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AbstractÐ Visual navigation for insect-scale robots is very
challenging because in such a small scale, the size, weight,
and power (SWaP) constraints do not appear to permit visual
navigation techniques such as SLAM (Simultaneous Localiza-
tion and Mapping) because they are likely to be too power-
hungry. We propose to use a biology-inspired approach, which
we term the bilinear optic flow approximation, that is more
computationally efficient. We build on previous work that has
shown that the bilinear approximation can be used for visual
servoing. Here, we show that a bilinear approximator can be
learned that is able to stabilize the heading of a robot while
performing continuous forward motion in a corridor-shaped
environment. This is a necessary capability for confined-space
navigation that insect-sized robots are likely to perform. In
this work, we describe the underlining methodology of the
method and built a 2D visual simulation environment and
omnidirectional camera model to validate our results.

I. INTRODUCTION

Compared with the large robots, insect-scale robots have

advantage of lower cost because the material cost is dra-

matically reduced and also they can perform many tasks

better because of the small size such as locating the leaks

of the gas of interest in dense piping infrastructure, space

exploration with much lower cost, and replacing fixed-in-

place air sensors in urban environments. However, the reason

why the insect-scale robots are still in research stage rather

than industry deployed is because as the scale reduces dra-

matically, the sensor feedback quality and energy available

for computation also reduces drastically, which makes the

realization of insect-scale robots challenging to have the

similar performance as the larger robots. For example, larger

drones can be equipped with several sensors such as Lidars,

thermal sensors and the global positioning system (GPS),

but for insect-scale robots, most of those sensors are either

too power-hungry or too heavy. Also, especially for indoor

environment, the GPS signal cannot be accurate enough [1].

One of our contributions is to solve the challenge for insect-

scale robots to do navigation given size, weight, and power

(SWaP) constraints.

Visual navigation is one aspect of visual servoing, which

uses the information from vision sensors to control robot mo-

tion. Visual information has been used as an important input

to robotic systems to do navigation [2], manipulation [3],
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and human-robot interaction tasks [4]. However, most of

the algorithms are for large robots without tight SWaP con-

straints. In nature, the fly is good at visual navigation under

those constraints. Flies have omnidirectional eyes that can

perceive visual information and then do navigation in sur-

roundings [5]. Bio-inspired by flies, we do visual navigation

with insect-scale robot with an omnidirectional camera using

an optic flow estimation. Here, we are interested in a corridor

following task (Fig. 2) because it is the essential behavior

required for navigating between obstacles in a cluttered

environment. A reflexive corridor following controller could

operate in real-time, freeing a high-level controller to pursue

long range goals such as search or path planning.

Fig. 1. The 143 mg U. Washington Robofly (pencil in background for
scale) weighs a bit more than a honeybee (101 mg). We aim to perform
visual flight control with the very low compute power available on robots
of this size and below.

Our proposed control architecture takes inspiration from

fruit flies. Rather than using state estimation derived from a

stored map (SLAM), we rely on optic flow, a measure of the

velocity of motion of visual scenery as the robot or animal

moves through it. Optic flow requires less computation and

provides a crude measure of distances to obstacles [6]. This

provides enough information to carry out many tasks, such

as source seeking [7] and navigating through indoor and

outdoor environments [8]. Lucas-Kanade [9] is a simple and

effective [10] method to estimate optic flow from raw pixels.

To reduce computation power still further for application

on a gnat robot [11], in this work we employ an insect-

inspired simplification. Known as the Hassenstein-Reichard

correlator [12], it entails only multiplying derivatives of

pixel readings and predicts a number of aspects of insect

behavior [13].

We assume our robot must be controlled by a computer

carried onboard, rather than a remote computer to which

data is transmitted wirelessly, for three important reasons.

First and most importantly, many anticipated applications



for small flying robots are indoors or in confined spaces,

where a consistent wireless channel is not available. Second,

even with a reliable channel, wireless transmission consumes

excessive power. For example, consider the 71 mg Robofly

(Fig. 1), which weighs less than a honeybee and requires

60 mW to fly [14]. Transmitting low-resolution (160×120

pixel) video at 1±5 frames per second over low power

Bluetooth consumes 4±18 mW [15]. Even at this low frame

rate, which is too low for many control tasks, wireless

transmission represents an excessive fraction of the power

needed to simply stay in the air. And matters become far

worse as scale diminishes to that of a gnat. Third, an

important advantage to small robots is their potential to be

deployed in large numbers; this advantage is largely nullified

if they are forced share a crowded communication channel

and an over-burdened server.

The platform we have in mind for the ensuing analysis and

simulation is extremely small and power-constrained flying

robots with the size of insects. Such robots, whether actuated

by wings or other means such as electrohydrodynamic thrust,

are dynamic and unstable as a general rule [16], [17], [18].

For this work, we build on parallel work, under review [19],

that introduces an ultra-lightweight sensor suite consisting of

an accelerometer and a downward-facing optic flow camera

to stabilize these unstable hover dynamics. The sensor suite

provides an estimate, and therefore the ability for the robot

to control, lateral velocity. This represents the first level

of control autonomy, ªsensor autonomy,º proposed in the

hierarchy introduced in [20]. Here we are concerned with

the next level up, in which the robotic agent senses and

responds to the external environment. This is known as

ªreactive autonomy.º

We assume therefore that the task to be solved here is

to provide an outer-loop controller that provides control

inputs in the form of desired lateral and rotational velocity

values to the inner loop hovering controller. We also assume

that the inner-loop controller is capable of controlling the

heading velocity ϕ̇. On a larger drone equipped with a

full inertial measurement unit (IMU), this would be done

using a feedback control loop in which the angular velocity

was measured using a MEMS gyroscope. However, we

are targeting extremely small aircraft, which may not be

compatible with the power draw (tens of mW) and mass

(tens of mg) of current MEMS gyroscope technology. We

assume that the ϕ̇ is instead measured using the downward-

facing optic flow camera, trained on rotating imagery in a

relatively straightforward extension of the work derived here.

Previous work has introduced a ªbiologically plausibleº

means to use motor babbling to learn a simple, bilinear model

that approximates optic flow patterns observed by omnidirec-

tional cameras during self motion purely by observing pixel

readings and their derivatives. This approach has been used

to stabilize attitude [21] as well as pose [22] in simulation

and on physical robots [23], also known as ªvisual servoing.º

Here, our contribution is to show that a similar approach

can learn how to stabilize a state of continuous motion

down the length of a confined or cluttered corridor-shaped

environment.

II. RELATED WORK

Some robot navigation works use the sensors like RGB-D

camera [24] or Lidars [25]. In the environment where GPS

cannot work well, a state estimation with the Lidar and IMU

was proposed [26]. However, for insect-scale robots, those

sensors are too heavy and power consumption is too high.

Most works in visual navigation are to create a map

on surrounding environment using sensors, and simultane-

ously robots can localize itself in the map anytime. This is

the process called Simultaneous Localization and Mapping

(SLAM) [27][28]. A SLAM implementation for generating

3D map for unknown environment is introduced in [29].

However, SLAM is a heavy computation process and also

require a significant memory, thus for insect-scale robots, it

is not ideal to use SLAM to do navigation.

Recently, deep learning approach emerges in robot navi-

gation tasks. Dorbala et al. [30] proposed a deep learning

approach using a convolutional neural network (CNN) to

do corridor following task with wheeled robots. Saxena

et al. [31] presented an end-to-end deep learning based

approach for visual servoing by training CNN on colored

images. However, deep learning approach only works when

there are sufficient data for training and if the distribution of

the test dataset is different from the training dataset, the deep

learning approach will not work well. Because deep learning

architecture usually has lots of parameters, it may consume

significant computation power.

Given the SWaP constraints, for insect-scale robots, re-

searchers utilized bio-inspired approaches. Fuller et al. [32]

showed that insect-inspired visual autocorrelation can nav-

igate a hovercraft robot through a corridor successfully.

Censi et al. [21] proposed a bilinearly estimation approach

using optic flow to stabilize visual attitude. To best of our

knowledge, There is no research on navigating an insect-

scale robot through a corridor, which is the main task of our

paper.

III. METHODOLOGY

In this section, we will introduce the kinematics and

autocorrelation-based visual control.

A. Kinematics and control

We developed a kinematics model for the corridor follow-

ing task. The dynamics read:










ẋ = ux cosϕ− uy sinϕ,

ẏ = ux sinϕ+ uy cosϕ,

ϕ̇ = uϕ.

(1)

,where u = [ux, uy, uϕ] is the control input for the velocity in

body frame. And ẋ, ẏ and ϕ̇ are the velocity in world frame.

To control the dynamics, we use a proportional controller:

uϕ = Kpϕ(0− ϕ̂). (2)

We are mainly interested in geting an estimation ϕ̂.



B. Bilinear optic flow approximation

We would like to get estimation of ϕ̂ using pure optic flow

information. We have the precise relation for how luminance

intensity varies with time due to camera motion given by

Eq. (3) [33]:

l̇ = (s×∇sl) · ω + µ(s,p)∇sl · v, (3)

where µ(s,p) is the reciprocal of the distance to the visual

element, known as the nearness. s is a continuous index

ranging over the ªsensel spaceº S , which is a unit sphere in

this case denoted as S
2. Nearness depends on the geometry

of the environment and the pose p (position and orientation)

of the robot.

To simplify control, we consider a Taylor series approx-

imation of Eq. (3), which is nonlinear, in terms only of

l and u, that is, the luminance readings and the control

inputs. The intent is to approximate the ªaverageº behavior

of Eq. (3) across the typical distributions encountered in

our environment of interest. These include, in particular, the

shape of the nearness function µ, the image contrast, and the

pose of the vehicle. The first terms of the Taylor series are

given by

l̇ ≈ A+Bu+ Cl+ uM l, (4)

where u = [ω,v]⊺ ∈ R
p is the linear and angular velocity

vectors of the robot (p = 6 for the 3D case; for 2D planar

motion, p = 3). Assuming l must be discretized by, for

example, a digital imaging surface, then l ∈ R
n, and ∇sl is

replaced with its discrete 1D approximation dl
dγ

≈ lk+1−lk−1

2δγ
,

which can be represented as a matrix operator Dl, so that

M ∈ R
p×n×n is the product of some matrix times D. It can

be shown that the first three terms, in terms of A, B, and

C, are zero, leaving only the last term, which is bilinear in

l and u. The bilinear approximation can be written in terms

of 2D matrices as

l̇ =

p
∑

i=1

Milui, (5)

where the Mi are p different n× n matrices.

If the Mi’s in Eq. 5 above can be found, then they can

be used in the to estimate the state of motion u. The least-

squares solution is

ûi = − ((Mil)
⊺Mil)

−1
l⊺Mil̇. (6)

This can be compared to the Lucas-Kanade method of

optic flow estimation [9], but where the estimation is of

a state geometrical motion rather than simple translational

motion relative to a flat surface. It was shown in [34] and

subsequent work that it is possible use a simpler estimator

that eliminates the matrix inversion step, leaving the bilinear

term

ûi = −cl⊺Mil̇, (7)

where c is inverse of the average image contrast: c =
(Em{||∇l||2

2
})−1 . Eq. (7), when approximated using dis-

crete pixels and when the derivative is computed at dis-

crete time increments, is mathematically identical to a

Hassenstein-Reichardt correlator in which the lag is a pure

delay [34].

Previous work [34], [22], [23] showed that, with mild

conditions on the shape of µ, it is possible to derive a

controller that can locally drive the robot to a pose in which

its luminance readings match those of a goal ªsnapshotº g

using bilinear estimator. This is known as visual servoing.

For the case of 2D planar motion, for example, u =
[ϕ̇, ẋ, ẏ]⊺. To perform visual servoing, that is, driving the

pose p to become coincident with a goal pose pg , a ªgoalº lu-

minance snapshot, l = g must be available. The proportional

controller for a kinematic system (defined only by velocities)

is simply ui = l⊺Mi(g−l). This approach can also stabilize

an inertial, dynamic system driven by forces and torques,

where u = [τ , f ] ∈ R
6 (3D) or ∈ R

3 (2D planar motion).

A stabilizing proportional-derivative (PD) visual servoing

controller has the form ui = l⊺Mi(g − l − kpl̇), where

kp is the proportional feedback gain [22]. In other words,

the matrices Mi capture luminance correlations. That is,

they encode how luminance readings change with time, and

simultaneously and as a result, also the direction of the error

gradient between two displaced images if the displacement

is small.

C. Learning the M matrices

We learn the matrices by detecting correlations between

pixel readings, their derivatives, and randomly-chosen motor

inputs through ªmotor babbling.º We have û = cl̇⊺M l Then

[21] shows that û is an unbiased estimator of u.

We would like to learn a matrix M to minimize the ex-

pected estimation error E∥l̇⊺Mil−u∥2
2
, for each component

of u, we can learn Mi according to the error function:

E{(l̇⊺Mil− ui)
2}. (8)

Given a particular training sample (u, l̇, l), Mi can be

updated according to a stochastic gradient descent (SGD),

which consists in minimizing Eq. (9) only with respect to

the particular sample. The update rule is

Ṁi = λ(l̇⊺Mil− ui)l̇l
⊺, (9)

where λ is the learning rate. Through repeated exposures to

randomly-chosen inputs (ªmotor babblingº), this increases

the value of elements of Mi in which ui, l, and l̇ are

correlated. It is instructive to think of the product lj l̇k as

the ªoptic flowº: if the luminance is increasing in time at

location j and it is high at a nearby location k, then this

corresponds to positive optic flow, for example.

D. Estimating ϕ

We now expand the space of quantities to be estimated to

include not just velocities, but other states that are relevant

to the task of corridor following, that is, stabilizing those
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