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Abstract— Visual navigation for insect-scale robots is very
challenging because in such a small scale, the size, weight,
and power (SWaP) constraints do not appear to permit visual
navigation techniques such as SLAM (Simultaneous Localiza-
tion and Mapping) because they are likely to be too power-
hungry. We propose to use a biology-inspired approach, which
we term the bilinear optic flow approximation, that is more
computationally efficient. We build on previous work that has
shown that the bilinear approximation can be used for visual
servoing. Here, we show that a bilinear approximator can be
learned that is able to stabilize the heading of a robot while
performing continuous forward motion in a corridor-shaped
environment. This is a necessary capability for confined-space
navigation that insect-sized robots are likely to perform. In
this work, we describe the underlining methodology of the
method and built a 2D visual simulation environment and
omnidirectional camera model to validate our results.

[. INTRODUCTION

Compared with the large robots, insect-scale robots have
advantage of lower cost because the material cost is dra-
matically reduced and also they can perform many tasks
better because of the small size such as locating the leaks
of the gas of interest in dense piping infrastructure, space
exploration with much lower cost, and replacing fixed-in-
place air sensors in urban environments. However, the reason
why the insect-scale robots are still in research stage rather
than industry deployed is because as the scale reduces dra-
matically, the sensor feedback quality and energy available
for computation also reduces drastically, which makes the
realization of insect-scale robots challenging to have the
similar performance as the larger robots. For example, larger
drones can be equipped with several sensors such as Lidars,
thermal sensors and the global positioning system (GPS),
but for insect-scale robots, most of those sensors are either
too power-hungry or too heavy. Also, especially for indoor
environment, the GPS signal cannot be accurate enough [1].
One of our contributions is to solve the challenge for insect-
scale robots to do navigation given size, weight, and power
(SWaP) constraints.

Visual navigation is one aspect of visual servoing, which
uses the information from vision sensors to control robot mo-
tion. Visual information has been used as an important input
to robotic systems to do navigation [2], manipulation [3],
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and human-robot interaction tasks [4]. However, most of
the algorithms are for large robots without tight SWaP con-
straints. In nature, the fly is good at visual navigation under
those constraints. Flies have omnidirectional eyes that can
perceive visual information and then do navigation in sur-
roundings [5]. Bio-inspired by flies, we do visual navigation
with insect-scale robot with an omnidirectional camera using
an optic flow estimation. Here, we are interested in a corridor
following task (Fig. 2) because it is the essential behavior
required for navigating between obstacles in a cluttered
environment. A reflexive corridor following controller could
operate in real-time, freeing a high-level controller to pursue
long range goals such as search or path planning.

Fig. 1.
scale) weighs a bit more than a honeybee (101 mg). We aim to perform
visual flight control with the very low compute power available on robots
of this size and below.

The 143 mg U. Washington Robofly (pencil in background for

Our proposed control architecture takes inspiration from
fruit flies. Rather than using state estimation derived from a
stored map (SLAM), we rely on optic flow, a measure of the
velocity of motion of visual scenery as the robot or animal
moves through it. Optic flow requires less computation and
provides a crude measure of distances to obstacles [6]. This
provides enough information to carry out many tasks, such
as source seeking [7] and navigating through indoor and
outdoor environments [8]. Lucas-Kanade [9] is a simple and
effective [10] method to estimate optic flow from raw pixels.
To reduce computation power still further for application
on a gnat robot [11], in this work we employ an insect-
inspired simplification. Known as the Hassenstein-Reichard
correlator [12], it entails only multiplying derivatives of
pixel readings and predicts a number of aspects of insect
behavior [13].

We assume our robot must be controlled by a computer
carried onboard, rather than a remote computer to which
data is transmitted wirelessly, for three important reasons.
First and most importantly, many anticipated applications



for small flying robots are indoors or in confined spaces,
where a consistent wireless channel is not available. Second,
even with a reliable channel, wireless transmission consumes
excessive power. For example, consider the 71 mg Robofly
(Fig. 1), which weighs less than a honeybee and requires
60 mW to fly [14]. Transmitting low-resolution (160x120
pixel) video at 1-5 frames per second over low power
Bluetooth consumes 4-18 mW [15]. Even at this low frame
rate, which is too low for many control tasks, wireless
transmission represents an excessive fraction of the power
needed to simply stay in the air. And matters become far
worse as scale diminishes to that of a gnat. Third, an
important advantage to small robots is their potential to be
deployed in large numbers; this advantage is largely nullified
if they are forced share a crowded communication channel
and an over-burdened server.

The platform we have in mind for the ensuing analysis and
simulation is extremely small and power-constrained flying
robots with the size of insects. Such robots, whether actuated
by wings or other means such as electrohydrodynamic thrust,
are dynamic and unstable as a general rule [16], [17], [18].
For this work, we build on parallel work, under review [19],
that introduces an ultra-lightweight sensor suite consisting of
an accelerometer and a downward-facing optic flow camera
to stabilize these unstable hover dynamics. The sensor suite
provides an estimate, and therefore the ability for the robot
to control, lateral velocity. This represents the first level
of control autonomy, “sensor autonomy,” proposed in the
hierarchy introduced in [20]. Here we are concerned with
the next level up, in which the robotic agent senses and
responds to the external environment. This is known as
“reactive autonomy.”

We assume therefore that the task to be solved here is
to provide an outer-loop controller that provides control
inputs in the form of desired lateral and rotational velocity
values to the inner loop hovering controller. We also assume
that the inner-loop controller is capable of controlling the
heading velocity $. On a larger drone equipped with a
full inertial measurement unit (IMU), this would be done
using a feedback control loop in which the angular velocity
was measured using a MEMS gyroscope. However, we
are targeting extremely small aircraft, which may not be
compatible with the power draw (tens of mW) and mass
(tens of mg) of current MEMS gyroscope technology. We
assume that the ¢ is instead measured using the downward-
facing optic flow camera, trained on rotating imagery in a
relatively straightforward extension of the work derived here.

Previous work has introduced a “biologically plausible”
means to use motor babbling to learn a simple, bilinear model
that approximates optic flow patterns observed by omnidirec-
tional cameras during self motion purely by observing pixel
readings and their derivatives. This approach has been used
to stabilize attitude [21] as well as pose [22] in simulation
and on physical robots [23], also known as “visual servoing.”

Here, our contribution is to show that a similar approach
can learn how to stabilize a state of continuous motion
down the length of a confined or cluttered corridor-shaped

environment.

II. RELATED WORK

Some robot navigation works use the sensors like RGB-D
camera [24] or Lidars [25]. In the environment where GPS
cannot work well, a state estimation with the Lidar and IMU
was proposed [26]. However, for insect-scale robots, those
sensors are too heavy and power consumption is too high.

Most works in visual navigation are to create a map
on surrounding environment using sensors, and simultane-
ously robots can localize itself in the map anytime. This is
the process called Simultaneous Localization and Mapping
(SLAM) [27][28]. A SLAM implementation for generating
3D map for unknown environment is introduced in [29].
However, SLAM is a heavy computation process and also
require a significant memory, thus for insect-scale robots, it
is not ideal to use SLAM to do navigation.

Recently, deep learning approach emerges in robot navi-
gation tasks. Dorbala et al. [30] proposed a deep learning
approach using a convolutional neural network (CNN) to
do corridor following task with wheeled robots. Saxena
et al. [31] presented an end-to-end deep learning based
approach for visual servoing by training CNN on colored
images. However, deep learning approach only works when
there are sufficient data for training and if the distribution of
the test dataset is different from the training dataset, the deep
learning approach will not work well. Because deep learning
architecture usually has lots of parameters, it may consume
significant computation power.

Given the SWaP constraints, for insect-scale robots, re-
searchers utilized bio-inspired approaches. Fuller et al. [32]
showed that insect-inspired visual autocorrelation can nav-
igate a hovercraft robot through a corridor successfully.
Censi et al. [21] proposed a bilinearly estimation approach
using optic flow to stabilize visual attitude. To best of our
knowledge, There is no research on navigating an insect-
scale robot through a corridor, which is the main task of our

paper.
III. METHODOLOGY
In this section, we will introduce the kinematics and
autocorrelation-based visual control.
A. Kinematics and control

We developed a kinematics model for the corridor follow-
ing task. The dynamics read:

& = Uz COS ¢ — Uy Sin @,
Y = Ug SN @ + uy COS @, (1
b= ug.

,where u = [uy, uy, ug| is the control input for the velocity in

body frame. And %,y and ¢ are the velocity in world frame.
To control the dynamics, we use a proportional controller:

g = Kps(0 = 9). 2)

We are mainly interested in geting an estimation qAS



B. Bilinear optic flow approximation

We would like to get estimation of ngS using pure optic flow
information. We have the precise relation for how luminance
intensity varies with time due to camera motion given by
Eq. (3) [33]:

l=(sxVsl) w+pu(s,p)Vsl - v, (3)

where pi(s, p) is the reciprocal of the distance to the visual
element, known as the nearness. s is a continuous index
ranging over the “sensel space” S, which is a unit sphere in
this case denoted as S?. Nearness depends on the geometry
of the environment and the pose p (position and orientation)
of the robot.

To simplify control, we consider a Taylor series approx-
imation of Eq. (3), which is nonlinear, in terms only of
! and w, that is, the luminance readings and the control
inputs. The intent is to approximate the “average” behavior
of Eq. (3) across the typical distributions encountered in
our environment of interest. These include, in particular, the
shape of the nearness function p, the image contrast, and the
pose of the vehicle. The first terms of the Taylor series are
given by

[~ A+ Bu+ Cl+uMl, 4)

where u = [w,v]T € RP is the linear and angular velocity
vectors of the robot (p = 6 for the 3D case; for 2D planar
motion, p = 3). Assuming I must be discretized by, for
example, a digital imaging surface, then I € R", and VI is
replaced with its discrete 1D approximation % ~ %,
which can be represented as a matrix operator DI, so that
M € RP*™*" jg the product of some matrix times D. It can
be shown that the first three terms, in terms of A, B, and
C, are zero, leaving only the last term, which is bilinear in
! and w. The bilinear approximation can be written in terms

of 2D matrices as
. P
[ =" Mlu,, (5)
i=1

where the M, are p different n X n matrices.

If the M;’s in Eq. 5 above can be found, then they can
be used in the to estimate the state of motion w. The least-
squares solution is

d; = — ((Mil)TMil) ™" U7 Ml (©)

This can be compared to the Lucas-Kanade method of
optic flow estimation [9], but where the estimation is of
a state geometrical motion rather than simple translational
motion relative to a flat surface. It was shown in [34] and
subsequent work that it is possible use a simpler estimator
that eliminates the matrix inversion step, leaving the bilinear
term

a; = —cTM;l, (7)

where c is inverse of the average image contrast: ¢ =
(E.{||V1]|3})~! . Eq. (7), when approximated using dis-
crete pixels and when the derivative is computed at dis-
crete time increments, is mathematically identical to a
Hassenstein-Reichardt correlator in which the lag is a pure
delay [34].

Previous work [34], [22], [23] showed that, with mild
conditions on the shape of pu, it is possible to derive a
controller that can locally drive the robot to a pose in which
its luminance readings match those of a goal “snapshot” g
using bilinear estimator. This is known as visual servoing.

'For the case of 2D planar motion, for example, © =
[¢,2,y]T. To perform visual servoing, that is, driving the
pose p to become coincident with a goal pose pg, a “goal” lu-
minance snapshot, Il = g must be available. The proportional
controller for a kinematic system (defined only by velocities)
is simply w; = I7M;(g—1). This approach can also stabilize
an inertial, dynamic system driven by forces and torques,
where u = [1, f] € RS (3D) or € R3 (2D planar motion).
A stabilizing proportional-derivative (PD) visual servoing
controller has the form w; = ITM;(g — 1 — k,l), where
ky is the proportional feedback gain [22]. In other words,
the matrices M; capture luminance correlations. That is,
they encode how luminance readings change with time, and
simultaneously and as a result, also the direction of the error
gradient between two displaced images if the displacement
is small.

C. Learning the M matrices

We learn the matrices by detecting correlations between
pixel readings, their derivatives, and randomly-chosen motor
inputs through “motor babbling.” We have u = clTM1 Then
[21] shows that @ is an unbiased estimator of u.

We would like to learn a matrix M to minimize the ex-
pected estimation error E||ITM;l — u||2, for each component
of u, we can learn M; according to the error function:

E{(ITM;l — u;)?}. ®)

Given a particular training sample (u,[,1), M; can be
updated according to a stochastic gradient descent (SGD),
which consists in minimizing Eq. (9) only with respect to
the particular sample. The update rule is

M; = AT Ml — w))llT, )

where ) is the learning rate. Through repeated exposures to
randomly-chosen inputs (“motor babbling”), this increases
the value of elements of M; in which w;, 1, and l are
correlated. It is instructive to think of the product I;l; as
the “optic flow”: if the luminance is increasing in time at
location j and it is high at a nearby location k, then this
corresponds to positive optic flow, for example.

D. Estimating ¢

We now expand the space of quantities to be estimated to
include not just velocities, but other states that are relevant
to the task of corridor following, that is, stabilizing those



variables that the inner-loop hovering controller (see Intro-
duction) is not able to estimate on its own. These consist
of y, the lateral position of the robot, and ¢, the heading
angle of the robot relative to the axis of a corridor-shaped
environment along which it is traveling. Our treatment builds
on [32], which indicated that an autocorrelation weighting
function exists that can provide an estimate of ¢ for use in
control. That work used a frequency-domain analysis of an
autocorrelation scheme that only considered nearest-neighbor
pixels. Here we provide a more general solution by training
the weighting function in an abinitio fashion. This has the
benefit that statistics of the scenery as well as the camera
calibration itself are all learned at once.

We assume that the environment geometry resembles a
narrow corridor, and that the vehicle is equipped with an
additional omnidirectional camera. The bilinear model will
be used to estimate components of the robot’s state that
cannot be observed with the sensor suite. We would like to
estimate the robot orientation ¢ by using the bilinear optic
flow estimate (;3

We use a Taylor expansion as before, this time as a three-
term expansion in w, p, and I, and have

[ = Mylw + (Mglé + Myly)Tv. (10)

We linearize at ug = |w, vy, vy] = [0,0.1m/s,0] and y = 0,
then we have

[ = Mylpo,, (11)

where v, can be incorporated into Mgy, then we can have
the estimation ¢ = ITMyl , where My can be learned using
the method in last section.

IV. EXPERIMENTS
A. Set up the scene

A diagram of the robot, its corridor-shaped environment,
and the camera model is shown in Fig. 2. For all simulation
tasks, we extracted a single horizontal line of pixels from a
photograph from an outdoor scene and projected these onto

both of the corridor walls.
B=x — (%+ ¥)/tan(e + y)

o Wa
Bo=x+ (G- y)/anp + 1)

Fig. 2. A diagram of the robot in its environment (top view). The robot
is assumed to move continuously in the positive x-direction (¢ > 0. The
red lines indicate directions of pixel readings taken by its omnidirectional
camera. These are comparable to the ray casting algorithm used in computer
graphics nomenclature. The solid dashed line is the heading angle ¢ of the
robot. Z1 is the position of the intersection for the left wall, ¢ +~v < 7 and
Zo is the position of the intersection for the right wall, 27 > ¢ + v > 7.

The parameters are:

1) wy: distance between walls = 0.1 m.

2) is: The image size is set to 1 m.

3) ¢ : State of the robots. ¢ = [¢, ¢, z, &, v, 7]

4) ~ : The angle of each ray relative to the heading
direction.

The implementation procedure is briefly described as

below:

1) The angle for the ray according to the x-axis is ¢ + 7.

2) If ¢ + v < m, then the ray intersects the left wall, and
intersection position on the wall is given by

Ty =+ (wq/2 —y)/ tan(p + 7). (12)

If 2r > ¢+~ > m, then the wall intersection position
is

Iy =z —(wa/2+y)/tan(d+7).  (13)

3) Then we can use Z to get the luminance readings of
each ray (corresponding pixel value on the image).

4) We also need to calculate the distance from the robot
to the position of the intersection of the ray and the
wall . If ¢ +v < m, then we have the distance d is

given by
do w2y
sin(¢ + )

If 2r > ¢ + v > m, then we have the distance d
calculated by Eq. (15).

(14)

15)

5) We also need to know the direction of each ray to
calculate V!l. For each ray, the direction is (cos(¢ +

7),sin(¢ + 7).
B. Validating the camera model

We constructed a simulation environment in Python. To
confirm that our simulation was correctly performing the
necessary numerical operations, we confirmed that its outputs
satisfied Eq. (3) in 2D. We describe briefly this process. The
parameters are:

1) I: The time derivative of the luminance readings.

2) s: The direction, which can be represented as a vector
on the unit sphere. In general, s € S is the sensel
direction and S is the sensel space.

3) V,l: The spatial derivative of the luminance readings.

4) w: The angular velocity.

5) wu(s,p) : The reciprocal of the distance to the visual
element, also called nearness.

6) v: The translational velocity of the robot.

The left hand side of Eq. (3) can be calculated by:
Lt —2dt) —1(t)

LHS =i~ : 16
2dt (16)

As we know the right hand side of Eq. (3) is :
RHS = (8 x Vsl) - w+ pu(s,p)Vsl - v. (17



The first term of Eq. (17) can be calculated as

(s X Vgl) w= [(cos(¢ +7),sin(¢ + 7)) x
(18)

- .

(l2,i+1 — a1

s ({0 7). cos(0+9)

Note that we have used the two-dimensional version of
the cross product “x”, which results in a scalar. This can
be shown by promoting the 2D vectors to 3D according to
[1, y1,0] X [22, Y2, 0], which produces a vector that only has
a nonzero value along its z direction; the output of the 2D
cross product is the value along the z direction. The second
term of Eq. (17) can be calculated as

lo juq — o
w(s,p)Vsl - v = u(s,p)%-
(19)

(—sin(¢ +7v),cos(d + 7)) - (vg, vy) |-

We select time step dt = 1/200 s and pick the ray index
5 (the 6th ray) and then propagate the time for 50 dt to see
whether the LHS is equal to RHS on those 50 time points. We
set y = 0.05 m, ¢y = 0.05 m/s and set ¢ = 5°, gzb = 100°/s
and x = 0.25 m, £ = 0.1 m/s. The validation result is shown
in Fig. 3. We can see they match well.

60 1 — LHS

— RHS
40

0 10 20 30 40 50
time step

Fig. 3. Validation of the camera model. We have RHS = (s x Vsl) -w +
(s, p)Vsl - v. And we have LHS = I. We can see the RHS can follow
LHS well.

C. Learning My

Because we only need to estimate ¢, thus we only need
to learn the correlator matrix M, € R™*™. We can rewrite
learning rule Eq. (9) to

My = \plLT. (20)
We use a motion babbling strategy to develop the tranining
dataset. For each iteration, we random sample z,y,¢ and
¢ in a certain range and use the sampled values to do ray
casting to get [ and [. Then we can calculate My to update
Mg by

My = My + Mydt. 1)

We set A = 1,dt = ﬁ s, and we sample z around x =
0.5 m with range 0.3 m, y around the middle of the corridor
y = 0 m with range 0.03 m, ¢ around heading forward
¢ = 0° with range 30° and ¢ = 0 with range 114.6°/s.
We trained 20000 iterations to make My asymptotically
approach a form, up to a constant, that has the appearance
shown for example in Fig. 4. The learned M, matrix is
shown in Fig. 4. The shape is a skew-symmetric matrix
matching the derivation in [21].

= 0.0003

50 1
0.0002

100 0.0001
150 0.0000

200 A —0.0001

—0.0002

= : —0.0003

0 50 100 150 200 250

Fig. 4. The learned M matrix. According to the derivation in [21], it
should be a skew-symmetric matrix. We can see our simulation matches the
derivation.

D. Control simulation (stablizing ¢)

We constructed a simulation of the dynamics, Eq. (2),
using fixed-step Euler Integration, to explore the stabilization
behavior. For the simulation experiment, we set the initial
condition g = 0.2 m, yp = 0.0 m,zg = 0.1 m/s, gy =
0.0 m/s, §2.50 = 0 and we set different initial conditions for ¢
with a range of initial angles to get different trajectories to
see whether ¢ can converge to zero. In this simulation, we
only control ) according to Eq. (2). We set the simulation
time period is 4 s, the time step is ﬁ s. Kpg = 5.

Fig. 5 shows that our approach is able to steer ¢ to a within
approximately 5° of zero when initiated across a range of
initial conditions. Then we plot the ¢ vs time in Fig. 5, we
can see all trajectories converge to somewhere around ¢ = 0

— ¢o=20"
$o=15"°

— Po=10"

— $o=5"°

1 — ¢o=-5"

— ¢o=—-10"°
¢o=—15°

— o= —20"°

9(°)

time(s)

Fig. 5. ¢ vs time. There are six trajectories with different initial conditions
shown in the right bar.



To show that our optic flow estimation can estimate ¢
well, we plot ¢ and ¢ in the same plot for two trajectories
(¢o = 5° and ¢9 = 15°) shown in Fig. 6 and Fig. 7.
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Fig. 6. ¢ and ¢3 for the trajectory with initial condition ¢o = 5°. The left
figure is plotting ¢ and raw ¢. The right figure is plotting ¢ and Gaussian

filtered ¢ to remove spurious noise.
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Fig. 7. ¢ and ¢ for the trajectory with initial condition ¢o = 15°. The left
figure is plotting ¢ and raw ¢. The right figure is plotting ¢ and Gaussian

filtered ¢ to remove spurious noise.

The Fig. 8 shows that the robot can navigate through the
corridor successfully given the initial heading angle ¢y =
15°.

position
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Fig. 8. An example trajectory of the simulated robot between the corridor
walls shows that it is able to align itself with the long axis of the corridor.

V. CONCLUSION AND FUTURE WORK

Our paper has shown that using purely the optic flow
estimation, we could stabilize the heading ¢ of a simulated
insect-scale robot as it moves through a corridor. The bilinear
optic flow approximation method we used has the advantage
that it is end-to-end: a process of motor babbling allows it
to learn pixel correlations regardless of their orientation, so
it therefore requires no camera calibration. On a physical
system, the necessary M matrices can be learned by moving
the robot around while recording state using a motion capture

arena or temporary on-board sensors such as tiny laser
rangefinders [35]. The approach is also therefore easy to
generalize to 3D flight control.

Our approach builds on an assumption that it is operating
as an “outer-loop” controller that sends desired translational
and rotational velocities to a fast “inner loop” that takes
care of stabilizing the unstable dynamics of such a robot
and regulating flight speeds. How the hovering controller
is able to operate under the extreme SWaP constraints of
an insect-sized robot are described in greater detail in [19].
We believe our approach is suited to tiny robots because it
operates entirely using multiply and add operations, which
are relatively fast and efficient computational operations. The
learned M matrices are skew-symmetric and largely sparse,
so when used in practice we anticipate that near-zero entries
will be zeroed out, and only half of the matrix needs to be
stored in memory. Further optimizations may be possible by
neglecting entries that correspond to pixel readings that are
far apart. We anticipate that this will allow our method to do
navigation in real time using the constrained capabilities of
an onboard, general purpose microcontroller.

The learned M, appears to be performing the same
computational operation as the ¢ estimator derived in [32],
which itself was inspired by [36]. All three use a similar
method to determine the location of the centroid of the optic
flow pattern in the lateral directions. As the robot moves
down the corridor, it is subject to an optic flow pattern that is
highest in the lateral directions (directly to the left and right
when facing forward) and zero straight ahead and behind.
Therefore the centroid of this peak represents an indication
of the direction one is facing when moving forward. Locating
the centroid entails multiplying a function f(z) by x and
integrating ([ f(z)dz). A weighting gradation, ranging
from positive to zero to negative can be observed along the
diagonal of M, where the zero is at the lateral ray directions
(ray elements 75 and 225 in Fig. 4).

Future work will aim to expand the the capabilities to also
stabilize the lateral position y. One promising approach is
to use deeper network than a bilinear model, such as using
higher order terms. We also note that there is a confound
in that both ¢ and y produce the same average pattern of
optic flow [32]. We anticipate that it may be possible to
eliminate this effect by taking advantage of the downward-
facing camera that is needed for stable hover to estimate,
and somehow eliminate the confounding effect of ¢. An
important strength of the present work is that it requires
almost no effort to extend it to 3D motion control. To do so
we will construct a 3D graphical simulator, and later apply
the results to a physical robot fly prototype we have created
in our laboratory [37], [38].
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