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Abstract
Soil biogeochemical models (SBMs) are an im-
portant tool used by Earth scientists to quantify
the impact of rising global surface temperatures.
SBMs represent the soil carbon and microbial dy-
namics across time as differential equations, and
inference on model parameters is conducted to
project changes in parameter values under warm-
ing climate conditions. Traditionally, the field
has relied on MCMC algorithms for posterior in-
ference, often implemented via probabilistic pro-
gramming languages like Stan. However, com-
putational cost makes it difficult to scale MCMC
methods to more complex SBM models and large-
scale datasets. In this paper, we develop vari-
ational inference methods for time-discretized
SBMs as an alternative to MCMC. We propose
an efficient family of variational approximations
based on Gauss-Markov distributions that lever-
ages the temporal structure of sequential models,
scaling linearly in both time and space with re-
spect to the sequence length. We show in experi-
ments with simulated data and real CO2 response
ratios that our approach converges faster, and re-
covers posterior that more accurately captures un-
certainty than previous variational methods. Our
black-box inference approach is designed to inte-
grate with probabilistic programming languages
to enable future scientific applications.

1. Introduction
Soil microbes play a crucial role in global carbon cycle and
Earth ecosystem functions. Although it is widely known
that rising global surface temperatures affect soil microbes,
it is hard to quantify the impact. Soil biogeochemical mod-
els (SBMs) are used to represent the transfer of elements,
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such as carbon, between types of organic molecules and
quantify the response of biological soil systems to global
warming (Xie et al., 2020). However, there can be vast dif-
ferences between the predictions of competing models. To
quickly compare different hypotheses we seek fast, accurate,
and easy inference methods that also maintain biological
interpretability of model parameters and latent variables.

SBMs represent the soil carbon and microbial dynamics
across time as differential equations, and inference on model
parameters is conducted to project changes in parameter
values under warming climate conditions. Partly due to
ease of use in probabilistic programming languages (PPLs)
like Stan (Carpenter et al., 2017), the field has mainly re-
lied on MCMC methods for posterior inference of model
parameters, where latent states are approximated by deter-
ministic ordinary differential equation (ODE) solvers (Li
et al., 2019; Wang et al., 2022; Xie et al., 2020). PPLs
allow a user to specify a model in an intuitive modeling lan-
guage and (mostly) automate the inference process, which
is important for scientific applications that require iterating
over many competing models. However, computational cost
makes it difficult to scale MCMC methods to more complex,
non-linear SBMs for larger datasets spanning decades.

Variational inference (VI; Wainwright & Jordan (2008)) has
been widely successful as a faster alternative to MCMC in
other large scale applications of machine learning (Gan et al.,
2015; Gopalan et al., 2016; Ji et al., 2019). VI reframes the
task of posterior inference as an optimization problem by
minimizing the KL divergence between the true posterior
and an approximate variational distribution. For complex
non-conjugate models, variational algorithms often require
tedious and model-specific manual derivations, and are thus
not ideal for scientific applications. Recently, “black box”
variational inference methods have been proposed that can
be readily applied to general models. For differentiable
models with continuous latent variables, Automatic Differ-
entiation Variational Inference (ADVI; Kucukelbir et al.
(2017)) provides unbiased and low variance gradient es-
timates through transformation of random variables and
the “reparameterization trick” (Kingma & Welling, 2014;
Rezende et al., 2014). ADVI has been implemented as the
default variational algorithm in Stan.

In this paper, we propose an extension of ADVI that lever-
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ages the temporal structure of sequential models. Our pro-
posed variational family based on Gauss-Markov distribu-
tions captures temporal dependence efficiently and scales
linearly in the length of the sequence. We reformulate ODE
models from prior work as stochastic differential equations
(SDEs), as the smoother trajectories of ODEs oversimplify
the substantial noise that is inherent to biological systems
(Browning et al., 2020; Abs et al., 2020; Golightly & Wilkin-
son, 2011). Rather than solving the SDEs directly, we use
an approximation based on time discretization and express
the problem as a sequential latent variable model, where
we jointly optimize model parameters and latent states. We
show that previous variational methods perform poorly by
systematically under or over-estimating variance of the pos-
terior. In experiments with simulated data and real CO2

response ratios, we show that our method leads to faster
convergence to better loss and variational approximations
compared to several baseline methods, including standard
ADVI and an amortized variational inference approach.

Several authors have examined inference in SDEs and re-
lated sequence models. Ryder et al. (2018) proposed an
amortized VI algorithm specifically designed for SDEs,
where variational distributions are parameterized by neural
networks. Other authors have recently proposed continuous-
time methods for sequential and time series models (Chen
et al., 2018; Rubanova et al., 2019; Kidger et al., 2020;
Li et al., 2020; Schirmer et al., 2021). Here, we favor
the simpler approach based on ADVI and discrete-time ap-
proximations. Our method is broadly applicable to general
sequential latent variable models and designed to enable
integration with PPLs that allows scientists to easily and
quickly design, test, and revise different models.

2. Automatic Differentiation Variational
Inference

Given any model with latent variable z and observation y,
the goal of Bayesian inference is to infer posterior distribu-
tion p(z|y) = p(z)p(y|z)

p(y) . Except for very simple models, the
normalizing constant p(y) =

∫
z
p(z)p(y|z)dz is intractable

and thus approximation of the posterior is needed. Varia-
tional inference seeks a variational distribution q(z;λ) pa-
rameterized by variational parameter λ by maximizing the
evidence lower bound (ELBO):

L(λ) = Eq(z;λ)[log p(z, y)− log q(z;λ)]. (1)

Maximizing the ELBO is equivalent to minimizing KL di-
vergence of q(z;λ) from the true posterior p(z|y).

Automatic Differentiation Variational Inference (ADVI; Ku-
cukelbir et al. (2017)) is a black-box VI algorithm that
can be applied to any differentiable probability models.
It automates ELBO optimization of equation (1) via au-

tomatic differentiation. It works by first transforming the
support of the latent variables z to the real coordinate space
z̃ = T (z) ∈ RK . The transformed joint density is given by

p(y, z̃) = p(y, T−1(z̃))| det J(z̃)|, (2)

where J(z̃) is the Jacobian of the inverse transformation
T−1. The resulting ELBO in the transformed coordinates is

L = Eq[log p(y, T
−1(z̃)) + log | det J(z̃)|] +H[q(z̃;λ)].

H[q(z̃;λ)] is the entropy of the variational distribution.

ADVI employs Gaussian variational approximations for
the transformed variable z̃, which may implicitly induce
a non-Gaussian variational approximation in the original
latent space z. The Gaussian assumption allows the entropy
H[q(z̃;λ)] to be computed analytically.

A simple but naive approximation assumes a fully-factorized
variational distribution with independent latent variables:
q(z̃;λ) =

∏K
k=1 Normal(z̃k;µk, σ

2
k). Because σ must al-

ways be positive, we parameterize as ω = log(σ). The set
of variational parameters in the mean-field approximation is
therefore λk = (µk, ωk).

Another convenient yet more expressive option for the
variational approximation is the multivariate or full-rank
Gaussian, q(z̃;λ) = MultivariateNormal(z̃;µ,Σ), where Σ
is the covariance matrix. Unlike the mean-field assump-
tion, this allows arbitrary correlation structure between
any pair of the latent variables. To ensure Σ is always
positive semi-definite, we parameterize the covariance ma-
trix as Σ = LLT , where L is a lower triangular matrix
with K(K+1)

2 unconstrained real-valued nonzero entries.
In the full-rank case, the variational parameter becomes
λ = (µ,L).

Now that we can freely optimize the ELBO in the real
coordinate space, we require its gradient with respect to
λ for stochastic gradient optimization. To enable auto-
matic differentiation, we push the gradient operation in-
side the expectation, applying the “reparameterization trick”
(Rezende et al., 2014; Kingma & Welling, 2014). We use
the inverse Gaussian standardization S−1 to reparameterize
z̃ = S−1

λ (ϵ) as a deterministic function of the standard Gaus-
sian noise ϵ ∼ N(0, 1) given the variational parameters λ.
For example, the standardization in the mean-field case is
ϵk = Sλk

(z̃k) = z̃k−µk

exp(ωk)
. This allows us to approximate

the gradient using the Monte Carlo estimator:

∇λL ≈ 1

B

B∑
b=1

∇λf(y, ϵ
(b);λ) +∇λH[q(z̃;λ)], (3)

f(y, ϵ;λ) = log p(y, T−1(S−1
λ (ϵ))) + log | det J(S−1

λ (ϵ))|

Note that since the entropy is evaluated analytically, we do
not need to reparameterize z̃ in the entropy term, as the
gradient can also be computed analytically.
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3. Soil Biogeochemical Models
Soil biogeochemical models (SBMs) are differential equa-
tion models that represent the dynamics of soil pool densi-
ties (Xie et al., 2020). We consider two classes of mod-
els: the linear conventional (CON) model and the non-
linear Allison-Wallenstein-Bradford (AWB) model (Alli-
son et al., 2010). State variables x correspond to densities
of elements in organic molecules that evolve over time t
following an ODE. CO2 emissions at time t can be esti-
mated as a function of these state variables. Noisy measure-
ments y are collected at potentially irregular time intervals.
Model parameters θ correspond to other biological elements
that govern the system. We define the joint distribution
p(θ, x, y) = p(θ)p(x|θ)p(y|x, θ).

The CON system consists of three state variables xt =
(St, Dt,Mt): soil organic carbon (S) indicates the carbon
density of stable organic soil molecules; dissolved organic
carbon (D) denotes the carbon density contained in less
stable, more decomposed organic molecule types; and mi-
crobial biomass carbon (M ) describes the carbon density
encompassed by the population of soil microbial organ-
isms. The AWB system consists of four state variables
xt = (St, Dt,Mt, Et), which additionally includes extra-
cellular enzyme carbon (E) that signifies the carbon density
tied up in the enzymes secreted by the microbial organ-
isms to help break down organic material in the system
for consumption. The nonlinearity in AWB model comes
from explicitly representing micorbial processes with non-
linear Michaelis-Menten functions (Wieder et al., 2015).
The diagrams in figure 1 show the interaction between state
variables and the various model parameters in the CON and
AWB models.

To more realistically capture the stochasticity inherent to
biological systems, we formulate the SDE parameterization
of the CON and AWB models by adding noise to the system,
which we call the stochastic CON (SCON) and stochastic
AWB (SAWB) models. Concretely, we have the SDE

dxt = α(xt, θ, t)dt+ β(xt, θ, t)dWt, (4)

where xt is an M -dimensional vector of random variables,
α(xt, θ, t) is an M -dimensional drift vector, β(xt, θ, t) is an
M ×M diffusion matrix, and Wt is a standard Wiener pro-
cess. The drift and diffusion depend on θ, a D-dimensional
vector of unknown parameters.

Our drift vector α corresponds directly to the original ODE
model (details in the supplement). We consider two versions
of diagonal-only diffusion matrices: constant diffusion β =
Iσ (SCON-C and SAWB-C) and state-scaling diffusion β =
I(σ ⊙

√
x) (SCON-SS and SAWB-SS), where ⊙ denotes

elementwise multiplication and σ ∈ θ is a model parameter
that controls the noise of the dynamics.

In practice, all variables in the model are constrained to fall
within biologically realistic intervals. For example, all latent
states must be positive and activation energy parameters
must be between 0 and 100.

The SDE trajectory x across a finite timespan can be dis-
cretized into a series of T equally spaced steps of length ∆t.
Transition densities between states at successive times are
approximated as truncated Gaussian to enforce positivity:

p(xt|xt−1, θ) = TN(xt;xt−1 + α(xt−1, θ)∆t,

β2(xt−1, θ)∆t, 0,∞) (5)

where TN(x;µ,Σ, a, b) denotes the truncated Gaussian
density with mean µ, covariance Σ, lower bound a, and
upper bound b. The transition likelihood is p(x|θ) =

p(x0|θ)
∏T

t=1 p(xt|xt−1, θ).

We place an informative logit-normal prior on model
parameter θ based on expert knowledge, p(θ) =
LogitNormal(θ;µθ,Σθ, aθ, bθ). Here, lower and upper
bounds (aθ, bθ) vary across different parameters.

Finally, we assume truncated Gaussian observations,
p(yt|xt, θ) = TN(yt;µ(xt, θ),Σy, ay, by), where yt is an
N -dimensional vector of observations, µ(xt, θ) is a function
of latent states xt and model parameters θ, and Σy can either
be a model parameter or a known constant. For example, the
observations could be noisy measurements of CO2, whose
means are computed as a function of the states (see equa-
tions (17) and (21) in the supplement), or of the state vari-
ables themselves. The lower and upper bounds (ay, by) can
also vary across different types of observations. Letting T
be the time steps where observations are available, the obser-
vation likelihood is given by p(y|x, θ) =

∏
t∈T p(yt|xt, θ).

4. ADVI for Soil Biogeochemical Models
The goal of SBM inference is to project changes in parame-
ter values under warming climate conditions. We would like
to infer the posterior of model parameters conditioned on
post-warming treatment observations, p(θ|y). We can apply
ADVI by defining state variables x and model parameters
θ as our latent variables, z = (θ, x). We further assume
factorized variational distribution p(θ, x|y) ≈ q(θ, x) =
q(θ)q(x). We proceed to infer posterior of model parame-
ters θ and latent states of the SDE dynamics x jointly.

To ensure biologically realistic values, θ is constrained be-
tween some lower and upper bounds (aθ, bθ), while x is
constrained to be positive. We apply the rescaled logit func-
tion to transform θ to the unconstrained real space: θ̃ =

Tθ(θ) = logit
(

θ−a
b−a

)
. This transformation implicitly in-

duces a logit-normal variational approximation on θ. For x,
we apply the inverse softplus transformation that maps posi-
tive values to the real space: x̃ = Tx(x) = log(exp(x)−1).
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(a) (b)

Figure 1. Diagrams of the (a) CON and (b) AWB models drawn from Allison et al. (2010). Latent states are shown within circles. The
CON model consists of three latent states: SOC (S), DOC (D), and MIC (M ). In addition to these same three states, the AWB model
additionally includes ENZ (E).

The ADVI objective of Equation (3) becomes:

f(y, ϵ;λ) = log p(y, T−1
x (S−1

λx
(ϵx)), T

−1
θ (S−1

λθ
(ϵθ)))

+ log | det Jx(S−1
λx

(ϵx))|
+ log | det Jθ(S−1

λθ
(ϵθ))| (6)

In practice, users do not need to derive this equation for new
models, since the process is automated. They only need to
specify the generative model, any constraints on the support
of the latent variables, and the choice of desired variational
approximation: mean-field, full-rank, or Gauss-Markov.

4.1. Gauss-Markov ADVI

A natural choice for the variational approximation of θ is
the full-rank distribution to allow correlations to be captured
between any arbitrary pair of model parameters. The full
covariance representation scales quadratically in the number
of parameters, but this is fine as both models are limited to
a relatively small number of parameters.

However, for the sequential latent states x, neither full-rank
nor mean-field is an ideal choice. Mean-field, although com-
putationally very cheap (linear in the sequence length), is
too unrealistic since it falsely assumes temporal indepen-
dence. As we will show in our experiments, this may lead
to biased parameter estimates. The full-rank approximation
allows arbitrary correlations between any states at any time
step, but this requires a covariance matrix of size MT×MT
that scales quadratically in the length of the sequence, which
could be very long. In addition to being costly, this also
makes optimization sensitive to divergence or local optima
due to having too many irrelevant parameters.

In sequential models with first-order Markov priors and ob-
servations that are local to single time points, as is the case in
SDEs, we are guaranteed that the posterior is also first-order
Markov. In this case, parameterizing the full covariance is

wasteful as it has provably extraneous parameters. In order
to more parsimoniously capture temporal dependencies, we
propose to directly parameterize our variational approxima-
tion as a Markov chain. This results in a sampling procedure
that scales linearly with respect to sequence length in both
time and space.

Consider the set of variational parameters λt = (µt, At, Lt)
for t = 1, . . . , T , where µt ∈ RM is the mean at time t,
At ∈ RM×M represents correlations between state vari-
ables at times t − 1 and t, and Lt ∈ RM×M is a lower
triangular covariance square-root matrix that represents cor-
relations between different state variables at time t. Letting
ϵt ∼ N(0, IM ) be standard Gaussian noise of dimension
M and η0 = L0ϵ0, then for subsequent t = 1, ..., T :

ηt = Atηt−1 + Ltϵt, (7)
x̃t = µt + ηt. (8)

The first line adds the temporal dependence, where the total
stochasticity of x̃t is the sum of two sources: a linear trans-
formation of the state variables from the previous time step
Atx̃t−1, and independent noise at the current time step Ltϵt.
The second line sets the mean µt. In general, the resulting
sample xt is correlated with all previous time points xs<t

with covariance Cov(xs, xt) =
∏t

i=s+1 AiVar(xs) without
having to directly parameterize the full covariance matrix.

Because the states are defined by a Markov chain, the result-
ing entropy is a sum of conditional entropies, H[q(x̃;λ)] =∑T

t=1 H[q(x̃t|x̃t−1;λt)]. Furthermore, the conditional en-
tropy at time t is equal to that of a Gaussian with covariance
LtL

T
t , so:

H[q(x̃;λ)] =
T∑

t=1

H[N(0,Σt = LtL
T
t )] (9)

=
T∑

t=1

M

2
(1 + log(2π)) +

1

2
log(det(LtL

T
t )).
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Similar to the inverse standardization, this procedure param-
eterizes x̃ as a deterministic function of standard Gaussian
noise, which allows the gradient to be computed using auto-
matic differentiation of the Monte Carlo estimator in (3).

Intuitively, the Gauss-Markov variational approximation is
a middle ground between the mean-field and the full-rank
approximations. It is more expressive than the mean-field
approximation by allowing arbitrary first-order correlations.
It enables more efficient inference than the full-rank ap-
proximation by encoding the Markov structure of the true
posterior, reducing the effective number of parameters.

4.2. Related Work

Prior work has developed black-box VI algorithms for other
types of state space models with a Gaussian variational pos-
terior that is parameterized by a tridiagonal inverse covari-
ance matrix (Archer et al., 2015; Bamler & Mandt, 2017).
It can be shown that our Gauss-Markov posterior also has a
block tridiagonal inverse covariance, but we never explicitly
construct this matrix. While we use tranformations to im-
plicitly allow non-Gaussian posteriors, prior work assumed
Gaussian posteriors. Archer et al. (2015) use amortized
inference where the mean and inverse covariance of the
Gaussian are determined by the output of a neural network
with observations y as its input. The variational approxima-
tion is thus parameterized in a way that still requires matrix
inversion. Although matrix inversion can be done more
efficiently in sparse block-tridiagonal matrices, this is still
more expensive than our parameterization that samples via a
single forward recursion. To solve the linear system induced
by the sparse inverse-covariance, Bamler & Mandt (2017)
apply a forward and backward pass of temporal message-
passing, while we only require a single forward recursion.

Ryder et al. (2018) proposed an algorithm for black-box
variational inference for SDE that similarly works by dis-
cretizing the time and reframing the problem as state space
models, then jointly optimizing for parameters and latent
states. The authors use mean-field approximation on the
model parameters θ and applies amortized inference for
the latent states x. The variational posterior of the latent
states are assumed to be Gaussian with mean and variance
parameterized by the output of recurrent neural networks.
A more recent follow-up work (Ryder et al., 2021) uses
normalizing flows as the variational approximation to al-
low non-Gaussian posterior, and replaces recurrent neural
networks with convolutional networks for faster inference.

5. Experiments
5.1. Simulated Data

We consider two variants of the SCON model: SCON-C and
SCON-SS. We define informative priors on model param-

Gauss-Markov ADVI Full-rank ADVI Mean-field ADVI Normalizing Flow

0 100 101 102 103 104

iteration

103

1000
100

103

106

109

(a) SCON-C

0 10000 20000 30000 40000 50000
iteration

800

700

600

500

400

300

200

100

0

(b) SCON-SS

Figure 2. Trace plots of negative ELBO loss, estimated from 100
samples every 100 iterations. MF-ADVI converges to suboptimal
loss, while FR-ADVI fails to converge within 50,000 iterations. In
(b), we highlight that normalizing flow converges to worse loss
than GM-ADVI and is substantially more noisy.

eters p(θ) and the initial condition p(x0) based on expert
knowledge, and simulate data from the joint distribution
p(θ, x, y) = p(θ)p(x|θ)p(y|x, θ) with T = 1000 time steps.
We sample noisy observations of S, D, M , and CO2 every 5
time steps. We use regular gap between observations in our
simulated data for simplicity, but this is not a requirement
for our method.

When the system is linear with Gaussian noise that does
not depend on the state variables, the Kalman smoother
(Kalman, 1960) can exactly recover the true posterior
p(x|y; θ). We first use the constant diffusion model SCON-
C to verify that our proposed method can recover the optimal
Kalman smoother solution. We also compare Gauss-Markov
ADVI (GM-ADVI) to three alternative variational approx-
imations for the latent states: full-rank ADVI (FR-ADVI),
mean-field ADVI (MF-ADVI), and an amortized inference
method based on normalizing flows (Ryder et al., 2021). For
the Kalman smoother, we fix θ using the true values used to
generate the data. For the rest of the methods, θ and x are
inferred jointly. For all these methods where θ is inferred,
we use the full-rank variational approximation on θ with
rescaled sigmoid transformation to enforce the (fixed) lower
and upper bounds.

For SCON-SS, we drop the comparison with FR-ADVI and
MF-ADVI since they perform poorly on the simpler model,
and focus on the comparison between GM-ADVI and the
normalizing flow. Note that although the SCON-SS model
is linear, Kalman smoother cannot be applied here, since the
state-scaling diffusion noise depends on state variables.

In all experiments, we fix a budget of 50 samples and 50,000
iterations for all methods. We use AdaGrad with learning
rate 0.1 for ADVI and Adam with learning rate 0.01 for the
normalizing flows.

GM-ADVI converges more quickly to better variational
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Figure 3. Comparing variational mean of each latent state to the optimal Kalman smoother in the SCON-C model. (a) shows the posterior
mean, while (b) shows the error in posterior mean, calculated as the difference between the estimated mean and the correct Kalman
smoother mean. Blue dots represent observations. Posterior means are computed analytically for Kalman smoother. For variational
methods, the means are estimated empirically with 1,000 samples drawn from the variational distribution q(x). The posterior means
recovered by Gauss-Markov ADVI align closely with those computed by the Kalman smoother. Model parameters θ are known to the
Kalman smoother, but unknown to all variational methods.

bounds. Figure 2 compares the negative ELBO losses of
different methods across inference iterations. The ELBOs
are estimated via Monte Carlo sampling from 100 samples
every 100 iterations. In figure 2(a), both GM-ADVI and the
normalizing flow converge to much better (lower) loss com-
pared to FR-ADVI and MF-ADVI. MF-ADVI converges to
suboptimal loss due to false temporal independence assump-
tion. Although potentially highly expressive, FR-ADVI
fails to converge after 50,000 iterations, likely due to having
too many irrelevant parameters that make it susceptible to
noise and local optima. Compared to the normalizing flow,
Gauss-Markov ADVI is much less noisy and still converges
to better variational bounds, as highlighted in figure 2(b).

GM-ADVI more accurately captures the variance of
the latent state posterior. Figures 3 and 4 compare the
variational posterior of the latent states q(x) recovered by

the variational methods against the true posterior p(x|y; θ)
computed by the Kalman smoother on the SCON-C and
SCON-SS models. For Kalman smoother, the figure shows
analytical means and standard deviations. For the variational
methods, we use empirical estimates from 1,000 samples
drawn from the variational posterior q(x). Except for FR-
ADVI which is highly noisy and clearly overfits the obser-
vations, all other methods may seem to perform reasonably
well at estimating the posterior mean in figure 3(a). How-
ever, figure 3(b) highlights that GM-ADVI mean estimates
are still the closest to the true Kalman smoother estimates;
other methods are biased by noisy observations and insuf-
ficiently smooth. More importantly, GM-ADVI is the only
approach that captures the appropriate amount of uncer-
tainty in the posterior distribution, matching the Kalman
smoother variance on all three states, as shown in figure 4(a).
The full-rank approximation systematically overestimates



Variational Inference for Soil Biogeochemical Models
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Figure 4. Posterior standard deviation comparison in the SCON-C (a) and SCON-SS (b) models. Blue dots represent observations.
Posterior standard deviations are computed analytically for Kalman smoother. For variational methods, the standard deviations are
estimated empirically with 1,000 samples drawn from the variational distribution q(x). The posterior standard deviations recovered by
Gauss-Markov ADVI align closely with those computed by the Kalman smoother.

variance, while the mean-field and normalizing flow approx-
imations systematically underestimate variance. Figure 4(b)
shows the posterior standard deviation of GM-ADVI and
the normalizing flow on the SCON-SS model.

GM-ADVI estimates the posterior of diffusion noise pa-
rameters more accurately. Figure 5 shows the marginal
distributions of the variational posterior on select SCON-C
model parameters θ. For all methods, we use the full-rank
variational approximation on θ with rescaled sigmoid trans-
formation to enforce the lower and upper bounds. We expect
posteriors to shift away from the priors (blue) toward the
true θ value (gray vertical line), but still display uncertainty.
For all drift parameters (the first three rows), all methods
seem to converge to similar posterior distributions. All meth-
ods other than GM-ADVI seem to overestimate diffusion
parameters (cS , cD, cM ) compared to their true values. Fig-
ure 6 shows the marginal distributions of the variational
posterior on SCON-SS diffusion parameters (sS , sD, sM ).

We do not show the drift parameter comparison since both
methods infer similar posterior distributions. Here, we see
more clearly that the normalizing flow still overestimates
diffusion parameters compared to GM-ADVI.

GM-ADVI is more practical for scientific applications.
Compared to the normalizing flow, all ADVI methods share
equal advantage of being simpler and more easily inte-
grated to PPLs to enable automatic inference. They require
fewer tuning hyperparameters, such as number of layers and
choice of neural network architectures, among others. Al-
though we show no direct runtime comparison in this paper,
all ADVI experiments were run on the CPU, while the nor-
malizing flow experiments required a GPU, which may not
be easily accessible for many scientific applications. Com-
pared to other ADVI approximations, Gauss-Markov offers
balance between expressivity and efficiency: it is expressive
without the extraneous parameters, while maintaining linear
time and space.
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Figure 5. Marginal distributions of the variational posterior on se-
lect model parameters θ in the SCON-C model. Blue represents
the prior distribution, while gray vertical lines show the true θ
value used to simulate the data.

5.2. Meta-Analysis Data

Finally, we apply the proposed Gauss-Markov ADVI
method on meta-analysis data used in (Xie et al., 2020).
The dataset was compiled from 27 soil warming studies
that measured CO2. The pooled data consist of annual CO2

response ratios over a period of 13 years. Each response
ratio is calculated by dividing the annual CO2 mean follow-
ing warming perturbation by CO2 measured at prewarming
steady state. We consider the stochastic variants of the
two models explored by Xie et al. (2020): SCON-SS and
SAWB-SS.

We focus on Gauss-Markov ADVI in this case study and
drop comparison with the remaining variational methods
since they perform poorly on simulated data. We discretize
the 13-year timespan into T = 220 discrete time steps. Fol-
lowing Xie et al. (2020), annual response ratios are assumed
to be “collected” at the halfway point of each year. We mod-
ify our observation likelihood to use the CO2 response ratios
as observations (details in the supplement). As before, we
infer latent states x and model parameters θ jointly. We run
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Figure 6. Posterior marginal distribution of SCON-SS diffusion
parameters compared between GM-ADVI and the normalizing
flow. Blue represents the prior distribution, while gray vertical
lines show the true θ value used to simulate the data.
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Figure 7. GM-ADVI posterior of CO2 response ratios on meta-
analysis data. Lines show the median, while shaded regions show
the 2.5th and 97.5th percentiles.

20,000 inference iterations with 50 samples using AdaGrad
with learning rate 0.1. We estimate the posterior of CO2

response ratios by drawing 5,000 samples of x(b) ∼ q(x)
and θ(b) ∼ q(θ), and evaluate the CO2 response ratio cor-
responding to each sample b as a function of x(b) and θ(b).
Figure 7 shows the variational posterior of CO2 response
ratios.

With only a total of 13 data points, this meta-analysis dataset
is substantially more sparse than the simulated data. How-
ever, the original simulation (Xie et al., 2020) using Hamil-
tonian Monte Carlo (Hoffman et al., 2014) and deterministic
ODE solver still took multiple weeks to run. In comparison,
our approach took less than an hour on the CPU.
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6. Conclusion
As more effort is being made in biogeochemistry and other
scientific fields to collect denser observations over longer
periods of study, the need for faster and more scalable infer-
ence algorithms also becomes more crucial. For example,
the ongoing Harvard Forest study (Melillo et al., 2017) that
began in 1991 currently contains over 500 CO2 observations
over the span of 30 years and continues to grow. We have de-
veloped Gauss-Markov ADVI for sequential latent variable
models that leverages the Markov structure of stochastic
differential equations to arrive at an algorithm that is both
expressive and scales linearly in the sequence length. We
demonstrate its effective use on the time discretized soil
biogeochemical models. Compared to other variational
methods, Gauss-Markov ADVI converges faster and more
accurately captures uncertainty in the posterior. It provides a
compelling inference method for complex sequence models
with interpretable latent variables and meaningful priors. It
is designed to enable easy integration with PPLs, and in
future work we would like to implement our algorithm in
PPLs such as Stan or Pyro, to allow for convenient use by
the scientific community. In the meantime, our Python code
will be made available online.
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A. Transition Likelihood
The transition likelihod is given by:

p(xt|xt−1, θ) = TN(xt;xt−1 + α(xt−1, θ)∆t,

β2(xt−1, θ)∆t, 0,∞)

where TN(µ,Σ, a, b) denotes the truncated Gaussian density with mean µ, covariance Σ, lower bound a, and upper bound b.

The diffusion matrix in the constant diffusion model (SCON-C and SAWB-C) is β(xt−1, θ) = Iσ. In the state-scaling
model (SCON-SS and SAWB-SS), it is β(xt−1, θ) = I(σ ⊙

√
x), where ⊙ denotes elementwise multiplication and σ ∈ θ

is a model parameter. We define the drift function α below.

A.1. SCON Model

The drift vector in the SCON model obeys the following dynamics:

α(xt−1, θ) =

 IS,t + aDS · kD,t ·Dt−1 + aM · aMS · kM,t ·Mt−1 − kS,t · St−1

ID,t + aSD · kS,t · St−1 + aM · (1− aMS) · kM,t ·Mt−1 − (uM + kD,t) ·Dt−1

uM ·Dt−1 − kM,t ·Mt−1

 (10)

with latent states xt = (St, Dt,Mt) and external input rate (IS,t, ID,t). The model parameters consist of both drift and
diffusion parameters θ = (uM , aDS , aSD, aM , aMS , kS,ref, kD,ref, kM,ref, EaS , EaD, EaM , σS , σD, σM ).

The k linear first-order decay parameters obey Arrhenius temperature dependence such that:

ki,t = ki,ref exp

[
−Eai

R

(
1

Tt
− 1

Tref

)]
(11)

where R is the ideal gas constant 8.314 J · K−1 · mol−1, Tt is the temperature at time t, and Tref specifies a “reference”
equilibrium temperature which we set at 283 K (for simulated data) or 283.15 K (for meta-analysis data).

A.2. SAWB Model

The drift vector in the SAWB model obeys the following dynamics:

α(xt−1, θ) =


IS,t + aMS · rM ·Mt−1 − VD,t·Et−1·St−1

KD+St−1

ID,t + (1− aMS) · rM ·Mt−1 +
VD,t·Et−1·St−1

KD+St−1
+ rL · Et−1 − VU,t·Mt−1·Dt−1

KU+Mt−1

uQ,t · VU,t·Mt−1·Dt−1

KU+Mt−1
− (rM + rE) ·Mt−1

rE ·Mt−1 − rL · Et−1

 (12)

with latent states xt = (St, Dt,Mt, Et) and external input rate (IS,t, ID,t). The model parameters consist of both drift and
diffusion parameters θ = (uQ,ref , Q, aMS ,KD,KU , VD,ref, VU,ref, EaVD

, EaVU
, rM , rE , rL, σS , σD, σM , σE).

The V reaction rate parameters are forced by temperature via Arrhenius temperature dependence such that:

Vi,t = Vi,ref exp

[
−EaVi

R

(
1

Tt
− 1

Tref

)]
(13)

The uQ carbon use efficiency fraction follows linear temperature dependence such that:

uQ,t = uQ,ref +Q · (Tt − Tref) (14)

B. Observation Likelihood
The observation likelihood is given by:

p(yt|xt, θ) = TN(yt;µ(xt),Σy, ay, by)
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In all experiments, we fix lower and upper bounds (ay, by).

In experiments with simulated data, our observations are noisy measurements of the state variables and CO2. We fix the
observation covariance Σy , and the observation mean is computed as a function of the state variables:

µ(xt, θ) =
[
St Dt Mt rCO2,t

]T
(15)

In the meta-analysis data, we observe only the CO2 response ratios. We assume prior Σy ∼ HalfCauchy(1) for the
observation covariance and infer its posterior. The observation mean is:

µ(xt, θ) =
rCO2,t

r̂CO2

(16)

where r̂CO2
= g(x̂, θ) is the CO2 computed at pre-warming steady state. We define CO2 and steady state solutions x̂ in

SCON and SAWB models below.

B.1. SCON Model

The CO2 at time t in SCON is given by the equation:

rCO2,t = g(xt, θ) = (1− aSD) · kS,t · St + (1− aDS) · kD,t ·Dt + (1− aM ) · kM,t ·Mt (17)

The SCON respiration can be thought of as the sum of the fractions of carbon fluxes not transferred into other state variables
at t.

The steady state solutions for the state variables in SCON are:

D̂ =
aSDIS + ID

uM + kD + uMaM (aMS − aMSaSD − 1)− aDSkDaSD
(18)

Ŝ =
IS +D0(aDS + kD + uMaMaMS)

kS
(19)

M̂ =
D0uM

kM
(20)

B.2. SAWB Model

The CO2 at time t in SAWB is given by the equation:

rCO2,t = g(xt, θ) = (1− uQ,t) ·
VU,t ·Mt ·Dt

KU +Dt
(21)

The SAWB respiration can be thought of as the fraction of carbon flux out of the DOC pool that is not absorbed by the
microbial biomass MBC.

The steady state solutions for the state variables in SAWB are:

Ŝ =
−rLK(IS(rM (1 + EC(aMS − 1)) + rE(1− EC) + ECIDaMSrM )

IS(rM (rL(1 + EC(aMS − 1))) + rErL(1− EC)− ECV )) + ECID(aMSrMrL − rEV )
(22)

M̂ =
EC(ID + IS)

(1− EC)(rM + rE)
(23)

D̂ =
−KU (rM + rE)

rM + rE − ECVU
(24)

Ê =
rEEC(ID + IS)

rL(1− EC)(rM + rE)
(25)


