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a b s t r a c t 
We consider a mobile multi-agent network in which the agents locate themselves in an environment 
through imperfect measurements and aim to transmit a message signal to a far-field base station via col- 
laborative beamforming. The agents imperfect measurements yield localization errors that degrade the 
quality of service at the base station due to unknown phase offsets in the channels. Assuming that the 
localization errors follow Gaussian distributions, we study the design of a one-shot (non-iterative) beam- 
forming strategy that ensures reliable communication between the agents and the base station despite 
the localization errors. We formulate a risk-sensitive discrete optimization problem to choose an agent 
subset for transmission so that the desired signal-to-interference-plus-noise ratio (SINR) at the base sta- 
tion is attained with minimum variance. We show that, when the localization errors have small variances 
characterized in terms of the carrier frequency, greedy algorithms globally minimize the variance of the 
received SINR. Moreover, when the localization errors have large variances, we show that the variance 
of the received SINR can be locally minimized by exploiting the supermodularity of the mean and vari- 
ance of the received SINR. Simulations demonstrate that the proposed algorithms synthesize beamform- 
ers orders of magnitude faster than convex optimization-based approaches while achieving comparable 
performance with fewer agents. 

© 2022 Elsevier B.V. All rights reserved. 

1. Introduction 
A mobile multi-agent network is composed of a (possibly large) 

number of agents, each of which has sensing, computation, com- 
munication, and mobility capabilities [1,2] . With the decreasing 
size and cost of available hardware, e.g., drones [3] , batteries [4] , 
and antennas [5] , the deployment of mobile networked agents is 
an attractive option for various applications such as environmental 
monitoring, tracking, and surveillance. 

For example, in mobile sensor networks, agents continuously 
traverse the environment to collect information, share the col- 
lected information with each other through low-cost short distance 
communications, and transmit a common information signal to a 
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far-field base station through collaborative beamforming (CB) [6] . 
CB is a wireless communication technique in which the agents par- 
ticipating in beamforming adjust the phase and amplitude of the 
message signal so that the transmitted signals add coherently at 
the base station. Compared to single agent transmission, CB has 
the potential to significantly increase the range and rate of com- 
munication, to improve the directivity of the beam pattern, and to 
decrease the agents’ individual power consumption [7,8] . 

In many mobile applications, agents locate themselves through 
imperfect sensor measurements as they travel across the environ- 
ment [9] . These imperfect measurements cause localization errors 
that translate into unknown phase offsets in the agents’ commu- 
nication channels, degrading the potential coherent gain [10] . To 
remedy the negative effects of localization errors, in this paper, we 
study the problem of collaborative beamforming under localization 
errors and develop algorithms to establish a reliable communica- 
tion link with the base station despite the agents’ localization er- 
rors. 

We consider a setting in which the agents’ localization errors 
follow Gaussian distributions and the channel between the agents 
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and the base station has a strong direct-path component. In many 
applications, the mean and variance of the location estimates can 
be measured through sampling techniques, and Gaussian distribu- 
tions can be used to approximate the localization errors [11,12] . 
The strong direct path channel occurs in free-space, and with 
strong Rician channels such as when one link is elevated. An ad- 
ditional case of interest occurs at lower frequencies, such as the 
lower VHF and upper HF bands, where long wavelengths result in 
strong barrier penetration and low levels of scattering. We note 
that VHF propagation studies in urban environments [13,14] show 
the applicability of a Rician model, even when there is no line-of- 
sight path. 

Localization errors are associated with the topology of the net- 
work and translate to phasing errors in the transmission [6] . In 
the literature, the beam pattern characteristics for randomly gen- 
erated network topologies are analyzed using random array the- 
ory [6,15,16] . Specifically, the authors in [15] consider a setting in 
which each agent’s location in the environment is sampled from 
the same Gaussian distribution. They prove that, in this setting, the 
signal-to-noise ratio (SNR) received by the base station decays ex- 
ponentially with a rate proportional to the variance of the Gaus- 
sian distribution. In [16] , the authors show that, when the agents 
have fixed transmission powers and their phasing errors are iden- 
tically distributed, the expected SNR increases quadratically with 
the number of agents so long as the expected cosine of the phas- 
ing errors is close to one. However, in multi-agent self-localization 
scenarios, the agents’ position estimates follow non-identical dis- 
tributions, in which case the aforementioned results may not be 
applicable. Accordingly, in this paper, we extend the existing re- 
sults on the analysis of localization errors in beamforming by con- 
sidering a setting in which the agents’ localization errors follow 
Gaussian distributions with potentially different mean and covari- 
ance. 

From the algorithmic perspective, different approaches are pro- 
posed to synthesize beamformers that mitigate the undesired ef- 
fects of phasing errors in the transmission. The work [10] consid- 
ers a case in which the agents have no statistical information re- 
garding their localization errors and propose an iterative feedback 
algorithm that maximizes the SNR at the base station. Although 
feedback-based approaches successfully improve the quality-of- 
service (QoS) at the base station, their convergence to desired QoS 
levels may, in general, require a considerable number of two-way 
transmission iterations depending on network topology. When sta- 
tistical channel information is available, algorithms based on semi- 
definite programs (SDPs) are proposed to ensure that the received 
SNR is above a threshold with a desired probability [17] . Similar 
conic optimization-based formulations are also common in the ro- 
bust beamforming literature [18,19] . While SDP formulations pro- 
vide a powerful method to improve the QoS at the base station, 
they are computationally expensive and do not scale well with the 
number of agents. 

In this paper, we approach the beamformer design problem 
from a discrete optimization perspective. Specifically, given a net- 
work of agents with associated non-identical Gaussian localiza- 
tion errors, we propose a one-shot (non-iterative) approach that 
seeks a subset of agents to form a beam that achieves the de- 
sired QoS requirements without base station feedback. By employ- 
ing only a subset of agents in beamforming, the proposed discrete 
optimization-based approach not only mitigates the undesired ef- 
fects of localization errors but also increases the operational time 
of the agent network by consuming less energy. Moreover, our ap- 
proach can also be seen as providing a one-shot initialization for 
feedback-based approaches by utilizing the uncertainty informa- 
tion and may potentially help these approaches improve the QoS 
at the base station faster. 

The main contributions of this paper are as follows: 

• First, using the variance of the SINR at the base station as a risk 
measure, we formulate a risk-sensitive optimization problem to 
form a reliable communication link between the agents and the 
base station despite the agents’ non-identical Gaussian localiza- 
tion errors. Specifically, we aim to find a subset of agents to 
transmit the message signal such that the desired SINR level at 
the base station is achieved with minimum variability. 

• Second, we propose an efficient sorting-based algorithm, 
Greedy, to solve the formulated discrete optimization problem 
and prove sufficient conditions for its optimality. In particu- 
lar, we show that the proposed algorithm globally minimizes 
the variance of the received SINR when the agents’ localiza- 
tion errors are below a certain threshold which is a function 
of the carrier frequency. This result characterizes a fundamen- 
tal trade-off between the localization accuracy and the QoS at 
the base station as a function of the carrier frequency. Hence, it 
provides practitioners a guideline about the required localiza- 
tion accuracy for achieving desired QoS requirements at differ- 
ent frequencies. We also provide an extension of this algorithm, 
Double-Loop-Greedy (DLG), which improves the empirical per- 
formance. 

• Third, we develop an algorithm, Difference-of-Submodular 
(DoS), which exploits the supermodularity of the expected 
value and variance of the received SINR and always returns a 
subset that is locally optimal for a certain relaxation of the for- 
mulated optimization problem. The DoS algorithm ensures that 
the agents included in beamforming locally minimizes the vari- 
ance of the SINR at the base station even when their localiza- 
tion errors have high variances. This means that, for scenarios 
in which the localization accuracy required to globally mini- 
mize the variance of the received SINR cannot be achieved, the 
DoS algorithm can be used to provide local optimality guaran- 
tees on the QoS. 
We compare the performance of the proposed algorithms with 

an SDP-based beamformer and demonstrate that all three algo- 
rithms (Greedy, DLG, and DoS), exhibit similar performance to the 
SDP-based beamformer while using significantly fewer beamform- 
ing agents. Moreover, for problem instances with a large number of 
agents, the Greedy and DLG algorithms compute the agent subset 
orders of magnitude faster than the SDP-based beamformer. 

Related work: A preliminary version of this paper appeared in 
[20] , where we present the Greedy algorithm to solve the opti- 
mization problem formulated in this paper. In this paper we ex- 
tend this as follows. First, we present the DLG algorithm which 
improves the empirical performance over the Greedy algorithm on 
instances that violate the sufficient condition for optimality. Sec- 
ond, we prove the supermodularity of the mean and variance of 
the received SINR as a function of the selected agent subsets, and 
present the DoS algorithm to locally minimize the variance of the 
received SINR. Third, we provide numerical simulations to compare 
the performance of the proposed algorithms. Finally, we provide 
proof sketches for all technical results. Due to space restrictions, 
full proofs are given in the supplementary material and the online 
version [21] . 

In addition to the aforementioned references, the subject of this 
paper is also related to beamformer design when the agents have 
only local position information. Specifically, in [22,23] , the authors 
consider a setting in which the global location information is not 
available at the agents and design an antenna array that approxi- 
mates the performance of a linear antenna array using only the in- 
formation of exact inter-agent distances. Here, we consider a set- 
ting in which the statistics of the global location information are 
available at the agents, so the problem formulation and solution 
are significantly different. 
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The idea of beamforming using only a subset of available 

agents has been investigated for various purposes. In [15,24,25] , 
the authors choose a subset of sensor nodes to control the maxi- 
mum sidelobe level. The work [26] develops a discete-optimization 
based algorithm to design a sensor array for spatial sensing ap- 
plications. Finally, the reference Mehanna et al. [27] studies the 
antenna selection problem in multicast beamforming. Unlike these 
works, we consider the problem of achieving the desired SINR level 
at the base station with minimum variability despite localization 
errors and design discrete optimization-based algorithms that have 
provable performance guarantees. 
2. System model 

We consider a group of N ∈ N agents that are distributed in an 
environment. Each agent is equipped with a single ideal isotropic 
antenna with a constant transmit power P > 0 . The agents’ objec- 
tive is to transmit a common message signal m (t) to a base station 
equipped with a single antenna.The message m (t) may represent 
raw measurement data or a waveform encoded with digital data. 
2.1. Communication channel 

We assume that the base station is located in the far-field re- 
gion, each agent i ∈ [ N] transmits the signal m (t) over a narrow- 
band wireless channel h i ∈ C , and the channel between the agents 
and the base station has a strong direct-path component. 

This arises in free-space and with strong Rician channels such 
as when one link is elevated, and also at lower frequencies (long 
wavelengths). The lower frequency case is particularly of interest 
because the tolerable localization error scales with the wavelength. 
For example, as experimentally validated in [28] , significant sig- 
nal penetration through obstacles is possible at low-VHF frequen- 
cies. Moreover, in dense urban scenarios, low-power low-VHF com- 
munication yields significantly improved penetration and reduced 
multi-path [29] . Therefore, with sufficiently long wavelength the 
channel may become direct-path dominated even in dense clutter. 

We also assume that the distances between the agents and the 
base station is much larger than the inter-agent distances, and lo- 
cal oscillators of all agents are time- and frequency-synchronized. 
Distributed time and frequency synchronization in wireless ad-hoc 
networks have been extensively studied in the literature [30,31] , 
e.g., synchronization may be achieved using a short-range radio 
protocol [16,32] . There are also available methods for addressing 
potential implementation challenges [33] . Small synchronization 
errors can also result in phase errors, so these could be poten- 
tially folded into the approaches presented here, although we do 
not consider this further in the paper. 
2.2. Collaborative transmission model 

We consider a subset S ⊆ [ N] of agents that collectively trans- 
mit the message signal m (t) to the base station. All agents modu- 
late m (t) with the carrier signal Re { e j2 π f c t } , where f c is the car- 
rier frequency. Our results are applicable for any f c , while not- 
ing that longer wavelengths demand less localization error, and we 
will characterize this relationship explicitly. 

Each agent i ∈ S adjusts the phase of the transmission with the 
complex gain w i ∈ C where | w i | = √ 

P , where P is the transmit 
power. Then, the signal received by the base station is 
y S (t) := Re {e j2 π f c t m (t) ∑ 

i ∈S w i h i } + n (t) 
where n (t) denotes the interference-plus-noise. Without loss of 
generality, we let w i = √ 

P e jδi and h i = a i e jηi for each i ∈ [ N] . The 

angle δi ∈ [0 , 2 π ) denotes the phase of the gain w i , and it is a de- 
sign parameter. The magnitude a i > 0 and the phase ηi ∈ [0 , 2 π ) 
characterize the channel h i between the base station and the agent 
i ∈ [ N] . Then, the phase offset ηi at the base station relative to a 
signal transmitted by an agent located at ! r i ∈ R 3 (in Cartesian co- 
ordinates) is [34] 
ηi = −2 π f c 

C 〈 ! r i , ! r c 〉 . (1) 
In (1) , ! r c ∈ R 3 is the unit vector pointing in the known direction 
of the base station, C is the speed of light, and 〈·, ·〉 is the vector 
inner product. 

We assume that the local position ! r i of each agent i ∈ [ N] sat- 
isfies ! r i ∼ N ( µi , !i ) where µi ∈ R 3 and !i ∈ R 3 ×3 are, respectively, 
the known mean and covariance of the Gaussian distribution. The 
first and second order statistics of position estimates are typically 
easy to obtain in practice [35,36] . Moreover, the agents can utilize 
variations of Kalman filtering approaches to maintain Gaussian dis- 
tributions for localization errors throughout their motion [37] . 

We also assume that ! r i and ! r j are independent for i, j ∈ [ N] such 
that i * = j. Note that the independence assumption holds in prac- 
tice, e.g., if the agents locate themselves in the environment based 
only on their own sensor measurements and do not share infor- 
mation with each other to improve localization. 

For a given subset S ⊆ [ N] and the corresponding phase param- 
eters δi for each i ∈ S , let the array factor be 
F (S, δ) := ∣∣∣∣∑ 

i ∈S e j(δi + ηi ) ∣∣∣∣
where δ := [ δi | i ∈ S] is the vector of phase parameters. Assuming 
that | h i | = | h j | for all i, j ∈ [ N] , the magnitude of the array fac- 
tor is proportional to the square root of the SINR received by the 
base station [10] . We note that the assumption | h i | = | h j | is intro- 
duced just to simplify the notation, and the results of this paper 
can be easily extended to cases in which | h i | * = | h j | . In practice, the 
assumption | h i | = | h j | may hold when the distance between the 
agents and the base station is significantly larger than the inter- 
agent distances. Let the total phase be $i := δi + ηi . The square of 
the array factor yields the beamforming gain G (S, δ) that is propor- 
tional to the received SINR and given by 
G (S, δ) := F 2 (S, δ) = ∑ 

i ∈S 
∑ 
j∈S cos ($i − $ j ). (2) 

3. Problem statement 
The beamforming gain G (S, δ) is a fundamental quantifier of 

the quality of a communication link with the base station as it 
is proportional to the received SINR. Hence, to establish a reliable 
communication link, we want the beamforming gain to be high 
with minimum variability. 

In this paper, we focus on a scenario in which the agents’ ex- 
act local positions { ! r i : i ∈ [ N] } are not known. Each agent’s poten- 
tial local positions are expressed with a Gaussian distribution ! r i 
∼ N ( µi , !i ) . As a result, G (S, δ) is a random variable. In such a 
scenario, a reasonable objective might be to minimize the outage 
probability , i.e., the probability that the beamforming gain falls be- 
low a certain threshold. However, there are two major difficulties 
involved in the optimization of the outage probability. First, due to 
the nonlinear structure of the beamforming gain G (S, δ) , deriving 
a closed form expression for the outage probability is not trivial. 
Second, as the agent subset S is a discrete variable and the vector 
δ of phase parameters is a continuous variable, joint optimization 
of G (S, δ) in the pair (S, δ) is computationally challenging. 

3 
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When the closed form probability distribution is hard to ob- 

tain or has a multimodal structure, a common approach for op- 
timizing performance is to consider alternative risk-sensitive for- 
mulations [38,39] . Accordingly, in this paper, we consider a mean- 
variance optimization framework which is a widely used approach 
in a number of domains, ranging from cognitive radio networks 
[40] to finance [41] . 

We remedy the computational challenges involved in the joint 
optimization of G (S, δ) in the pair (S, δ) as follows. In Section 4 , 
we show that, for any given agent subset S , one can maximize the 
expected beamforming gain E [ G (S, δ)] by selecting the vector δ of 
phase parameters as δ = ˆ δ where ˆ δi := −E [ ηi ] for all i ∈ [ N] . This 
result implies that, for any given agent subset S , one can maxi- 
mize the expected SINR by aligning the agents’ total phases $i in 
expectation. Therefore, we fix the phase paramater δi of each agent 
i ∈ [ N] to δi = ˆ δi and focus on selecting an agent subset that attains 
a desired level of SINR with minimum variability. 

Finally, we provide the formal problem statement as follows. 
Problem 1: (Subset selection) For a constant % > 0 , and the 

fixed vector of phase parameters δ = ˆ δ, find S & ⊆ [ N] such that 
S & ∈ arg min 

S⊆[ N] Var (G (S, ̂  δ) ) (3a) 
subject to: E [ G (S, ̂  δ) ] ≥ %. (3b) 
4. Statistical properties of the beamforming gain 

In this section, we first derive the explicit form of the expected 
beamforming gain E [ G (S, δ)] and show that, for any given subset 
S ⊆ [ N] , we can maximize E [ G ( S , δ)] by setting δ = ˆ δ. We then 
derive the explicit form of Var (G (S, ̂  δ)) . 

Consider the definition of G (S, δ) , given in (2) , and recall that, 
for all i ∈ [ N] , $i = ηi + δi where ηi = 2 π f c 〈 ! r i , ! r c 〉 /C and ! r i ∼
N ( µi , !i ) . Then, for a given vector δ ∈ [0 , 2 π ) N of phase param- 
eters, we have $i ∼ N (θi , γi ) where 
θi := 2 π f c 

C 
〈 
µi , ! r c 〉 + δi and γi := 4 π2 f 2 c 

C 2 
〈 
! r c , !i ! r c 〉 . (4) 

We refer to γi as the effective error variance in the localization of 
the i th agent. 
Proposition 1. Let v i := exp (−γi ) . We have 
E [ G (S , δ) ] = ∣∣S ∣∣ + ∑ 

i ∈S 
∑ 
j∈S 
j * = i 

√ 
v i v j cos (θi − θ j ) . (5) 

Proof (sketch): We obtain the result by taking the expec- 
tation of both sides in (2) and using the linearity of expecta- 
tion, independence of ! r i and ! r j for all i * = j, and the fact that 
E [ cos (X )] = e −σ 2 / 2 cos (µ) where X ∼ N (µ, σ 2 ) . !

Proposition 2. For any given S ⊆ [ N] , δ ∈ max δ∈ [0 , 2 π ) N E [ G ( S , δ)] if 
and only if, for all i, j ∈ S , we have 
(
( δi + E [ ηi ]) − ( δi + E [ ηi ]) ) mod 2 π = 0 . (6) 

Proof. For any S ⊆ [ N] , E [ G ( S , δ)] , given in (5) , is maximized if and 
only if (θi - θ j ) mod 2 π = 0 because (i) cos (x ) ≤ 1 for any x ∈ R 
and (ii) cos (x ) = 1 if and only if x mod 2 π = 0. Recalling that 
θi = E [ ηi ] + δi , we conclude the result. !

The condition in (6) implies that, in order to maximize the 
expected beamforming gain, the agents’ total phases should be 
aligned in expectation. Note that the vector ˆ δ, where ˆ δi = −E [ ηi ] 

for all i ∈ [ N] , satisfies the condition in (6) . In the subset selection 
problem, we set δ = ˆ δ and aim to find a subset S ⊆ [ N] that solves 
the risk-sensitive optimization problem given in (3a) - (3b) . 

When δ = ˆ δ, we have θi = θ j for all i, j ∈ [ N] , implying that 
E [ G (S , ̂  δ) ] = ∣∣S ∣∣ + ∑ 

i ∈S 
∑ 
j∈S 
j * = i 

√ 
v i v j . (7) 

Next, we derive the variance of G (S, ̂  δ) as follows. 
Proposition 3. Let v i := exp (−γi ) . We have 
Var (G (S, ̂  δ) ) = ∑ 

i ∈S 
∑ 
j∈S 
j * = i 

(
1 − v i v j )2 + 2 ∑ 

i ∈S 
∑ 
j∈S 
j * = i 

∑ 
k ∈S 
k * = i 
k * = j 

(
1 − v i )2 √ 

v j v k . 

Proof (sketch): Note that Var (G (S, ̂  δ)) = E [ G (S, ̂  δ) 2 ] - 
E [ G (S, ̂  δ)] 2 . We prove the result by utilizing the equivalence in 
(7) and deriving the explicit form of E [ G (S, ̂  δ) 2 ] using the iden- 
tity cos (2 x ) = 2 cos (x ) 2 - 1 for any x ∈ R , and the fact that 
E [ cos (tX )] = e −t 2 σ 2 / 2 where X ∼ N (0 , σ 2 ) . !

5. Agent selection under localization errors 
In this section, we propose three algorithms to solve the sub- 

set selection problem and analyze their optimality guarantees. 
Throughout this section, we assume that the problem in (3a) - (3b) 
has a feasible solution. For a given problem instance, the valid- 
ity of this assumption can be easily verified by checking whether 
E [ G ([ N] , ̂  δ)] ≥ % due to the following result. 
Proposition 4. For any S ⊆ S ′ ⊆ [ N] , E [ G (S, ̂  δ)] ≤ E [ G (S ′ , ̂  δ)] . 
Proof. The result follows from the fact that E [ G (S, ̂  δ)] is a sum 
of nonnegative terms; hence, adding an element to the subset can 
only increase the sum. !

5.1. Greedy algorithm 
In this section, we consider a simple greedy algorithm to solve 

the subset selection problem and provide sufficient conditions for 
its optimality. The Greedy algorithm, shown in Algorithm 1 , first 
Algorithm 1 Greedy. 

1: Input: γi for all i ∈ [ N] , % ∈ R . 
2: Sort γi such that γi 1 ≤ γi 2 ≤ . . . ≤ γi N . 
3: S := ∅ , k := 1 
4: while E [ G (S, ̂  δ)] < % do , S := S ∪ { i k } , k := k + 1 
5: end while 
6: return S . 

sorts the agents’ effective error variances γi , defined in (4) , in as- 
cending order. We note that the sorting operation can be per- 
formed in O(N log (N)) for an array of length N. Initializing the out- 
put set S to the empty set, the algorithm then iteratively adds the 
agent with the next lowest effective error variance to the output 
set until the constraint E [ G (S, ̂  δ)] ≥ % is satisfied. 

We now present sufficient conditions on the set { γi : i ∈ [ N] } 
for which the Greedy algorithm returns an optimal solution to the 
problem in (3a) - (3b) . Let the total effective error variance of a subset 
S ⊆ [ N] be measured by the function V : 2 [ N] → R where V (S) := ∑ 

i ∈S γi . Consider the problem of choosing a subset S ′ ⊆ [ N] that 
satisfies the constraint in (3b) and has the minimum total effective 
error variance, i.e., 
S ′ ∈ arg min 

S⊆[ N] V (S) (8a) 
4 



Y. Savas, E. Noorani, A. Koppel et al. Signal Processing 200 (2022) 108647 

subject to: E [ G (S, ̂  δ) ] ≥ %. (8b) 
The next result, together with Proposition 4 , implies that the 

Greedy algorithm yields an optimal solution to the problem in 
(8a) - (8b) . 
Proposition 5. For any K ∈ N such that K ≤ N, we have 
arg min 

S⊆[ N]: 
|S| = K V (S) = arg max 

S⊆[ N]: 
|S| = K E [ G (S, ̂  δ) ] . 

Proof (sketch): We prove the result by showing that the deriva- 
tive of E [ G (S, ̂  δ)] with respect to γi , where i ∈ S , is always nega- 
tive. Therefore, a subset S of fixed size K maximizes the expected 
beamforming gain if and only if the subset has the minimum total 
effective error variance V (S) among all subsets of size K. !

It can be shown that the problems in (3a) - (3b) and (8a) - (8b) 
are not equivalent in general. Hence, the greedy approach is, in 
general, not optimal to solve the subset selection problem. How- 
ever, there are certain sufficient conditions, which are formalized 
below, under which such an approach becomes optimal. 
Theorem 1. For a given set { γi : i ∈ [ N] } of effective error variances, 
let γi 1 ≤ γi 2 ≤ . . . ≤ γi N where i k ∈ [ N] . A solution to the problem in 
(8a) - (8b) is also a solution to the problem in (3a) - (3b) if either one 
of the following conditions hold: 

(C1) E [ G (S, ̂  δ)] ≥ % where S = { i 1 , i 2 } , 
(C2) γi N ≤ 0 . 83 . 

Proof (sketch): The main idea in the proof is to show that 
the derivative of Var (G (S, ̂  δ)) with respect to max i ∈S γi is positive. 
Condition (C1) follows from the fact that, when |S| ≤ 2 , the deriva- 
tive is always positive. Condition (C2) follows from the fact that, 
when γi N ≤ 0 . 83 , the derivative is positive regardless of the size of 
the set S . For such γi N , the subset with minimum V (S) is the one 
that minimizes Var (G (S, ̂  δ)) ; hence, the problems in (8a) - (8b) and 
(3a) - (3b) become equivalent when (C1) or (C2) holds. !

Theorem 1 states that if all the agents have “small” effective 
error variances, then the Greedy algorithm returns an optimal so- 
lution to the subset selection problem. In particular, it follows from 
Theorem 1 that a sufficient condition for optimality characterized 
by the carrier frequency is 
max 
i ∈ [ N] 

〈 
! r c , !i ! r c 〉 ≤ 0 . 83 C 2 

4 π2 f 2 c . 
For example, suppose that !i = σ 2 

i I 3 ×3 , where I 3 ×3 is the iden- 
tity matrix, and let σ 2 

max := max i σ 2 
i . Then, we have σ 2 

max ≤ 0 . 83 C 2 
4 π2 f 2 c 

as the sufficient condition (C2). In Fig. 1 , we plot the trade-off be- 
tween the carrier frequency f c and the maximum variance σ 2 

max 
under which the Greedy algorithm is optimal. As f c decreases (re- 
sulting in longer wavelength), condition (C2) allows larger posi- 
tion error variance. For example, below 50 MHz in the lower VHF, 
agents are allowed to have localization error variance approaching 
one square meter or more. This can be relatively easily achieved 
with, for example, global navigation sensors [42] and employing 
existing localization algorithms [43,44] . 

Although the Greedy algorithm provides an optimal solution to 
the subset selection problem under the sufficient conditions given 
in Theorem 1 , we may have scenarios where the localization er- 
ror variance ranges from small to large and (C2) does not hold for 
all agents. In the Appendix, we present a simple extension of the 
Greedy algorithm, which we refer to as the Double-Loop-Greedy 

Fig. 1. Maximum localization error variance σ 2 
max allowed for the optimality of the 

greedy algorithm as a function of the carrier frequency f c . Note that the localization 
error tolerance is relaxed at lower frequencies (longer wavelengths). 
(DLG) algorithm. Although the DLG algorithm has the same theo- 
retical guarantees with the Greedy algorithm, it improves the em- 
pirical performance when the conditions given in Theorem 1 are 
violated, as shown in numerical examples. 
5.2. Difference-of-Submodular (DoS) algorithm 

The Greedy algorithm is guaranteed to return optimal solutions 
to the subset selection problem under the sufficient conditions 
stated in Theorem 1 . In this section, we propose a second approach 
to solve the subset selection problem, which always returns a lo- 
cally optimal solution to a certain relaxation of the subset selec- 
tion problem. Although the proposed approach is computationally 
more demanding, its local optimality guarantee is independent of 
the carrier frequency unlike the Greedy algorithm. 

Before presenting the Difference-of-Submodular (DoS) algo- 
rithm, we first provide a definition of submodularity and show that 
both the expected value and the variance of the beamforming gain 
are supermodular set functions. 
Definition 1. A set function f : 2 * → R is submodular if for ev- 
ery X, Y ⊆ * with X ⊆ Y and every e ∈ *\ Y , we have f (X ∪ { e } ) −
f (X ) ≥ f (Y ∪ { e } ) − f (Y ) . 

A set function f : 2 * → R is supermodular if the set function − f
is submodular. 
Theorem 2. Both E [ G (S, ̂  δ)] and Var (G (S, ̂  δ)) are supermodular set 
functions. 

Proof (sketch): For notational simplicity, let G (S) := G (S, ̂  δ) . 
For X, Y ⊆ [ N] such that X ⊆ Y , let X ′ = X ∪ { e } and Y ′ = Y ∪ { e } 
where e ∈ [ N] \ Y . We have, 
X diff := E [ G (X ′ )] − E [ G (X )] = 1 + 2 √ 

v e ∑ 
i ∈ X 

√ 
v i , 

Y diff := E [ G (Y ′ )] − E [ G (Y )] = 1 + 2 √ 
v e ∑ 

i ∈ Y 
√ 

v i . 
Using v i ≥ 0 and X ⊆ Y , we obtain X diff − Y diff = 
−2 √ v e ∑ 

i ∈ Y \ X √ v i ≤ 0 . Hence, we conclude that E [ G (S, ̂  δ)] is 
supermodular. 

To show the supermodularity of Var (G (S, ̂  δ)) , we define X diff := 
Var ( G (X ′ )) − Var ( G (X )) and Y diff := Var ( G (Y ′ )) − Var ( G (Y )) . Then, 
we show that X diff − Y diff ≤ 0 by using the fact that v i ≥ 0 and X ⊆
Y . !

5 
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Next, we formalize the notion of local optimality for discrete 

optimization problems and introduce the DoS algorithm which uti- 
lizes the results of [45] . 
Definition 2. [45] For a set function φ : 2 * → R , a sequence { S t ⊆
* : t ∈ N } is said to converge to a local minimum if there exists a 
constant M ∈ N such that φ(S m ) = φ(S n ) for all m, n ≥ M, and for 
any k ∈ N , φ(S k ) ≤ φ(S l ) for all l ≤ k . 

Let f : 2 * → R and g : 2 * → R be submodular set functions. 
In [45] , the authors present an algorithm, called Submodular- 
Supermodular-Procedure (SSP), that returns a locally optimal so- 
lution to the following problem 
min 
S⊆*

f (S) − g(S) . (9) 
The DoS algorithm, shown in Algorithm 2 , utilizes the SSP as a 

Algorithm 2 Difference-of-Submodular (DoS). 
1: Input: γi for all i ∈ [ N] , % ∈ R , λ0 > 0 , α > 1 . 
2: S := ∅ , k := 0 . 
3: while E [ G (S, ̂  δ)] < % do 
4: f (·) := −λk E [ G (·, ̂  δ)] , g(·) := −Var (G (·, ̂  δ)) 
5: S := SSP ( f (·) , g(·)) 
6: k := k + 1 , λk := αλk −1 . 
7: end while 
8: return S . 

subprocedure to return a locally optimal solution to a certain re- 
laxation of the subset selection problem. In particular, it takes two 
parameters λ0 > 0 and α > 1 as inputs as well as the agents’ effec- 
tive localization error variances γi and the expected gain threshold 
%. At the k th iteration, where k ∈ N , using the SSP as a subpro- 
cedure, the DoS algorithm finds a locally optimal solution to the 
following problem 
min 
S⊆[ N] Var (G (S, ̂  δ) ) − λk E [ G (S, ̂  δ) ] (10) 
where λk is iteratively defined as λk = αλk −1 . The algorithm termi- 
nates when the solution returned by the SSP satisfies E [ G (S, ̂  δ)] ≥
%. 

Convergence of the DoS algorithm: For the DoS algorithm to 
terminate, the subprocedure SSP should output a subset S ⊆ [ N] 
such that E [ G (S, ̂  δ)] ≥ %. At the k th iteration, the SSP finds a lo- 
cally optimal solution to the problem in (10) by computing suc- 
cessive modular approximations of the function Var (G (S, ̂  δ)) and 
finding a globally optimal solution to each of the resulting approx- 
imation problems. Since λ0 > 0 and α > 1 , the parameter λk in- 
creases at each iteration. Hence, in terms of the objective value, 
the globally optimal solution of the approximate problems become 
closer to the globally optimal solution of max S E [ G (S, ̂  δ)] , which is 
S = [ N] . Since we assumed at the beginning that there exists a fea- 
sible solution to the subset selection problem, the DoS algorithm is 
guaranteed to terminate for some finite k ∈ N . 

Optimality of the DoS algorithm: As mentioned earlier, at each 
iteration, the DoS algorithm computes a locally optimal solution to 
the problem in (10) . Hence, the subset returned by the DoS algo- 
rithm is a locally optimal solution to the following relaxation of 
the subset selection problem 
min 
S⊆[ N] Var (G (S, ̂  δ) ) − λk & E [ G (S, ̂  δ) ] (11) 
where k & is the number of iterations until the convergence of the 
DoS algorithm. We also note that the above problem formulation 
is sometimes referred to as a “regularized version” of the original 
constrained optimization problem [46] . 

6. Numerical experiments 
In this section, we present numerical simulation results that 

demonstrate the performance of the proposed algorithms. All com- 
putations are run on a 3.1-GHz desktop with 32 GB RAM using the 
toolbox [47] for the implementation of the SSP (step 5 in the DoS 
algorithm). 
6.1. Suboptimality ratio on small-scale instances 

A typical measure to assess the empirical performance of an op- 
timization algorithm is its suboptimality ratio on randomly gener- 
ated instances. For the purposes of this paper, the suboptimality 
ratio demonstrates how much the variance of the received SINR is 
larger than the minimum achievable one when the agents employ 
the proposed algorithms to transmit the message. 

We compare the suboptimality of the proposed algorithms 
as a function of three problem parameters: the total number N
of agents, the maximum localization error γmax := min { γ : γ ≥
γi , for all i ∈ [ N] } , and the expected beamforming gain threshold 
% = β%max where 0 < β ≤ 1 and %max := E [ G ([ N] , ̂  δ)] is the max- 
imum expected beamforming gain that can be achieved by the 
agents. 

For a given problem instance, we measure the performance of 
an algorithm by the suboptimality ratio (SR) of its output. Specif- 
ically, let S & be an optimal solution to the given problem instance 
(3a) - (3b) , which, for small N, can be computed by considering all 
subsets S ⊆ [ N] . Moreover, let S be the (possibly suboptimal) out- 
put of a given algorithm. We define the SR of the algorithm on the 
given instance as 
SR := Var (G ( S , ̂  δ) )

Var (G (S & , ̂  δ) ) . 
All proposed algorithms, i.e., Greedy, DLG, and DoS, have SR ≥ 1 
since their output S satisfies E [ G ( S , ̂  δ)] ≥ %. 

In the first set of experiments, we investigate the relationship 
between the algorithms’ SR, the total number N of agents, and 
the bound γmax on the agents’ effective localization error vari- 
ances. For a given N and γmax , a problem instance consists of { γi : 
i ∈ [ N] } where each γi is uniformly randomly selected from the in- 
terval (0 , γmax ) . We set the expected beamforming gain threshold 
as % = 0 . 6%max to allow the algorithms to output subsets of dif- 
ferent sizes if it is optimal to do so. Furthermore, we set λ0 = 1 
and α = 2 for the DoS algorithm. Recall that the DoS algorithm 
has only local optimality guarantees. Hence, the SR of the algo- 
rithm’s output depends on the initialization of the SSP. Accordingly, 
for each problem instance, we run the DoS algorithm 10 times us- 
ing different initializations and report the performance of the best 
output. 

For each N ∈ { 6 , 8 , 10 } and each γmax ∈ { 1 , 2 , . . . , 20 } , we gen- 
erate 100 problem instances and illustrate the average SRs of all 
algorithms in Fig. 2 (top). As can be seen from the figure, all algo- 
rithms show near-optimal performance (SR ≤ 1 . 3 ) for all ( N, γmax ) 
pairs. Recall from Theorem 1 that, when γmax ≤ 0 . 83 , both the 
Greedy and DLG algorithms are guaranteed to have SR = 1. More- 
over, the DLG algorithm is always guaranteed to have smaller SR 
than the Greedy algorithm. The results shown in Fig. 2 (top) em- 
pirically witness these theoretical guarantees. Moreover, as can be 
seen from the figure, both the Greedy and DLG algorithms per- 
form well (SR ≤ 1 . 1 ) even when the sufficient optimality condi- 
tion, γmax ≤ 0 . 83 is violated. The DoS algorithm shows compara- 
ble performance to that of the Greedy and DLG algorithms when 
γmax ≥ 10 . However, for small effective localization error variances, 
the Greedy and DLG algorithms perform significantly better than 
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Fig. 2. Suboptimality ratios (SRs) of the proposed algorithms averaged over 100 randomly generated subset selection problem instances. (Top) SRs when the total number 
of agents is N ∈ { 6 , 8 , 10 } and the effective localization error variances { γi : i ∈ [ N] } are generated randomly from the interval (0 , γmax ) . (Bottom) SRs when the total number 
of agents is N ∈ { 6 , 8 , 10 } and the expected beamforming gain threshold is % = β%max . 

the DoS algorithm. Finally, note that the SR of the DoS algorithm 
increases with increasing total number N of agents in general. On 
the other hand, the SR of the Greedy and DLG algorithms, in gen- 
eral, remain at the same level despite the increasing total number 
of agents. 

In the second set of experiments, we investigate the relation- 
ship between the algorithms’ SRs, the total number N of agents, 
and the normalized threshold β = %/ %max . For given N and β , a 
problem instance consists of { γi : i ∈ [ N] } where each γi is selected 
uniformly randomly from the interval (0,10), i.e., γmax = 10. Finally, 
we set λ0 = 1 and α = 2, and run the DoS algorithm with 10 ran- 
dom initializations. 

For each N ∈ { 4 , 6 , 8 } and each β ∈ { 0 . 1 , 0 . 2 , . . . , 1 } , we gener- 
ate 100 problem instances. The average SRs of the algorithms over 
the generated instances are shown in Fig. 2 (bottom). As can be 
seen from the figure, all algorithms have average SR less than 1.6 
for each (N, β) pair. Recall from Theorem 1 that, for instances 
in which the threshold % can be attained using two agents, the 
Greedy and DLG algorithms have SR = 1. For small β values, we 
observe that the Greedy and DLG algorithms achieve SR = 1 since, 
in most problem instances, the threshold is attained by using two 
agents. Similar to the first set of experiments ( Fig. 2 (top)), we ob- 
serve that the SR of the DoS algorithm increases with increasing 
N in general. Moreover, the performance of the DoS algorithm, in 
general, improves with increasing β values. 

The empirical performance evaluation of the proposed algo- 
rithms on small-scale instances show that all three algorithms, 
Greedy, DLG, and DoS, achieve near-optimal performance (SR ≤ 1 . 6 ) 
for a range of N, β , and γmax values. Although the Greedy and DLG 
algorithms have theoretical optimality guarantees only for small 
γmax and β values, they perform well (SR ≤ 1 . 1 ) even for large γmax 
and β values. On the other hand, although the local optimality 
guarantee of the DoS algorithm is independent of the problem pa- 
rameters, the performance of the algorithm is, in general, compa- 
rable (SR ≤ 1 . 1 ) to that of the Greedy and DLG algorithms only for 
large γmax and β values. 

6.2. Performance comparison with an SDP-based beamformer 
We compare the performance of the proposed algorithms with 

a semi-definite programming-based (SDP-based) beamforming al- 
gorithm. SDP-based methods are widely used in robust beamform- 
ing to mitigate the degrading effects of uncertain parameters on 
the beam pattern [18,48] . Accordingly, for comparison, we synthe- 
size a beamforming vector w & ∈ C N where 
w & ∈ arg min 

w ∈ C N ‖ w ‖ 2 2 (12a) 
subject to: E [ w H Hw ] ≥ % (12b) 
∀ i ∈ [ N] , | w i | 2 ≤ 1 . (12c) 

Here, H ∈ C N×N is H = hh H where h H = [ h 1 , h 2 , . . . , h N ] , 
and w H = [ w 1 , w 2 , . . . , w N ] . The constraint in (12c) ensures that 
w i = √ 

P e jδi for some P ≤ 1 . 
A solution to the problem in (12a) –(12c) is a beamformer w & 

that attains the desired threshold % with minimum total power 
while respecting the individual power constraints in (12c) . It can 
be shown that a solution to the problem in (12a) –(12c) can be 
computed exactly by solving an SDP [19,48] . To synthesize the 
beamformer w & , we utilized the SDP solver of the CVX toolbox 
[49] with its nominal parameters. Note that the beamformer w & 
minimizes the total transmit power of the antenna array while en- 
suring that the expected beamforming gain exceeds the desired 
threshold %. Therefore, it represents a solution to a convex relax- 
ation of the problem 

min 
S⊆[ N] , δ∈ C N |S| 

subject to E [ G (S, δ)] ≥ %

which is a risk-neutral version of the subset selection problem. For 
given w & = [ w & 1 , w & 2 , . . . , w & N ] , we let the corresponding optimal sub- 
set be S & = { i ∈ [ N] : | w & 

i | > ε} where ε = 10 −1 . 
7 
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Fig. 3. Performance comparison of the proposed algorithms with an SDP-based beamformer. (Left) For a given threshold % = β%max , the normalized variances of the 
beamforming gains are similar for all approaches. (Middle) Proposed algorithms achieve the same performance by employing strict subsets of the agent group when possible. 
(Right) Greedy and DLG algorithms synthesize beamformers orders of magnitudes faster than the SDP-based approach. 

We generate 100 subset selection problem instances by setting 
N = 40 and selecting the error variances { γi : i ∈ [ N] } uniformly 
randomly from the interval (0,10), i.e., γmax = 10. For the DoS al- 
gorithm, we set λ0 = 1 and α = 2, and run the algorithm with 10 
random initializations. We compare the performance with respect 
to three metrics: the average variance of the beamforming gain, 
the average size of the selected subset, and the average computa- 
tion time. 

Fig. 3 (left) shows the normalized variance of the beamform- 
ing gain, i.e., κ = Var (G (S & , δ)) / Var (G ([ N] , ̂  δ)) , versus the normal- 
ized threshold β = %/ %max . In the figure, we do not plot the re- 
sults of the DLG algorithm since it is almost exactly the same as 
the Greedy algorithm. As can be seen from the figure, the pro- 
posed discrete-optimization-based algorithms achieve similar per- 
formance to that of the SDP-based beamformer. The variance of the 
SDP-based beamformer is, in general, smaller than the variance of 
the proposed algorithms since the problem in (12a) –(12c) is a con- 
vex relaxation of the subset selection problem. 

Fig. 3 (middle) demonstrates the trade-off between the normal- 
ized threshold β and the average size of the optimal subset S & . The 
plot for the DLG algorithm is omitted since the average size of the 
subsets selected by the DLG algorithm is almost exactly the same 
as the Greedy algorithm. As can be seen from the figure, for β < 1 , 
the proposed algorithms employ strict subsets of the agent net- 
work [ N] where N = 40. On the other hand, the SDP-based beam- 
former includes all the agents to beamforming for all β > 0 . Com- 
bined with the results shown in Fig. 3 (left), this result suggests 
that the proposed algorithms achieve similar performance to that 
of the SDP-based approach using fewer agents. This saves resources 
overall and allows unallocated agents to take on other tasks. 

Finally, Fig. 3 (right) shows the computation times for all algo- 
rithms. The Greedy and DLG algorithms run orders of magnitude 
faster than the SDP-based beamformer. On the other hand, the DoS 
algorithm takes longer than the SDP-based beamformer to select a 
subset in general. The long computation time is partially due to 
the fact that we run the DoS algorithm with 10 random initializa- 
tions to improve its performance. We observe in our experiments 
that the variance of the beamforming gain for the subset selected 
by the DoS algorithm decreases considerably as the number of ran- 
dom initializations used in the DoS algorithm increases. Therefore, 
there is a trade-off between the computation time of the DoS al- 
gorithm and the quality of the beamformer. 

The empirical evaluations presented above suggests that the 
proposed discrete optimization-based approaches have the poten- 
tial to synthesize beamformers with similar performance to that 
of the convex optimization-based beamformers using significantly 
less number of agents. Furthermore, when the Greedy and DLG al- 
gorithms are employed to synthesize beamformers, the required 
computation time for the synthesis can be significantly reduced 
with respect to SDP-based approaches. 

7. Conclusions 
We considered a mobile multi-agent network in which the sen- 

sor nodes locate themselves in an environment through imperfect 
measurements and aim to transmit a message signal to a base 
station. Under the assumption that the agents have Gaussian lo- 
calization errors, we developed three one-shot (non-iterative) al- 
gorithms, Greedy, Double-Loop-Greedy (DLG), and Difference-of- 
Submodular (DoS), each of which chooses a subset of agents to op- 
timize the quality-of-service without requiring feedback from the 
base station. 

When the localization errors for all agents are below a certain 
threshold, the Greedy algorithm globally minimizes the variance 
of the SINR received by the base station while guaranteeing that 
the expected SINR is above a desired threshold. The DLG algorithm 
improves the empirical performance over the Greedy algorithm. Fi- 
nally, the DoS algorithm enables the agents to locally optimize the 
reliability of the communication link even when the localization 
errors are large. We empirically showed that the proposed algo- 
rithms achieve similar performance with a convex optimization- 
based algorithm while using significantly fewer agents. Moreover, 
the Greedy and DLG algorithms run orders of magnitude faster 
than the convex optimization-based approach. 

Although the DoS algorithm achieves comparable performances 
to that of the convex optimization-based algorithm with fewer 
agents, its computational requirements may hinder its applicability 
to scenarios in which the size of the agent network is large. In- 
teresting future directions include developing algorithms for large 
scale systems that are both fast and have performance guarantees, 
as well as utilizing our algorithms to initialize some further beam- 
forming refinement such as using base station feedback. 
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Appendix A 

In this appendix, we present the Double-Loop-Greedy (DLG) 
algorithm, shown in Algorithm 3 , which is an extension of the 
Algorithm 3 Double-Loop-Greedy (DLG). 

1: Input: γi for all i ∈ [ N] , % ∈ R . 
2: Sort γi such that γi 1 ≤ γi 2 ≤ . . . ≤ γi N . 
3: S 1 := ∅ , S 2 := ∅ , k := 1 , l := N 
4: while E [ G (S 1 , ̂  δ)] < % do , S 1 := S 1 ∪ { i k } , k := k + 1 
5: end while 
6: while E [ G (S 2 , ̂  δ)] < % do , S 2 := S 2 ∪ { i l } , l := l − 1 
7: end while 
8: if Var (G (S 1 , ̂  δ)) < Var (G (S 2 , ̂  δ)) then S := S 1 
9: else S := S 2 

10: end if 
11: return S . 
Greedy algorithm. The idea is to form two solutions and then 
choose the best one. Set S 1 is developed as the Greedy algorithm, 
while set S 2 is formed in a similar way but starting from the worst 
case error. First, the DLG algorithm sorts the agents’ effective error 
variances γi in ascending order. Sets S 1 and S 2 are initially empty. 
Starting from the agent with the lowest effective error variance, 
the agent with the next lowest effective error variance is iteratively 
added to the set S 1 until the constraint E [ G (S 1 , ̂  δ)] > % is satisfied. 
This is the same procedure as the Greedy algorithm. 

To form S 2 we proceed as follows. Starting from the agent with 
the highest effective error variance, the agent with the next high- 
est effective error variance is iteratively added to the set S 2 un- 
til the constraint E [ G (S 2 , ̂  δ)] > % is satisfied. Finally, the DLG algo- 
rithm compares the variance of the beamforming gain for S 1 and 
S 2 , and outputs the one with smaller value. We note that the time 
complexity of the DLG algorithm is the same as the Greedy algo- 
rithm. 

For a given problem instance, the subset S ⊆ [ N] returned 
by the DLG algorithm satisfies Var (G (S, ̂  δ)) ≤ Var (G (S ′ , ̂  δ)) where 
S ′ ⊆ [ N] is the subset returned by the Greedy algorithm. Hence, 
DLG provides an optimal solution to the problem in (8a) - (8b) un- 
der the sufficient conditions stated in Theorem 1 . 
Supplementary material 

Supplementary material associated with this article can be 
found, in the online version, at doi: 10.1016/j.sigpro.2022.108647 . 
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