for 7(s,a) — r(s,a) and Y (P(s'|s,a) — P(s'|s,a))V (s’), we can adopt the techniques for tabular
MDP and obtain the desired results.

Lemma 8. With probability at least 1 — ¢, we have that (s, a),

. r(s,a) L
_ < Ly
|7(s,a) —r(s,a)| < . + .
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where 1 absorbs the logarithm factors log(poly(d)/9).

Proof. Notice that

‘f(37 CL) - T(S, a’)’

< N R sk ar) — (s ag)|

ke
< Z )\s ,a Ska (Ik) + 1

kek dm ndm
< D kek M TSk ar) L
< +

nd nd,,
r(s,a) L

\l nd, nd,y,’

where the second inequality is due to the Bernstein’s inequality on each (si,ax) with ¢ = log( d/o) and
(s, ar) € [0,1], and the third inequality is due to Cauchy-Schwartz inequality and » , . A" =1 O

Lemma 9. Suppose V (s') is independent from ]5(3’ |s, a), then with probability at least 1 — §, we have that
Y(s,a)

V /
- arp(s,a)V(s ) N . ,
- ndy, nd,

> (P(s']s,a) — P(s']s,a))V (s")

!

S
where v absorbs the logarithm factors log(poly(d)/9).

Proof. First, we have that

> (P(s']s,a) — P(s'|s,a))V (s

S/

<Z)\sa

kek

sa Varp(s, a,)V (8')0 L
= Z Ak \/ nd, + ndm,
kel

Z ( s'|sk, ax) — (Sl\skaak)) V()

s’

D kek )‘Z7avarP(sk7ak)V(3/)L+ L
nd,, nd,,’

where the second inequality is due to the Bernstein’s inequality on each (s, aj) with ¢ = log(2d/d) and the
last inequality is due to Cauchy-Schwartz inequality and ), )\Z’“ = 1. Notice that

Z )\Z’aVaI'p(shak) V(S,)
ke
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2
=D N D P sk an)V (') — <Z P(8'|8k7ak)V(8/)>

kek

2
< Z P(s'|s,a)V(s')? — <Z AOOP(S sk, ak)V(5,)>

kek
:VarP(s,a)V(S/)a

where the inequality is due to Cauchy-Schwartz inequality and ), )\Z’a = 1. Substitute this term back
and we conclude the proof. ]

Notice that, Lemma[9] simultaneously holds for all of the (s, a) if all of the concentration on the anchor
points hold. Hence we can apply the analysis for tabular MDP and obtain the desired results, which finishes
the proof for offline policy evaluation on linear MDP with anchor points.

C.2 Proof for Offline Policy Optimization

Here we need a Bernstein-type concentration for 3, (P(s'|s, a)—P(s'|s,a))V (s") when V (s') and P(s'|s, a)
are correlated. A naive application of Lemma[2] will introduce a |S| factor in the higher order term, which is
not satisfactory, as |S| can be exponentially large. Here use another method to replace this dependency on
|S| with the feature dimension d.

Lemma 10. Suppose V (s') is independent from ]5(3’ |s, a), then with probability 1 — §, we have that

Varps o)V (s')t

L ~ L
nd, +ndm+HV—V|yoo<1+ @)’

Z(P(s'\s,a) — P(s')s,a))V(s)| <

/

s

where 1 absorbs the logarithm factors log(poly(d)/9).

Proof. Notice that

> (P(s']s,a) — P(s'|s,a))V (s

/

s

<D (P(s']s,a) = P(s']s,a))V (s")| + Z(P(S'\S,a)—15(8'!8&))(‘/(8')—‘7(8'))‘
/Varp(sa)f/(s’)b L -

< ’ _

< nd, + 4. + IV =Vl
Varp(, o)V (s')t Varp(s oy (V(s') = V(s'))e -

C Yereea V| Nt V) VD oo
VarP(s a)V(S,)L L ~ L

<4/ d — Vs (1 —,

- nd,y, + nd, +1V | < + ndm>

where the first inequality is due to the triangle inequality, the second inequality is due to Lemmal[9and alge-
bra, the third inequality is due to the triangle inequality for the variance, i.e.1/Var(X +Y) < y/Var(X) +
Var(Y'), and the last inequality is due to the fact that Var(V') < ||V . O
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With Lemma 10, we can construct an e-net (under /., norm) for V' to obtain Bernstein-type concentra-
tion. For tabular MDP, this e-net is of size O(e"s |), which leads to the same result of Lemma[2]l However, in
linear MDP, @ follows a linear form Q(s, a) = ¢(s, a)TwQ, thus the V' we consider lies in a d-dimensional
manifolds, and the size of the e-net we exactly need is O(e~%). This observation leads to the following
corollary:

Corollary 1. For any V (s)', with probability 1 — 6, we have that

AVarpg, o V(s
g\/ @eea VIS | d +6<1+ ‘dL>,

nd,, ndm,

> (P(s']s,a) = P(s']s,a)V(s)

’

S

where 1 absorbs the logarithm factors, log(poly(d,1/€)/9).

Here the additional d comes from the logarithm of the size of e-net. We can further choose € = % and
absorb e (14 4/ nzllin ) into n‘jl:b , then apply the analysis for tabular MDP and replace S with d to obtain the

desired result, hence conclude the proof.

~ sk

D Step-by-Step Solving for A, and v™ — v™

D.1 Explicit Bound for A,

Notice that, for some absolute constant c,

L L L
< T .
Be < C\/Kdm <Kdm At > K,

which means

cl cl cl
Ay < A L
cz_\/Kdm<Kdm+c 2t cv >+Kdm
<cA2 +cv”* n 2ct
-2 2 Kd,,’

thus we have that

4y
Kd,,

AV S’Uﬂ* +

Substitute back, suppose N = Q (t) , then with Assumption [Il we have that

L 57 . L L L
< w — = ,
Ao < C\/Kdm (Kdm +2v ) *%a, ¢ ( Kdm Kdm>
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*

D.2 Explicit bound for v™ — v7

Notice that, for some absolute constant ¢, we have that

St St ) . St
< T W
Ag_c\/ dm< ,dm+v v +A3>+F.’dm’

which means

cAsz < ;Z; (I?Z; +c(v™ —v™) + cA3> + I?Z;
<c(v”* — ™) n cAg n 2¢StL
- 2 2 Kd,,’
thus we have that
. . 4S5

‘We then substitute back, and know that

St . . 551 St
< g .
Ag_c\/Kdm<2(v v )+Kdm>+Kdm

Furthermore, for another absolute constant ¢, we have that

T E [0 L A
v v _c< —Kdm+Kdm>+ 3
/ S A 551 (d+1)Su
</ L 2 T* T
<c Kdm+c\/Kdm<(v v )+Kdm>+ Kd,

2
2 /
<\/2(v”*—vﬁ*)+ 55t St ) <o L +(c +2d +2)S.

which means

Kd, Vka,| = Kd,, Kd,, :

that can be translated to the bound

2
o as L (2 +2d +2)S. St 551
T T < / —_
voTvs (\/2C VEd, " EKdn ¢ Kdm> Kd,
2
[t (2¢2 +2¢ +2)Su
< /
_2<\/2c Kdm+ Kd,. )
L St
=0 <v Kdp Kdm>

where we use v/a + vb < /2(a + b).
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E Proof of Technical Lemmas

E.1 Bernstein’s Inequality

Lemma 11 (Bernstein’s Inequality). Let {X;}!" , be i.i.d random variables from X with values bounded in
[0, 1], then with probability at least 1 — 6, we have that

2 2
X]‘ < 2Var(X)log 5 N logg’
n 3n

where Var(X) is the variance of X.

For the proof of Bernstein’s inequality, we refer the interested reader to Wainwright [2019].

E.2 Proof of Lemmall]
Proof. We have that

Z th $,a)Varp(s 4) (Vh+1( )? >

he[H] s,a
r 2
=Y D &is,a)| D P$ls Vi ()~ <Z P(s’\s,a)Vh”H(s’)”) ]
helH] s,a L s s
[ . . . 2
=3 S é(s.a) Z (P(s')s,a) = P(s')s,a)) Vi ()2 + Vi ()2 = (ZP<s'|s,a>vh’;1<s'>”> ]
he[H] s,a s’

_ Z N V7r 2‘+1

<> D ilsa [Z (P(S/’&a) — P(|s,a) Vh+1 2#1]
he[H] s,a
2t+

+ Z Zgh s, a [Qh )2i+1 (ZP ’3 a Vh—l—l ) ]

he[H] s,a s’
<> Y éisa [Z (P('ls. ) — P(/)s.)) Vi (s ]
he[H] s,a

| gitl Z Zgh s,a) | QF (s, a) (ZP "Is,a) Vi (s ))

he[H] s,a

2Z+IZZ§h3a s, a)

he[H] s,a

- S| 5 (P P10 Vi (4

he[H] s,a
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where in the second step we use the fact that
> &i(s,a)

s,a
-3 [T eore

—Z€h+1 Wit (s

= Z (s, a Wi (s)? 7.

s',a’

> P(s]s, G)Vh+1(3/)2i+1]

i+1
Vi1 (s))?

We drop the ) ,u(s)VfT(s)zi+1 and use the convexity of 22" and ViT(s) = Ex Q7 (s, a) in the third step, and
the last step is indicated by the assumption that V},(s) < 1, Vh € [H],s € S.
With Assumption [I} we know that

ZZ{hsa s,a) <1,

he[H] s.a
as each trajectory that can generated by M can be generated by M, thus finish the proof. O

E.3 Proof of Lemma
Proof.

Z (P(s/\s,a) - P(s’]s,a)) Vi(s")

S/

3 <P(s'|s, @) = P(s]s.0)) (Vh(s’) ~3 P(sls, a)Vh(8')> ‘

s/

<Z |8 a)t
V. /
S\/S arp(s,q) (Vh(s )) L + St

n(s,a) n(s,a)’

where the first equality is due to the fact that 3", P(s'|s,a) = 3=, P(s'|s,a) = 1, the second inequality is
due to Bernstein’s inequality on each s’ and Assumption[Il and the last inequality holds by Cauchy-Schwarz
inequality. O

E.4 Proof of Lemma/[3
Proof. We have that

YD & (s,a)Varp(s ) (Vh+1( )’ )

he[H] s,a
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[ 2
=D D& (5| D P(sIs Vi (s~ <Z P(S/|S,G)Vh+l(8/)2i> ]

he[H] s,a L s s
- 2
=2 D & (s0) Z(P(s’!aa)—msws,a)) Vi ()" + Va(s)™™ — <ZP(3/\S=G)Vh+1(S/)2i> ]
he[H] s,a s’ s’

— ZM Wils 2L+1
- Z Zgh o [Z <P(S/|s’a) _P(Sl|87“)) Vh+1(8')2i+1]

hel[H] s.a
2i+1

+ZZ§h s, a)

helH] s.a

= Z Zgh 5a [Z (P(S/|3’a) —p(sl|s,a)) Vh+1(8/)2i+1

helH] s.a

+ 2if! Z th (s,a)

he[H] s,a

) [ Va(s)? ™ = (Z P(s’]s,a)VhH(s’))

8/

|

) [ Vis (ZP 5, @) Vi (s >>

s

where in the last step, we use the fact that 7* is a deterministic policy, and

VT (s) > r(s,a +ZP (s'|s,a)Vir1(s), Va€ A,
Vi (s) = +ZP Vi (s);
which guarantees that for Vj,(s) = V™ (s) and Vj,(s) = V™ (s) — VT (s),

Vi(s <ZP |, a) Vi1 (s ))] > 0.

& (s,a)

Moreover, we have that

PIPBLACD

Vi(s ZP "|s,a) Vi1 (s )]

he[H] s,a
= Y GEVas) = D D &ils)
he[H] s he[H\{1} s

:Zusvls

So we can conclude that

PIPILACD

he[H] s;a

Vi(s (ZP [s,a)Vhta(s ))]
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= 32 X&) D [Pln0) = Plsa)]| Vi () + F (s

he[H] s,a s’

thus finish the proof. O

E.5 Proof of Lemmald

Proof. Lemma 4] have been shown in [Dann et al! [2017, Lemma E.15]. Here we include the proof for
completeness.

=57 €7(5,0)(QF (5,0) — OT(s,a))

s,a

:Z [ﬂr(s,a) ( (s,a) — 7(s,a) +Z (s'|s,a)Vy ()] — Z {P(s'\s,a)V{(s’))])]

8/

:Z[éf@@( s,a) —7(s,a +Z[ s'[s,a) — P(s'|s,a) V' (s })

+ Zé’z — V5 (s))

-y Z[ ( (s,a) +Z[ o'|s, a) (s’]s,a))Vh“Jrl(s')])]

helH] s.a

E.6 Proof of Lemma 3]
Proof. By Bernstein’s inequality, we know that with high probability,

> D Eh(s.a)[r(s.a) — #(s,a)]

he[H] s.a

i r(s,a)t L
h;f];;gh 5a) [ n(s,a) * n(S,a)]
1/ \/h;ﬂszc;ﬁhsa s,a) K;m

where the first inequality use the fact that (s, a) < 1 and the second inequality is Cauchy-Schwarz inequal-
ity associated with Assumption 2l With Assumption [T} we know that

ZZ{hsa (s,a) <1,

helH] s.a

as each trajectory that can generated by M can be generated by M, which finishes the proof. O
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E.7 Proof of Lemma

Proof. Lemmalf]is similar to the Lemma 11 inZhang et al. [2020b], and here we provide a simplified proof.
Define

i := max{i | 2%A3 < A\ V(i)} U {0},

which is the largest integer satisfies the inequality 2%/ \3 < \; V(). We will make the recursion at most 4g

times. As V(4) is upper bounded by H, we know ig = O (log %) If 49 = 0, we have that
2

473
V(1) < /\—12
Otherwise,
920 \2
<A1V(io)

<\ (\/m + A+ 2i0+1A2)
<\ <\ [22i0+2)2 4 Xy + 2i0+1A2>
=A1(2972 0 + \q),
we have that
(2900 — 201)? < BAZ,
which means
200Ny < (V5 + 2)A,
so V¢ < ig, we have that

V(i) < VMV + 1) 4+ (V5 + 3) ;.

V(i) <202\ + A1 < (4V5 + 9) A1,

and when V(i+1) > <% +1/V5+ 175’) A1, we have V(i) < V(i+1), when V(i+1) < <% +1/V5+ %) A1,

V(i) < <% +4/VE+ %) A1. So V(1) < (4v/5 + 9) ;. Combine the two cases, we have that

V(1) < max {4/\—/\%, (4\/3 + 9))\1} ;

1

which means

V(0) < max {4)\2 + A1, <\/ 4549 + 1> A+ 2)\2} < 6(A1 + A2),

which concludes the proof. O

33



F Further Discussion

F.1 Time-Homogenous vs. Time-Inhomogenous
F.1.1 Offline Policy Evaluation

One can notice that the lower bound of offline policy evaluation under time-homogenous setting (shown
above) and time-inhomogenous setting (that can be simplified from the Cramer-Rao lower bound of [Jiang and Li,
2016]) are identical. It can be surprising at the first glance, as one common belief for reinforcement learn-
ing is that the time-homogenous MDP should be easier than the time-inhomogenous MDP. However, we
remark that, this argument does not hold for the policy evaluation. This is due to the fact that in time-
homogenous setting, as the error from the estimation of transition will be accumulated along the horizon,
we need (2(H) samples for each transition to make sure that the accumulated error should be O(1). How-
ever, in the time-inhomogenous setting, the error from the estimation of each level transition is probably not
accumulated, which means we only need €2(1) samples for each transition at each level to make sure the final
error to be O(1). This can also be seen in the analysis of offline policy evaluation under time-inhomogenous
setting in [Yin and Wang, 2020, [Yin et al., 2020], where the authors decouple the error from each sample
(Sh, an, Sh+1), which forms a martingale difference sequence with each step variance O(1) that can then
apply the Freedman’s inequality to obtain a tight bound. Under time-inhomogenous setting, we notice that
the error from each sample (s, a, s”) can only form a martingale difference sequence with each step variance
O(H), which will not lead to a tighter bound. We want to emphasize that the results in [[Yin and Wang, 2020,
Yin et all, 12020] does not directly indicate results in this paper.

Moreover, we notice that the analysis in [[Yin and Wang, 2020, [Yin et al., 2020] can be translated to a
value-dependent bound and thus can be horizon-free under Assumption [1} with the following lemma:

Lemma 12. Under Assumption[l] we have that
Z Zgh s,a)Var(r(s,a) + Vi 1(s")) < 307,
he[H] s,a

where the term at the left hand side is exactly the variance term of MIS estimator considered in [Yin and Wang,
2020, Lemma 3.4]

Proof.
D> (s, a)Var (r(s,a) + Vi (5)
he[H] s,a
r 2
<Y D &isia) |r(sca) + ) P(ss,a) Vil ()] — (Z P(5/|Sva)vh7r+l(3/)>
he[H] s,a i s/ s/
r 2
< 3 Y €is.a) | r(s.a) + Qf(s.0)” — ZP<s/|s,a>vh“+1<s’>]
he[H] s,a s’
<322£hsa (s,a) = 30",
he[H] s,a

where we use the following fact:
2

S i (s,0)P(']s, ) [V ()]

8(18
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2

= Z 5;7{+1(3/) [V}:r-i-l(s/)]

’

=> G |D m(d]s)Qf (s, a)

a

<Y ()Y T (@) QR4 (s )
s’ a’
— Z £g+1(8/7a,)Q2+1(3,7a,)2-
s',a!

O

This shows that the offline policy evaluation under time-inhomogeneous setting is also horizon-free,
which also matches the intuition that if the density ratio can be lower bounded, then we can construct a
trajectory-wise importance sampling (IS) estimator that only depends on the number of episodes. Notice that,
in [Yin and Wang, 2020, [Yin et all, [2020], the higher order term has an additional /S A factor. Tightening
such factor is beyond the scope of this paper.

F.1.2 Offline Policy Optimization

For the offline policy optimization, it’s known that time-inhomogeneous MDP cannot avoid the additional
H factor in sample complexity, thus can never be horizon-free. We also want to remark that with Lemma
2

the results in [Yin et al., 2020] can be translated to a 0) ( H—> error bound as well as a O ( H? >

nd, dm €2

sample complexity bound that holds for all range of ¢ € (0,1]. Our bound, however, have an additional
higher order term O (%) We would like to remark that, this is due to the time-homogeneous nature of
our setting, which makes V,fr " heavily depends on P. On the other hand, in time-inhomogeneous setting,
Vh”* only depends on Pk(s, a) for k > h, thus can directly apply Bernstein’s inequality when bounding the
term (If’h(s, a) — Pp(s, a)) V;T,, which will not introduce additional S factor. The best known result for

finite horizon time-homogenous MDP [Zhang et al., [2020b] also has this additional S factor, and how to
eliminate this additional S factor remains an open problem.

F.2 Finite-Horizon vs. Infinite-Horizon
F.2.1 Offline Policy Evaluation

We remark that [Li et al), 2020] provides a value-dependent bound for the policy evaluation under infinite-
horizon generative model setting that accommodates full range of €. We obtain the similar results in finite-
horizon setting that can accommodate full range of €, however, with a different and probably simpler analy-
sis.

F.2.2 Offline Policy Optimization

[Liet al), 2020] also provides a minimax-optimal sample complexity bound up to logarithmoc factors for
policy optimization with generative model that accommodates full range of . We notice that such kinds of
analysis cannot be directly applied to the finite-horizon setting, as their “absorbing MDP” technique can-
not be directly applied to the finite-horizon MDP, due to the difference of time-homogenous value function
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in infinite-horizon setting and time-inhomogenous value function in finite-horizon setting, which has been
pointed out by [Cui and Yang, 2020]. And thus most of the existing work does not provide a sample com-
plexity bound that can match the lower bound. To the best of our knowledge, our work first provide a sample
complexity bound that match the lower bound up to logarithmic factors and an high-order term.

F.3 With General Function Approximation

There are also works considering the offline policy optimization with general function approximation under
different kinds of function class assumption like realizability and completeness [e.g.|Chen and Jiang, 2019,
Xie and Jiang, 2020a,b], which generally do not imply tight bounds under certain scenarios like e.g. tabular
MDP. We leave the extension to general function approximation as future work.

F.4 Without Sufficient Exploratory Data

Recently, [Liu et al!, 2020b, [Kumar et all, 2020] also introduces another perspective on performing offline
policy optimization within a local policy set when the offline data is not sufficient exploratory, which is
different from the global policy optimization we consider here. We want to emphasize that, if we want to
approach the global optimal policy, our assumption on good data coverage i.e. Assumption [2| is necessary.
Otherwise, we will suffer from the error from under-explored state-action pair, as Theorem [2] and Theorem
suggests.
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