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Abstract

Obtaining first-order regret bounds—regret bounds scaling not as the worst-case but with
some measure of the performance of the optimal policy on a given instance—is a core question in
sequential decision-making. While such bounds exist in many settings, they have proven elusive
in reinforcement learning with large state spaces. In this work we address this gap, and show
that it is possible to obtain regret scaling as O(y/d3H3 - V}* - K +d*>°H? log K) in reinforcement
learning with large state spaces, namely the linear MDP setting. Here V}* is the value of the
optimal policy and K is the number of episodes. We demonstrate that existing techniques based
on least squares estimation are insufficient to obtain this result, and instead develop a novel
robust self-normalized concentration bound based on the robust Catoni mean estimator, which
may be of independent interest.

1 Introduction

A central question in reinforcement learning (RL) is understanding precisely how long an agent must
interact with its environment before learning to behave near-optimally. One popular way to measure
this duration of interaction is by studying the regret R, or cumulative suboptimality, of online
reinforcement algorithms that explore an unknown environment across K episodes of interaction.
Typical regret guarantees scale as Ry < O(y/poly(d, H) - K), where d measures the “size” of the
environment and H the horizon length of each episode.

In many cases, however, regret bounds scaling at least as large as Q(v/K) may be deeply
unsatisfactory. Consider, for example, an environment where the agent receives rewards only at very
hard-to-reach states; that is, states which can only be visited with some small probability p <« 1. In
this case, the maximal cumulative reward, optimal cumulative expected-reward, or value V* will
also be quite small. In other words, the cost of making a “mistake” at any given episode results in a
loss of at most V}* reward, and the cumulative loss associated with, say V'K, mistakes, should also
scale with this maximal penalty.

Motivated by this observation, there has been much recent interest in achieving so-called
small-value, small-loss, or “first-order” regret bounds, which scale in proportion to V{: R <
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O(\/ Vi - poly(d, H) - K) (it is well know that the the scaling \/V;*K is unimprovable in general,
even in simple settings). Bounds of this form have received considerable attention in the online
learning, bandits, and contextual bandits communities, and were responsible for initiating the study
of a broad array of instance-dependent regret bounds in tabular (i.e. finite-state, finite-action) RL
settings as well.

First-Order Regret Beyond Tabular RL. Though first-order regret has been achieved in
both non-dynamic environments (e.g. contextual bandits) and in dynamic environments with finite
state spaces (tabular RL) (Zanette & Brunskill, 2019; Foster & Krishnamurthy, 2021), extension to
reinforcement learning in large state and action spaces has proven elusive. The main difficulty is
that, even though the cumulative expected value of any policy is bounded as V}*, the value-to-go
associated with starting at some state s, at step h, denoted V;*(sp), may be considerably larger.
Again, the paradigmatic example is when the reward is equal to 1 on a handful of very hard-to-reach
states. This means that the variance of any learned predictor of the value function V};*(s;,) may also
be highly nonuniform in the state sp. In the RL setting, this becomes more challenging because the
distribution across states evolves as the agent refines its policies. And while in tabular settings, one
can address the non-uniformity by reasoning about each of the finitely-many states separately, there
is no straightforward way to generalize the argument to larger state spaces.

Contributions and Techniques. In this paper, we provide first-order regret bounds for rein-
forcement learning in large state spaces, the first of their kind in this setting. Our results focus on
the setting of MDPs with linear function approximation (Jin et al., 2020b), where the transition
operators are described by linear functions in a known, d-dimensional featurization of a potentially
infinite-cardinality state space. In this setting, we achieve the following regret bound.

Theorem 1 (Informal). Our proposed algorithm, FORCE, achieves the following first-order regret
bound with high probability: Ry < O(\/d*H3 - V- K + d>*°H3log K).

To our knowledge, FORCE is the first algorithm to achieve first-order regret for RL in large state
spaces. Our algorithm builds on the LSVI-UCB algorithm of (Jin et al., 2020b) for worst-case (non-
first-order) regret in linear MDPs. LSVI-UCB relies on solving successive linear regression problems
to estimate the Bellman-backups of optimistic overestimates of the optimal value function. In
that work, the analysis of the regression estimates relies on a so-called “self-normalized martingale”
inequality for online least squares—a powerful tool which quantifies the refinement of a ridge-
regularized least-squares estimator under an arbitrary sequence of regression covariates ¢; to targets
yr satisfying Ely; | ¢¢] = (¢4, 04), and under the assumption of sub-Gaussian noise. This tool
has seen widespread application not only in linear RL, but in bandit and control domains as well
(Abbasi-Yadkori et al., 2011; Sarkar & Rakhlin, 2019).

In the tabular RL setting, first-order regret bounds can be obtained by applying Bernstein-style
concentration bounds, which allows the exploration level to adapt to the underlying problem
difficulty. Towards achieving first-order regret in linear RL, we might hope that a similar approach
could be used, and that developing variance-aware or Bernstein-style self-normalized bounds may
provide the necessary refinements. A second challenge arises in the RL setting, however, since, as
mentioned, the “noise” is inherently heteroscedastic (i.e., the noise variance changes with time)—the
variance of y; depends on ¢;. Thus, not only do we require a variance-aware self-normalized bound,
but such a bound must be able to handle heteroscedastic noise as well.

The recent work of Zhou et al. (2020) addresses both of these issues—proposing a Bernstein-style
self-normalized bound, and overcoming the heteroscedasticity by relying on a weighted least-squares



estimator which normalizes each sample by its variance. A naive application of these techniques,
however, results in a scaling of 1/opyi, in the regret bound, where oy, is the minimum noise
vartance across time. While this dependence can be reduced somewhat, ultimately, it could be
prohibitively large, and prevents us from achieving a first-order regret bound in the case when V" is
small.

The 1/0min dependence arises because, if we normalize by the variance in our weighted least-
squares estimate, the normalized “noise” has magnitude, in the worst case, of O(1/0min). In other
words, we are paying for the “heavy tail” of the noise, rather than simply its variance. Obtaining
concentration independent of such heavy tails is a problem well-studied in the robust statistics
literature. Towards addressing this difficulty in the RL setting, we take inspiration from this
literature, and propose applying the robust Catoni estimator (Catoni, 2012). In particular, we
develop a novel self-normalized version of the Catoni estimator, as follows.

Proposition 2 (Self-Normalized Heteroscedastic Catoni Estimation, Informal). Given observations
Ut = (Ox,Pt) + mp with E[ye | d¢] = (Pr,04), El|[ne|* | 1] < 00, and |n:| < oo with probability 1,
let catv] denote a Catoni estimate of 0, in direction v from the observed data. Then, with high
probability, for all v simultaneously:

cat[v] —v'0,| < ||'v||A;1 . <\/log 1/6+d- Cog + \f)\||0*||2) + (lower order term).

where Ar = X+ S1_, 07 2], o7 is an upper bound on Ely? | ¢, Ciog is logarithmic in problem
parameters, and the ‘lower order term’ can be made as small as T~9 for any constant g > 0.

To apply Proposition 2, we take ¢y = @(Spk,ap k) as the features, and yp, , = th+1(3h+1,k) as
the targets, where th+1(-) is an optimistic overestimate of the value function. In particular, V,f+1(-)
depends on, and may be correlated with, past data. Following Jin et al. (2020b), we address this issue
by establishing an error bound which holds uniformly over possible value functions th+1(-). We call
this guarantee the ‘Heteroscedastic Self-Normalized Inequality with Function Approximation’, and
state it formally in Section 5. The proof combines Proposition 2 with a careful covering argument,
which (unlike past approaches based on standard ridge-regularized least squares) requires a novel
sensitivity analysis of the Catoni estimator.

2 Related Work

Worst-Case Regret Bounds in Tabular RL. A significant amount of work has been devoted
to obtaining worst-case optimal bounds in the setting of tabular RL (Kearns & Singh, 2002;
Kakade, 2003; Azar et al., 2017; Dann et al., 2017; Jin et al., 2018; Dann et al., 2019; Wang et al.,
2020; Zhang et al., 2020b,a). These approaches fall into both the model-based (Azar et al., 2017;
Dann et al., 2017) as well as the model-free category (Jin et al., 2018). While the exact bounds
differ, they all take the form O(y/poly(H) - SAK + poly(S, A, H)). Recently, several works have
focused on obtaining bounds that only scale logarithmically with the horizon, H, in the setting
of time-invariant MDPs with rewards absolutely bounded by 1. Zhang et al. (2020a) answers the
question of whether horizon-free learning is possible by proposing an algorithm with regret scaling
as O(V SAK + S%A)—independent of polynomial dependence on H. This is known to be worst-case
minimax optimal.

RL with Function Approximation. In the last several years, there has been an explosion of
interest in the RL community in obtaining provably efficient RL algorithms relying on function



approximation. An early work in this direction, Jiang et al. (2017), considers general function
classes and shows that MDPs having small “Bellman rank” are efficiently learnable. Several recent
works have extended their results significantly (Du et al., 2021; Jin et al., 2021). In the special
case of linear function approximation, a vast body of recent work exists (Yang & Wang, 2019; Jin
et al., 2020b; Wang et al., 2019; Du et al., 2019; Zanette et al., 2020a,b; Ayoub et al., 2020; Jia
et al., 2020; Weisz et al., 2021; Zhou et al., 2020, 2021; Zhang et al., 2021; Wang et al., 2021). A
variety of assumptions are made in these works, and we highlight two of them in particular. First,
the linear MDP model of Jin et al. (2020b), which is the setting we consider in this work, assumes
the transition probabilities and reward functions can both be parameterized as a linear function
of a feature map. Second, the linear mixture MDP setting of (Jia et al., 2020; Ayoub et al., 2020;
Zhou et al., 2020) makes no linearity assumption on the reward function, but assumes that the
transition probabilities are the linear parameterization of d known transition kernels. Notably, the
linear MDP assumption has infinite degrees of freedom, and as such model-free approaches are
more appropriate, while the linear mixture MDP setting has only dH degrees of freedom, making
model-based learning effective.

As mentioned above, of note in the linear function approximation literature is the work of Zhou
et al. (2020), which proposes an algorithm with regret scaling as O(+/(d2H? + dH3) K ), which they
show is minimax optimal when d > H. Their result relies on a Bernstein-style self-normalized
confidence bound. While they show that the variance dependence of the Bernstein bound allows
them to achieve minimax optimality, as noted, it is insufficient to achieve a first-order bound,
motivating our use of the Catoni estimator.

First-Order and Problem-Dependent Regret Bounds in RL. The RL community has
tended to pursue two primary directions towards obtaining problem-dependent regret bounds. The
first is the aforementioned first-order bounds, the focus of this work. To our knowledge, the only
work in the RL literature to obtain first-order regret is that of Zanette & Brunskill (2019), which
only holds in the tabular setting. Zanette & Brunskill (2019) obtain several different forms of such
a bound, showing that their algorithm, EULER, has regret which can be bounded as either

Ri < O(VQ*SAHK) or Ry < O(V/G2SAK)

where Q* = max; q 5, (Var[Ru(s, a)] + Varg..p, (5.0 (Vi1 (s)]) and G is a deterministic upper bound
on the maximum attainable reward on a single trajectory for any policy 7: Zthl R(sp, mh(sp)) < G.
A subsequent work, Jin et al. (2020a), showed that a slight modification to the analysis of EULER
allows one to obtain regret of!

R < O(/SAH - ViK).

A second approach to instance-dependence, taken by (Simchowitz & Jamieson, 2019; Xu et al.,
2021; Dann et al., 2021), seeks to obtain regret scaling with the suboptimality gaps. This yields

regret bounds of the form O (Zs,a,h:Ah(s,a)>O %) where Ap(s,a) ==V (s) — Q5 (s,a) is

the suboptimality of playing action a in state s at step h. While these works consider only the
3 175
tabular setting, recently He et al. (2021) obtained regret in the linear MDP setting of O(M)

- 3 min
and in the linear mixture MDP setting of O(%M), where A, is the minimum non-zero gap

in the MDP. Gap-dependent regret bounds allow for a characterization of the regret in terms of

!Note that this result was shown for an MDP where the reward function was non-zero only at a single (s, h). Their
analysis can be extended to arbitrary reward functions, however, though extra H factors will be incurred.



fine-grained problem-dependent quantities. However, they typically capture the total regret incurred
to solve the problem, and are therefore overly pessimistic over shorter time horizons.

First-Order Regret Beyond RL. A significant body of literature exists towards obtaining
first-order regret bounds in settings other than RL. This work spans areas as diverse as statistical
learning (Vapnik & Chervonenkis, 1971; Srebro et al., 2010), online learning (Freund & Schapire,
1997; Auer et al., 2002; Cesa-Bianchi et al., 2007; Luo & Schapire, 2015; Koolen & Van Erven, 2015;
Foster et al., 2015), and multi-armed bandits, adversarial bandits, and semibandits (Allenberg et al.,
2006; Hazan & Kale, 2011; Neu, 2015; Lykouris et al., 2018; Wei & Luo, 2018; Bubeck & Sellke,
20205 Ito et al., 2020).

We highlight in particular the work in the contextual bandit setting. A COLT 2017 open problem
(Agarwal et al., 2017) posed the question of obtaining first-order bounds for contextual bandits to the
community, which Allen-Zhu et al. (2018) subsequently addressed by obtaining a computationally
inefficient algorithm achieving this. Foster & Krishnamurthy (2021) built on this, showing that it
is possible to achieve such a bound with a computationally efficient algorithm. While Foster &
Krishnamurthy (2021) considers function approximation, their regret bound scales with the number
of actions, and is therefore not applicable to large action spaces.

Robust Mean Estimation. Our algorithm critically relies on robust mean estimation to obtain
concentration bounds that avoid large lower-order terms. We rely in particular on the Catoni
estimator, first proposed in Catoni (2012). While the original Catoni estimator assumes i.i.d. data,
Wei et al. (2020) show that a martingale version of Catoni is possible, which is what we apply in
this work. We remark that several applications of the Catoni estimator to linear bandits have been
proposed recently (Camilleri et al., 2021; Lee et al., 2021). We refer the reader to the survey Lugosi
& Mendelson (2019) for a discussion of other robust mean estimators.

3 Preliminaries

Notation. All logarithms are base-e unless otherwise noted. We let logs(xy,x2,...,2,) =
> i, log(e 4+ ;) denote a term which is at most logarithmic in arguments zi,z2,...,2, > 0.
We let BY(R) := {x € R?: ||z|| < R} denote the ball of radius R in R?, and specialize B¢ := B%(1)
to denote the unit ball. S*~! denotes the unit sphere in R%. We use < to denote inequality up to
absolute constants, O(-) to hide absolute constants and lower-order terms, and (5() to hide absolute
constants, logarithmic terms, and lower-order terms. Throughout, we let bold characters refer to
vectors and matrices and standard characters refer to scalars.

We also highlight MDP-specific notation; see below for further exposition. We let s, 5, and ay,
denote the state and action at step h and episode k, and denote features and rewards ¢y :=
D(Sh k> Ohk), Thi = Th(Sh k> Qhk)- 7% denotes the policy played at episode k. We use Fh i to denote
the o-field U(ngl U],:,_le {(sh/ s am i) } UZ,:l {(sn k,an k)}), so that ¢y k is Fp p-measurable. We
will let Ep[V](s,a) = Eyp,(|s,a)[V ()], s0 E4[V](s,a) denotes the expected next-state value of V'
given that we are in state s and play action a at time h.

3.1 Markov Decision Processes

We consider finite-horizon, episodic Markov Decision Processes (MDPs) with time inhomogeneous
transition kernel. An MDP is described by a tuple (S, A, H, { P, }HL |, {r,}L ), with S the set of



states, A the set of actions, H the horizon, Py, : S x A — A(S) the probability transition kernel at
time h, and 7, : S x A — [0,1] the reward function. We assume that {P,}Z | is initially unknown
to the learner, but that r, is deterministic and known. Without loss of generality, we further assume
the intial state s; is deterministic.

At each episode, the agents begins in state s1; then for each time step h > 1, an agent in state sp
takes action ay, receives reward ry(sp,ap,) and transitions to state s’ with probability Py (s'|sp, ap,).
This process continues for H steps, at which point the MDP resets and the process repeats.

A policy 7 : § x [H] - A(A) is a mapping from states to distributions over actions. For
deterministic policies (Vh, s, mp(s) is supported on only 1 action) we let 7 (s) denote the unique
action in the support of the distribution 7y (s). To an agent playing a policy m, at step h they choose
an action ap, ~ m(sp). We let E;[-] denote the expectation over the joint distribution trajectories
(s1,a1,...,8m,apm) induced by policy 7.

Value Functions. Given a policy m, the Q-value function for policy 7 is defined as follows:

H

QZ(S,CL) = Eﬂ Z Th/(Sh/,CLh/)‘Sh = S,ap = a
h'=h

In words, Q7 (s,a) denotes the expected reward we will acquire by taking action @ in state s
at time h and then playing 7w for all subsequent steps. We also denote the walue function by
ViT(s) = Eqrr, (5)[@F (s, @)], which corresponds to the expected reward we will acquire by playing
policy 7 from state s at time h. The @-function satisfies the Bellman equation:

Q;Lr(& CL) - Th(sv a) + Eh[foﬂ](s’ CL).

We denote the optimal Q-value function by Qj(s,a) = sup, @7 (s,a), the optimal value function
by Vi*(s) = sup, V}"(s), and the optimal policy by 7*. We define V7 ,(s) = QF,(s,a) = 0 for all
s and a. Finally, note that we always have that Q7 (s,a) < H, for all m, h, s, a, since we collect a
reward of at most 1 at every step.

Episodic MDPs and Regret. In this paper, we study minimizing the regret over K episodes
of interaction. At each episode k, the learning agent selects a policy 7%, and receives a trajectory
(81,k> @1 k> - -+ SH k> GH ). Again, the transition kernels (Ph) _, are unknown to the learner, whereas
(as discussed above), the reward function is known. The regret is defined as the cumulative
suboptimality of the learner’s policies:

K
=D [Vi(s1) = V™ (s1)].
k=1

As s; is fixed, we will denote the value of policy 7 as Vi" := V{"(s1). Using this notation we can
express the regret as Ry = S0 [V — V™).

3.2 Reinforcement Learning with Linear Function Approximation

In the tabular RL setting, it is assumed that |S| and |.A| are both finite. This assumption is quite
limited in practice, however, and is not able to model real-world settings where the state and action
spaces may be infinite. Towards relaxing this assumption, we consider the linear MDP setting of
Jin et al. (2020b), which allows for infinite state and action spaces. In particular, this setting is
defined as follows.



Definition 3.1 (Linear MDPs). We say that an MDP is a d-dimensional linear MDP, if there
exists some (known) feature map ¢(s,a) : S x A — R? and H (unknown) signed measures g, € R?
over § such that:

Ph('|S,CL) = <¢(37a)7uh(')>'
We will assume that |[¢(s,a)l|2 < 1 for all 5,a, and ||[u4|(S)ll2 = || [cs |dma(s)]l2 < V.

Note that, unlike the standard definition of linear MDPs which assumes that the reward is
also linear, r1,(s,a) = (¢(s,a),0y), we consider more general possibly non-linear (though bounded)
reward functions. To accommodate this change we must assume that the reward is deterministic and
known to the learner. We also consider time-varying reward in the appendix, and in the subsequent
section remark on how unknown rewards can be accommodated, if we assume they are linear.

We further note that there cannot exist an (s, a) for which ¢(s,a) = 0, for otherwise Definition 3.1
would imply that Py(:|s,a) is not a valid distribution. As shown in Jin et al. (2020b), the linear
MDP setting includes tabular MDPs, while also encompassing more general, non-tabular settings,
for example where the feature space corresponds to the d-dimensional simplex. A key property of
linear MDPs is the following.

Lemma 3.1 (Lemma 2.3 of Jin et al. (2020b)). For a linear MDP and any policy w, there exists
some set of weights {wT }_| such that QF(s,a) = (P(s,a),w]) for all s,a,h.

Lemma 3.1 motivates us to consider linear policy classes in developing our algorithm. More
generally, the linear structure of the MDP implies that E,[V](s,a) = (¢(s,a), wy) for some wy
and any arbitrary function V : § — R.

3.3 Catoni Estimation

A key tool in our algorithm is the robust Catoni estimator (Catoni, 2012). The Catoni estimator is
defined as follows.

Definition 3.2 (The Catoni Estimator). Let Xi,..., X7 be a sequence of real-values. The Catoni
robust mean estimator with parameter o > 0, denoted catrq, is the unique root z of the function

T
feat(z Xver, @) =) teat(a( Xy — 2)), (3.1)
t=1

where ¥cat(+) is defined by

log(l1+y+y®) y>0
—log(1-y+y?) y<O0

YPeat (y) = {

The following result illustrates the key property of the Catoni estimator.

Proposition 3 (Theorem 5 of Lugosi & Mendelson (2019)). Let Xi,..., X7 be independent,
identically distributed random variables with mean pu and finite variance 0® < oo. Let § € (0,1) be
such that T' > 2log(1/0). Then the Catoni mean estimator catr o with parameter

2log1/d

2log1/é
To*(1+ 7=510¢175)




satisfies the following guarantee with probability 1 — 24,

lcaty — gl < 202log 1/
T T —2log1/é

As Proposition 3 shows, the Catoni estimator requires only that the second moment of the
distribution is bounded to obtain concentration, and has estimation error which scales only with the
second moment and independent of other properties of the distribution. We make key use of this
result in the following analysis, and state our novel extension of the Catoni estimator to general
regression settings in Section 5.

4 First-Order Regret in Linear MDPs

We are now ready to present our algorithm, FORCE.

Summary of Key Parameters. Our algorithm applies the robust Catoni estimator to measure
the next-state expectation of the value function. The Catoni estimator requires an estimated upper
bound on the value function, which we denote as vy, ;, and describe in detail below. Throughout, we
let vipin = 1/K denote a lower floor on these estimates. Using these estimates, we introduce the
value-normalized feature covariance, with its regularized analogue

k

1
Yk = Z vT¢h’T¢;’T’ App =M +2p (4.1)
=1 h,T

For a given (k,h) and direction v, we use the above covaraince to define a (directional) Catoni
parameter

aen(v) = min {5 . Hvﬂgi’kil,amax} ,

where f is defined in the FORCE pseudocode, and we take apmax = K/Vmin = K 2 For a given k, h
and direction v € R?, we adopt the ayp(v) as the Catoni parameter, and set caty, [v] to refer to
the associated Catoni estimate on the data

Xr=v"nVE L (snir ) Vi T=1,.. k=1

Algorithm Description. FORCE proceeds similarly to the LSVI-UCB algorithm of Jin et al.
(2020b) by approximating the classical value-iteration update:

QZ(S’G) A Th(S,CL) +Eh[HE’:/LX QZ—&—l('aa/)](S)a)? \V/S,CL. (42)

It is known that this update converges to the optimal value function. While in practice we cannot
evaluate the expectation directly, it stands to reason that an update approximating (4.2) may
converge to an approximation of the optimal value function. As in Jin et al. (2020b), we therefore
apply an optimistic, empirical variant of the value iteration update, which replaces Q* with QF,
the optimistic estimate of Q* at round &, and the exact expectation with an empirical expectation.
The key difference in our approach as compared to Jin et al. (2020b) is the setting of the optimistic



Algorithm 1 First-Order Regret via Catoni Estimation (FORCE)
1: input: confidence §, number of episodes K
2 AN 1/H?, vpin < 1/K, ¢ <— universal constant
3: Kinit < ¢ (d2 log(max{d,v_i , K, H}) + log(2HK/6))
4: 6\/ d?log (max{d,v_{ , H,K}) + log(2HK/5)
5. for k=1,2,3,...,K do
6: forh=H,H—-1,...,1do

min’

7 if k£ < Kjni; then

8: \7}21,k—1 — 2H?

9: else

10: V%L,k—l < max {20Hcath7k_1[(k 2) h k 2¢h . 1] + 20H,3||(bh ke 1”A 1 B

11 20 Hvin 82/ (k = 1) 2, }

12: Form Ap 1+ M\ + Zf;i \_I%(ﬁh,T(ﬁ,TT as in Equation (4.1)

h,T ’
/7 BalVi¥](v) o= catn k[(k — 1A, 1]

13: Compute linear summary WY < arg min,, SUPyepd\ {0} | (v, W) — Eh[V}ﬁ_l]( )|/Hv||A} 1
1

14: Q]]i(v ) A min{rh('a ) =+ <¢(7 ')a 135) + 6B”¢(a ')HA;}C_l + 12Vmin62/k2? H}

15: th(-) < maxg Qi(, a)

16: for h=1,2,...,H do

17: Play ay j = arg max, Q’fl(smk, a), observe Th.ks Sh+1,k

estimate. While Jin et al. (2020b) rely on a simple least-squares estimator to approximate the
expectation, we rely on the Catoni estimator. We show that, with high probability:

catil(k — DAL (5 @)] ~ EalVE ](5,0)] S Bllb(s,0)l5r |

Thus, setting IAEh[V}fH](v), our estimate of the next-state expectation, to caty x[(k — 1) ;}C_lv]
ensures that I/[i:‘,h[V,fH](v) approximates the expectation in (4.2) for v = ¢(s,a). As discussed in

more detail in Section 5.4, instead of using Eh[th+1](v) directly, Line 13 summarizes I@h[v,ﬁ_l}(v)
with a linear approximation to it,

v, w —Eu[VF (v
@,lﬁ—argmin sup (v, w) nl h+1]( )|

W yeBd\ {0} lvlla

(4.3)

This approximation, (¢(s,a),wy), is shown to be an accurate approximation of Iﬁh[thH](v) in
Lemma 5.2, intuitively because the “ground truth” is itself linear. Solving the optimization on
Line 13 may be computationally inefficient, so we provide a computationally-efficient modification
in Section 4.2 which has only slightly larger regret.

With the aforementioned linear approximation, we define our optimistic overestimate of the
@-function on Line 14 as

QF(-,-) + min{ry(-,-) + (&(-,-), W) + 68| H(, .)||A};}€_1 + 12vmin 3%/, HY,

approximating the value-iteration update of (4.2) with additional bonuses to account for the
approximation error.



A Note On Scaling. To achieve first-order regret, we need both the errors in our estimates and

the magnitude of the bonuses to scale with the magnitude of the value function. To accomplish this,

we ensure the bonuses scale with ||¢(s, a)|| AL where Ay, 1 is the regularized variance-normalized
k—1

covariance in (4.1), and V2 , | is defined as

W 1 = max { 20Hcaty [0k = 2)A7 ko] + 20HB( Sl gt |+ ), v, b (44)
so that, up to effectively lower-order terms accounting for the estimation error,
T 2 ~ 2
En[(Vii1)1(Shors anr) =V, -

As we will show, this choice of \7}21,7' is sufficiently large to ensure our Catoni estimate, Iﬁh[thH](v),

concentrates. At the same time, when Ey[(V/T,1)?](sh,r, an,-) is small for some 7, the variance-
normalized regularization Ay, ;_1 ensures the bonus ||¢(s,a)||,-1 is small as well.
h,k—1

4.1 Formal Regret Guarantee

We analyze two regret bounds for FORCE. In the first bound, we analyze the description given in
Algorithm 1, which gives a sharper regret guarantee at the expense of computational inefficiency:

Theorem 4 (Main Regret Bound). Fiz a failure probability § € (0,1) and K € N. Then, the regret
of FORCE as specified in Algorithm 1 satisfies the following bound with probability at least 1 — 34:

Ry < ¢ \/ BH3VFEK -log®(HK/6) + cod”/>H? log"?(HK /6)
for universal constants ¢y, cs.

As Theorem 4 shows, up to lower order terms scaling only polynomially in d, H,log K, and
log1/6, FORCE achieves a first-order scaling in its leading order term of O(,/V*K). We sketch the
proof of Theorem 4 in Section 6 and defer the full proof to Appendix B.

Comparison to Jin et al. (2020b). Note that Vi* < H, since we assume that the reward at each
step is bounded by 1. Thus, Theorem 4 shows that in the worst case FORCE has regret scaling as
(5(\/ d3H*K). This exactly matches the regret of LSVI-UCB given in Jin et al. (2020b). However,
we could have that V}* < H, in which case FORCE significantly improves on LSVI-UCB. Note
also that the minimax lower bound scales at least as Q(Vd2K) (Zanette et al., 2020b)—while we
do not match this in general, our d dependence does match the d-dependence of the best-known
computationally efficient algorithm (Jin et al., 2020b).

Extension to Linear Mixture MDPs. While we have focused on the linear MDP setting in
this work, we believe our techniques and use of the Catoni estimator could be easily extended to
obtain first-order regret bounds in the linear mixture MDP setting. As noted, while Zhou et al.
(2020) achieves nearly minimax optimal regret, their techniques do not easily generalize to obtain a
first-order regret bound. We leave extending our method to linear mixture MDPs to future work.
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Handling Unknown and Linear Rewards. We have assumed that the reward function is
known, but that it may be nonlinear. If we are willing to make the additional assumption that the
reward is linear, ry(s,a) = (¢(s,a), 0y,) for some 6y, we can handle unknown reward by modifying
the Catoni estimator on Line 12 to use the data

Xr =0 na(rns: + Vil (S Vi T=1,.. k=1,

and adding 47“% s to \7}% i_1- With this small modification, FORCE is able to handle unknown
rewards and achieves the same regret as given in Theorem 4.

4.2 Computationally Efficient Implementation

As noted, FORCE is not computationally efficient because it is not clear how to efficiently solve the
optimization on Line 132. In this section, we provide a computationally efficient alternative, which
only suffers slightly worse regret.

To obtain a computationally efficient variant of FORCE, we propose replacing Lines 12 and 13
with the following update:

En (Vi) (i) < caty (k= D)Ay L _qu fori=1,....d 45
Wy (w1, ug] - [BalVif ] (w), . Ba Vi (ug)] T
where U = [uq, ..., uq] denotes the eigenvectors of Ay, 1. This update is computationally efficient,

as it involves only an eigendecomposition, the computation of d Catoni estimates (which can be
computed efficiently), and a matrix-vector multiplication. The above approach satisfies the following
guarantee:

Theorem 5 (Computationally Efficient Regret Bound). Consider the variant of FORCE with
Lines 12 and 13 replaced by (4.5), and the update to Q’fl(s, a) on Line 1/ replaced with

Qﬁ(? ) - min{rh('a ) =+ <¢(7 ')’ 131’2) + 3(\/& + 2)5”(15(7 ')HAUC_I + 3(\/;i + 2)2Vmin52/k2a H}

Then with probability at least 1 — 36, the regret is at most

Ri < \/ dH3VYK -log®(HK /6) + cod*H? log™ 2 (HK /6)
and computation scales polynomially in d, H, K, and min{|.A|, O(29)}.

If we are willing to pay an additional factor of v/d, it follows that we can run FORCE in a
computationally efficient manner, assuming |.A| is small. The dependence on |A| seems unavoidable
and will be suffered by Jin et al. (2020b) as well, since computing the best action to play, ap x, on
Line 17 will require enumerating all possible choices of a. If | 4] is infinite, we can reduce this to
only 294 by covering all possible directions of @ (Sh.k, @), but it is not clear if this can be reduced
further in general.

*Note that one could also solve Line 13 by approximating the sup over B%\{0} to a max over a sufficiently-fine
e-net of Bd\{O}. Using standard covering estimates, this would require an exponentially-large-in-d cover of the ball,
and thus require computing 29 Catoni estimates.
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5 Catoni Estimation in General Regression Settings

In this section we develop a set of results that extend the standard Catoni estimator to general
martingale and heteroscedastic regression settings. The results presented here are critical to obtaining
the first-order regret scaling of FORCE. We remark that the results in this section are based on a
martingale version of the Catoni estimator first proposed in Wei et al. (2020).

5.1 Martingale Catoni Estimation

We begin by formalizing a martingale-linear regression setting in which our bounds (without function
approximation) apply. The setting is reminiscent of that considered in Abbasi-Yadkori et al. (2011),
but with two key generalizations: (a) the targets y; can be heavy-tailed, we only require they have
finite-variance, and (b) for each target y; we have an associated upper bound ¢? on its conditional
square expectation. This latter point is crucial for modeling heteroscedastic noise.

Definition 5.1 (Heteroscedastic Heavy-Tailed Martingale Linear Regression). Let (F;)¢>0 denote a
filtration, let ¢; € R? be a sequence of random JF;_1-measurable vectors, and y; € R be F;-measurable
random scalars satisfying

Yo = (Pr, 0x) + e, Bl Fio1] = (1, 04)

for some 6, € R? and 7, satisfying E[n;|F;_1] = 0, and E[n?|F;_1] < oo, but otherwise arbitrary (as
such, the distribution of 7; may depend on ¢;). Furthermore, let o? be a F;_i-measurable sequence
of scalars satisfying o2 > E[y?|F;_1], and let

T
Sri=> 07 ¢ .
t=1

In the regression setting of Definition 5.1, our goal is to estimate 6, in a particular direction,
v € R?, given observations {(¢+, yt, at)}g;l. As a warmup, the following lemma bounds certain
directional Catoni estimates.

Lemma 5.1 (Heteroscedastic Catoni Estimator). Assume we are in the regression setting of
Definition 5.1. For a fized vector v € R? let cat[v] denote the Catoni estimate applied to (X;)L,
where X; = v puys/o?, with a fized (deterministic) parameter o > 0. Then, for any failure
probability 0 > 0 and fized amax > 0, if our deterministic a can be written as

o mm{v. 1g<2/6>m} 5.1)

[0l

for some (possibly random) v > 1, then

< (24 29)[lvllz,

1
cat[v] — T’UTET - 0,

T2 amaxT
provided that T > (2 + 27%) log 2.

Note that the introduction of the slack parameter v > 1 accounts for the fact that « is assumed
to be chosen deterministically, while 37 is random. Lemma 5.1 shows that we can apply the Catoni
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estimator to estimate 0, in a particular direction, with estimation error scaling only with an upper
bound on E[n?|F;_1] and independent of other properties of 7;, such as its magnitude. This is
in contrast to Bernstein-style bounds which exhibit lower-order terms scaling with the absolute
magnitude of 7;. Lemma 5.1 serves as a building block for our subsequent estimation bounds, where
the choice of finite amay serves a useful technical purpose.

5.2 Self-Normalized Catoni Inequality

Next, we bootstrap Lemma 5.1 into a full-fledged self-normalized inequality for heteroscedastic noise.
To do so, we need to address two technical points:

e The ideal choice of « (for which ~ is close to 1) is not deterministic, but data-dependent.

e To estimate 6, in direction v, we would like to consider cat[v], where ¥ = TX,'v, since then
%TFZT -0, =v'0,. However, this choice of v introduces correlations between v and our

observations {(¢y,y, 01)},_;, which prevents us from applying Lemma 5.1 directly.

We adress both via a uniform-convergence-style argument and argue that a bound of the form
given in Lemma 5.1 holds for all v simultaneously. This requires a subtle argument to bound the
sensitivity of the Catoni estimator, given in Appendix A.5. With this bound in hand, we establish
the following truly heteroscedastic self-normalized concentration inequality, the formal statement of
Proposition 2 in the introduction.

Corollary 1 (Self-Normalized Heteroscedastic Catoni Estimation). Consider the setting of Defini-
tion 5.1, and suppose that with probability 1, |n| < 3, < oo and o2 > ognin >0 for allt. For a fived
reqularization parameter A > 0, define the effective dimension

max?

dr :=c-d-logs (T, T e Bn) -

Let cat [TA;lv] denote the Catoni estimate applied to (X¢)_, and parameter o given by

X; =Tv ' Az'¢wye/of, o =min W ITAZ 0|52 - (dr +log1/5), amax}

and for Ay = M\ + Zthl o 2] . Then, as long as T > 5(log1/8 4 dr), with probability at least
1—6, for all v € B¢ simultaneously,

3(log L +d
< Sllollp - (VIog1/E +dr + VAI6]) + B I (5

‘cat [TA}LU] — ’UTO* VT
max

In contrast to Lemma A.5, Corollary 1 only adds the requirement that n; and a?nin satisfy

probability-one upper and lower bounds, respectively, which enter only logarithmically into our final
bound?. Similarly, the parameter aupay also enters at most logarithmically into the final bound, and
hence can also be chosen suitably large to make the second term in Equation (5.2) suitably small.
Intuitively, amax ensures that the Catoni estimator is sufficiently robust to perturbation, which is
necessary for our uniform convergence arguments.

3In the case when the noise is unbounded, note that, by Chebyshev’s inequality, one can just take 8, < y/max; a2 /6,
at the expense of at most ¢ > 0 failure probability, whilst maintaining a logarithmic dependence on 1/ in the final
bound.
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Corollary 1 is a special case of a more general result, Theorem 6, whose statement and proof we
detail in the following subsection. Up to logarithmic factors our guarantee matches that of Abbasi-
Yadkori et al. (2011). The key difference is that, whereas Abbasi-Yadkori et al. (2011) considers
the a norm in a covariance not weighted by the variance H'U”K;l with Ap = A + ZtT:l o/ , our

guarantee uses the weighted-covariance norm Ap := A\l + Zthl o, 2¢t¢f . It is clear that the latter

is much larger when o? are small, leading to a smaller error bound.

Our bound is similar in spirit to another self-normalized heteroscedastic inequality recently
provided by Zhou et al. (2020). The key distinction is that the Catoni estimator lets us obtain
estimates that scale with the standard deviation of the noise, o, and only logarithmically with the
absolute magnitude, (,. This is in contrast to the bound obtained in Zhou et al. (2020), which scale
only with o in the leading order term, but scales with /3, in the lower order term. In situations
where (3, is large, which will be the case when deriving first-order bounds for linear RL, this scaling
could be significantly worse. To make this concrete, the following example illustrates Corollary 1 on
a simple problem.

Example 5.1 (Regression with Bounded Noise). Consider the linear regression setting where we
receive observations

Yt = (¢, 04) + 1

for some F;_j-measurable ¢; and noise n; satisfying E[n,|F;—1] = 0, Var[np, | Fi—1] = o°, and
|ne] < By almost surely for some f3,,. Assume 02 is known and that [(0,, ¢)| < € for all t. Define
02 = 2(€2 + o2) for all t and note that

07 = 2 +0%) > 2((8,. 1) + Eln} | Fir]) = 2El? | i)

2

Now take some v € R% and consider applying the Catoni estimator to the data

T
_ 1
Xo=Tol Al g/ (26 +20%), Ar = 5oy (I +> Gty )
t=1

and with « set as in Corollary 1. We can then apply Corollary 1 to get that, with probability 1 — 6,

log1/6 + dr

‘cat [TA;lv] —v'o, P
max

< -
< H’UHATl log1/d +dr +
Note that, given our setting of Ay, we have

”UHA;l = V2 +20°|v||(113,)

and we can set amax = T, omin = 1/T, so dr = O(d - logs(T, 02, Br)). We conclude that
log1/6 4 d - logs(T, o2, 3,)

‘cat [TA;IU] —v'0, < HUH(I+2T)4 “(e+o0) \/log 1/6 +d-logs(T, 02, By) +

= O (Iloll gzt - (e +0)Vd).

T2

By Corollary 1 this holds for all v simultaneously.

In contrast to this, using the same regularization as above, the Bernstein self-normalized bound
of Zhou et al. (2020) will scale as (hiding logarithmic terms),

’vT(é— 0,)| <O (HWH(HET)*1 ' (U\/;H 5"))

where 8 denotes the least-squares estimate.
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Example 5.1 could model, for example, a linear bandit problem where the value of the optimal
arm is 0 (which is always achievable by shifting the problem), and we are in the regime where we
are playing near-optimally, so that (64, 1) ~ 0. In this regime, € ~ 0, so the dominant scaling will
simply be O([[vll(r435,) 1 - ov/d)-

5.3 Self-Normalized Catoni Estimation with Function Approximation

To apply our self-normalized bound in the linear RL setting, we need to allow for regression targets
which are potentially correlated with the features ¢; in a verify specific way. More precisely, the
targets y; take the form v, = (uy, 1) + fi(;) where ¢} is a Fi-measurable feature vector, and f,
is a function which may depend on all the data {(¢¢,yr,01)}—;. The function f, is therefore not
Fi-measurable, and so y; does not satisfy the condition of Definition 5.1. To handle these challenges,
we introduce the following regression setting, which specifies the precise conditions needed for our
most general result.

Definition 5.2 (Heteroscedastic Regression with Function Approximation). Given dimension

parameters d,d’,p € N, scaling parameters H, f,,5, > 0, and minimal varaince afnin, the het-

eroscedastic regression with function approximation setting is defined as follows. Let (F;)¢>0 be a
filtration, and consider a sequence of random vectors (¢, @})L_; and random scalar oututs (y;)7_;
and noises (7;)7_; and variance bounds (07)’_; such that

e ¢; € R?is F;_i-measurable, ¢, € RY is F; measurable, and |l btll2, l|Pill2 < 1.

e There exists a signed measure p over BY with total mass |||g|(B%)||l2 < B, such that, for all ¢,
the conditional distribution of ¢} given F;_; ensures that, for all bounded functions f,

E [f() | Frr] = (. / F(¢)du(e)- (5.3)

o |n:| < B, with probability 1, and Efn; | F;—1] = 0.

e There exist a parameter u, € R? with ||[uy |2 < B, a function class .# of functions f : RY —
[~H, H], and a function f, € . which may be random and dependent on (¢, ¢})L_; such
tha‘ta for all tv Yt = <u*7 ¢t> =+ f*((ﬁ;) + - ThllS,

E[?Jt‘}—t—ﬂ = <¢t79*> for 6, =u, + /f*(¢/)dﬂ(¢/)-

e 0, are uniformly lower bounded by oy, finite, F;_1 measurable, and satisfy

E [((¢nw) + 16D +m)” | Fia| < ot (5.9

[\

e The covering numbers of .# are parameteric, in the sense that there exists a p € N and
R > 0 such that, for € > 0, the e-covering number of .# in the metric distoo(f, f') =
supgcpa | (@) — f'(¢')| is bounded as N(.F, distoo, €) < plog(l + 2B) where N(Z, disto, €)
is the e-covering number of .% in the norm distq.

Note that Definition 5.2 strictly generalizes Definition 5.1 since we can always choose f, = 0 to
be a fixed function, and are left only with the noise 7;. For this most general setting, we attain the
following result:
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Theorem 6 (Heteroscedastic Catoni Estimation with Function Approximation). Assume that we
are in the setting of Definition 5.2. Define

dT =cC- (p =+ d) . |OgS (T, ar2nax7 )\717 Ur:linHB/“ ﬁiuﬂm R7 H) .

Let cat [TA;I'U] denote the Catoni estimate applied to (Xt)?zl and parameter o given by

X, = TvTA;lqbtyt/af, o = min {\/HTA;LU]EJQT - (dr +1og1/9), amax}

and for A = M\ + 23:1 o, i) . Then, as long as T > 6(log 1/ + dr), with probability at least
1 —6, for all v € B¢ simultaneously,

3(log i +d
< 5[5t (\/log 1/6 +dr + \/XHH*H2> + 3llog  +dr) > : T r) (5.5)
max

A couple remarks are in order. First, Corollary 1 is just the special case obtained by setting
f«(+) = 0 to be the zero function, and sole element of .# = {f.}. Second, as will be observed, the
assumptions in Definition 5.2 precisely line up with those required for linear RL. The proof of
Theorem 6, detailed in Appendix A.3, follows by applying Lemma 5.1 and carefully union bounding
over the parameter space. It invokes a novel perturbation analysis of the Catoni estimator, given in
Appendix A.5, which may be of independent interest. Again, we remark amax can be chosen suitably
large that estimation error of the Catoni estimator scales primarily as [|v|| Al 1og(1/6) + dr.

‘cat [A;lv} —v'0,

5.4 Linear Approximation to the Catoni Estimator

In the linear RL setting, we will rely on the Catoni estimator to form an optimistic estimate,
QF(s,a), of Q7 (s,a). To construct this estimator, we will set 1 = V,fﬂ(shH’t)—thus, fi will itself
be an optimistic ()-value estimate. In order to apply Theorem 6 directly to the linear RL setting,
we therefore need to cover the space of all Catoni estimates. It is not clear how to do this in general
without covering all O(dT’) parameters the Catoni estimator takes as input, which will result in
suboptimal K dependence in the final regret bound.

To overcome this challenge, we make the critical observation that (5.5) implies that, up to some
tolerance, there exists a linear function which approzimates cat[TA}l'v] for all v, namely (v, 0,).
As we do not know 6,, we cannot compute this function directly. However, the following result
shows that we can exploit the fact that there exists such a linear approximation in order to come
up with our own linear approximation:

Lemma 5.2. Let cat|A~1v] denote a Catoni estimate, as defined in Lemma 5.1. Assume that, for
allv €V for some V C R, 0 ¢V, we have

|cat[A "] — (v,0,) | < Cy||v||a-1 + Co/T (5.6)
for some C1,Cy. Set
~ — A1
0 = argminsup (6, v) = cat|A™ v]] (5.7)
o veY ”'UHA*1

Then, for all v € V, we have

(6, v) — cat[A ]| < C1||v||a-1 + Co/T, B, v) — (v,0,)| < 201 ||v|[p-1 + 2Co/T.
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Given this result, if we approximate our Q-functions by Catoni estimates, I@h [th+1](s, a), instead
of directly using Iﬁh[thH](s,a) we can rely on a linear approximation to it, (@fb,qf)(s,a)). By
Lemma 5.2, this will be an accurate approximation for all s,a. As we can easily cover the space of
d-dimensional vectors, this allows us to cover the space of all of our @-function estimates. As we
will see, in practice we rely on optimistic () functions which also depend on some A > 0, so we will
ultimately choose .# in Definition 5.2 so that p = O(d?).

Note that solving (5.7) is not computationally efficient in general, yet as we described in
Section 4.2 and show in more detail in Appendix A.4, a linear approximation to a Catoni estimator
can be found in a computationally efficient manner if we are willing to pay an extra factor of v/d in
the approximation error.

6 Regret Bound Proof Sketch

We turn now to applying the Catoni estimation results of Section 5 in the setting of linear RL. We
defer the full proofs to Appendix B.

6.1 Failure of Least Squares Estimation

We first describe in more detail why least squares estimation is insufficient to obtain first-order
regret. Building on Jin et al. (2020b), our goal in the RL setting will be to construct optimistic
estimators, Q’fl(s, a), to the optimal value function, Qj (s, a), satisfying Qlfl(s, a) > Q7 (s,a). Jin et al.
(2020b) construct such estimators recursively by applying a least-squares value iteration update and
solving

k-1

~k . k T 2 2
w);, = argmin E (Vh+1(5h+1,r) —w ¢h,r) + Allwll3.
weR? =1

Intuitively, if enough data has been collected, this update will produce a ﬁ,’i which accurately
approximates the expectation over the next state. Indeed, Jin et al. (2020b) show that, for any ,*

<a;€w ¢(87 a)> + Th(87 CL) - QZ(& a) = Eh[vhk—i-l - Vhﬂ—o—l](S? a) + fh(s, CL)

< ~_
for some fh(S, CL) ~ dHqu(S’ a)”Ah 2_1

Jin et al. (2020b) are able to construct a value function guaranteed to be optimistic, and ultimately
obtains regret of (5(\/ d3H*K). This is fundamentally a Hoeffding-style estimator, however, and
does not scale with the variance of the next-state value function. As such, it does not appear that
tighter regret bounds can be obtained using this approach.

, where Kh,k—l = )\I+Zf;% ¢h,7¢;T. Applying this estimator,

A natural modification of this estimator would be the weighted least squares estimate:

k—1

2
@ = argmin 3~ (Via(ner.r) = w' dnr) /57 + Al (6.1)
we =1

“In fact, Jin et al. (2020b) uses a slightly different update, including 74, in the regression problem so that
(wF, $(s,a)) estimates the reward and next-state expectation. In contrast, the setting of w) given here estimates
only the next-state expectation. Jin et al. (2020b) assume that the reward is unknown and is linear, motivating their
inclusion of it in the regression problem. The direct extension of their approach to known but nonlinear reward is the
update stated above.
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for /0\,2177 an upper bound on Vary.p, (s, ,.an..) [V,f+1(s’)]. An approach similar to this is taken in the
linear mixture MDP setting of Zhou et al. (2020), where it is shown that this approach does indeed
yield variance-dependent bounds when a Bernstein-style self-normalized bound is applied. However,
as noted, this Bernstein-style bound still scales with the magnitude of the “noise” in its lower-order
term, which here will be of order H/opi,. Carrying their analysis through, we see that the leading

order term of the regret is at least on order (vd + %)1 [o2. HK > HvHK. Thus, while this

approach may yield an improved d and H dependence, it is unable to obtain a first-order scaling of
O(y/VyK) when V}* is small.
6.2 From Catoni Estimation to Optimism

Note that wF in (6.1) can be written as

k—1
~k -1 k 2
W =Y Ak Vi (shann) [V -

T=1

In other words, ﬁfb is simply the sample mean. This motivates applying the Catoni estimator to the
problem. Indeed, consider setting [Ey, [th+1](s, a) = catpg—1[(k — 1)A; ., (s, a)]. By Definition 3.1,
we can set 0, in Definition 5.2 as

6. [ V(s (s)

and will have that (¢(s,a),8,) = E4[V}¥.](s,a). Theorem 6 then immediately gives that, for all
s,a,h,k,

BV 1)(5,0) — BVl (5,0 S (14 HVNBIO(s, a)llacs | +ven2/02 (62)

where here 8 = 64/log 1/ + dp for dp = (5(d + Pmdp) and pmap the covering number of the set
of functions th+1(')‘ Recall that we chose amax = K/Vmin in the linear RL setting. Thus, the
lower-order term of 332 /(cumaxk) of Theorem 6 can be upper bounded as 3vyin3?/k?, as in (6.2).

Given this Eh[thH](s, a), let 13,’3 denote the linear approximation to IEh[V}f+1](s, a), as described
in Lemma 5.2. By Lemma 5.2, it follows that for all s, a,

(@, ¢(s,a)) — En[Vil(s,a)| S (1 + HVN)Bl¢(s, a)la;  + Vinin 8 /K. (6.3)

Constructing Optimistic Estimators. Fix some h and k and assume that (6.3) holds for all
s,a. Let

Qf(s.a) = min {r(s,0) + (s, @), @f) +3(1 + HVN)Bl(s,)l[5 1 + v/ H |

Assume that th+1(8) is optimistic, that is, th+1(s) > Vi (s) for all s. Then (6.3) and this
assumption imply that

Qh(sa) = min {ri(s,a) + (S(s, ), @) + 301+ HVNBS(s,) [ o1+ BviminB?/K2, H }

> min {ra(s, @) + Bn[Vii)(s,) + 200+ BVN)Bl (s, ) o=+ 2vain82/k% H |
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> min {r3,(s, @) + Ea[Vi)(5, @) + 201+ HVN)Bllo(s, @)l 1 | +2vein /K%, H }

> min {Th(S, a) + Eh[v};-l](sv a), H}
= Q5 (s,a).

In other words, given that @5 accurately approximates the next state expectation, (6.3), and that
V}fﬂ(s) is optimistic, it immediately follows that Q¥ (s, a) is also optimistic.

Defining the Function Class. It remains to determine the value of pyqp. Applying the above
argument inductively, we see that to form an optimistic estimate, it suffices to consider functions in
the set

Findp = {f(-) = min{(-,w) + B|| - [[a-+ + & H} ¢ Jlwll2 < fu, A = AI}.

for some 3, ¢, and B . Zmdp depends on two parameters—the d-dimensional w and d x d dimensional

A. Thus, using standard covering arguments, it’s easy to see that N(Fpap, disteo, €) = O(d? log(1 +
1/€)), so it suffices to take pymap = O(d?). Given this and the definition of dr, we see that in our

setting we will have that dp = O(d?), so 8 = O(y/log 1/8 + d2).
6.3 Proving the Regret Bound

Henceforth, we will assume that (6.2) holds for all s,a,h, and k. We turn now to showing how
the above results can be used to prove a regret bound. The following lemma, which is a simple
consequence of (6.2), will be useful in decomposing the regret.

Lemma 6.1 (Informal). Let 6F = ViF(sF) — Vi (sf) and ¢y = En[0) 1] (shks ank) — 65y Then,
with high probability,

O < Oy + gy +min{5(1 + HVA)Bllpngllx-1  + 5vainS°/K*, H}.

By definition of R, the optimism of th(s), and Lemma 6.1, we can bound

IN

Rk (Vi(s1) = Vi (s1))

(Vi (s1) = V™ (s1))

1 T T

A

H K H
SIS min{(1+ HVNBInalla-y | + viin/R H).

h=1 k=1 h=1

=
Il
—

Zszl Zthl Q’f is a martingale-difference sequence and can be bounded using Freedman’s Inequality
to obtain the desired VS dependence. In particular, we have, with high probability

K H

Z Z Ci’f S \/H2V1*K -log 1/6 + (lower order terms).
k=1 h=1
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In addition, viin3%/k? sums to a term that is poly(d, H), so we ignore it for future calculations. We
focus our attention on the term:

K H
> min{(1+ HVN)Blgnila o H}

k=1h=1

which can be expressed as:

K H
D0 unpmin{(1+ HVX)Bbnk/Ynx la; o H/Vnk}- (6.4)

k=1 h=1

Typically, terms such as this are handled via the Elliptic Potential Lemma. However, to apply
the Elliptic Potential Lemma (Abbasi-Yadkori et al., 2011) here, we need to choose A = 1/v2. t
guarantee A\ > maxp, || @n.r/Va k3. Due to the VA dependence, this will result in a 1/viin scahng
in the final regret bound, which is prohibitively large. To overcome this, we instead apply the
following result, to control the number of times H¢h7k/\7h,kHAg}€71 can be large:

Lemma 6.2. Consider a sequence of vectors (x;)1_,,x; € RY, and assume that ||| < a for all t.
Let Vi = A+ Yt xsx] for some A\ > 0. Then, we will have that HathVql > b at most
t—

dlog(1 + a*T/\)/log(1 + b)
times.

Let K, = {k : ||¢ni/Vaillo-r < 1}. Then we can bound (6.4) as
hk—1

A H
(6:9) S > (L+HVN)BU min{||@nx/Vnplla;1 13+ > HIKS|

h=1keK, h=1

H

S>> (+HVN ) B0 i ming||dn i /Vnkll a1 1} 4+ dH?log(1 4+ K/(W2,))
h=1keK,

where the first inequality holds by definition of K}, and the second holds by Lemma 6.2. By
Cauchy-Schwarz, the first term can be bounded as

H K H K
S (1+HVA)B szk ZZmiﬂ{\\ﬁbh,k/\_/h,klliﬁ_l,1}.

As we take the min over 1 and “¢h,k/vh,k||2

Al regardless of the choice of A we can now apply
hk—1

the Elliptic Potential Lemma to get

ZZmln{H(ﬁh k/Vh, kHA L RIS dHlog(l—i-K/(d/\me))

h=1k=1

Choosing A\ = 1/H?, we then have that the regret is bounded as

H K
>N w2, + poly(d, H,log K).
h=1 k=1

< 5\/dHlog 1 +HK/( m1n>)
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It remains to bound \7% - After some manipulation, and using the definition of vy, ;, given in FORCE,
we can bound

<l

)3

h=1k=1

;217;@ < H?V{*K + (lower order terms).

Putting this together yields a final regret bound of

B\/dH log(1 4+ HK/(dvrznm))\/HQVfK + (lower order terms).

In the proof, slightly more care must be taken with handling \7,% i to avoid a lower order K 1/4 term,
but we defer the details of this to the appendix.

7 Conclusion

In this work we have shown that it is possible to obtain first-order regret in reinforcement learning
with large state spaces. Our algorithm, FORCE, critically relies on the robust Catoni estimator, and
our analysis establishes novel results on uniform Catoni estimation in general martingale regression
settings, which may be of independent interest.

Several questions remain open for future work. First, while we show that it is possible to obtain a
computationally efficient version of FORCE, doing so incurs an additional v/d factor. Removing this
factor while maintaining computational efficiency would be an interesting direction and may require
new techniques. More broadly, obtaining a computationally efficient algorithm with regret scaling
as V/d? would be an interesting future direction. Zanette et al. (2020b) show that it is possible
to obtain a Vd2 scaling, but their algorithm is computationally inefficient. In addition, obtaining
optimal H dependence is of much interest. While FORCE will achieve this for V}* < 1, technical
challenges remain to showing this holds in general. We believe our use of the Catoni estimator could
be a key step towards achieving this, but leave this for future work. Finally, developing first-order
regret bounds for more general function approximation settings Jiang et al. (2017); Du et al. (2021)
is an exciting direction. The results in this work rely strongly on the linearity of the MDP, yet, as a
first step, it may be possible to extend our techniques to bilinear classes Du et al. (2021), which
also exhibit a certain linear structure.
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A Technical Results

A.1 Covering and Elliptical Potential Lemmas

Definition A.1 (Covering Number). Let X be a set with metric dist(-,-). Given € > 0, the
e-covering number of X in dist, N(X, dist, €), is defined as the minimal cardinality of a set N' C X
such that, for all x € X, there exists an 2/ € N with dist(z,2’) <e.

Lemma A.1 (Vershynin (2010)). For any € > 0, the e-covering number of the Fuclidean ball
BYR) := {x € R?: ||| = 1} with radius R > 0 in the Euclidean metric is upper bounded by
(1+2R/e)%.

Lemma A.2 (Lemma D.6 of Jin et al. (2020b)). Consider the class of functions from R? to R of
the form

f(@) = min {{w, ¢) + B|@lla-1, H}

where the parameters w, B, A satisfy ||wl||2 < Bw, B8 € [0, B], and A = . Let N, be an e-covering
of this set with respect to the norm distoo(f, f') := supgepa | f(P) — f'(P)|. Then,

log |N.| < dlog(1 4 4Buw/€) + d?log(1 + 8VdB?/(\e?)).

Lemma A.3 (Elliptic Potential Lemma, Lemma 11 of Abbasi-Yadkori et al. (2011)). Under the
same assumptions as Lemma 6.2, for any choice of A > 0, we will have that

T

> min{l, ”xt”2v:1} < 2dlog(1 + a*T/(d\)).
t=1

Furthermore, if X > max{1,a’},

T

> thuf,,ll < 2dlog(1 + a*T/(dN)).
t—

t=1

Lemma A.4 (Freedman’s Inequality (Freedman, 1975)). Fo C Fi C ... C Fr be a filtration and
let X1, Xo,..., X1 be real random variables such that X is Fy-measurable, E[X;|Fi—1] =0, | X¢| < b
almost surely, and Z?:l E[X?|Fi—1] <V for some fivred V > 0 and b > 0. Then for any ¢ € (0,1),
we have with probability at least 1 — 9,

T
> X <2¢/Viog(1/6) + blog(1/9).
t=1

Proof of Lemma 6.2. Our goal is to bound the number of times that H:1375||V_11 > b. A now-standard
t—

determinant computation (see, e.g. Abbasi-Yadkori et al. (2011)) based on the Sherman-Morrison
identity yields

It follows that, whenever ||a¢||;,-1 > b, it must also be the case that
t—1

det(Vt)

——— —1>0b det(V 1+ b)det(Vy_1).
det(thl) >0 <— et( t)>( + ) et( t 1)
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In particular, if N denotes the number of times that Hcctvall >bfort e {l,...,T}, then it follows
t—
that det(Vr) > (1 + b)Y det(Vo) = (1 +b)V A% At the same time,

T
det(Vy) = det ()\I +)° msmj>

s=1

T d
< <||)‘I + Z msw;!—”ma)
s=1

< (A +a*T)%

Combining these inequalities gives:

dlog(\ + a®T) — dlog(\)

14+ 0NN < (\+a2T)? N
(1+0) <A+a 1) < log(1 1 1)

O]

We remark that a variant of Lemma 6.2 appeared in concurrent work (Kim et al., 2021), and
originally as an exercise in Lattimore & Szepesvéari (2020).

A.2 Martingale Catoni Estimation

Lemma A.5 (Martingale Catoni Estimator, Lemma 13 of Wei et al. (2020)). Let Fo C F; C ... C
Fr be a filtration and let X1, Xo, ..., X7 be square-integrable real random variables such that X is
Fi-measurable, and

e Conditional means E[X¢|Fi_1] = G for some fized (non-random) (.
e Average conditional mean ¢ := Zthl Ct-
o Conditional variances Zthl E[(X¢ — ()2 Fi-1] <V for some fized (non-random) V > 0.

Then for any confidence 6 € (0,1) and sample size T > o?(V + Zthl(Ct —()?) +2log %, we have
with probability at least 1 — 26, the Catoni estimator catr satisfies
o (VLTG0 21051

T + ol

ycatT,a - C’ <
We recall the heteroscedastic heavy-tailed martingale linear regression setting as defined in
Definition 5.1.

Definition 5.1 (Heteroscedastic Heavy-Tailed Martingale Linear Regression). Let (F;)¢>0 denote a
filtration, let ¢; € R? be a sequence of random JF;_1-measurable vectors, and y; € R be F;-measurable
random scalars satisfying

Yt = (D1, 0.) + 1, Elye| Fio1] = (@4, 04)

for some 0, € RY and n; satisfying E[n;|F;_1] = 0, and E[n?|F;_1] < oo, but otherwise arbitrary (as
such, the distribution of 7; may depend on ¢;). Furthermore, let 07 be a F;_j-measurable sequence
of scalars satisfying o7 > E[y?|F;_1], and let

T
Y= Za;Q(bt(b:.

t=1
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Lemma 5.1 (Heteroscedastic Catoni Estimator). Assume we are in the regression setting of
Definition 5.1. For a fived vector v € RY let cat[v] denote the Catoni estimate applied to (X;)I_,
where X; = v ¢y /o?, with a fized (deterministic) parameter o > 0. Then, for any failure
probability § > 0 and fired amax > 0, if our deterministic a can be written as

a = min {’y‘ bg(m,ozmax} (5.1)

vl

for some (possibly random) v > 1, then

log % 2log %
T2 Omax

1
cat[v] — TUTET 0, < (24 29)[lv=,

provided that T > (2 + 2+?) log %.

Proof. We apply Lemma A.5 to the scalar data X; := v ¢yy;/0?. Note that with this choice of X3,
1
E[X¢|Fi1] = ?UT(ﬁt(ﬁtTe* =: Gi[v]
¢

so we will have that
T

1 1
BXi|Fir) = 5 D 5v 1@ 6 = (o]
t=1 1

IIMH

Applying Lemma A.5 gives that, with probability at least 1 — 4,

« (V"‘Zthl((t[U] _C[UD2> 2log2/6
T + ol 7’
where V' > 0 is any fixed upper bound on the quantity

|cat[v] — ([v]| <

T

Z )? | Fial = ZE [‘71:_4 <'UT¢tyt - UT¢t¢tTO*)2 |-7:t—1]

t=1 t=1

I
B

(”T¢t/0t)2 E [(yt - ¢:9*)2/0132|ft—1}

o~
Il
—

Our assumption on o; ensures that
12 072 Bly? | Fio] = o7 *Vaxlyd] + o7 *Ely | Fioa?
—E |(4r — ¢/ 0.)%/0% | Foor| + 0728/ 0.2, (A1)

so it suffices that we select V' to be

T 2

V=3 (vTou/an) = Ivlg,.

t=1

Furthermore, since ([v] is the average of the terms (;[v], we can upper bound

T

> (Glv] i

t=1

(v ety 0./07)

X
B

t=1
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T
= " pr/00)*(d] 0.)00)?
t=1

Again, our assumption on o; ensures (¢, 0, /0;)? < 1 via Equation (A.1), so we can bound

T
Z(Ct [v] — 2

t=1 t:l

T
¢i/0r)” = ||v]|%,.-

Mﬂ

Putting these two bounds together, we have that

o (V4 T (Gle] — Co))?) T

|cat[v] — ([v]| <

T aT
204H’UHQET 210g%
. A2
- T + aT (A-2)

provided that

2 2
T > 20%||v|%, +210g > a( )+210g5

IIMH

Introduce aq := /W, so that o = min{yap, amax} (recall v > 1 is a possibly random scalar but
=r

that « is deterministic). Then, yap > a. Hence, it is enough that
2 2012112 2 2 2
T > 2v°ag|v|s, + 2log5 = (24 2v%)log 5
Moreover, using e = min{~yag, amax} and v > 1, we can continue the bound in Equation (A.2) via

2 min{omax, Yoo }v|%, 2log 3
T min{ max, Yo }T

|cat[v] — ([v]| <

2 2 2
- 2vaollvls, N 2logs  2logs
- T Yoo T Omax 1
log2/6 N 2log 2
1?2 OmaxT’ '

IN

(2 +29)[lvllsy

A.3 Self-Normalized Catoni Estimation

Definition 5.2 (Heteroscedastic Regression with Function Approximation). Given dimension
parameters d,d’,p € N, scaling parameters H, (,,5, > 0, and minimal varaince o2. , the het-
eroscedastic regression with function approximation setting is defined as follows. Let (F;)¢>0 be a
filtration, and consider a sequence of random vectors (¢, @})L_; and random scalar oututs (y;)7_;
and noises (n;)L_; and variance bounds (02)L_; such that

e ¢; € R?is F;_1-measurable, ¢, € RY is F; measurable, and |l btll2, 1Pz < 1.
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e There exists a signed measure p over BY with total mass |||g|(B%)||a < S8, such that, for all ¢,
the conditional distribution of ¢} given F;_; ensures that, for all bounded functions f,

E [£(8)) | Fir] = (6, / F(¢)d(@)). (5.3)

o |0 < B, with probability 1, and E[n; | F;—1] = 0.

e There exist a parameter u, € R? with ||uy |2 < By, a function class .# of functions f : RY —
[~H, H], and a function f, € .# which may be random and dependent on (¢, @})L_; such
tha‘tu for all t, Yt = <u*7 ¢t> + f*(d){f) + - ThllS,

ElyelFia] = (60,6,) for 0, = u, + / Fu() ().
e o; are uniformly lower bounded by o, finite, F;_1 measurable, and satisfy
/ 2 I 4
E | (e, wa) + fu(@) +m)* | Fir] < 5o (5.4)

e The covering numbers of . are parameteric, in the sense that there exists a p € N and
R > 0 such that, for € > 0, the e-covering number of .# in the metric distoo(f, ') =
supgcpar | (@) — f'(¢')| is bounded as N(.F, distoo, €) < plog(l + 2B) where N(Z, disto, €)
is the e-covering number of .% in the norm distq.

We now state an intermediate technical proposition, from which derive our main self-normalized
guarantee as a special case:

Proposition 7. Let ¢ > 0 denote a universal constant, take parameters A > 0 and oumax >
1, and consider the regression with function approximation of Definition 5.2 with parameters
d,p, 2., Bu, Bu, R, H. For a sample size T' € N introduce the effective dimension

dT =cC- (p + d) : |OgS (T7 ar2nax7 )‘71 0_2 ﬁu?ﬁﬁ’ R’ H) '

’ Y min? MM
For vectors © € R?, define the mean parameter

(5] = %~T2T 0,

and let cat[v] denote the Catoni estimator using features and a[v] parameter

~T 2 ~ . dr+logl/éd
Xt = ¢tyt/0't7 Oé[’U] = mln{ T||T2§/7 O[max} .
V T

Then, if T > 6(log% + dr), with probability 1 — &, it holds that Yv € B¢ and for all A = \I,

) ~ B log 5 +dp  3(logs +dr)
o] ] < a0 e )

Proof of Theorem 6. We instantiate Proposition 7 with A = %()\I +37) = %ZT. For this choice
of A, it holds that

|A 0l = " AT S A o < Tfolf} .
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Moreover, A > % - M, so taking A <— A/T, dr still has the same form for a possibly larger constant
c > 0. Next,

C[A ) = %vTA—lzT -0,
=0 (Zp+ )12 -6,
=00, — ' (Zr+A)"L-0,.
It follows that

‘cat [A;l'v] —v'0,| < ’cat [A;lv} - C[A_lfv]| + Mo (Zr+A)7L-6,].

We bound |cat [A7lv] - ¢[Av]| by Proposition 7 and bound
Mol (7 + A1) < Ao (S + M) 22| (B + AD) 72 lop16. ]2
< Vlolla-1 6.2
O

Proof of Proposition 7. The proof requires a careful covering of directions v' A~!, and regression
functions f € ..

Notation. Let us establish some notation to facilliate the covering. Given f € .%, we define the
associated targets

Gi(f) = (br.us) + f(D) + e, O(f) = us + /f(¢/)dﬂ(¢/)-

Given ¥ € R? and f € .#, define
(o, f]:=2" 276,

and let cat[v, f, @] to denote the Catoni estimator using parameter & and features

L5 om() (A.3)

O

Xt[i;a f]

Over loading notation, define cat[v, f] to denote the following estimate using the correct, data-

dependent :
+/log %
B (A.4)

cat[v, f] = cat[v, f,a[v]], «a[v] = min — , Omax p s
0]l

Note that the correspondence between the original notation parameterized by direction A~'v and
the new notation is given by

cat[v, fi] = catfA '], ([, fi] = AT v], v=Alo. (A.5)
We note that by the assumption that [|v|l2 < 1 and A = M1, it suffices to consider v in the set
Vi={v:||v|2 < By PLs:=1/A}.

Lastly, we define the interval

A
A::{a:fgagamax}
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Rounding a. To handle that «[v] is data-dependent, we will build a cover using the Catoni
estimator with rounded values of a[v]. Note that this step is purely for the analysis, and does not
need to be incorporated into the algorithm. For € > 0 and scalar k, set

round(z, €) :=inf{(1 +€)f: (1+¢)* >z, keN}.
Fixing an €ng € (0,1/4) to be chosen, set

cating [17, f] = Cat[’lj, fv Qynd [17“?

N ' \/log 2 (A.6)
where pg[v] = min < round 7“%“2 ,€mnd | » Qmax
T

Note that since ||¢¢||2 < 1 and ||9]]2 < 1/A for v € V, we have that a[v] € A for v € V. Note then
that the rounded Catoni parameters lie in the finite set

~ A
Qrnd [’U} € Arnda where Anq := {(1 + Grnd)k : T < (]- + ernd)k < Oémax} U {amax}' (A7)

Furthermore, the cardinality of A,,q can be crudely bounded by
log(T aumax /)

log(1 + €rnd)
<1+ (Tamax/)\) : 2/ernd (AS)

|~Arnd| < 10g1+6md (Tamax/)\) =1+

where we used the crude bound logx < 1+ z for x > 1, and log(1 + €) > ¢/2 for € € (0,1/4).

Uniform bound on a cover. Let N7 C V C R? and N3 C .% denote fixed (deterministic), finite
sets whose product N’ = Nj x N3 has cardinality at most [Apg| - |N| < M. We use Lemma 5.1 to
establish a uniform bound on the errors |cat[v, f, @] —([v, f, @]| of the Catoni esimator corresponding
to pairs (v, f) € N and & € A;ng. To do this, we have to be somewhat careful, because we require
that conditional variances are upper bounded by o?. To this end, we argue a bound on the Catoni
error when the following random event holds:

Er =A{E [4:(f)? | Fia] < of, i},

Note that £f is indeed random because o? are random. Using linearity of expectation, we have

Bl (1Fe-1] = @) + {0, [ 1600l
- <¢t,u* +f f(¢’)du(¢’)>
= <¢t,é(f)> .

so the linearity of expectation assumption required by Lemma 5.1 will be met. Hence, for all pairs
(v, f) € N such that £ holds, and all & € Ayng such that

o 6> afd]
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_ ) yflog 2
e ( can be expressed as min < 7 - TolTs.» Cmax
T
o T >(2+427)log 4.

then it holds that with probability 1 — %,

log¥ L+ QIOg%

catfE. £,6) = C[6. /1] < 2+ 29) [Bllmp || gt + B,

whenever £; holds.

In particular, selecting & = aynq[v], we can choose ¥ = 1 + €ng. As €ng Was chosen such that
emd < 1/4, 24 25 < 5. Hence, we find that with probability at least 1 — 4,

log% n 210g%

atmal®. f] = C[0. 11 < 5lBllmp || o+ ot

. V(f,v) € N such that £ holds,
provided that T > (2 + 272) log %. Given our setting of 4, it suffices to take T' > 6log %.

Approximation by covering. Having achieved a pointwise bound, we observe that, on the 1 — 9§
event above, for any (v, f) € V x .#, and any (v, fo) € N for which £, holds,

|cat[v, f] — ¢[v, f]]
< |cat[v, f] — catna[vo, fo]| + [C[v, f] = ¢[wo, fol| + |catma[vo, fo] — ([0, foll

log% N ZIOg%

< |cat[w, f] — catid[vo, fo]| + [C[v, f] — ¢[vo, fol| + 5volls,

T2 Omax T
~ log 2 2]og 2M log 24 ~
<58l \| =+ g 5\ e 1Bl — (Bl |
max
(@)
+ [¢[v, f] = C[vo, fo]| + |cat[v, f] — catema[vo, fol| (A.9)

-~

(i4) (4i4)

Recall B, = [[ull2, By = [ll1el(BY) 2, 00y, < 0F, and distoo(f, fo) := supgren,, |/(¢) = fo(¢')|. We
further assume that ||vgl|2, ||v]l2 < B5. We show that, for these scalings, it suffices to ensure that
||lv — vol|2 and disteo(f, fo) are at most polynomial in relevant problem parameters:

Lemma A.6. There exists a constant Cpoly = poly(arﬁn,T, Bs, Cmax, H, Bu, By, By) such that, if

InaX{Hﬁ - 170”27 diStoo(f7 fO)a 6rnd} < 1/Cpoly>
then

. 3 . log#L
Term (i) + Term (iz) + Term (ii7) <

OmaxT'

We defer the proof of Lemma A.6 to the end of the section. In addition, we show that if
disteo (f, fo) is sufficiently small, then the element fy from the covering satisfies the desired variance
upper bound:
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Lemma A.7. Suppose that f satisfies the variance bound in Equation (5.4), that is,

1 o2,

E[(<¢t,u*>+f(¢2)+m) | Fi1) < 37

(A.10)
Then, if disteo (f, fo) < 1/Cpoly for an appropriate choice of Cpoly as in Lemma A.6, Ez, holds, i.e.,
E[((¢¢, us) + fo(d)) + 77t)2 | Fyo1] < o7

Proof. For any f satisfying Equation (A.10),

E[((¢pr, we) + fo @) + 1) | Feo] < 2E[((¢e, ) + F(}) +m)” | Fioa] + 2E[(£(1) — fo(@))” | Fii]
<1, 2 4 2distoo (f, fo)2.

\VJ \

Since o7 > o2, , it is enough that diste(f, fo)? < r;‘“ which is ensured by an appropriate choice
of Cpoly- O

Concluding the proof Let us summarize our current findings. We see that if N C V x Z is a
collection of pairs (v, fo) satisfying
e The cardinality bound [Aung| - |N| < M
e The approximation bound that,
VoeV, feZ, 3(vo,fo) €N such that max{[|v — o2, distes(f, fo)} < 1/Cpolys

and that €mg < 1/Cpoly, where again
Cpoly = pOIY(O'I;?nv T, By, tmax, H, B}M Bu, ﬁn) = p01Y( m1n7 T, 1/)\ Omaxs H, Bu, B;m 577)

Then, Equation (A.9), the fact that f, satisfies Equation (A.10), and Lemmas A.6 and A.7 imply
that with probability 1 — ¢,

log% N 3log%

Vo eV, lcat(v, fi) = (0, f)| <50l || =7 o T

provided that T' > 6 log . We now find an M sufficiently large to ensure the covering conditions
hold. To this end, it sufﬁces to ensure that N' = N; x Ny, where N is an € = 1/Cpory net of V,
and N3 is an € = 1/Cpory net of .% in the norm diste (-, -). By Lemma A.1 and the fact that V is a
Euclidean ball of radius 3 = 1/, it suffices to take

2Cp0
log |NV1| < dlog(1+ %ly)
Similarly, by assumption that the covering numbers of .%# are N(.#, distoo (-, ), €) < plog(1 + %),
log |NV2| < plog(1 + 2RCpoly)-

Finally, using the bound on | Ang| from Equation (A.8),

2T04max) < log(l + 2CpolyTC"max

1 rn él 1 = :
og | Amg| < log(1 + g 3 )
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Hence, we can bound, for universal constants ¢/, ¢ > 0,

2M 2[Arna|N1 ||V
log — = log
) 1)
1
< log 5 +log?2+ (p+d) - logs (R, T, Cmax, AL, Cpoly)
1 1
= log 5 +(p+d)-c-logs <5,T, R Y Jr;?n, ailax, H,B,, Bu,ﬁn> .

Z:dT

For this choice of M,

_ _ _ ~ log2 +dr 3log2M
Yo eV, |cat(v, fi) —((v, fi)| < 5”UHET\/T+ a j{ ’
max

which, returning to the orginal notation parameterized by (v, A) and noting the equivalence of
notation in Equation (A.5), we see that with probability 1 — 8, it holds that Yo € B% and A = AT
(ensuring A~tv € V)

- B B logl—|—dT logl+dT
cat/A 1] — C[A~ o)) < 1A 1UH2T\/T T
Omax

A.3.1 Proofs supporting Proposition 7

Proof of Lemma A.6. Recall B, = |[uil2, B = ||| (BY)||2, 02, < 07, By > || with probability 1,

min —

and distoo (f, fo) 1= supgep,, (@) — fo(¢')]. We further assume that vy, v € V, i.e.

|voll2, 0]l < Bs,

and that we may choose Cpoly = poly(a;?n, T, Bs, 0max, H, Bu, Bu, By) to be an aritrary polynomial in
these quantities. We move term by term, showing we can make each at most l(gi@iM/qf) by selecting

Cpoly appropriately. Throughout, we use the fact that, for § € (0,1/2) and M > rfxlog(QM /0) > 1.

Claim A.8 (Bounding Term (i)). Term (i) is at most ,/1%21(02_72]\/{/5) “|[o — voll2. Hence, for an
VIR _ ogt2nifs)

30cmaxT - 30¢maxT

appropriate choice of Cpoly, the above is at most Term (i) is at most

Proof. We have

) log 2. ~
Term (i) :=5 TQE vlls, = llvoll=, |
log 2M. -
<5 T26 A/ 1Zrlop - [[v = vo2-

Since ||¢¢|| <1 and 0y > omin by assumption, |||, = || Zthl 0[2<;bt¢tTH0p < Ta;lizn. The bound
follows. o
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Claim A.9 (Bounding Term (i7)). We can bound

.\ ~ ~ 1 -~
Term (ii) := [([v, f] — ([vo, fo]| < P (BubBs - distoo(f, fo) + (Bu + HBu)|[V —voll2) . (A.11)
Hence, the appropriate choice of Cpoly ensures Term (i) is at most I%gOEiZ/Té)

Proof. We expand

(5, ]~ i fol = o (37 S06(7) — ] Sr6(fo))
1

= 575 (607) ~6(70)) + 7 (@ — ) Srb(fo)

Hence, using the bound || 27l < T/07,;, developed above,

€[, 4] = C[5o. fol] < U%(H%H\é(f) ~ 8(50)| + 18(fo)| 5 — ol

Note that ||v]| < S5 by assumption. Further, we bound

16(f) — 6(fo)ll2 = H / (f = fo) (@")du(d)|| < el Ba)ll2 - I1f = foll oo,y < Budistoo (£, fo)-

(A.12)
and moreover,
16(fo)ll2 < llaeallz + /fo(¢')du(¢') < But Il (Ba)ll2 max 1fo(@0)] < Bu+ Hf,.  (A13)
d/
Combining the bounds concludes the proof. O
Claim A.10 (Bounding Term (7ii)). An appropriate choice of Cpoly ensures Term (iii) is at most
log(2M/6)
3amaxT *

Proof. Recall that Term (ii7) = |cat[v, f] — catnd[Vo, fo]|- Recall that cat[v, f] uses the data and
parameter

X[ f] = 0 dii(f) afi) = min § VOEEMO o
o7 15w,

whereas catyng[vo, fo] uses the same Xy, replaced with vy and fy, and uses the rounded version
and|[V]. To compute the sensitivity bound, we consider differences between various quantities of
interest. Throughout, we use

()] = | {be, us) + f(&}) + el < Bu+H + 5y

Difference in scalar data. We have

X4[6. ] = Xefto il = | 57 Si0ilf) — 5% B
< 1208 05 = Folla -+ [51150() = )
< i (I~ oz + B2l £ (1) — fo())])
<exim —g— - ((Bu+ H+ 5[5 — Dol + Bodist (£, o) -

min
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Difference in Catoni parameters. Setting ¢ = \/log2M/§ and a(v) := ||v||x,, we can express

ﬁ’ amax} - max{a(v), c/amax } '

This gives that the difference between the unrounded parameter with v, a[v], and the also unrounded
parameter a[vg] with vy are bounded as

a[?] = min {

1 1

max{a(v), c/max } - max{a(v), ¢/omax}

|av] — afvo]| = ¢

. max{a(v), max} max{a(vo),amax}
N max{a(v), - } -max{a(vy), amax}
Sc' a(v )—2a(vo)! Oéﬁlax!a(ﬁ)—a(ffo)!

max

Sa?nax\/ 1;112nT H’E_’EOHQ

where the last line uses the definition of ¢, and the argument of Claim A.8 to bound |a[v] — afvg]|,
as well as log(2M/§) < 1.

Note however the cat,nq[vo, fo] uses the rounded parameter aynq[vg]. Directly from its definition,
we can see that

a[vo] < amd[Vo] < (1 + €ma)a[vo],
so that
la[vo] — amna[Vo]| < €mda[Vo] < €mndmax-
By the triangle inequality, we therefore conclude

|a[v] = armg[vo]| < |a[v] = alvo]| + |afvo] — amalwo]]

< arznax \/ 1;12nT H'E - 170”2 + €rnd®max -

=€q

Upper bounding data norms and lower bound «f[v]. We have

max{|X;[3, f]], | X¢[Vo, fol|} < o7 2||pll2 max{||D]|2, |Tol|} - max{[F(f), Fr(fo)|}
< 02 Bo(H + Bu + By) = 7x.

and, upper bounding ”UHET < 82T /o2

min’
%) ) log2M /6 o log 2M/5
alv| =min ——, « > min ,Q
H’UHET e B2T/ m1n e
. 1
> Qq_ :=min{ ————, Omax ¢ ,
v To-l?nin
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We now invoke a perturbation bound for the Catoni estimator (Lemma A.13), which ensures
that, as long as

~ 1 ~
e:=a(v)ex + 3yxeq < 3 min {L a(v)2’}’2} )

for which it suffices that

1 ¥
Omax€X + 3Vx€a < ' min {1, O;X ,gm?n(H + Bu)2/T} ,

max

we will have

v o _ L4 2a(v)y 2¢ 1 4 2ammaxy 2¢
F-Tls 0 T amr S T o Ve

Examining the above bounds, we have that |cat(v, f) — cat(vy, fo)| < € provided

maX{H'E - 170”2, dlStoo(fa f0)7 Ernd} < 6(2) : 1/p01}’(0:n?n7T7 Bf)vama)oH) Buv ﬁn)7 €0 < 1. (A14)

The bound follows by taking €y to be 3amlaxT < log(2M/9) u

—  3amaxT

O]

A.4 Linear Approximation to Catoni

Proof of Lemma 5.2. By definition of 6 and (5.6), we will have that

~

|(0,v) — cat[A‘lvH . |(6,v) — cat[A‘lfv]\
sup = min sup
vey ”’v||A—1 0 ey H'UHA‘1
< sup |0, v) — cat[A‘lvH
vey ||’UHA—1

Co
<Ci+ —-—.
Tllvl|a-—

Rearranging this implies that for all v € V,

(6, v) — cat[A~ ]| Cy ~ 4 Cy
<O+ ———— <= [(0,v) —cat|[A" ]| < Ci||v|[p-1 + =.
||,v||A_1 1 TH,UHA_I |< > [ ” H HA T
Similarly,
0,v) — ([A~1 0,v) — cat|A~! A~ — ¢[A? 2
aup 00) = AT 1(6.) — catlA 1] + [eatlA~w] = (AN L 2Cs
veY lv]la— veV [v]l a1 Tllv[[ a1

O]

Lemma A.11. Assume that, for all v € V we have

|cat[A " 1w] — C[A™1]| < Cy||v||a-1 + Co/T
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for some V CRY, 0 ¢V, and ([A~'v] = (v,0,). Let uq,...,uq denote the eigenvectors of A, and
set

0 =[ui,...,ug)-[cat{A " uy],. .. cat|A ug]] .
Then, for allv €V,
[(v,8) — cat[A ]| < (Vd + 1)Cy||v|[p-1 + (Vd - sup ||[v']|2 + 1)Ca/T,
v'ey

~

|(v,6) — ¢[A ]| < (Vd+2)Ci|[v]a1 + (V- sup [v[|2 + 2)C2/T.
v'e
Proof. Let
~ 1(8, v) — cat[A~1v]|

0 = arg min max
o  vev [v][ a1

Fix some v € V, and express v as v = Zf a;u;. Then,
(0,8) — (v,0)] = | Y ai(u;, 0 — 0)| < |ai]|(u;,0 — 6)].
i=1 i=1

By construction, we will have that (u;, 5} = cat[A~'u;]. Furthermore, by Lemma 5.2, 6 will satisfy
|<’U,i, 0> — cat[A‘luiH < ClﬂuiHA_l + CQ/T Thus,

Z|a1]| u;, 0 — 0|—Z\al||catA Y] — (ui, 0)]

= Z |ai|(Crllwil[a-1 + C2/T)

=1

d d
c
<1V, a?\luillifl+72§ |ai]
=1

i=1

where the last inequality follows by Cauchy-Schwarz. Since u; are the eigenvectors of Ar and are
therefore orthogonal, we will have that

d d d
Yoatluill? = | QO au) TAZN (Y aiui) = [Jv]l, 1
i=1 r i=1 i=1

Finally, we can bound

d d
Y olail <Vd| Y e =Vd/|v]3 < Vd- sup [|v'[|2.
i=1 i=1 VeV

The first result follows by upper bounding
(v,8) — cat{A 0] < [(v,8) — (v,8)] + |(v,8) — cat[ A" v]|
and again applying Lemma 5.2. The second result follows since
(v, 0) = ([A™ ]| < [(v,6) — cat[A™"v]| + [cat[ A~ o] — ([A™ 0|

and using the first result and the assumption on |cat[A~1v] — ([A~!v]|. O

39



Lemma A.12. Let cat{A~'v] denote a Catoni estimate as defined in Lemma 5.1, and assume that
the data used to form cat[A~1v], {X;(v, A)}_,, satisfies | X¢(v, A)| < y||v|[a-1 for allt and v, and

~

that |v||a-1 < ||v]l2/V'X. Then for @ as defined in Lemma 5.2, if we have S¥1 C V, for S the
unit sphere, we have:

16]12 < 2v/VX

and for 0 as defined in Lemma A.11 and any V:

16112 < Vv /VX.

Proof. By Claim A.14 and our assumption that |X;(v, A)| < v|jv|l2, we can bound |cat[A~v]| <
y||v||2. First consider setting  as in Lemma 5.2. Fix v € S%~!. By assumption v € V, so we have

(8, v) — cat[A~"]|
[v]la-1
0,v') — cat/A~ v’
< H,UHA_1 sup |< ,’U> /Ca [ ’U”
[v'EV [l A=
. (6, v) — cat[A™10]]
= ||v][a-1 |min sup p
L 0 wvey ”U HA*l
|cat[A 1]
ey [[V]la—
r /
< folla-s [sup 2t
ey [[V'][a-
<vlvla-1 +7llvlla-

< 2v/VA.

+ |cat[A ™ w]|

(6, v)| < [|vla-

+ |cat[Ao]|

] + |cat[A ™ ]|

< [o]las } T cat/A ]|

] T ollas

As this holds for all v € 8%, it follows that [|@]|z < 2v/V/X.
If @ is set as in Lemma A.11, we have that

d d
1912 < || D catlA ]2 < | Y A2 luily 1 = Vd/ M.
i=1 i=1

A.5 Catoni Perturbation Analysis

Lemma A.13. Consider some fized X = {X;}T_|, X := {X,}L_, satisfying | X;| < ~,|X;| < v for
all t, and some fived a > 0,a > 0. Let z* denote the root of the function fear(z; X, ) and Z* the
root of feat(z; X, @). Then, assuming that

T
1 ~ - 1
g;zf E al Xy — X¢| + 3yla—a| < Emin{l,QZ’yZ}

t=1
142 2
oo g L2 f2e
[0 (6
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Proof. For simplicity, we will denote f(z) := feat(2; X, @) and .]?(Z) = feat(z; X,d). Fix some A > 0
with A <. Note that f(z) is differentiable, even at z = 0, and

T

d : : TR
%f(z) = Z —at(a(Xe — 2)), Veat(y) = 1—y

t=1 1—y+y2/2

y=>0
y<0

By the Mean Value Theorem,
fE+A)=f"+A) = f(z") = f(yA
for some y € [z*, z* + A] which implies that

0> f(z*+A)—A sup f(2).
z€[z*,z* +A]

Note that 9.,(y) > 0 for all y, that ¢.,,(y) decreases as |y| increases, and that ¥, (y) = ¥ (—y).
It follows that

sup  —atla(a(Xy — 2)) < —adi(alXel + ol + ad).
z€E€[z*,z*+A]

Claim A.14. z* € [—v,7].

Proof of Claim A.14. Recall that, by assumption, | X;| < ~. Furthermore, note that if X; —2* <0
for all ¢, then f(z*) < 0, and similarly, if X; — 2* > 0 for all ¢, then f(z*) > 0. Since f(z*) = 0, this
implies that max; X; > z* and min; X; < 2z*, which implies that z* € [—v,~], and so |z*| <. O

By Claim A.14, we can upper bound

—0t(yi (0| Xt + alz"] + @A) < —ayi (207 + aA)
Cw. 1+al2y+A4)
1+ a2y +A)+a?(2y+ A)2/2

which implies that

sup () <D sup —ol(a(X — 2))
z€[z* 2"+ A] t—1 2€[z* 2" +A]

- Ta+Ta?(2y + A)
T 14 a2y+A)+a?(2y+ A)?2)2

SO

TaA(l+ a2y + A))

0=/ =" +A)+ 1+ a2y +A)+a2(2y+ A)2/2°

(A.15)

Note that 1., (y)| <1 for all y, which implies that |Ycat(y) — Yeat (V)] < |y — ¢/|. It follows that

T
P+ A) = F* +8) € 3 Weat(a(X; — 2* = A)) = deat(@(Ks — 2 — A))|
t=1

la(X; — 25 — A) — a(X;, — 2* — A

M=

t=1
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T T
<Y ol X — X+ Ja— @l X | + Tla —allz" + A|
t=1 t=1
T ~
< ZOZ’Xt = Xi| + 3Tv]a — qf
t=1

=:¢e-T

Thus,
. TaA(l+ a2y + A))
I ) ey + &) T a2 + A2
~ . TaA(l+ a(2v+ A))
2 A ey r A r a2y + Az T

If

aA(l+ a2y + A)) -0 (A.16)

—€
1+ a2y +A)+a?(2y+ A)2/2 -
then by (A.15) it follows that 0 > j?(z* +A). Since f is monotonically decreasing in z and f(?*) =0,
<2+ A
It remains to determine what choice of A is sufficient. Solving (A.16) for A, we will have that
(A.16) is met as long as

(1+2a7)e — (14 2a7) + /=€ + 2¢ + (1 + 4ay + 4a2?)

A >
200 — e

By assumption we have that 1 > ¢, so —e? + 2¢ + (1 + 4y + 4a?4?) is non-negative. We can then
bound

(1+2av)e — (14 2a) + /—€2 + 2e + (1 + 4oy + 4a242)

200 — e
< (1+2a7)e — (14 2a) + V—€2 + 2e + /(1 + 4oy + 4a29?2)
- 200 — ae
(14 2a7y)e + vV —€2 + 2¢

(0%

1+2 2
<l e
(0% «

A sufficient condition to meet (A.16) is then

142 2
_ ey a7€+ =

A -

a

1+2 2
2>+ + Ome—k\/—;
o a

We have required that A < ~, but note that this is met for this choice of A since we have assumed
that

Thus,

) 1 ay a?y?
€ <min< -, —,
6° 3 18
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and e satisfying this will ensure that A < «. Notice that the above condition is satisfied when
1
< —min 41, o?~2)
e < gmin{l e’}

The result follows by repeating this argument in the opposite direction. ]

B Regret Analysis

We will consider a slightly more general setup here than that considered in the main text. In
particular, we will allow for the reward function to be time-varying: at episodes k, the reward is
specified by r}’j(s, a). We will make several assumptions on this reward.

Assumption 1 (Time-Varying Reward). The reward function r¥(s,a) € [0,1] is Fj_1-measurable,

and non-increasing in k: r,’fb(s, a) < rZ_l(s, a) for all s,a,h,k. Furthermore, for each h,k, r,’i ER
QR(@)
).

for some function class Z, and Z has covering number bounded as N(Z, distso, €) < dg log(1+
As the reward function changes at each step, we will denote the value function for policy 7 at
episode k by QZ’W(S, a) (and similarly th’ﬂ(s)). We will also redefine regret as

K

Rici= D (Vi ='™)
k=1

for Vlk’* the optimal value function for reward r*. To accommodate time-varying reward in FORCE,
the update of the optimistic ()-estimate on Line 14 must be changed to:

Qi) e min{ri () + (@, ), Wh) + 68llep(-, )l p-1 |+ 12viminS°/K%, H
and the following settings of Kj,;; and 8 must be used:
Kinit ¢ ((d* + dg) log(max{d, v, . K, H, Rp}) + log(2HK/J))

min’

B« 6\/c(d2 + dy)log (max{d,v, ! , H, K, Ry}) + log(2HK/S).

min’
We then have the following result.

Theorem 8 (Regret Bound for Time-Varying Reward). Fiz a failure probability 6 € (0,1) and
K €N, and assume that the reward satisfies Assumption 1. Then, the regret of FORCE, modified to
handle time-varying rewards as outlined above, satisfies the following bound with probability at least

1-36:

K
Ri < c1y|d(d? + dy)H? - log(Ry HK [6) log? (HK/8) - > V™
k=1

+ epVd(d? + d)*? H? 1og® ?(Ry HK /6) log? (HK /6)

for universal constants c1,co. Furthermore, if we use the computationally efficient update as outlined
in Theorem 5, with probability at least 1 — 30, the regret is bounded by

K
Ri < c1y| d2(d? + dy)H? -log(Rg HK /6) log? (HK /5) - > Vi
k=1

+ cod(d? 4 dy)*? H? og®*(Ry HK /8) log? (HK /)

and computation will scale polynomially in d, H, K, and min{|A|, O(2%)}.
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Theorem 4 and Theorem 5 are direct corollaries of Theorem 8, where we simply set r,’i =17

for all k, replace Zle Vlk’* with KV}, and note that since the reward is deterministic in this
case, no cover over reward functions is necessary, so the regret scales independently of dg and Rg.
Throughout the remainder of this section, we will consider this more general time-varying reward
setting.

B.1 Preliminaries and Notation

Define the following events:
App = { ‘Cath,k [(k - 1>A;;}€_1¢h,k: - EhW}ﬁﬂ(%k&h,k)‘ < Blpnilla-r +Vmin52/k‘2}

Bui= {wo e B+ [BuVAI0) ~ EAVEAI0)] < Aol + viund?/6°

K H
£ = m m (Bk,h N Ak,h)

k=Kinit h=1

where we denote Eh[thH](v) = caty, i [(k — 1)A};}C_1v], B = 6+/Cmap + log(2HK/$), and

Cudp = c(d® + dy) - logs (d, v}, H,1/\, K, Ryp)

’ Ymin?

for a universal constant c. Here we overload notation slightly and define:

B[V ](v) = (o, / V() dpn(s).

We will also define rp(v) = rp(s,a) if v = ¢(s,a), and 0 otherwise. Throughout this section, we
will also denote IEh[th+1}(s, a) = Iﬁh[thH](qf)(s, a)).

The analysis of the computationally inefficient and computationally efficient versions of FORCE
are nearly identical, and we therefore prove them in tandem. To facilitate this, we will define the
parameter

E L 25 efficient = false
T \(Vd+2)3 efficient = true

where the efficient flag corresponds to which version of the algorithm we are running: efficient =
false corresponds to running the version of FORCE as stated in Algorithm 1, and efficient = true
corresponds to running the computationally efficient version as described in Section 4.2. Given the
definition of B, we can then write the update to QZ as

Qlfi(? ) A min{rﬁ('? ) + <¢(7 ')7 @;’i) + 3B”¢(7 ')HA}:}Q)_I + 3Vmin,§2/k'2, H},

and this update holds in either the efficient or inefficient case. We will use E throughout the analysis,
and set Vyin = 1/K, max = K/Vmin as in FORCE.

B.2 Catoni Estimation is Correct for Linear MDPs

Lemma B.1. Consider the function class

Fnap = {#() = minfr() + (1w) +35] - [a -+ + & HY ¢ wlls < AHVA/(WEy). A= A7 e 2}
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and assume ¢ > 0, N(Z, distoo, €) < dglog(1 + M%). Then,

d(28853% + 8H/V2. )/\+ 4R,
N(Frncty, distoc, €) < (402 + dip) log <1+\f( 886" +8 6/ Vinin)/A £ RJ).

Furthermore, conditioned on the event ﬂlj;%(init ﬂg:thl (Brjp N Br—1p) NV Arp, the Catoni esti-
mation problems on Line 10 at episode k of FORCE are instances of the regression with function

approximation setting of Definition 5.2 for
Bu:\/gy ,Bu:(), ﬁ:gzmdp

Similarly, conditioned on the event ﬂﬁ;}(imt ﬂg:hﬂ (Brjww N By ) N Arp, the Catoni estimation
problems on Line 13 and in the computationally efficient update of Equation (4.5), are instances of
the regression with function approrimation setting of Definition 5.2 for

Bu:\/g, BUZO, gzﬁmdp-

Proof. We will instantiate Definition 5.2 with ¢, = ¢y, -, @~ = Ppy1,+, 4 = pn, 07 = Vp, 7, and the
function class .# = F,qp. FORCE solves two different forms of regression problems. In the first
setting, when solving for \7,21716_1 on Line 10, we consider y, = Vh]‘:ll (Sht+1,r), and u, = 0. In the
second, when solving either cath,k[(k—l)A};}c_lv] or catp, [(k— 1)A,;}€_1ui], we set y, = th_,’_l(ShJ'_l’T)
and set u, = 0.

We verify that this meets the criteria of Definition 5.2. First, note that by definition of Fj, -,
we will have that ¢y, is Fj r-measurable and that ¢p41, is Fp11-measurable. In addition,
|dn,rll2 < 1 and |[pp41-]|2 < 1 by assumption. Given the linear MDP structure of Definition 3.1,
for any bounded function f,

E[f(¢h+1,7) ‘ -Fh,f] = <¢h,7’a/f(d)(S/?7T2+1<3/)))d“'h(5/)>'

Note that we can think of u(-) as a measure over R?, as required by Definition 5.2, by associating
s" with @(s', 77 1(s")), and putting a measure of 0 on all vectors v such that there does not exist

s,a with v = ¢(s,a). In addition, by assumption |||u4](S)||2 < V/d, so we can take 8, = Vd.

In both settings, since u, = 0, it suffices to take 8, = 0. Note that for any s,a, h, k, 7, we can
bound

|p(s,0) " Ay 1D Vieri (shi1r) Vi |

—1/2 k _
<16, )1 - 1A opllbnrllo Vi (sns,0)1/97.
H
< S,a)[|a-1 - ————
< 1ol Jpa
so by Lemma A.12, we will have that ||wy |2 < 4)52\'/3. It follows that, by construction of V/F,, (-),

we will have Vi, (-) € Fndp-
It remains to show that the condition on vy, -, (5.4), is met at round k. In our setting, for the
Catoni estimation on Line 10 at episode k, (5.4) is equivalent to

_ 1
Enl(VE)? (s o) < 59
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However, by Lemma B.5, this holds for all 7 > Kjuit on the ﬂk K. ﬁ —hi1 (Brjpy N Bi—1,p) N Az p.

For 7 < Kipj it trivially as we set V2 = 2H? and since V}} +1( s') e [O H ]. For the Catoni estimation
on Line 13 or in Equation (4.5), (5.4) is equivalent to

1_
Eh[(vif—&-l)Q] (Sh,'ra ah,'r) < §V%L T

)

Again by Lemma B.5, this holds on the event ﬁk_}(imt ﬂ#:hﬂ (Brw N By ) N Ay for 7 > Kigit.
For 7 < Kjp; this tr1v1ally holds since Vh = 2H?2.
Finally, we bound the covering number of .#,,q,. Consider fi, fo € Fqp, then

disteo (f1, f2) = sup |fi(@) — fa(@)|

peB

= sup min{rl((,‘b) + <¢’7 w1> + 3E”¢HA;1 + 67 H}
peB?

— min{rz(¢) + (¢, w2) + 3§H¢HA2—1 +¢,H}|.
Assume that f1(¢) = fa(¢p) = H, then we can clearly bound
1/1(8) = f2(#)] < [r1(@) — ra(¢)] + | min{ (¢, w1) + 3B Bl| -+, H} — min{ (b, wo) + 35|l 1, H}|-
If f1(¢) < H, fo(¢p) < H, using that ¢ 71(¢),72(¢p) > 0, we can bound
f1(8) = f2(#)] = [r1() + (¢, w1) + 38|l p 1 — (ra(¢) + (¢, w2) + 3B B[ 1)]
= [r1() + min{(p, w1) + 35|y 1, H} = (r2(#) + min{ (¢, ws) + 35 p]| 51, H})|
< |r1(¢) = r2(@)| + [ min{(d, w1) + 35| d]| 1, H} — min{(p, w) + 35] bl 51, H}.
If fi(¢) = H, fa(¢p) < H,
1f1(#) = f2(#)] < [r1(¢) + min{ (¢, w1) + 38|l y 1, H} — (r2(9) + (&, w2) + 35| pl|51)]
= [r1(¢) + min{ (¢, w1) + 3B Bll y 1, H} — (r2($) + min{(p, ws) + 35| p]| 5.1, H})|
< |ri(¢) — ra(@)| + [ min{(d, w1) + 38|, 1, H} — min{(¢, w2) + 35|b[| 51, H}|:
The same argument holds of f1(¢) < H, f2(¢p) = H. Altogether then,

diStoo(fla fQ) < sup ‘T1(¢) - T2<¢)‘
peB?

+¢,Su£ |mllf1{<<15,’wl>+35||<15||A—1 H} — mm{<¢7w2>+3ﬁ||¢|lA—1 HY.
cBd

It follows that we can construct €/2-nets of % and the class
F = { () = min{(-,w) + 35 - a1, H} : wllo < 4HVA/(W2), A = A}

separately, and the union of these nets will serve as an e-net of .#,,qp,. By assumption, we have

N(Z, disteo, €/2) < dglog(1l + 42% ). Furthermore, 7 is identical to the function class considered in
Lemma A.2, so

N(idistoo,eﬂ)gdlog( in> Pl ( 288\f52>

)\2

min
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“ i log (1 . V(28852 + 8H/vmm)> |

pY

This implies that (since log-covering numbers are additive)

(288532 + 8H 4
N(Fmdp, distoo, €) < 4d? log (1 + V(2885 + 8 /me)> + dg log < Rj)

A€

288032 + 8H A+ 4R;
< (4d® + dg) log (14—\[( 885" +8 6/me)/ + Rj>'

O]

Lemma B.2. Assume we are in the linear MDP setting and are running Algorithm 1 with A < 1/H?.
Then as long as K > Ky, we will have that P[E] > 1 — 6.

Proof. First, note that

K H
U (Bip U Ag 1)
k=Kinit h=1
Then,
Claim B.3.
K H
k—
U U Bk h U Ak h U U |:B]§,h ﬁ (mk,:lKinit ﬂgzl (Bkl7h/ ﬂ Ak’,h/)) m (ﬂg:h+lBk,h/):|
k=Kinis h=1 k=Kinit h=1
K H
U U U [ (ﬂ]]z/ ! Kinit mg:l (Bk/ﬁ/ N Akl,h/)) N (mgzh+1Bk,h’>j| .
k=Kinit h=1

Claim B.3 and a union bound imply that

PlE] = {
k

C =
=

(B, U AL 1)

I
=
g
&
=
I
H

K H
< Z ZIP’ {B,ﬁ}h N (ﬁ',z;lKimt Ny (B N Ak’,h’)) N (mg:h—HBk,h’)}
k=Kinit h=1
K H
+ > > P [ fen N (mzl_:lKimt Nhi—1 (Brow N Ak/ﬁ’)) n (m{z%:h-&-lBk,h')}
k=Kinit h=1
K H
< >0 DB [Bral (i, s (Brew 0 Awa) 0 (i B
k=Kinit h=1

P |: h| ﬂk, K ﬂh/ 1(Bk/’h/ m Ak}',h/) m (m5:h+1Bk,h/):| .

n
<[]
M=

e
g

&

=
>
Il
—
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We first bound

[ M=Ky Oz (Brew 0 A ) 0 (mgthrlBk,h’)].

By Lemma B.1, we have the regression estimate caty, j {(k — 1)A;}€_1¢h,k} satisfies Definition 5.2
conditioned on the event ﬁl,z,;lKimt 05:1 (Bir by N A ) N (ﬂ§:h+lBk7h/). We now apply Theorem 6.
First note that since amax = K/Vmin, ||Onll2 < V/d, and using the values for 38, and By from
Lemma B.1, as well as the covering number bound of Fy,qp, it follows that Cy,qp upper bounds drd.
Since we have assumed K > Kjyjt, by our choice of Kinit = c(log(2H K /§) 4+ Cap), it follows that
the minimum sample condition of Theorem 6 is met for k > Kinit. Finally, note that in this setting,
using the definition of linear MDPs, Definition 3.1, we will have that

0. = [ VEa () (o).

Thus, by Theorem 6, with probability at least 1 — §/(2HK),

cot (= DAL ina] = (Bnss [ V(i (s)

3(Crnap + log(2HK/9))
Omax(k — 1)

< lonalls, (/Coan +1082HE/D) + VA0.]2 ) +
Note that,
612 = 1| [ V()i < H] [ s ()l < 1V

where the last inequality follows by Definition 3.1. It follows that for A < 1/H? and proper choice
of the universal constant in C,qp, we can bound

1
VAB.]12 < £1/Cnap + log(2H K /0).

As (n ki, [ (s Vh+1( sds')y = Eh[thH](sh’k, ap, ) by Definition 3.1, by our choice of 5 we conclude
that with probability at least 1 — §/(2HK)",

caty, [(k - 1)A};}g_1¢h,k} — En[Vitia](sh ks an)

< »B”(ph,kHA;}%l + Vmin52/k2-

This is precisely the definition of Ay j, however, so it follows that
[ h| Nk~ i ﬂh/ 1 (B NV Agr ) N (ﬂg,h 1B h’)} < —.
k K , s =h+ , —9HK
The bound on

P [Bk h| (ﬂi, ! Kinit ﬂh/ 1 (Bk’ I N Ak’ h’)) N (mg:h—s—lBk,h’)}

can be shown almost identically. As such, we omit the calculation and conclude that
0
P{BC (m’“rl NPy (B N Aps /)m nE_,..B /}<7.
ol (W=, W=t (Birwr 0 A ) ) O (M Biow) | < 53776
Combining these bounds gives that P[] < 4. O
SNote that if k > Kinjt = 4(Cmap + log(2HK/J)), then K > B, SO we can remove E from the definition of dr as it
will be dominated by K.

5We have replaced 1/(k — 1) in the lower order term with 1/k for future notational convenience. Note that this is
valid since k > Kinit > 1 so we can accommodate this change by slightly increasing the constant in .
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Lemma B.4. Fiz h, k > Kinit, and k' > k. Then if By, and By jy hold for all I € [h, H], we
will have

5Qf (s,a) > Qfi(s,a)
for all W € [h, H]. In particular, 5VE(s) > VIE (s).
Proof. We will prove this by induction. In the base case, take h’ = H. On By, g N By i, we have
5Q’f{(s, a) = min {57’]}’{(3, a) + 5(¢(s, a), @?ﬁ + 155”(],’)(3, a)HA;kil + 15Vmin§2/k2, 5H}
51} (5, @) + Er[5Vh1)(s,0) + 581 ¢(5. ) [ 1, + 5viuanB?/K%, 5 |

57 (s, ) + 5B @5, @)l -1+ Svmin /K%, 5H |

!

n{rf(s.0) + 5Bl (s, )l -+ 5vainB/(K)*, H |

Ve
E
— /—/‘\ — A

i (5,a) + (9(s, ), @) + 381 d(s, )|y 1+ Bvain 2/ (K)%, H }

where (a) follows since we are on By, i and by Lemma B.6, (b) follows since V}; | (s) = 0 by definition,

. . . . . / .
(c) follows since reward is non-increasing in k so r¥ (s,a) < r¥(s,a), and since Ay 1 = Ap, and

(d) follows since we are on By p, and by Lemma B.6. This implies that, for all s,

5Vi(s) = 5Qf (s, w1 (5)) = 5Ql (s, whr () = Qy (s, why () = VI (s)- (B.1)

For the inductive step, assume that 5fo’+ (s) > Vh'+1( s) for all s and that By s N By jy holds.
Then we can repeat the above calculation, but now lower bounding

Ep [5Vf§+1](37 a) > Ep [Vf/;ﬂ(& a).
In full detail,

5Q’fL,(s,a) = min 57"£,(s,a) +5(¢p(s,a), wh,> + 156||¢(3 aJ)||A L —|— 15vminﬁ2/k2,c\7H}

{
> min {57«;3,(5,&) + B [5Vii44](s, @) + 5ﬁ||¢<s,a>||A—1 L BV 5 /R, 5H}
> m {5rh,(s @)+ En Vi 1](s.0) + 58] (s, a) [ 1 +5vmin52/k2,5H}
> min {1 (s, @) + ($(s, 0), Bf) + 3ﬂ||¢<s,a>||A;,1,k_l o+ Buin B2/ (K%, H |
= Qb (s,a)
It follows that 5th,(3) > th,/(s) by the same argument as in (B.1). This proves the inductive step,
so the result follows. O

Lemma B.5. Set

V3 ), = max {20Hcath,k [(k - 1)A;}€_1¢h,k] +20HB| nilly-1 A 20HVmin /K, mm}
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Then \7,21’/,€ is Fnp-measurable, and, for any k' > k, on the event ﬂg:hH(Bk’h/ N By ) N App, we
have

/ 1_
Eh[(vhk+1)2](3h,kvah,k) < §Vi21,kv (B.2)
AHEL [V (Shks ank) < V34
and
Vi, < max {20HEh[Vf+1]($h,ka ank) +A0H Bl nkllp-1 |+ A0HVimin 3 /K2, V?mn}- (B.3)

Proof. By definition ¢y, i, Apr—1, and 7, are Fp, p-measurable. As we only rely on data up to
episode k — 1, it follows that ¢, and spy1, are also Fj, p-measurable. Finally, we see from the
definition of Algorithm 1 that th+1 is formed using only data up to and including episode k& — 1. It
follows that vy, j is F}, p-measurable.

Note that we can trivially bound
En[(Vieer) ) (shbs ang) < HER[VE ] (5h ks an k)

where the last inequality follows since V,{il(s’) € [0, H]. By Lemma B.4, on the event N} _, .| (BN
Bk’,h’)v we will have that

HE[ViE ] (shks ang) < SHER[VE ] (shs ane).

On the event Ay j,, we can bound

En Vi) (Shoks ank) < catpp [(kﬁ - 1)Af7}c—1¢h,k] + Bl pnrllar  + Vinin B2/ K%

The lower bound (B.2) follows by our choice of \7,217k. The upper bound (B.3) follows since, on Ay p,
we have

caty, [(k — 1)A;;}€_1¢h,k} < En[ViFi 1] (Shoes ane) + /3H¢h,k||A;%H + Vimin 32 /K%

Lemma B.6. On the event By, if we are running Algorithm 1, we will have that
(s, ), ) — BalVE (5, )] < Bll bl a)llnz 1+ vanin P/
(s, @), ) — EAlVE (5, )] < Bllbls,0) a1+ voinB2/R2
for all s and a.

Proof. This follows directly from Lemma 5.2 and Lemma A.11, the definition of 5 and By, and
since B, [V, 1](s, a) is linear in ¢ (s, a) and we assume that [|¢p(s,a)|2 < 1 for all 5,a and that there
does not exist s,a such that ¢(s,a) = 0. O

Proof of Claim B.3. Clearly,

K H
U U(Bii,hUAi,h)

k=Kinit h=1
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Noting that
X\ (U2 Wby (B U Af 1)) U (Ul (B U AR ) )
=XnN (mi;lmm M=t (Br g 0 Apr ) 0 (O ppd (Bro 0 Ak,h’))>

for any X completes the proof. O

B.3 Optimism

Lemma B.7. On the event &, for all s,a,h, and k > Kin and any w, we have
-~ k,mw k.
Eh[thH](s, a) +ri(s,a) — Q" (s,a) = Eh[vhkﬂ =V, ihl(s,a) + & (s, a)
k ; k . R2/1.2
where &5 (s, a) satisfies |&(s,a)| < BHQ')(S’G)”AZ}GA + Vmin 8%/ k°.
Proof. By definition, we have that
Qk’”(s a) =rk(s,a) +E [Vk’ﬂ](s a)
h ) h\®» hlVhpy1I\5&)-
On &, we have that
BuVE 1 )(5,0) — B[V ](5.0)| < Bl(s.a)llyn -+ Bk
so we can therefore write
En[Vifl(s,0) = En[Viii1)(s,0) + € (s, a)
for a term fflf(s, a) satisfying
k(5. )| < Bll@(s.a)lpr -+ vainS/R.
It follows that

En[ViE (s, a) + 75 (s,a) — QF (s,a) = B [ViF, — ViR 1(s,a) + €8 (s, a).

Lemma B.8. On the event &£, for all s,a,h, and k > Kini, we have that Qﬁ(s,a) > QZ’*(s,a).
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Proof. We will prove this by induction for a fixed k. First, take h = H. Since Vi y1(s) = Vi, (s) =0
by definition, by Lemma B.7 we have

B (Vi 1)(s.0) + 1y (s,0) = Q" (s, )] < Bllb(s. @)=t | + Viin82/H
which implies
Q" (s.a) < min{r(s,a) + En(Vii1)(s,a) + Blb(s,a) [ o=t +veinS*/K%, H}
< min{rf (s, ) + (@(s, a), @) + (8 + B)[b(s,a)ll o1, +viin(5* + 5°) /4%, H}
< min{r} (s, a) + (¢(s, a), W) + 35 b(s,a)[o-1 | + v /K%, H}
= Ql(s,a)

where we have used Lemma B.6 and that 8 < B Now assume that QZ_H(S, a) > QZ’_:I(S, a) for all
(s,a) and some h. Again by Lemma B.7, we have that

™ k7 k7
[EA[Viia)(s,0) = Q" (s, 0) = En[Viisy = Vihl(s:a)| < Bllg(s, a)llazr  + vanin /K7
By the inductive hypothesis E,[V}F, | — th+*1](s a) >0, so

Qi (s.0) < minf{rii(s, a) + EnViy1)(s.0) + Bllb(s. a)[o-1 |+ vin 8/, H}
< min{rfi(s, a) + ($(s,a). Wh) + (8 + B)l|(s, a)l[o-1 |+ vmin (57 + 5°) /K%, H}
= min{r}i(s, a) + (b(s, 0), By) + 35 b(s.0) [ o-1 | + Bvmin /K%, H}
= Qh(s a).

This proves the inductive hypothesis so the result follows. O

Lemma B.9 (Formal version of Lemma 6.1). Let §F = V}f(sﬁ)—vhk’ﬂk(sﬁ) and C;fﬂ = Eh[éﬁﬂ](sh’k, Ah ) —

5£+1. Then, on the event £, for any k > Kinit,

55 < 5]I§+1 + Cllch + min{55”¢h,k”Aﬁ_1 + 5Vminr§2/l‘727 H}.
Proof. We have

Qhls,@) = Q™ (s,0)  min{rh(s, ) + (S5, @), @) + 38 (s, 0)l| 1|+ Bvamin B2/ K2, H} = Q™ (5,0)

,\
INS

min{rf(s,a) + (¢(s,a), wr) — vaﬂ'k (s,a) + 35\@(3,@)\\1&};271 + v 32 /K2, HY

,\
N

miH{T‘]Ii(S, CL) + Eh[vhk—l-l](sa a’) Qk Tk (87 CL) + 4/§H¢<37 (I) ||A;j€71 + 4Vmin52/k27 H}

,\
IN&

min{E, [ViF,, — V] (s,a) + 58] (s, a)||A—1 ot 5vimin 32 /K2, H}
(e) - . ~
< Eh[vhkﬂ _ thhk](s, a) + min{53||¢(s, a)HA;}C_1 + 5Vmin52/k2, H}

where (a) is by definition of Q¥ (s,a), (b) holds since Qk " (s,a) > 0, (c) holds by Lemma B.6, (d)
follows by Lemma B.7, and (e) follows since E; [V} 1 thﬂ’“](s, a) > 0 by Lemma B.8.
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Now note that since at episode k we play action aﬁ = argmax, Qz(sfl, a), we will have that
k,
55 = Qi(sﬁ,ah) Qp ﬂk(shaah)
The result follows by the definition of V}¥(s) and th Tk (s). O

B.4 Regret Bound

Lemma B.10. With probability at least 1 — 9§, we can bound

K H K H
Z ZCflf <2 Z Z [(8h—1k>an-14k) -log1/6 +2H log 1/4.
“K

init h=1 k=Kinit h=1

k

Proof. This is a direct application of Lemma A.4, Freedman’s inequality. Recall that

CF = Baa [0F) (st an1.4) = F = B a[Vif = ViP™ (sn1 ke an1k) — (Vi (k) = Vi™ (s5))-
Thus, we can bound

Cil < 2H
since the value function will always be bounded in [0, H]. Next, note that
B 1[(CH) (sh_14> an—1x) < 2Bp_1[(VF — th’ﬂk)Q}(Shfl,ky Ah—1k)
< AR, A [(VE)? + (V™) (sh1.0, an_1.)

< 8Eh—1[(th)2](3h—1,kv ah—1k)
< 8HE), 1[VF|(sh_1.k; an_11)

where the second to last inequality uses Lemma B.8. Using these bounds the result then follows
directly from Lemma A.4. ]

Lemma B.11. With probability at least 1 — §, we have

K H K K
ZZEh 1 Vh (Sh—1,k>an—1%) < H - Z Vlk’*+RK+2 Z Vlk’*+RK -log1/6 +log 1/
k=1h=1 k=Kinit k=Kinit

where Ry = Zk 1(V1 (s1) — Vk Tk (s1)).
Proof. By Lemma B.6, on &,

[((s,a), F) — En[Viii](s,a)| < Bllg(s, a)llp;n  + Vimin 8 /1
which implies that

B VA1 )(5,0) < (@05, @), @) + Bllo(s, )l ot -+ viminB2/42.
Thus,

Qfi(s,a) = min{r}(s,a) + (B(s,a), Wy) + 35]|¢(s, a)ll a5 +3Vmin/§2/k27H}
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> min{ry (s, a) + En[Vi¥](s,a), H}.
Since 7f(s) = arg max, Q (s, a), we have that ViF, (s') = QF (s, 7F (). Using that reward is
always nonnegative, we can therefore unroll V{*(s1) backwards as:

VE(s1) = QY (s1, 7 (51))
> min{ry (s1, 7y (51)) + Es, [Q5 (52,75 (52)) | 51,7y (s1)], H}
> min{Es, [Q5(sa, 75 (s2)) | 51,71 (s1)], H}
= Eq,[Q5(s2, 75 (s2)) | 51,71 (51)]
> By, [min{r5 (s, 75 (s2)) + By [Q5 (53, 75 (s3)) | s2, 75 (s2)], H} | 51,7 (s1)]
> B, B [QF (53, 75 (53)) | 52,75 (s2)] | 51,71 (s1)]
= B« [Qf (53,75 (s3))]

> E_1[QF (sp, 7 (s1))]
=E.[ViF(s1)]

where here Ey |- | s,a] denotes taking the expectation over the next state s’ given that we are in
(s,a), and E_ &[] denotes the expectation over trajectories generated by m;. We conclude

Vi(s1) = Ene[Vi (1)
for any h. Given this, since we play policy m; at episode k, we will have that
EmEh—l[th](Sh—l,mah—qu) =Enr, [th(sz)] < En, [V1k(311€)] = Vlk(sl)

which allows us to bound

K H

Z Z]Eh_l[vhk](sh—l,kaah—l,k:)

k=Kinit h=1

K H K H
Z ZErkEhfl[th](shfl,kyahfl,k) + > Eaa [V (h-1kr an-1.k) = Er B 1 [ViF(Sh-1.ks an-1.4))
:K h=1 k:Kimt h=1

K

K H
Z )+ Z Z En1[ViF(sh-1.ks an-14) — Enr, B [ViFl(Sh—1.8 an1.1))-
K

Kinit k=Kinit h=1

By definition of ﬁK,

K K K
H DY Vis)=H > V™ (s1)+HRxk <H Y V{*(s1)+ HRk.
k=Kinit k=Kinit k=Kinit
It remains to bound

K

H
(En_1[ViFl(sh-14,an-1%) — Exy En1[VIFl(sh_14, an_11))-
k=Kinit h=1
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Note first that \Eh,l[th](sh,Lk,ah,Lk) — EﬂkEh,l[th](sh,Lk, ap—14)| < H almost surely,
Er [En1[ViF](sh—14: ah-1k) — Ex,En_1[ViF] (81,4, an—1,4)] = 0,
and

Er [(Bno1[ViFl (she1.ky an—1.k) — En, Ene 1 [VIFl(sn—1.8 an—1.6))%] < By [En—1 Vi (sh—1.4, an—1.%)]
< HEr, [EEn_1[VF](sh-1.4> an-11)]
< HVlk(Sl)

where the last inequality follows by what we have shown above. Applying Freedman’s inequality
(Lemma A.4), we can then bound, with probability at least 1 — 4§,

K H
(En1[VFI(sh-14, an-11) — Er, En 1 [VFl(sh-14, an_1.1))
k=Kinit h=1
K
<2,|H? > V{(s1)-log1/6+ Hlog1/s
k=Kinit

K
<2, | (@2 Y V/(s1)+ H?Ri) - log1/d + Hlog1/5
k=Kinit

where the last inequality follows by what we have shown above. O

Proof of Theorem §. By definition of R and Lemma B.8,

K K
R =Y (V" (s1) = V"™ (s1)) < HEini + Y (ViF(51) = V"™ (51)) =0 HKimit + Rrg.
k=1 k=Kinit

Decomposing the regret. By Lemma B.9,

K

Ll H
S2G Y Y min{55l(s )l + v /K2 H)

K
k=Kinit h=1 k=Kinit h=1

Siigkihr K

H
Zmin{5m|¢(s,a)\|A;}H,H}+ ST viwB/K.
k=Kinit h=1 k=Kinit h=1 '

k=Kinit h=1

>
_|_

init 0=

By Lemma B.10, with probability 1 — 4§, ZkK:K Zthl ¢k can be bounded as

init

ISl

K H K H
SN <320 Y > Era[ViFI(sh1m an—1k) - log1/6 + 2H log 1/6.
k:Kinit h=1 k:Kinit h=1

Furthermore,

K H N N
Z Z 5Vmin/82/k32 S 1OB2E[Vmin
=K.

k init h=1
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Controlling the optimistic bonuses. Let K, = {k > Kiniy H¢h,k/\7h,kHA;}$ < 1} and
1,k—1
}CL = {Kinit; ce ,K}\Kh. Then,

K H K H
> > min{58lgnully1 JHY= Y > Vnemin{58]éne/Whrlla-t o H V)
=Ky : :

k init h=1 k:Kinit h=1
<56 > Vnlldh/Wnalla  + D HIK
h=1keKy, ' h=1

By Lemma 6.2, and since ||¢¥ /Vykll2 < 1/Vmin almost surely, we can bound |K§| < 2dlog(1 +
K/(\V2,)), which implies that

H
> HIKS| < 2dH?log(1+ K/ (W2y,)).
h=1

Denote
’)’]h’T = 2OHE}L [sz-—‘,-l] (Sh,Ta ahﬂ')'

By Lemma B.5 and the definition of \7,% -, we can bound

H
58> > Yl

h=1keky,

Onfinila 1 |

H \72
=503 3" /Uil g
v s s Ahykf1

h=1keky, hok
Lk + 20HBlbnkll a1+ 20Hviin B2 /K2 4 VR,
<5iy > ’

1D ge/Vnnllag

h=1keK, Vi '
H

<53 2 /7.2 , - - o2

< 55;:”22 ((\/577h,k +20H5%/k" A+ Vanin )| nw / Vgl a1+ 20H5H¢h,k/vh,k\|Ahil)
= h

where the final inequality follows since, by Lemma B.5, we can lower bound \7% x = Mh,k/5, and since
we can always lower bound v, 1, > Viin.

Recalling the definition of Kp, we can bound

H H K
56 > 20HB|nr/unily 1 <100HBEY Y min{|| @) /vnlly 1.1}
h=1kek, T h=1 k=1 ’
< 200H2BBdlog(1 + K/(d\W24,))

where the last inequality follows by Lemma A.3. By Cauchy-Schwarz and again using the definition
of Ky, we can bound

H
552 Z (/51 + 20H 3* /[k* + vmin)Hﬁbﬁ/\_/h,kHA;jc

h=1 ke,

56



H
<58, (4D (5unk +A00H234 [k + V2 ) Z > Nk /v, el
h=1 ke, h=1 ke
_ H H K
<58,4) 0> (g +400H2B4 /K4 +v2 )4 | D 0D min{||f /v, ku? i 1}
h=1keky, h=1 k=1
H K
< 55 \/2dH log(1 + K/(dM2y,)), 403" S s + 3200H361 + AHEVZ,,
h=1k=Kinit
H K
< 55\/2dH log(1 + K/(dW2,)) | ([40D" 37w+ 60HY25% 4 2 [HIZ,,
h=1k=Kinit

where we again apply Lemma A.3 and use that v/a + b < \/a + v/b for a,b > 0.

Finishing the Proof. By definition,

H K
Z Z nhk—z Z 20HEL Vi, 1](sh k> an) Z > 20HE, 4 [Vi)(sho1k: ah-1k)-
h=1

h=1k= Kll’llt h=1k= Kmlt Kinit

Collecting terms, we have then shown that,

K
Ric < c1fyJdHlog(1+ K/(dN2)) [ HY D S By VA (sno 1 ano1e)
h=1 k=Kinit

+ 025\/dH log(1 + K/(d)\VIQnin))\/HVIQninK
+ c3BB7H?Vdlog(1+ K/(dAV3,))

for universal constants ¢, co, c3. By Lemma B.11 we can bound, with probability at least 1 — 9,

K H K K
Z ZEVh U(Sh—1,k: an—1k) < H - Z‘/lk’*+7€1(+2 <ZV1]“+RK> -log1/6 +log1/é
k=Kinis h=1 k=1 k=1

K
<4Hlog1/s - (Z v 4 75;()

k=1

SO

R < 016\/dHlog (1+ K/(d\V2,)) H?log1/6 - (Z V]H +RK> +/HV2, K

k=1
+e3BBPH*Vdlog(1 + K/(dA\VE,)).

Finally, choosing v2. = 1/K and solving the above for Rk gives

K
Ric < exBy/dH log(1+ K/(dN2,)) | H2log1/8 - S Vi + caBf2HVdlog(1 + K/ (dMW2y,)) -log 1/6.
k=1
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Since R < HKinit + R K, union bounding over &£, which holds with probability at least 1 — § by
Lemma B.2, and the two additional events stated above, and using that 8 = 6/Ciap + log(2HK/¥)
and

Cudp = c(d® + dg) - logs (d, v} , H,1/\, K, Ryp)

’ Ymin?

and the definition of 5, and setting A = 1/H?, gives the final result. O
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