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Abstract—The small form factor of palm sized unmanned
aerial vehicles (UAVs) combined with their ability to freely
maneuver in 3D space with holonomic trajectories and carry
custom sensors makes them an ideal platform for autonomous
source seeking in challenging environments. Equipped with the
appropriate sensor, a small UAV could autonomously navigate
towards light or heat sources such as forest fires or locate a
radio-frequency (RF) transmitter attached to anything from
a package in a warehouse to an animal tagged with a radio
tracker. Leveraging small UAVs for this task however requires
addressing their size weight, power, and computational con-
straints. While prior source seeking robots have used search
strategies that require extensive training, such as reinforcement
learning, we instead look to biology and employ a simple ‘run
and tumble’ gradient following algorithm inspired by bacte-
rial chemotaxis. The result is a computationally inexpensive
approach requiring as little as 30 instructions/second, allowing
this strategy to scale down to millimeter scale robots with small
microcontrollers. Using insights from simulation, we report
a success rate of 91% in real-time demonstrations of our
UAV navigating towards a fire or light source while avoiding
obstacles. Measurements from a small Bluetooth transmitter
indicate it also produces a compatible gradient at ranges of
50-100 m. We conclude by discussing how this technique could
scale down to sub-cm microrobots seeking RF power sources.

Index Terms—Biologically-inspired robots, Aerial Systems:
Applications, micro/nano robots

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are versatile, with
applications ranging from rescue operations [1] to toxic algal
bloom detection [2]. In addition to surveying an area by
systematically traversing it, UAVs augmented with sensing
capabilities could intelligently and autonomously navigate to-
wards points of interest to locate a signal source. Consider the
concrete problem of using a UAV to find a forest fire: fires,
especially large ones, produce significant amounts of heat and
light, therefore creating a gradient of these quantities that can
be measured at a distance. A drone with a temperature or light
sensor could follow this gradient to autonomously locate the
fire. Similarly, radiofrequency (RF) emissions can be detected
at long distances. Recent advancements in miniaturization
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Fig. 1: Our palm-sized drone uses a biology-inspired algorithm while
avoiding obstacles to reach a source such as a fire, RF emission, or light
source.

of radio tags [3] present the potential to turn any object
into a signal source that could be measured at a distance.
This includes locating trackers attached to keys, packages in
warehouses, avalanche beacons [4], or even radio tracking of
invasive species like giant hornets in a forest [5], [6].

Realizing these applications, however, requires addressing
a number of practical and technical challenges. First, many
of these application scenarios such as those inside a building
or in a forest require operating in a cluttered airspace full
of obstacles. This becomes difficult for large UAVs as their
size prevents them from maneuvering in these environments.
Recently developed palm-sized drones [7] are ideal for these
scenarios as they are small enough to navigate around obsta-
cles, or fly over them when needed by leveraging their ability
to maneuver in 3D space which overcomes a significant
limitation of ground-based vehicles.

Scaling down to smaller drones, however, introduces a
number of technical challenges as they pose significant size,
weight, and power (SWaP) constraints. In addition to limits
on the sensors, and flight time, the SWaP constraints require
many of these platforms to use small microcontrollers with
limited computational capabilities. Therefore, it is imperative
to find a computationally efficient and robust means to search
for sources and avoid obstacles in complex environments.

If we look to nature however, we observe that even
the simplest organisms can perform source seeking behav-
iors. For example light source attraction through positive
phototaxis is a well-known phenomenon found in a broad
spectrum of nocturnal organisms [8]; similarly chemotaxis, or
the biasing of movement towards environments that contain
higher concentrations of beneficial chemicals, is observed in



even unicellular organisms such as bacteria [9]. In this work
we leverage these insights to utilize a simple, bio-inspired
algorithm and design an end-to-end system that guides a
palm-sized drone towards a signal source while avoiding
obstacles.

While recent work [10] has demonstrated successful light
source seeking using reinforcement learning, this approach
has a number of shortcomings for our target applications in
complex and unknown environments. This approach cannot
be generalized because the control policy generated is limited
by the training data; the robot cannot seek a source in
the center of a room as it never experienced that scenario.
Similarly, scenarios without obstacles produced roundabout
trajectories due to the robot’s tendency to avoid the center
of the room and it was not able to navigate around closely
spaced obstacles. Moreover, this algorithm has a high compu-
tational overhead, making it difficult to scale to SWaP limited
platforms.

We instead examine less complex stochastic methods. Prior
work has explored the idea of stochastic source seeking [11]—
[14]; while these works provide mathematical guarantees
for convergence, they have not been implemented on real
hardware and do not incorporate obstacle avoidance which
is essential in cluttered environments. Other works have also
analyzed bio-inspired source seeking algorithms [15]-[17],
but are also limited to simulation. In contrast, we seek to
implement a source seeking system that can run in real-time
with a palm-sized UAV in different environments.

While others have attempted tasks like RF source localiza-
tion [18], the use of ground robots limits it to a nonholonomic
action space. Additionally, source seeking using multiple
robots has been performed in [19], [20], but to optimize for
SWaP constraints we focus on a single robot design which
does not require other infrastructure or communication.

To develop our bio-inspired search algorithm we look
to chemical sensing efforts using mobile robots which has
been actively researched since the 1990s, with a focus on
gas source localization. A number of bio-inspired algorithms
have been developed, mimicking the search procedures of
animals like the silkworm moth Bombyx mori; however, these
algorithms are designed for gas sensing in turbulent airflow
[21]. For non-dynamic sources such as light, temperature,
and radio signals, we can explore an even simpler class of
strategies that rely solely on concentration gradients, such as
iterative chemo-tropotaxis and Braitenberg vehicle strategies.
These two approaches are feasible from a computational
complexity perspective, but they require at least two sensors.
To achieve a truly minimal approach which can scale to even
smaller robots, we adopt the E. Coli run-and-tumble algo-
rithm which can be implemented with a single sensor [21].

In this paper we present an end-to-end implementation
and demonstrate that this simple ‘run and tumble’ algorithm
works robustly. The system successfully locates 91% of the
tested heat and light sources including a fire in real time while
avoiding obstacles as shown in Fig. 1 and video provided
in the supplemental material. Additionally, we develop a
simulation framework and take measurements of an RF

TABLE I: Parameter values for algorithm 1

Parameter Simulation Light Heat
seeking | seeking

stop_threshold 10* 800 lux 13°C
fwd_velocity 90 pixels/sec | 0.1 m/s | 0.2 m/s

ao_time 100 ms 2s 05s

ao_angle 0.1° 20° 20°

run_time 10 ms 1s 1s
obst_threshold 40 pixels 05m | 035 m

source versus distance to demonstrate the potential for further
applications.

The rest of the paper is organized as follows: Section II
presents the algorithm for the source seeking along with
detailed analysis of computational complexity. Section III
presents the system components required for the study, fol-
lowed by hardware experiments on the drone in Section IV.
Section V concludes the results and discusses scalability.

II. ALGORITHM TESTING IN SIMULATION

We began designing and testing the algorithm in simulation
using the Python library PyGame [22]. This allowed for
refining of the algorithm while avoiding damage and wear
on the hardware. The simulated environment consisted of five
randomly placed circular obstacles of random size between
40 and 120 pixels in an arena measuring 700 x 700 pixels.
We use a standard inverse square law model to model
light propagation from a point source at the center. The
inverse square law model was qualitatively verified in the real
world (section IV). Simulated robot motion commands were
designed to correspond to commands in the drone’s control
library. This facilitated the direct transfer of the algorithm
from simulation to robot.

The laser distance sensors were also simulated to give
distances to obstacles in the front, right, back and left
directions of the robot. To avoid the robot leaving the arena,
the screen boundaries were also considered obstacles for
the simulated distance sensors. We implemented a behavior-
based algorithm for source seeking. The robot performed
three behaviors:

« run: move forward with a constant velocity,

o tumble: turn left or right to a random angle ranging

from 0° to 180°, and

« avoid-obstacle: move directly away from the closest

detected obstacle along the direction of the distance
sensor, and change heading slightly.

A simple finite state machine described in Algorithm 1
was designed [23] to switch between these behaviors. We
implemented a tumble instead of strafing in a random di-
rection for source seeking because the sensor needs to be
pointing towards the source in applications like temperature
seeking. In the case of obstacle avoidance, we simply strafed
away from the obstacle, bypassing the need for a tumble. The
robot declared reaching the light source when the intensity
exceeded a threshold value set empirically based on the
light source. The robot also successfully navigated narrow
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Fig. 2: (a) Screenshot of the simulation environment. The blue circles are randomly placed obstacles, (b) Multiple trajectories (different colors) with
different starting points (red dots) at the same distance from the source (black diamond), (c¢) Variation of distance of the robot from the light source for

the trajectories in fig. 2b with time.

Algorithm 1: Source seeking algorithm with obstacle
avoidance. Parameter values are as given in table I

Data: Sensor readings (obtained asynchronously in
experiment and synchronously in simulation)
Result: Control commands for source seeking
1 Function avoid-obstacle():
2 move away from closest obstacle for ao_t ime;
3 turn away from closest obstacle by ao_angle;
4 start moving forward with fwd_velocity;

Function run ():
6 move forward with fwd_velocity for
run_time;

wm

7 Function tumble ():

if random(0,1) < 0.5 then
9 | turn right by random(0, 180) degrees;
10 else

11 |_ turn left by random(0, 180) degrees;

12 start moving forward with fwd_velocity;

13 while signal_strength < stop_threshold do

14 if min(distance_sensors) < obst_threshold
then

15 | avoid-obstacle();

16 else

17 if signal_strength > prev_strength then

18 run();

19 if source is temperature then

20 | stop for 3 sec

21 else

» | tumble();

23 declare source and land;

passages between closely placed obstacles. The simulation
assumes:

« both sensor readings are noiseless

« the light intensity follows an inverse squared model

« the simulated laser distance sensors had full range for
the entire arena

« the obstacles did not cast any shadows

(b) Arena for temperature source seeking

Fig. 3: Experiment setup

Despite the assumptions made during development of the
algorithm in simulation, physical experiments demonstrated
that the algorithm can perform robustly with real sources in
the presence of noise. It was also shown that for light, heat,
and bluetooth sources, the signal strength distribution was
qualitatively a monotonically decreasing function with some
noise.

Fig. 2 shows trajectories of the algorithm executing the
search in a given environment from varying initial conditions.
The distance to the obstacle on average decreased with time
in all trajectories we simulated. Intermittent increases in
distance arise when a random tumble results in a trajectory
away from the source, or when an obstacle avoidance ma-
neuver interrupts a path with decreasing distance. However,
these intermittent increases in distance can be decreased by
choosing a small time interval between successive iterations.
In practice, this is limited by the robot’s dynamics and an
appropriate time was chosen in experiments. These results
suggest that this algorithm is able to robustly perform source
seeking.

Table II shows that increasing the threshold distance in-



obst_threshold | average seek time for 10 runs
20 pixels 6.54 s
40 pixels 11.10 s
80 pixels 13.74 s
100 pixels 22.88 s

TABLE II: Seek times in simulation with different threshold distances for
triggering obstacle avoidance behavior as per algorithm 1

creases the seek time. However, in practice, a very small
threshold may lead to collisions with obstacles. The chosen
value depends on the robot size, velocity and latency of the
algorithm loop. In simulation, the latency could be made very
small to yield a very efficient algorithm. In experiments, the
light and temperature sensors provided a measurement every
120 ms and 200 ms respectively, and the robot’s dynamics
preclude immediate changes in direction. Accordingly, we
chose a threshold of 50 cm for light and 35 cm for tempera-
ture seeking to ensure that the robot was able to consistently
avoid obstacles. We note the values in table I were chosen
such that the algorithm works in a variety of scenarios and
do not require tuning using a-priori knowledge about the
signal distribution or environment. A turn command was also
added to the avoid-obstacle () behavior since without
this command, the robot could get stuck on obstacles in the
front.

Next we analyze the required computation. At every time
increment of 500 ms, first the moving average filter is updated
with 6 instructions: subtract the oldest value in the queue
from the running total, increment a memory pointer, add n
to queue pointer (for an n-length moving average window),
store new reading at the top of the queue, add new reading
to the running total, and divide by the number of samples.
Then the algorithm performs a comparison for source decla-
ration, as well as four distance threshold comparisons and
another field strength comparison for run and tumble. A
single control command is issued if the action determined
by the mentioned comparisons is run (). Actions corre-
sponding to tumble () and avoid-obstacle () require
two and three control commands, respectively. The run ()
and avoid-obstacle () routines also need one timer
comparison each. This gives a total of 14 to 16 instructions
per cycle, or 28 to 32 per second.

III. SYSTEM COMPONENTS

A. Sensors

A BHI750FVI light intensity sensor (3 mm x 1.6 mm)
was used to measure light intensity values. It consists of a
photoresistor and an on-board 16-bit ADC integrated in a
single chip that outputs digital intensity values. The sensor
has a range of 1-65535 lux and was used in 1 lux resolution
mode at 8 Hz. This sensor was mounted on the top of the
drone facing up assuming a downward shining light source.
For temperature sensing, a TIT HDC2010 sensor (1.49mm x
1.49 mm) was used which can measure temperatures ranging
from —40°C to 125°C with a 14 bit resolution at 5 Hz. The
sensor was positioned facing the front of the drone. Both
sensors use a standard I>C interface. To measure Bluetooth
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Fig. 4: Block diagram showing interaction of system components. The
external computer sent control commands as per algorithm 1

signal strength, an evaluation module for the nRF52840 was
attached to the drone and programmed to output its signal
strength information (RSSI) over a UART link.

The Bitcraze multiranger deck was used to detect obsta-
cles. It consists of five VL53L1X time of flight laser range
finders on board with a range of 4 meters and a 50 Hz
frequency. The sensors provide distances to lateral obstacles
in four perpendicular directions as well as to overhead
obstacles.

The Bitcraze optic flow deck was also used for navigation
which consists of a PMW3901 optic flow sensor with a
VLS3L1X time of flight sensor. It provides the horizontal
velocities and vertical position of the drone which can be
fused with the on-board IMU to obtain 3D position.

B. Crazyflie quadcopter

A commercially available palm-sized drone platform called
Crazyflie 2.1 by Bitcraze was used as the platform for
implementing this algorithm. The robot weighs 27 g and
measures 112 mm across. It is equipped with a Cortex-
M4 microcontroller for onboard processing. The default
firmware [24] was modified to include custom drivers for the
light and temperature sensors to obtain sensor measurements.

The drone is configured to send light intensity or tempera-
ture measurements, multiranger distances and its 3D position
to an external computer using its onboard Bluetooth radio.
Based on these sensor values, a Python program computed
control commands to be sent back to the drone to be executed
on-board (fig. 4).

IV. EXPERIMENTS

Fig. 3 shows the arenas used for physical experiments.
It measured approximately 8 m? and consisted of a single
source and 2 to 3 obstacles in the robot’s path.

The light intensity distribution was characterized by man-
ually flying the drone in a closely-spaced trajectory at a
0.3 m height and recording the intensity values (Fig. 5a (a)).
The light intensity qualitatively follows an inverse square
distribution with distance from the source. Fig. 5 (b) shows
that the the temperature around a fire, measured using the
same procedure, follows a similar distribution, with more
noise. This field characterisation was used to determine
the threshold value used to declare the source had been
found. The top plot in Fig. 5b shows that the temperature
sensor takes a few seconds to stabilise, so a stop command
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Fig. 5: (a) Light intensity distribution of an indoor light source using drone’s position estimate. (top) with 2D position (bottom) along a straight line path
towards the source, (b) Temperature distribution for a fire using ground truth distance (top), and drone position estimate (bottom), (c) Bluetooth source

packet detection rate distribution with ground truth distance

was added after every run () command during fire-seeking
trials. Fig. 5b(c) shows measurements from two Bluetooth
transmitters programmed to send packets periodically. The
large antenna has a smartphone form factor; the small antenna
has a light-weight insect-scale form factor [3]. We performed
measurements in an open field with the transmitter and
receiver each at a height of 1 m. We observed a large
variance in Received Signal Strength Indicator (RSSI) caused
by multipath fading. While a strategy of averaging combined
with circular or side-to-side motion patterns could be used to
mitigate this, we found that packet detection rate produced
a gradient similar to those we observed for temperature and
light.

The same algorithm as designed in simulation was imple-
mented on the drone with parameter values given in table L.
The sensor measurements were obtained asynchronously at
an external computer. All communication between the drone
and the external computer was done via the on-board Blue-
tooth link. Fig. 4 shows the system components. To reduce
sensor noise, field intensity readings were smoothed using
a 10-element moving average filter for the light source. For
the temperature source, the top plot in fig. 5b shows that the
temperature sensor takes some time to stabilise. To address
this, we added a stop command for 3 s after every run
command and increased the moving average window to 30
samples. The robot moved in a 2D plane 0.3 m above ground.

The robot successfully localised the light source in 4 out
of 4 trials and localised the fire in 6 out of 7 trials (one crash
with an obstacle), giving a success rate of 100% and 85.71%
respectively. Fig. 6 and Fig. 7 show the trajectories of the
drone during the successful trials. The mean time to localize
the light and temperature sources was 1 min 58 s and 1 min
13 s respectively. A video of these trials is available in the
supplemental material and the code will be made available
upon publication.

V. CONCLUSION AND SCALING DISCUSSION

In this work we demonstrated that a biology-inspired
search strategy can be used to locate a signal source using
an aerial robot as small as the palm of a human hand.
The system only utilizes feedback from sensors carried on-
board the drone to navigate towards the source and avoid
obstacles. This work is an important step toward practical
application of such SWaP constrained robots toward source
seeking operations such as fire localization.

Next we discuss how these results are applicable to
more severely SWaP-constrained robots that are significantly
smaller, measuring a few centimeters or less. The simula-
tion software allows us to explore other signal propagation
models. Such distributions could incorporate noise models
or empirical measurements from physical environments of
interest. This allows for rapid experimentation to inform
the design of future source following robots and tuning of
parameters such as the velocity, run time, or tumble angle.

More importantly, our bio-inspired algorithm has two key
advantages that allow it to scale down to insect-scale robots.
First, it only requires a single sensor, so the robot can be
physically very small. A single phototransistor (=~ 1 mg,
1 mm) can measure light [25]. Our fire seeking experiments
used a small (3 mg, 1.49x1.49 mm) temperature sensor
that has been used for insect-scale applications [3], [26].
Alternative sensors such as such as biological antennae for
gas sensing could be used as well [27].

Second, the algorithm requires minimal computation, ap-
proximately 30 instructions per second. This constitutes a
negligible fraction of the flight control system on our robot
platform. Moreover, multiple insect-scale robot platforms
have recently taken steps toward power autonomy [28]—[30].
As these efforts continue to progress, we anticipate a growing
need for high level control algorithms that can allow these
robots to perform useful tasks. Our bio-inspired run and
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tumble algorithm is an excellent candidate for this task as
it can easily be implemented on the small microcontrollers
used in these robots.

We emphasize that while building a further miniaturized
robot is beyond the scope of this paper, the exact same sensor
hardware (temperature/light sensors) and algorithm could be
directly deployed on smaller robots. This technique could
also help address the problem of powering small robots. For
example, passive diode-detector circuits as shown in [26] can
be used to measure the amplitude of an RF signal. If this were
combined with the source seeking technique described in this
work, it could allow a robot to come into close proximity to a
RF power source such as a WiFi router and harvest emissions
to recharge itself [31].

Future work could also improve on the algorithm itself.

The current implementation restricts the run motion to 2D,
but this could be expanded into 3D space as well. The
algorithm can be made more efficient by obtaining directional
information by fusing information from other sensors. While
we focus here on a minimalist implementation, robots with
cameras or multiple sensors placed apart could de-randomize
the tumble direction and improve source seeking times.
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