


even unicellular organisms such as bacteria [9]. In this work

we leverage these insights to utilize a simple, bio-inspired

algorithm and design an end-to-end system that guides a

palm-sized drone towards a signal source while avoiding

obstacles.

While recent work [10] has demonstrated successful light

source seeking using reinforcement learning, this approach

has a number of shortcomings for our target applications in

complex and unknown environments. This approach cannot

be generalized because the control policy generated is limited

by the training data; the robot cannot seek a source in

the center of a room as it never experienced that scenario.

Similarly, scenarios without obstacles produced roundabout

trajectories due to the robot’s tendency to avoid the center

of the room and it was not able to navigate around closely

spaced obstacles. Moreover, this algorithm has a high compu-

tational overhead, making it difficult to scale to SWaP limited

platforms.

We instead examine less complex stochastic methods. Prior

work has explored the idea of stochastic source seeking [11]–

[14]; while these works provide mathematical guarantees

for convergence, they have not been implemented on real

hardware and do not incorporate obstacle avoidance which

is essential in cluttered environments. Other works have also

analyzed bio-inspired source seeking algorithms [15]–[17],

but are also limited to simulation. In contrast, we seek to

implement a source seeking system that can run in real-time

with a palm-sized UAV in different environments.

While others have attempted tasks like RF source localiza-

tion [18], the use of ground robots limits it to a nonholonomic

action space. Additionally, source seeking using multiple

robots has been performed in [19], [20], but to optimize for

SWaP constraints we focus on a single robot design which

does not require other infrastructure or communication.

To develop our bio-inspired search algorithm we look

to chemical sensing efforts using mobile robots which has

been actively researched since the 1990s, with a focus on

gas source localization. A number of bio-inspired algorithms

have been developed, mimicking the search procedures of

animals like the silkworm moth Bombyx mori; however, these

algorithms are designed for gas sensing in turbulent airflow

[21]. For non-dynamic sources such as light, temperature,

and radio signals, we can explore an even simpler class of

strategies that rely solely on concentration gradients, such as

iterative chemo-tropotaxis and Braitenberg vehicle strategies.

These two approaches are feasible from a computational

complexity perspective, but they require at least two sensors.

To achieve a truly minimal approach which can scale to even

smaller robots, we adopt the E. Coli run-and-tumble algo-

rithm which can be implemented with a single sensor [21].

In this paper we present an end-to-end implementation

and demonstrate that this simple ‘run and tumble’ algorithm

works robustly. The system successfully locates 91% of the

tested heat and light sources including a fire in real time while

avoiding obstacles as shown in Fig. 1 and video provided

in the supplemental material. Additionally, we develop a

simulation framework and take measurements of an RF

TABLE I: Parameter values for algorithm 1

Parameter Simulation Light Heat

seeking seeking

stop_threshold 104 800 lux 13◦C

fwd_velocity 90 pixels/sec 0.1 m/s 0.2 m/s

ao_time 100 ms 2 s 0.5 s

ao_angle 0.1◦ 20◦ 20◦

run_time 10 ms 1 s 1 s

obst_threshold 40 pixels 0.5 m 0.35 m

source versus distance to demonstrate the potential for further

applications.

The rest of the paper is organized as follows: Section II

presents the algorithm for the source seeking along with

detailed analysis of computational complexity. Section III

presents the system components required for the study, fol-

lowed by hardware experiments on the drone in Section IV.

Section V concludes the results and discusses scalability.

II. ALGORITHM TESTING IN SIMULATION

We began designing and testing the algorithm in simulation

using the Python library PyGame [22]. This allowed for

refining of the algorithm while avoiding damage and wear

on the hardware. The simulated environment consisted of five

randomly placed circular obstacles of random size between

40 and 120 pixels in an arena measuring 700× 700 pixels.

We use a standard inverse square law model to model

light propagation from a point source at the center. The

inverse square law model was qualitatively verified in the real

world (section IV). Simulated robot motion commands were

designed to correspond to commands in the drone’s control

library. This facilitated the direct transfer of the algorithm

from simulation to robot.

The laser distance sensors were also simulated to give

distances to obstacles in the front, right, back and left

directions of the robot. To avoid the robot leaving the arena,

the screen boundaries were also considered obstacles for

the simulated distance sensors. We implemented a behavior-

based algorithm for source seeking. The robot performed

three behaviors:

• run: move forward with a constant velocity,

• tumble: turn left or right to a random angle ranging

from 0◦ to 180◦, and

• avoid-obstacle: move directly away from the closest

detected obstacle along the direction of the distance

sensor, and change heading slightly.

A simple finite state machine described in Algorithm 1

was designed [23] to switch between these behaviors. We

implemented a tumble instead of strafing in a random di-

rection for source seeking because the sensor needs to be

pointing towards the source in applications like temperature

seeking. In the case of obstacle avoidance, we simply strafed

away from the obstacle, bypassing the need for a tumble. The

robot declared reaching the light source when the intensity

exceeded a threshold value set empirically based on the

light source. The robot also successfully navigated narrow
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