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On the Optimal Interdiction of Transportation Networks

Tianyun Zhang and Makan Fardad

Abstract— We consider the optimal interdiction problem in
transportation networks as a game in which an attacker acts
as the player who goes first and, subject to budget constraints,
fails nodes (partially or fully) at time zero so as to maximize the
total travel time of the mass. A centralized network operator
then acts as the player who goes second and, subject to the
system’s dynamics, routes the mass so as to minimize its total
travel time. We prove that the attacker’s best action is to
find the most consequential nodes and employ his resources
to fail them fully, so that the optimal attack is both sparse and
binary. We then propose an algorithm to numerically solve the
optimal interdiction problem, and demonstrate the utility of
our approach through illustrative examples.

Index Terms— Cascading failures, flow networks, linear pro-
gramming, network interdiction, optimization, sparsity, traffic
networks.

I. INTRODUCTION

Transportation networks, also known as flow networks, are
networks in which mass enters through source nodes and
on-ramps, is routed through nodes/cells and directed links,
and is removed at sink nodes and off-ramps. The flow of
mass is subject to (i) conservation of mass constraints, and
(1) link capacity constraints. Traffic networks, water supply
networks, and (routing of data packets in) computer networks
are all examples of transportation networks.

The cell transmission model of mass transfer developed
by Daganzo [1], [2] captures complex traffic behavior and
transient phenomena, such as congestion effects and the
propagation of shocks. Ziliaskopoulos [3] uses the cell trans-
mission model to formulate the optimum traffic assignment
problem as a linear program. In an influential sequence of
papers [4]-[7], Como et al. and Savla et al. analyze the
robustness and resilience of transportation networks under
decentralized routing. In particular, they propose routing
policies that depend only on local information and maximally
delay congestion effects under adversarial perturbations to
the capacities of cells. More recently, [8] considers the
problem of designing optimal routing policies in a network
where a fraction of vehicles will choose to ignore these
policies and act selfishly. The paper also studies network
resilience by finding changes in said fraction that lead to a
given cell reaching its jam mass and thus failing. Similar to
our work in its use of a min-max formulation, [9] designs
robot trajectories in the presence of undetectable attacks.
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In this paper, we study interdiction or attack on trans-
portation networks, which for the sake of concreteness we
consider to be highway traffic networks. In this context it is
of interest to find a small set of cells whose failure at time
zero, amplified and propagated by the system’s dynamics,
maximally disrupts the flow of traffic. This problem is
combinatorial in nature and intractable in general. Our work
follows [10] in formulating the optimal interdiction prob-
lem as a min-max optimization problem and subsequently
employing duality to transform it to a standard bilinear
optimization problem.

We demonstrate that even without an explicit promotion
of sparsity in the formulation, the solution to the optimal
interdiction problem is both sparse and binary. The solution
is sparse in the sense that the attacker’s best use of resources
is to find the small set of most consequential cells in the
network, and it is binary in the sense that the attacker’s best
choice is to fail these cells fully (as opposed to partially).

Furthermore, motivated by the block coordinate gradient
descent (BCGD) and block coordinate descent (BCD) al-
gorithms [11], we solve the bilinear problem by iteratively
updating one set of variables through a gradient-based step
and then finding the globally optimal solution in the other
set of variables. Our numerical experiments demonstrate that
our approach performs better in comparison with methods
reported in earlier work [10], and we find the globally
optimal solution in the small networks that we tested and
for which the global optimum could be verified through
exhaustive search.

The rest of the paper is organized as follows. In Section II
we introduce the standard cell transmission model and also
our augmentation of it, which allows for the irreversible
failure of nodes/cells. In Section III we formulate the optimal
interdiction problem and follow [10] in employing duality to
reformulate the problem as a bilinear program. In Section IV
we prove the sparsity and binary nature of the solution of
the optimal interdiction problem. In Section V we propose
a numerical algorithm to solve the bilinear optimization
problem. In Section VI we use examples to illustrate the
effectiveness of our method.

II. DYNAMIC MODEL OF TRANSPORTATION NETWORKS &
INFORMAL STATEMENT OF OPTIMAL INTERDICTION PROBLEM

In this section we first introduce the cell transmission
model. We augment the model in a way that allows for
the irreversible failure of cells through two mechanisms:
being attacked by an adversary and reaching the jam thresh-
old through the accumulation of mass. We then discuss a
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meaningful formulation of the optimal interdiction problem
subject to attacker resource constraints.

The network is characterized by a directed graph, where
we think of nodes as cells and of edges as allowing for flows
between neighboring cells. (In this work we use the words
cell and node interchangeably.) The temporal dynamics for
the cell transmission model are governed in part by [3], [12]

xi(t) = xi(t—=1) + yi(t—=1) — z(t—1) (1a)

(conservation of mass on cell %)

yi(t) = vilt) + 32, ()

(total inflow to cell ¢ = on-ramp flow + rerouted flow)

zi(t) = wi(t) + 22, fis (1) (1c)

(total outflow from cell ¢ = off-ramp flow + rerouted flow)

(1b)

for every ¢ and ¢, where x;,y;, and z;, respectively denote
the mass (i.e., number of vehicles) on, the inflow to, and
the outflow from, cell ; v;, w; respectively denote the mass
entering the network from on-ramp, and leaving the network
from off-ramp, corresponding to cell 4; f;; denotes the mass
routed from cell ¢ to adjacent cell j. The dynamics are
additionally constrained to [3], [12]

zi(t) >0, v;(t) > 0, w;(t) >0, fi;(t) >0 (2a)
(positivity of mass)

yi(t) < ki, 2i(t) < Ky (2b)
(inflow, outflow cannot exceed flow-capacity of cell)

Yi(t) < @i — xi(t), 2i(t) < ai(t)

(inflow cannot exceed remaining mass-capacity of cell,
outflow cannot exceed mass on cell)

(20)

with the further restrictions that f;;(-) = 0 if cells ¢ and j
are not adjacent, w;(-) = 0 if cell ¢ does not have an off—
ramp, and v;(+) specified a priori. The parameter ¢; denotes
the amount of mass that results in cell ¢ being jammed.
Inequalities (2b)—(2c) result from piecewise linear “supply”
and “demand” functions [12].

We assume that all mass enters the network from on-ramps
and possibly a source cell and that it leaves the network
through a sink cell. The source and sink cells have very
large capacities. Without loss of generality, we take the cell
with the lowest index to be the source (when a source cell
is present) and the cell with the largest index to be the sink.

As in [10], we further augment the dynamics (1)—(2) with
zi(t) < @i — (1), 3)
Ri € {071/}2}7 (4)

where 1; denotes the maximum possible amount of mass
that can flow in or out of cell ¢ during one time step, and ¢;
is the same jam mass as before. The constraints in (3)—(4),

together with (1)—(2), capture two methods by which a cell
irreversibly fails:
o at time 0 an attacker reduces the capacity of cell 7 to
zero, Kk; = 0;

e at some time ty > 1 and as a result of the network’s
dynamics the accumulated mass on cell ¢ reaches the
jam threshold, z;(to) = ¢;.

In both scenarios, once a cell has failed no mass can either
enter or leave it thereafter.

We assume that the attacker operates under a limited
budget e and that the ith element of the vector c characterizes
the cost for the attacker of reducing x; from ; to 0. This
means that the attacker is subject to the budget constraint

CT(]l - K:/w) S €,

where 1 is the column vector of all ones and division by a
vector is element-wise. The above inequality is equivalent to

¢'k>d 5)
with ¢ :=¢/1 and d := 1Tc —e.

Defining 2(t) as the vector whose ith entry is z;(¢), with
similar definitions for vectors y(t), z(t), f(t),v(t), w(t), &,
and taking [ = [1,...,1,0]7 so that [Tx(t) equals the total
mass at time ¢ on all cells except the sink cell, our main
problem in this work can be (informally) stated as follows.

Optimal Interdiction Problem: Given the temporal evolu-
tion model and failure constraints described by (1)—(5), for
the time horizon 0,1, ...t find a sparse set of cells whose
failure at time O maximizes the total travel time Zizo 1Ta(t).

We formulate the optimal interdiction problem as a game
in which an attacker acts as the player who goes first and,
subject to the constraints (4)—(5), fails the most critical nodes
at time 0 so as to maximize the total travel time of the mass.
A centralized network operator or trajectory planner then acts
as the player who goes second and, subject to the constraints
(1)—(3), routes the mass so as to minimize its total travel time.

The optimal interdiction problem can therefore be thought

of as -
min (Zi:o lTl'(t)) (6)

maximize
K z,Y,2, f,w

where the inner minimum is taken over the constraints (1)—
(3), given initial conditions x(0),y(0), 2(0) and prescribed
on-ramp flows; the outer maximization is performed over the
constraints (4)—(5).

Based on our informal statement of the optimal interdic-
tion problem above, one may be inclined to formulate (6) in
a way that forces a sparse set of failures. This could be done
for example by including in the objective function a sparsity-
promoting term that counts and penalizes the number of
nonzero entries in the vector vy — k. We will demonstrate
in Section IV, however, that (6) indeed has sparse solutions
without the need for an explicit promotion of sparsity in its
formulation.
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III. FORMAL STATEMENT OF OPTIMAL INTERDICTION &
ITS REFORMULATION AS BILINEAR PROGRAM

In this section we mathematically formulate optimal in-
terdiction as a max-min problem with a linear objective
and linear constraints. We then employ duality to obtain an
equivalent formulation as a maximization problem with a
bilinear objective and linear constraints.

Stacking the optimization variables x(t),y(t), z(t), f(¢),
w(t) into the vector u(t), and stacking u(1),u(2),...,u(t) to
form the vector u, we formally state the optimal interdiction
problem as

maximize

minimize pTu
K u

subject to Au=b, Gu<Hr+h ()

0< k<Y, qT,%Zd

where A, b, G, H, h, p are appropriately defined matrices and
vectors so that Au = b and Gu < Hk + h are compact
representations respectively of the equality constraints (1)
and inequality constraints (2)—(3). Here, for each ¢ we have
relaxed the constraint k; € {0,1;} to 0 < k; < ;. We
will demonstrate in the next section that despite lacking any
explicit promotion of sparsity in the formulation and despite
the relaxation of all binary constraints, the solution to (7) is
in fact sparse and that all but (at most) one of the x; belong
to {0,4;}. This is the main theoretical contribution of the
present work.

We next employ duality as in [10] to turn the max-min
problem (7) into a standard maximization problem. Problem
(7) is equivalent to

Ty — TN - ATHk

maximize
Ko\, U

1\

subject to ATv+GTA=—p, A>0 )
0<k<vy, ¢"k>d

where v and A respectively are the dual variables correspond-
ing to the equality and first inequality constraints in (7). Note
that to find the optimal u one would use the optimal x found
from (8) to solve the inner minimization problem in (7), i.e.,
minimize p” u subject to the first two constraints in (7).

The objective function in (8) is bilinear in the variables A
and x and is therefore nonconcave. In general it is intractable
to find the global maximum of a nonconcave function. In
the next section we propose an effective numerical method
to solve (8), which is the main algorithmic contribution of
this work. For small examples, where an exhaustive search
is feasible, we demonstrate that the solution found by our
algorithm is the same as the globally optimal solution.

IV. GUARANTEED SPARSITY AND BINARY PROPERTY OF
FAILURES

This section contains our main theoretical results. We
demonstrate that even without an explicit promotion of
sparsity in (7)—(8), the solution to the optimal interdiction
problem is both sparse and binary. The solution is sparse in

the sense that the attacker’s best use of resources is to find
the set of most consequential cells in the network, and it is
binary in the sense that the attacker’s best choice is to fail
these cells fully (as opposed to partially).

Proposition 1: When the budget is not enough to fail all
cells, there is an optimal solution of (8) that satisfies ¢Tr =
d, i.e., there is an optimal solution of

Ty — TN - ATHk

maximize
Ko\, U

1\

subject to ATv+GTA=—p, A>0 )
0<k<y, ¢"w=d

that solves (8). Furthermore, this solution has the property
that all but (at most) one of the x; belong to {0,1);}.

Proof: Problem (8) is equivalent to

—bTv — TN = ATHk

maximize maximize
Av K

subject to ATy +GTA=—p, A>0
OSKZS'(/J? CT(]I—,‘Q/’(/))SG
in which the inner maximization problem is
maximize —ATHg
" (10)
subject to 0 <k <, cI'(1—k/Y) <e.

Setting w” = AT H, and denoting the ith element of a vector
a by a;, the last problem becomes

= Wik
subject to 0<«k; <Y, 1=1,2,...
ici(l—ki/i) <e
which is further equivalent to
> wi(Yi — ki)
subject to 0< ¢, —r; <Y, 1=1,2,...
>oilci/vi) (i —

Setting 0; = ¢;/1; and p; = 1; — k;, the above problem can
be rewritten as

maximize
K

maximize
K

ki) <e.

maximize
I

Eiwiﬂi

subject to 0 < p; <y, 1=1,2,...

> i <e.
Since both ¢; and 1); are positive for every ¢ then 6; is positive
for i =1,2,..., and the last problem is equivalent to

Zi(wi/ei)ei,ui
Subject to 0 S F)lul S 91’11)1, 1= 172, [N

> i <e.
Setting 7; = 6;u; and recalling that 6;v); = ¢;, the above

maximize
n
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equation can be rewritten as
>i(wi/0:)T;

subject to 0< 7, <¢;, t=1,2,...

T < e

It can be shown that all the elements of H in (7) are
non-negative. Since the elements of A also are non-negative
and wT = ATH, it follows that the elements of w are
non-negative and therefore w;/6; is non-negative for i =
1,2,.... This implies that the objective function in (11) is
monotonically non-decreasing in every 7;.

maximize
T

(1)

When the attack budget is not enough to fail all cells
in the network, e < »".¢;, from the monotonically non-
decreasing property we conclude that there is a solution of
(11) that satisfies ) .7; = e. Clearly this implies that there
is a solution of (10) which satisfies ¢ (1 — k/v) = e, or
equivalently ¢”x = d. This proves that there is an optimal
solution of (9) that solves (8).

Moreover, when e < Zi% a solution of
> i (wi/0:)T;

OSTiSCia 121527

duTi=e

is given by finding the index 1 for which w;/0; is largest
among all ¢ and setting 7, = ¢;, if ¢;; < eand 7;, = e
if ¢;;, > e. If ¢;; < e we proceed by finding the index i
for which w;/60; is second-largest among all ¢ and setting
Tiy, = Ciy If ¢y + ¢, <eand 7, =e—cy, if ¢y, +¢4, > €.
This procedure is repeated until > .7; = e. Thus all but
(at most) one of the 7; belong to {0,c¢;}, with those 7;
corresponding to the largest values of w;/0; equal to ¢; and
those 7; corresponding to the smallest values of w;/6; equal
to 0. This implies that for every A > 0 there is a solution of

M Hg

maximize
T

subject to

maximize
K

subject to 0 <k <9, (1 —k/1Yp) =e.

with the property that all but (at most) one of the «; belong to
{0,;}, which in turn proves the same property for problem
(9). The proof of the proposition is now complete. [ ]

Proposition 1 demonstrates the sparsity of optimal failures.
The attacker orders the nodes in terms of their importance,
as determined by the coefficients in the objective function of
(11), and fails them fully in descending order of importance
until he has exhausted his budget. Since it is only meaningful
that the attacker has limited resources/budget, this results in
a sparse set of failed nodes.

V. PROPOSED ALGORITHM FOR SOLVING PROBLEM (9)

This section contains our main algorithmic results. We
solve the bilinear problem by iteratively updating one set
of variables through a gradient-based step and then finding
the globally optimal solution in the other set of variables.

Numerical experiments demonstrate that our approach per-
forms better in comparison with methods reported in earlier
work [10].

Although the objective function in (9) is bilinear in the
optimization variables, the constraints on « and {\ v} are
independent. If we fix one set of variables and optimize in
the other, we can decompose problem (9) into two linear
programs

maximize —ATHg
" (12)
subject to 0< k<%, ¢"k=d

and

maximize —bTv —hTA - \THk

A (13)

subject to ATv+GTA=—p, A>0.
In our experiments we find that if we update the variables by
iteratively solving linear programs (12) and (13) we rapidly
converge to a sub-optimal solution of problem (9), which
inhibits the search for the global optimum.

Motivated by block coordinate gradient descent (BCGD)
and block coordinate descent (BCD) [11], we aim to solve
problem (9) by iterating between updating ~ using a gradient-
based step and finding a globally optimal solution of {), v/}.
Generally, projected gradient descent is used as a one-step
update for constrained problems; it first employs gradient de-
scent to update the variables and then obtains their Euclidean
projection onto the constraint set. In this paper we use the
adaptive moment estimation (Adam) algorithm [13] instead
of gradient descent in the update of k. We will refer to this
procedure as the projected Adam algorithm.

The Adam algorithm adds bias-correction terms based
on the root mean square prop (RMSProp) [14] and the
adaptive gradient (Adagrad) [15] algorithms, and is known
to be robust and well-suited for a wide range of convex and
non-convex problems [13]. In the case of solving (9), the
momentum term in Adam helps avoid early convergence to a
sub-optimal point. In our experiments we observe that using
the projected Adam algorithm results in solutions that are far
superior to those found by projected gradient descent.

To begin, we use the fact that maximizing the objective
in (12) is equivalent to minimizing A” Hx. In our projected
Adam algorithm we first use Adam to update x, for which
we compute

g¥ ) =V ATHr = HT ),
P = B1p) + (1= )™y,
o+ = 86 4 (1 = B)gH+D) o gk +D)

A(k+1) _ p*ty s (k+1)

P = 1 9 [
-5 1—055
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with the update of x given by
nptkty

VEEtD 4 el

Here, o denotes element-wise vector multiplication and divi-
sion by vectors is performed element-wise; € is a parameter
with small positive values (to prevent division by zero in (14)
and generally chosen to be 109), the initial values of p(©)
and 0 are zero, and the parameters 31 and 35 respectively
are chosen to be 0.9 and 0.999; 1 is the column vector of
all ones and 7 is the step size of the Adam algorithm.

k(1) — (k) _ (14)

Next, we find the Euclidean projection of x(*+1) onto the
constraint set by solving the quadratic program

minimize ||k — x*+D)||3
g 15)

subject to 0< Kk <1, ¢'k=d.

In every iteration, after solving (15) we use £**1) to denote
the solution of (15) rather than the result of (14). We then
set & = £**1) in problem (13) and solve the linear program
to obtain {A\(*+1) p(*+11 This concludes one iteration of
our algorithm.

Algorithm 1 Proposed algorithm for solving (9)

1: initialize \(©)

2: for k =0,1,..., knqe, do

3: Set A = A®) find x**+1) using projected Adam
algorithm (14)—(15).

4 Set k = D find {AFHD p(EFDY by solving
linear program (13).

5: end for

Algorithm 1 summarizes our proposed iterative method for
solving problem (9). In our experiments we observe that the
number of needed iterations is reduced if we initialize A(®)
using the sub-optimal solution found by solving linear pro-
grams (12) and (13) iteratively, instead of a using a random
point in the constraint set. The details of the initialization of
) is discussed in Algorithm 2.

Algorithm 2 Initialization of \(°)

1: given k(©) =)

2: for i =0,1,...,%imq, do ‘

3; Solve problem (13) to find A(*) and v, set Jl(l) as
value of objective function. _

4 Solve problem (12) to find £t set Jz(l) as value
of objective function.

s it JY = g0 and J{Y = ) then
6: Break for loop.

7: end if

8: end for

VI. EXAMPLES

In this section we illustrate the utility of Algorithms 1—
2 for solving problem (9). We apply our approach to two

different networks and compare the results we obtain with
those reported in [10]. Our numerical experiments validate
the theoretical results in SectionIV. For all linear programs
we use CVXPY [16], [17], a tool for convex programming
in Python. We implement the Adam algorithm (14) in
Tensorflow [18] and employ a step size of n = 10.

A. Example 1

We consider the network shown in Figure 1, which is taken
from [10]. We prescribe that at each time step 2 units of mass
enter nodes 1,9 through their respective on-ramps. Node 11
is the sink cell. We take ¢ = 1.2+ and t = 12. The cost,
flow-capacity, and initial mass vectors respectively are given
by

c=3,2,1,2,2,1,2,1,3,2]"
v=0[4,31%33%3343]"
2(0)=[2,1,1,1, 4,4, 1,1 2.2]"

1 2 3

4 5 6

11
7 8
9 10

Fig. 1: Network from [10]

Our method | URI [10] | BRI [10] | Exhaustive search
e Failures Failures | Failures Failures
1 3 3 3 3
3 3,6,8 3,6,8 3,6,8 3,6,8
5 3,6,8,10 3,6,8,10 | 3,6,8,10 3,6,8,10

TABLE I: Comparison of different numerical algorithms for
network in Figure 1.

Table I demonstrates that for budgets e = 1, 3,5 both our
numerical method and that proposed in [10] successfully
find the globally optimal attack obtained through exhaustive
search.

B. Example 2

We consider the network shown in Figure?2, which is a
traffic network adapted by [10] from [19]. We prescribe that
at each time step 2 units of mass enter nodes 1,4 and 1 unit
of mass enter node 3, all through their respective on-ramps.
Node 18 is the sink cell. We take ¢ = 1.2 and ¢ = 12. The
cost, flow-capacity, and initial mass vectors respectively are
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given by
c= [3,272,3,2,2,373,2,2,2,27373,1,3,2}T

¢ =[6,3,3,6,3,3,5,5,3,3,3,3,5,5,2,5,3
3.3,3,3,3,3,3,3,2,2

z(0)

(2,3

DRI

11

}T

T
,3,2,2,2,2]"

(18)

Fig. 2: Network from [10] based on [19, Chap. 19].

Applying our approach to large networks is part of our
current research efforts.

[1]

[2]

[5]

[6]

[8]

Our method

URI [10]

BRI [10]

Exhaustive search

[9]

Failures

Failures

Failures

Failures

15,17

15, (16)

15, (16)

15,17

[10]

| Wl

15,17

15, (16)

15, (16)

15,17

6

15,16,17

15,16,17

15,16,17

15,16,17

(11]

TABLE II: Comparison of different numerical algorithms for
network in Figure 2.

TableII demonstrates that for budget e 6 both our
numerical method and that in [10] find the globally optimal
attack obtained through exhaustive search. In this case, the
budget is enough to fully block the network; it is clear that
failing nodes 15, 16, 17 is optimal since these failures prevent
any mass from leaving the network. For e = 3, 4 the problem
is more challenging, as the budget is no longer enough
to fully block the network. Still, our proposed approach
successfully finds the globally optimal attack whereas the
method in [10] does not.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we study the optimal interdiction problem
for transportation networks. We prove that the optimal so-
lution is both sparse and binary, despite the absence of any
sparsity/binary regularizers or constraints in the formulation.
We also propose a numerical method to solve the bilinear
program that is equivalent to the optimal interdiction prob-
lem, and demonstrate that it finds globally optimal solutions
in the small networks we tested.

Since our numerical algorithm employs a combination of
linear programming and a first-order gradient-based method,
we expect that it will scale gracefully for large networks.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
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